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Abstract 

A single concept can manifest in many varied forms, 
depending on the context in which it is activated. That is, 
concepts appear to be flexible rather than static. Here we 
implement a compositional model of conceptual knowledge in 
which basic-level concepts are represented as graph 
theoretical networks, with the specific goal of quantifying 
conceptual flexibility. We collect within-concept statistics 
using online participants, construct network models, and 
validate these models in a classification analysis. We then 
extract network measures and find that network diversity and 
core-periphery structure correspond to conceptual flexibility 
and stability, respectively.  These results suggest that a 
compositional network model can be used to extract formal 
measures that are interpretable and useful in the study of 
conceptual knowledge. 

Keywords: conceptual knowledge, network science, 
flexibility, semantics 

Introduction 
The APPLE information evoked by “apple pie” is 
considerably different from that evoked by “apple picking”: 
the former representation is soft, warm, and wedge-shaped, 
whereas the latter is firm, cool, and spherical. Though APPLE 
is considered to be one basic-level concept, its information 
content can be flexibly adjusted to reflect contextual 
demands. This conceptual flexibility enables concepts to be 
represented in varied and fluid ways, a central characteristic 
of the semantic system that has not yet been captured in a 
formal model of conceptual knowledge.  

Perhaps the most basic form of conceptual flexibility is 
that a single concept has many distinct sub-ordinates that 
differ from each other. The concept APPLE can be 
instantiated as a Granny Smith or as a Macintosh, and either 
one can easily be brought to mind. But even a representation 
of a single token of APPLE can be flexibly adjusted: 
activated properties might be RED and ROUND while 
shopping, whereas they might be SWEET and CRISPY while 
eating. A concept can also be represented in varied states, 
each with their own distinct features: the representation of 
an APPLE is FIRM versus SOFT before and after baking, and 
SOLID versus LIQUID before and after juicing. Conceptual 

flexibility is further evidenced in the frequent non-literal use 
of concepts: one should stay away from “bad apples” and 
should not “compare apples with oranges;” and, one can use 
concepts fluidly in novel analogies and metaphors.  Though 
conceptual flexibility is a pervasive phenomenon, it poses a 
formidable challenge: what kind of conceptual structure 
permits this flexibility to occur?  

In vector-based approaches, concepts are represented as 
vectors of features. These features can span a range of 
information-types (e.g., visual, functional, encyclopedic), 
consistent with a distributed account of conceptual 
knowledge (e.g., McRae et al., 1997; Tyler & Moss, 2001). 
Models that represent basic-level concepts in terms of their 
constituent features are valuable because they can be 
implemented in computational architectures such as parallel 
distributed processing models and attractor networks (e.g. 
Cree et al., 1999). More generally, they provide an account 
of concepts’ internal structure, which is arguably essential 
for a theory of conceptual flexibility. However, the feature-
vectors that represent individual concepts are static and 
unchanging — a clear limitation if one aims to incorporate 
flexibility into conceptual structure.  
 In current network-based approaches, individual concepts 
are characterized in terms of their relation to other concepts 
by virtue of their word-association strengths or text-based 
co-occurrence statistics. In this framework, concepts are 
represented as nodes in a network, and their relations are 
encoded as the links, or edges, between them (e.g., Steyvers 
& Tenenbaum, 2005; De Deyne et al, 2016). These models 
are valuable because semantic structure can be analyzed 
using a rich set of network science tools. However, current 
network-based implementations do not provide the internal 
conceptual structure that is necessary —  we argue — to 
model conceptual flexibility. In other words, it is hard to 
provide a model of conceptual flexibility (in the sense 
described above) when the features that are being flexibly 
adjusted are not explicitly represented.  
 Here we introduce a new model in which concepts are 
represented as their own feature-based networks. We 
believe that a feature-based conceptual framework paired 
with network science techniques provides a platform on 

2515



which to model conceptual flexibility. In our concept-
specific networks, nodes represent individual features and 
edges (i.e., the links between the nodes) represent the 
statistical relationship between features within that concept. 
That is, edges capture the extent to which certain properties 
tend to covary with each other within a concept. The 
creation of such networks thus requires the calculation of 
within-concept statistics. These statistics provide the 
scaffolding to build our networks, and also reveal how a 
concept’s information may be appropriately adjusted to 
form valid, yet varied, instances of that concept. Our 
specific goals here are (1) to show that creation of such 
networks is possible, (2) that these networks contain 
concept-specific information, and (3) that they permit the 
extraction of formal measures of conceptual flexibility.  

