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Feature Uncertainty Predicts Behavioral and Neural
Responses to Combined Concepts

Sarah H. Solomon and Sharon L. Thompson-Schill
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

The cognitive and neural structure of conceptual knowledge affects how concepts combine in language and thought.
Examining the principles by which individual concepts (e.g., DIAMOND, BASEBALL) combine into more complex phrases (e.g.,
“baseball diamond”) can illuminate not only how the brain combines concepts but also the key ingredients of conceptual
structure. Here we specifically tested the role of feature uncertainty in the modulation of conceptual brightness evoked by ad-
jective-noun combinations (e.g., “dark diamond”) in male and female human subjects. We collected explicit ratings of concep-
tual brightness for 45 noun concepts and their “dark” and “light” combinations, resulting in a measure reflecting the degree
of conceptual brightness modulation in each noun concept. Feature uncertainty was captured in an entropy measure, as well
as in a predictive Bayesian model of feature modulation. We found that feature uncertainty (i.e., entropy) and the Bayesian
model were both strong predictors of these behavioral effects. Using fMRI, we observed the neural responses evoked by the
concepts and combinations in a priori ROIs. Feature uncertainty predicted univariate responses in left inferior frontal gyrus,
and multivariate responses in left anterior temporal lobe were predicted by degree of conceptual brightness modulation.
These findings suggest that feature uncertainty is a key ingredient of conceptual structure, and inform cognitive neuroscience
theories of conceptual combination by highlighting the role of left inferior frontal gyrus and left anterior temporal lobe in
the process of flexible feature modulation during comprehension of complex language.
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The meaning of a word depends on the words surrounding it. The challenge of understanding how flexible meaning emerges
in language can be simplified by studying adjective-noun phrases. We tested whether the uncertainty of a feature (i.e., bright-
ness) in a given noun concept (e.g., biaMoND) influences how the adjective and noun concepts combine. We analyzed feature
uncertainty using two probabilistic measures, and found that feature uncertainty predicted people’s explicit interpretations of
adjective-noun phrases (e.g., “dark diamond”). Using fMRI, we found that combined concepts evoked responses in left infe-
rior frontal gyrus and left anterior temporal lobe that related to our measures of feature modulation and uncertainty. These
findings reveal the cognitive and neural processes supporting conceptual combination and complex language use. /

the meaning of a word is often influenced by the words sur-

Introduction eanil . . . .
Human language relies on a deep reservoir of conceptual knowl- rounding it (Frege, 1884). That is, the information activated to
represent a concept (e.g., biaMoND) will be flexibly adjusted when

edge. Words (e.g., “diamond”) refer to concepts (e.g., DIAMOND) h bi b oth o1
that contain information relating to knowledge about things in :E e concept combines with other ioncepts in language (eg,
. : : dirty diamond,” “baseball diamond”). Here we use conceptual
the world (e.g., diamonds are bright, sparkly, and expensive). L ;
. combination to explore the following: (1) aspects of conceptual
Most utterances comprise many words strung together, and one . o
. . . structure that enable flexible activation of conceptual features, fo-
must combine the meanings of the underlying concepts to gener- . . .
cusing on feature uncertainty, and (2) the neural regions that are
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involved in flexible feature modulation in complex language use.

The cognitive and neural representations of conceptual fea-
tures are context-dependent (e.g., Halff et al., 1976; Yee and
Thompson-Schill, 2016). We hypothesized that the uncertainty
of a conceptual feature (e.g., BRIGHTNESs) within a concept (e.g.,
piaMoND) will influence the flexible activation of that feature
when corresponding concepts combine (e.g., “dark diamond”). If
a feature is present or absent in a concept with high certainty,
activation of that feature might be less flexible in relevant verbal
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contexts: charcoal is almost always dark in color, so “light char-
coal” might not induce much change in conceptual brightness.
On the other hand, uncertainty in a conceptual feature allows
this ambiguity to be resolved in combined concepts resulting in
substantial feature change: the brightness of paint is very uncer-
tain, so “light paint” might induce a substantial change in con-
ceptual brightness. We analyzed feature uncertainty using
information theory’s measure of “entropy,” which reflects the
uncertainty, or the informativity, of a signal (Shannon, 1948). In
a behavioral experiment, we quantified the extent to which
“dark” and “light” modifiers influenced the conceptual bright-
ness of noun concepts, and found that feature uncertainty related
to the flexible modulation of conceptual brightness.

Another approach to testing theories of conceptual structure
and combination is to embed theoretical assumptions in differ-
ent computational models and see how well those models predict
behavioral or neural responses to combined concepts (e.g.,
Mitchell and Lapata, 2008, 2010; Baroni and Zamparelli, 2010;
Baron and Osherson, 2011). We therefore also embedded feature
uncertainty in a predictive Bayesian model of feature composi-
tion. This Bayesian model outperformed more traditional models
that do not incorporate feature uncertainty. Probabilistic models
of language composition have been explored in prior work
(Lassiter and Goodman, 2013; Goodman and Frank, 2016); here
we extend these ideas to the analysis of feature-based semantic
composition.

We also aimed to characterize the neural regions involved in the
flexible modulation of conceptual features in the “dark” and “light”
adjective-noun phrases. Previous fMRI studies of conceptual knowl-
edge and combination constrained our analyses to neural regions
implicated in related cognitive processes. Left anterior temporal
lobe (LATL) is consistently recruited in conceptual combination
tasks (Baron et al, 2010; Baron and Osherson, 2011; Bemis and
Pylkkédnen, 2011, 2013a,b; Boylan et al., 2017). Left angular gyrus
(LAG) has also been widely implicated in conceptual combination
(Bemis and Pylkkdnen, 2013a; Boylan et al., 2015, 2017; Price et al.,
2016). Conceptual combination is similar to figurative language in
that it involves the flexible selection and integration of conceptual
features across concepts. Left inferior frontal gyrus (LIFG) is heavily
implicated in figurative language comprehension, and has revealed
sensitivity to flexible feature selection (Solomon and Thompson-
Schill, 2017) and changes in metaphor familiarity over time
(Cardillo et al., 2012). We also examined responses in left fusiform
gyrus (LFUS), which is involved in semantic retrieval of visual fea-
tures in language tasks (e.g., Martin, 2007) and might therefore be
recruited to represent conceptual brightness in combined concepts.
Our fMRI study implicates LATL and LIFG in the flexible modula-
tion of conceptual features during comprehension of adjective-
noun combinations.

Materials and Methods

Participants. In the behavioral experiment, 357 participants (49%
female; mean * SD age, 39.8 & 13.4 years) completed online surveys on
Amazon Mechanical Turk and were compensated according to standard
rates. Participants were located within the United States. Consent was
obtained for all participants in accordance with the University of
Pennsylvania Institutional Review Board.

Adjective and noun stimuli. We focused on the single dimension of
conceptual brightness to enable a tightly controlled analysis of how
brightness information is modulated across verbal contexts. The adjec-
tives “dark” and “light” were used to modulate the conceptual brightness
of 45 noun concepts. These 45 noun concepts covered the full range of
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brightness values (e.g., DIAMOND, SNOW, PAINT, SHADOW, CHARCOAL; Fig.
1B). A full list of noun stimuli is shown in Table 1.

Noun stimuli were normed for word length, frequency, and con-
creteness. Word frequency and concreteness data were extracted from
Brysbaert et al. (2014); Spearman’s correlation was used to assess rela-
tionships between variables. A significant negative association was found
between word length and frequency (p = —0.44, p=0.002, R> = 19%);
word concreteness was not associated with either word length (p > 0.7)
or word frequency (p > 0.4).

We also tested whether these variables correlated with our behavioral
measures of interest (see below). While no significant relationships were
found between noun brightness and word frequency (p = —0.24,
p=0.12) or concreteness (p > 0.3), we did observe a significant positive
association between word length and noun brightness (p = 0.35,
p=0.02, R* = 12%). It should be noted that none of our behavioral pre-
dictions related to explicit noun brightness; indeed, our analyses were
designed precisely to orthogonalize brightness modulation and noun
brightness. However, we do control for word length when analyzing
neural sensitivity to noun brightness in our fMRI data. Most impor-
tantly, no relationships were found between brightness entropy and
word length (p > 0.8), frequency (p > 0.6), or concreteness (p > 0.6), or
between ground-truth modulation and word length (p > 0.7), frequency
(p>0.5), or concreteness (p > 0.2).

Experimental design. One group of online participants (N'=58) pro-
vided subjective ratings of brightness probability. Each of the 45 noun
concepts was presented in a randomized order, and participants were
asked “Is/are [noun] typically dark?” on a 5 point scale ranging from
“This is always light” to “This is always dark.” Ratings were reliable
across participants (Cronbach’s & = 0.82). Responses were averaged
across participants and scaled between 0 and 1 to reflect brightness prob-
ability (p) for each of the 45 noun concepts, in which values close to 0
indicate that a concept is likely light in color and values close to 1 indi-
cate that a concept is likely dark in color.

Another group of participants (N=100) rated the brightness of the
unmodified noun concepts. For each of the 45 noun concepts, participants
were asked to rate the darkness of each concept by sliding a bar correspond-
ing to a visually presented scale transitioning from white to black (e.g,
“Rate the darkness of: paNT,” Fig. 1A). The numerical values of the visual
scale ranged from 0 (white) to 50 (black) and were hidden to participants.
Stimuli were presented in a randomized order. These brightness judgments
were reliable (Cronbach’s a = 0.80) and were averaged across participants,
resulting in brightness values for each of the 45 unmodified nouns.