Another phenomenon relating to conceptual flexibility is 
the distinction between context-independent and context-
dependent conceptual properties (here, we use this 
synonymously with “features”; Barsalou, 1982). Context-
independent properties are those that are automatically 
activated for a concept in all contexts, and are sometimes 
referred to as “core” properties. Context-dependent 
properties are those that are only activated when the context 
renders them relevant. In the APPLE example, SWEET and 
HAS SKIN may be context-independent and –dependent 
properties, respectively. Concepts are composed of both 
kinds of properties, such that some properties are stable and 
occur across all instances, and some are more variable and 
only occur some of the time. Furthermore, some concepts 
may have a stronger “core” than others, and this might relate 
to the flexibility of those concepts. One of our additional 
goals was thus to extract network-based measures that 
characterize this element of conceptual structure in a formal 
way.  

Many networks by their very nature permit flexibility, 
because a single network can support different states, each 
characterized by different patterns of activation across 
nodes. This kind of network flexibility is determined by the 
connections between nodes and how those connections give 
rise to a larger network structure. Most natural systems 
exhibit “small-world” network structure (Bassett & 
Bullmore, 2006), which means that there are clusters of 
nodes in a network with strong connections between them. 
These are called “modules”, and nodes can interact with 
these modules in different ways. Some nodes may have 
links that are highly distributed across the modules in a 
network, whereas other nodes may have links only in one 
module. This tendency is captured in the diversity 
coefficient, a version of the participation coefficient 
calculated using normalized Shannon entropy. We 
interpreted network diversity as a likely candidate for a 
formal flexibility measure, and predicted that it would 
correlate with a measure of “semantic diversity” calculated 
separately using word co-occurrence statistics (SemD; 
Hoffman et al., 2013).  

Network science also provides techniques for assessing 
core-periphery structure (Borgatti & Everett, 2000). In 

network terms, a core is a set of nodes that are densely 
interconnected and therefore often co-activated, whereas the 
periphery consists of nodes with sparser connections. A 
measure can be extracted that represents the extent to which 
a given network has a core-periphery structure; some 
networks might have more prominent cores than others. We 
hypothesized that this construct of core-periphery structure 
could provide a way to formally capture the notion of 
context-dependent and context-independent conceptual 
properties. More specifically, concepts characterized by 
large sets of context-independent properties might 
correspond with networks characterized by a strong core-
periphery structure. It also seems reasonable to suggest that 
concepts with a stronger core might be less flexible in the 
ways described above. If we interpret a core as a set of 
properties whose activation patterns are stable across 
contexts, then there is less room for variability in the 
expression of these properties, and therefore less flexibility 
overall. We therefore predicted a negative relationship 
between our network measures of flexibility and core-
periphery structure.  

Methods 

General Methods 
Network Construction In order to create our networks we 
first had to define our nodes. Since our nodes represent 
individual conceptual properties, we compiled a list of 
properties that applied to all of our target concepts. 
Participants were recruited from Amazon Mechanical Turk 
and were asked to list all of the properties that must be true 
or can be true for each concept. It was emphasized that the 
properties do not have to be true of all types of the concept. 
Participants were required to report at least 10 properties per 
concept, but there was no limit on the number of responses 
they could provide. Once these data were collected, we 
organized the data as follows. For each concept, we 
collapsed across different forms of the same property (e.g., 
“sugar”, “sugary”, “tastes sugary”), and removed responses 
that were too general (e.g., “taste”, “color”). For each 
concept, we only included properties that were given by 
more than one participant. We then combined properties 
across all concepts to create our final list of N properties that 
will be represented as nodes in our concept networks.  

The same participants also provided “sub-concepts”: 
these included subordinate concepts and possible concept 
states (e.g., chocolate chips, wine bottle). For each concept, 
participants were asked to think about that object and all the 
different kinds, forms, types, or states in which that object 
can be found. For each concept, we removed responses that 
we considered properties rather than types (e.g., “sweet 
chocolate”), and responses that were non-generic 
trademarks (e.g., “Chiquita banana”). We only included 
responses that were given by more than one participant, 
resulting in a set of K sub-concepts for each concept. It 
should be noted that the classification of “concepts” and 
“sub-concepts” is arbitrary: networks could theoretically be 
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constructed at any level of the conceptual hierarchy (e.g., 
FOOD, CHOCOLATE, DARK CHOCOLATE). We chose to model 
basic-level concepts in the present work. 