A final group of participants (N = 199) rated the brightness of the ad-
jective-noun combinations. Stimuli were split into two lists such that
each participant saw each noun modified by either “dark” or “light,” and
participants performed the same task described above (e.g., “Rate the
darkness of: park PAINT”). Brightness judgments of the adjective-noun
combinations were reliable within both stimulus lists (Cronbach’s a =
0.76, a = 0.86). Responses were averaged across participants, resulting in
brightness values for each of the 45 “dark” combinations and each of the
45 “light” combinations. These values were compared with the bright-
ness values of the unmodified nouns to calculate the degree of brightness
modulation caused by “dark” and “light” adjectives for each noun con-
cept. We describe this method in more detail below.

Behavioral measure of brightness uncertainty. Information theory’s
measure of entropy (Shannon, 1948) is a measure of uncertainty that can
be calculated using probability values. Here we use entropy as a measure
of feature uncertainty for a particular feature-noun pair. More specifi-
cally, we want to know the uncertainty of BRIGHTNESs in the 45 noun con-
cepts, such as p1aMOND and PAINT. Given the brightness probability values
described above, we defined brightness entropy (E) as follows:

E = —Ppark - lOgZ(PDARK) + —Prgur - 1082(PLIGHT)

where Prigur = 1 — Ppark. This was our behavioral measure of bright-
ness uncertainty. Entropy is symmetrical around p = 0.5, where p =0 and
p=1 indicate maximum lightness and darkness, respectively; each con-
cept was thus assigned a single entropy value that captured the concept’s
brightness uncertainty on the light-dark spectrum (ie., it makes no
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Figure 1.

Noun Brightness

Explicit measures of conceptual brightness. A, Participants used a visual scale to indicate the brightness of nouns and adjective-noun combinations. B, We calculated the extent to

which conceptual brightness was modulated across the 45 noun concepts. Distance from the middle black line corresponds to increased modulation of conceptual brightness separately for the
“dark” and “light” modifiers. The calculated ground-truth brightness modulation for each concept is the mean absolute distance between combination brightness and noun brightness across

the two adjectives.

Table 1. Noun concepts”

white sand eyeshadow
paper sky mud
snow feather beetle
sugar silver shadow
diamond coconut asphalt
teeth marble chocolate
pearls slippers limousine
rice paint coffee
dove gray panther
bone fur cave
ivory a@r mascara
cloud rock charcoal
foam jeans night
shell jacket tuxedo
bread rubber black

“The 45 noun concepts used in the current study are displayed in order of conceptual brightness (light to
dark).

difference whether E is calculated based on Ppjgut or Ppark). We pre-
dicted that brightness uncertainty would positively relate to the degree
to which conceptual brightness is modulated across the 45 noun con-
cepts when paired with “light” and “dark” adjectives.

Ground-truth brightness modulation. One reason why we used the
single dimension of conceptual brightness, along with both “dark” and
“light” modifiers, is because it allowed us to completely disentangle
brightness uncertainty from brightness probability: whereas the com-
bined light and dark probabilities are always identical across concepts
(Ppark + Prigur = 1), each concept has a unique entropy value that
captures uncertainty within the brightness dimension. That is, brightness
probability alone cannot predict any differences in brightness modula-
tion when collapsed across “dark” and “light” adjectives, whereas bright-
ness uncertainty does have the ability to predict variation in feature
modulation across concepts. Thus, any relationship between brightness

entropy and brightness modulation cannot be attributed to brightness
probability in the noun concept.

To derive this measure of brightness modulation, we first determined the
extent to which “dark” and “light” adjectives separately modulated brightness
in each of the 45 items by calculating the difference in brightness between
each noun concept and its associated adjective-noun combinations (Fig. 1B).
For example, the diamond “dark” effect corresponds to the absolute differ-
ence between the brightness values of “diamond” and “dark diamond,” and
the diamond “light” effect corresponds to the absolute difference between
the brightness values of “diamond” and “light diamond.” The mean of these
“dark” and “light” effects for each noun reflects the extent to which bright-
ness can be modulated within a concept across language contexts. We refer
to this measure as ground-truth brightness modulation.

Results

Behavioral results

Feature uncertainty predicts ground-truth modulation

We used entropy to derive a measure of feature uncertainty, which
specifically captured the uncertainty of conceptual brightness
within each of our 45 noun concepts. We predicted that brightness
uncertainty would positively predict the extent to which a con-
cept’s conceptual brightness could be modulated by related adjec-
tives (i.e., “dark” and “light”). Consistent with this prediction, we
observed a strong positive relationship between brightness uncer-
tainty and ground-truth brightness modulation (p = 0.70, p <
0.0001, R* = 49%), a result that supports the hypothesis that fea-
ture uncertainty is an aspect of conceptual structure that may
influence processes of conceptual combination (Fig. 2).