A separate set of participants was presented with one sub-
concept of each of the target concepts in random order (e.g., 
“chocolate chips”, “frozen banana”), and were asked to 
select the properties that are true of that specific sub-
concept. The full list of N properties was displayed in a 
multiple-choice format. For each sub-concept, responses 
were combined across participants and represented in a 
binary fashion. To reduce noise, a property was only 
considered “true” for a sub-concept if more than one 
participant made that response. At this point, each concept’s 
data include a set of K sub-concepts, each of which 
corresponds to a N-length vector that indicates the presence 
or absence of each property.  Each sub-concept is weighted 
equally. We can also view these data as a set of N 
conceptual properties, each of which corresponds to a K-
length vector that indicates its presence or absence in each 
of the sub-concepts. 

For each concept, we excluded properties that were not 
present in any of the sub-concepts, resulting in a smaller set 
of M properties. We created a network by correlating the M 
binary property-vectors with each other to create a M x M 
symmetrical, weighted correlation matrix. These networks 
were filtered using the triangulation filtering method in 
order to remove spurious correlations (e.g., Massara et al., 
2016). This filtering approach generates a simpler subgraph 
that maximizes information content while reducing the 
influence of noise, and is appropriate for graphs where 
edges are defined as correlations between nodes, as is the 
case here. No parameter fitting is required to apply the filter. 
These final, filtered concept networks were then analyzed 
using standard network science methods. 

We created two sets of randomly-selected object concepts 
such that our results would not be specific to particular node 
definitions or network sizes. For all analyses, we used rank-
based (spearman) correlations and an alpha criterion of 0.05.   

 
Classification Analysis Our primary goal is to extract 
measures from concept networks that relate to individual 
concept’s flexibility; this will only work if our networks 
differ across concepts. In order to establish that this is the 
case, we ran a classification analysis to confirm that our 
networks could discriminate between new concept 
exemplars. Exemplar data were generated from sets of 
photographs for each concept; there was at least one image 
for each sub-concept, though co-existing states (e.g. dark 
chocolate, chocolate chips) precluded a one-to-one 
mapping. AMT participants were shown one image per 
concept, were presented with the full list of N properties in 
multiple-choice format, and were asked to select the 
properties that they believed applied to the object in the 
image. Individual participants’ responses to each sub-
concept were represented as N-length property vectors and 
were used as test data in the classification analysis.  

By performing eigendecomposition on each concept 
network (i.e., adjacency matrix) we can assess the extent to 
which a property vector is expected given an underlying 
network structure (e.g., Medaglia et al., 2017). For each 
adjacency matrix A, V is the set of NC eigenvectors, ordered 
by eigenvalue. M is the number of ordered eigenvectors to 
include in analysis, and designates a subset of V. For each 
eigenvector v, we find the dot product with signal vector x, 
which gives us the projection of x on that dimension in the 
eigenspace of A. That is, it gives us an “alignment” value for 
that particular signal and that particular eigenvector. We can 
include all eigenvectors in M by taking the sum of squares 
of the dot products for each eigenvector.  The alignment 
value for each signal is defined as 

 
 𝑥   =    𝑣! ∙ 𝑥 !!

!!! ,   (1)
  

where 𝑥 is a property vector, M is the number of 
eigenvectors to include in alignment (sorted by eigenvalue), 
𝑣!   is one of M eigenvectors of the adjacency matrix, and 𝑥 
is the scalar alignment value for signal x with adjacency 
matrix A, given the eigenvectors 1-M. In our case, signal x is 
a property vector corresponding to a particular exemplar 
image, which we align with each of the concept networks. 
Each exemplar was restricted to the properties included in 
each concept model before transformation; that is, exemplar 
data (x) were reduced to NC–length vectors. The concept 
network that resulted in the highest alignment value (𝑥)  was 
taken as the “guess” of the classifier; each exemplar was 
either classified correctly (1), or incorrectly (0). We 
averaged these data across all exemplars to calculate the 
average classifier accuracy. To calculate a baseline measure 
of classification accuracy, we created traditional vector 
models for each concept. For each concept, we averaged the 
K sub-concept vectors resulting in an NC -length vector 
containing mean property strength values. Each concept’s 
traditional vector model and network model contained the 
same conceptual properties. We ran a separate classification 
analysis using these traditional models and a correlational 
classifier. Each exemplar property-vector was correlated 
with each of the traditional concept vector models; the 
concept model that resulted in the highest correlation value 
was taken as the guess of the classifier. We calculated 
average measures of classifier performance using the same 
methods described above, and also calculated classification 
accuracy within each concept. 
 
Network Analysis We extracted network metrics from our 
concept networks using the Brain Connectivity Toolbox 
(Rubinov & Sporns, 2010).  The set of nodes in each 
network is designated as N, and n is the number of nodes. 
The set of links is L, and l is the number of links. The 
existence of a link between nodes (i,j) is captured in 𝑎!": 
𝑎!" = 1 if a link is present and 𝑎!" = 0  if a link is absent. 
The weight of a link is represented as 𝑤!", and is normalized 
such that  0 ≤ 𝑤!" ≤ 1. 𝑙! is the sum of all weights in the 

2517



network. The network metrics we extracted included node 
strength, node degree, modularity (𝑄), core-periphery 
structure, and diversity coefficients.  

Nodes within a network differ in the number and strength 
of their connections to other nodes. Node degree (𝑘) is the 
number of connections that each node has with other nodes 
in the network (Eq. 2; Rubinov & Sporns, 2010). In 
weighted (i.e., non-binary) networks, node strength (𝑘!) is 
calculated by summing the weights of the connections with 
other nodes (Eq. 3; Rubinov & Sporns, 2010). We 
separately averaged node strength and node degree within 
each network to obtain mean strength and degree measures 
for each concept network. 

 
𝑘!   =    𝑎!"𝑗∈𝑁   (2) 

 
𝑘!!   =      𝑤!"𝑗∈𝑁   (3) 

 
Modularity (𝑄) is a metric that describes a network’s 

community structure. We can attempt to partition a 
weighted network into sets of non-overlapping nodes (i.e., 
modules) such that within-module connections are 
maximized and between-module connections are 
minimized. Some networks exhibit more of a modular 
structure than others; 𝑄! is a quantitative measure of 
modularity for each weighted network (Eq. 4; Rubinov & 
Sporns, 2010). 

 

𝑄!   =      !
!!
   𝑤!" −   

!!
!!!

!

!!
  𝛿!!,!!!,!∈𝑁     , (4) 

 
where  𝛿!!,!! = 1 if nodes i,j are in the same module (m), 

𝑤!"  is the specific strength between nodes i,j, and 
!!
!!!

!

!!
 

scales 𝑤!"  by the total strengths of nodes i,j across the 
network. Given a network’s community structure, we can 
observe how individual nodes participate with each of the 
modules in the set of modules (M):   Nodes may have 
connections to many different modules, or have very few 
such connections. The diversity coefficient (ℎ!

±)  is a 
measure ascribed to individual nodes that reflects the 
diversity of connections that each node has to modules in 
the network. This is a version of the participation 
coefficient, and is calculated using normalized Shannon 
entropy; we have previously used entropy to model property 
flexibility, and so predicted that diversity would be a good 
candidate for a network-based measure of conceptual 
flexibility. The diversity coefficient (Eq. 5; Rubinov & 
Sporns, 2011) for each node is defined as  

 
ℎ!
±   =   − !

!"#!
𝑝!
±

!∈𝑀 𝑢 log 𝑝!
±(𝑢), (5) 

 

where 𝑝!
± 𝑢   =    !!

±(!)

!!
±  , 𝑠!

± 𝑢  is the strength of node 𝑖 

within module 𝑢, and 𝑚 is the number of modules in 
modularity partition 𝑀. We averaged diversity coefficients 

across nodes in a network to obtain a mean measure of 
diversity for each concept network.  

Core-periphery structure is another way to describe the 
structure of a network. Here, we attempt to partition a 
network into two non-overlapping sets of nodes such that 
connections within one set are maximized (i.e., the “core”) 
and connections in the other are minimized (i.e., the 
“periphery”). Core-periphery fit (𝑄!) is a quantitative 
measure of how well each network can be partitioned in this 
way (Eq. 5), and can be defined as  

 
𝑄! =   

!
!!
   𝑤!" − 𝛾!𝑤   −!,!∈𝐶𝑐 𝑤!" − 𝛾!𝑤   !,!∈𝐶𝑝

      (5) 
 

where 𝐶! is the set of all nodes in the core, 𝐶!is the set of 
nodes in the periphery, 𝑤 is the average edge weight, 𝛾!is a 
parameter controlling the size of the core, and 𝑣!is a 
normalization constant (Rubinov et al., 2015).  

Methods: Set 1 
The 5 concepts used in Set 1 were CHOCOLATE, BANANA, 
BOTTLE, TABLE, and PAPER. 

Participants on Amazon Mechanical Turk (N=66) 
provided general properties for each concept along with 
sub-concepts. An additional group of participants (N=198) 
made property judgments on specific sub-concepts, and an 
additional group of participants (N=60) generated test data 
for the classification analysis by making property judgments 
on individual images.  

The final property list included 129 properties. The 
number of sub-concepts for each concept were as follows: 
chocolate=14, banana=15, bottle=11, table=14, paper=20.  

In the classification analysis, test data comprised a total of 
300 property-vectors, with 60 exemplars/concept.  

Methods: Set 2 
The 10 concepts used in Set 2 were KEY, PUMPKIN, GRASS, 
COOKIE, PICKLE, KNIFE, PILLOW, WOOD, PHONE, and CAR. 

Participants on Amazon Mechanical Turk (N=60) 
provided general properties for each concept along with 
sub-concepts. An additional group of participants (N=108) 
made property judgments on specific sub-concepts, and an 
additional group of participants (N=30) generated test data 
for the classification analysis by making property judgments 
on individual images.  

The final property list included 276 properties. The 
number of sub-concepts for each concept were as follows: 
key=19, pumpkin=18, grass=16, cookie=22, pickle=17, 
knife=15, pillow=16, wood=22, phone=16, car=20.  

In the classification analysis, test data comprised 300 
property-vectors, with 30 exemplars/concept. 

Results 
Classification Results 
In order to determine whether our concept networks 
contained concept-specific information, we ran a 
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classification analysis using eigendecomposition for both 
Set 1 and Set 2. We ran multiple analyses using different 
ranges of eigenvectors, which were sorted by eigenvalue 
(positive to negative). We started by only using the first 
eigenvector in each of the concept networks and determined 
whether this dimension alone could be used to classify the 
property vector. One dimension was enough to classify 
exemplars in Set 2 (Mean Accuracy=0.27; SE=0.03; 
Chance=0.10) but not Set 1 (M=0.11; SE=0.02; 
Chance=0.20). Increasing the number of dimensions 
improved classification performance for both sets (Fig. 1): 
for example, classification performance is significantly 
above chance when only 10 dimensions are used in Set 1 
(M=0.38; SE=0.03; Chance=0.10) and Set 2 (M=0.38; 
SE=0.03; Chance=0.20). As more dimensions were included 
in the analysis, classification performance approaches that 
of the vector-based classifier. The increased success of the 
vector-based model (Set 1: M=0.85, SE=0.03, Chance=.20; 
Set 2: M=0.84, SE=0.03, Chance=0.10) suggests that the 
presence or absence of individual features is highly 
informative for discriminating between concepts. However, 
the success of the network-based model suggests that our 
concept networks do contain concept-specific information, 
motivating us to look within a concept for structural 
elements that relate to conceptual flexibility. It is this main 
goal that we pursue in the subsequent analyses. 
 
Network Measures of Conceptual Structure  
Networks across the two sets differed in node assignments, 
since they were constructed using different properties. 
However, once classification and network measures were 
extracted, we could pool the concepts together (N=15) and 
examine relationships between these network-related 
measures and other variables of interest. 

We extracted network measures from the concept 
networks and explored how they relate to cognitive 
measures of conceptual flexibility and stability. Hoffman et 
al. (2013) use word co-occurrence statistics to quantify the 
context-dependent variations in word meanings found in 
language. The authors provide a measure of semantic 
diversity (SemD) that captures this variability, and we 
extracted SemD values for our 15 concepts. We also 
extracted their reported mean cosine similarity of a word’s 

contexts and used this as a measure of semantic stability 
(which we refer to as SemS). As expected, SemD negatively 
correlated with SemS across our 15 concepts (r(15)=-0.96, 
p=<0.0001).  

One of our primary goals was to extract a network 
measure that reflects conceptual flexibility. We used SemD 
(Hoffman et al., 2013) as a benchmark for conceptual 
flexibility and determined whether our hypothesized 
network measures of flexibility correlated with SemD across 
our 15 concepts. A priori, we hypothesized that the mean 
diversity (i.e., the average of a concept network’s diversity 
coefficients across nodes) could reflect conceptual 
flexibility. This network measure captures the extent to 
which properties within a concept associate with different 
modules, or property clusters. Another possible candidate 
measure was network modularity, which reflects the extent 
to which a concept’s network can be partitioned into 
separate property clusters. Network modularity (M=0.72, 
SD=0.04) was not significantly associated with either SemD 
(r(15)=0.22, p>0.4) or SemS (r(15)=-0.19, p>0.5). On the 
other hand, mean diversity was positively associated with 
SemD (r(15)=0.56, p=0.03; Fig. 2) and negatively 
associated with SemS (r(15)=-0.60, p=0.02). Mean diversity 
(M=0.07, SD=0.02) was not significantly associated with 
either mean node strength (r(15)=0.08, p>0.7) or mean node 
degree (r(15)=0.42, p=0.12). These results suggest that the 
network measure of mean diversity is a strong candidate for 
a quantitative measure of conceptual flexibility. 

We also assessed the core-periphery structure for each 
concept network, which determines how well a network can 
be divided into a highly-connected core and a sparsely-
connected periphery. If the core of a concept network 
corresponds to the notion of a context-independent 
conceptual “core”, we predicted that more stable (i.e., less 
flexible) concepts would have networks with a stronger 
core-periphery structure. Consistent with this prediction, 
core-periphery structure (M=0.56, SD=0.08) was positively 
associated with SemS (r(15)=0.54, p=0.038), though the 

Figure 2: SemD predicts mean-diversity of concept 
networks.  

 

Figure 1: Classification results for 5 concepts in Set 1 
(left) and 10 concepts in Set 2 (right). Dashed line 
indicates chance performance.  
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relationship with SemD was only marginally significant 
(r(15)=-0.50, p=0.059). Furthermore, mean diversity and 
core-periphery structure were negatively correlated (r(15)=-
0.61, p=0.02), suggesting that these measures may be used 
to capture conceptual flexibility and stability, respectively. 
We also found that core-periphery structure was positively 
correlated with classification accuracy using the standard 
vector model (r(15)=0.56, p=0.03). This suggests that 
standard cognitive models perform better on more stable 
concepts, highlighting the need for a model that can 
adequately capture conceptual flexibility. 

Discussion 
Here our goal was to model basic-level concepts using 
graph-theoretical networks. We argue that the within-
concept statistics encoded in these models capture useful, 
concept-specific information. Using standard network 
science tools, we further reveal the usefulness of these 
models by extracting formal metrics that relate to cognitive 
notions of conceptual flexibility and stability. 

A model structured using within-concept statistics 
provides a framework in which varied yet appropriate 
instantiations of a concept may be flexibly activated. An 
APPLE network may contain a strong connection between 
CRUNCHY + FRESH and between SOFT + BAKED, enabling the 
conceptual system to know what sets of properties should be 
activated in a particular APPLE instance — for example, in 
the representations evoked by “apple picking” versus “apple 
pie.” The property-covariation statistics for a given concept 
will determine which sets of properties tend to be co-
activated, and how individual properties relate to those sets 
and to each other. We thus sought to use our compositional 
concept network models, which contain within-concept 
statistics, to extract quantitative measures of these 
phenomena. We found that mean-diversity and core-
periphery structure can be interpreted as measures of 
conceptual flexibility and stability, respectively: a concept 
network-model’s mean-diversity positively predicts 
semantic diversity (SemD; Hoffman et al., 2013), a 
network-model’s core-periphery fit positively predicts 
semantic stability (mean cosine similarity; Hoffman et al., 
2013), and these two network measures are negatively 
related to each other across our concepts. We also found that 
traditional property-vector models were better at capturing 
the representation of stable versus flexible concepts, 
suggesting that a different kind of conceptual model may be 
necessary to capture the intrinsic flexibility of the 
conceptual system. We argue that a network-based model of 
basic-level concepts is one such option.  

Here we have constructed concept network models, 
confirmed their ability to capture concept-specific 
information, and extracted network measures that relate to 
cognitive measures of conceptual flexibility and stability. 
We believe the application of network science to conceptual 
knowledge will provide a set of tools that will enable the 
intrinsic flexibility of the conceptual system to be explored 
and quantified.  
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