Observed relationship is not due to edge effects
Another reason why we combined across “dark” and “light”
when analyzing ground-truth modulation was to reduce the
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Figure 2.

influence of edge effects. By collapsing across “dark” and “light”
modifiers, each concept has the same maximum potential move-
ment on the brightness scale (i.e., 50 brightness units). When
only one adjective is analyzed, some concepts have more of an
opportunity to change than others due to the brightness of the
unmodified nouns. For example, the darkness of CHARCOAL
(Bnoun = 43) can only increase by 7 units when the “dark”
modifier is used, whereas the darkness of sNow (Byoun = 3) can
potentially increase by 47 units. Collapsing across “dark” and
“light” thus eliminates this particular concern.

However, to further confirm that the observed relationship
between brightness uncertainty and modulation was not driven
by noun concepts on the extreme edges of the bounded bright-
ness scale, we removed the 15 darkest and 15 lightest noun con-
cepts and ran the same correlation with the remaining 15
concepts. A positive relationship between brightness uncertainty
and ground-truth modulation remained (p = 0.78, p =0.0006, R*
= 61%). Indeed, this relationship still held when only the 9 mid-
dle-brightness noun concepts (GRAY, CAR, ROCK, MARBLE, FUR,
SLIPPERS, PAINT, SILVER, COCONUT) were analyzed (p = 0.74, p=0.03,
R* = 55%). These additional analyses support our claim that the
relationship between feature uncertainty and feature modulation
is not merely due to edge effects but does reflect something
meaningful about how concepts are combined.

Modeling Methods

Predictive models of adjective-noun combination

To further understand how conceptual features are modulated in
combined concepts, we created a set of predictive models that
made different predictions about how concepts combine. Each
model generates predictions reflecting the conceptual brightness
of the adjective-noun combinations (Bconmpo) based on the con-
ceptual brightness of the adjective (Bopj) and noun (Byoun); we

Brightness uncertainty predicts ground-truth brightness modulation in combined concepts. Brightness uncer-
tainty was captured using entropy (E), based on the brightness probability of each noun concept. Brightness uncertainty
positively predicted ground-truth brightness modulation (p = 0.70, p << 0.001). Concepts characterized by low brightness
uncertainty (e.g., cuarcoa) did not show large changes in brightness in “dark” and “light” combinations. Concepts with
high brightness uncertainty (e.g., pait) showed large changes in brightness when modified by the same adjectives.

baseline predictions that the more interest-
ing combinatorial models should outper-
form. A similar approach is found in
distributional or vector-based semantics
(e.g, Mitchell and Lapata, 2008, 2010;
Chang et al,, 2009). In the adjective model,
the predicted brightness of the combined
concept (e.g., “dark diamond”) is identical
to the brightness of the adjective (e.g.,
“dark”) as follows:

0.9 1.0

BCOMBO - BAD]

where Bap; corresponds to either extreme end of the scale
(Bpark = 50; Brigur = 0). When only one adjective is analyzed,
the additive model does not predict differences in Bcompo across
the 45 nouns (see Fig. 4B) but does predict differences in
Bcuange due to variation in Byoun. Importantly, however, this
model does not predict any Bcyange Vvariation across concepts
when adjective effects are combined.

The second baseline model was a noncombinatorial noun
model, in which the predicted brightness of the combined concept
is identical to the brightness of the unmodified noun as follows:

BCOMBO = BNOUN

The noun model predicts differences in Bcowmpo across items
(see Fig. 4C). It does not predict any variance in Bcyangg in the
“dark” and “light” combinations separately, nor when averaged
together. Thus, like the adjective model, the noun model is also
unable to capture variability in the extent to which brightness
can be modulated across the 45 noun concepts.

Additive model

We constructed a combinatorial additive model in which the
predicted brightness of a combined concept is a weighted sum of
Bapy and Byoun. This model has been proposed as a candidate
combinatorial mechanism in both cognitive (e.g., Smith et al.,
1988) and computational models of distributional semantics
(e.g., Mitchell and Lapata, 2010). The general form is as follows:

Bcomso = Brnoun + W - Bapy

where W is a weight that scales B,p;. In our case, Bop; represents
the extreme brightness values (Bparx = 50; Brigur = 0). Our
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Figure 3. Predictive combinatorial models. A, In our Bayesian model, conceptual brightness was represented as a probability distribution over brightness values for each noun concept.

Greater values on the x axis indicate increased conceptual darkness. Each distribution is defined by a mean and o, derived from our behavioral task (see Fig. 1). We defined the means of the
“dark” and “light” distributions as the extreme ends of the brightness scale, and optimized for o~. B, C, Different “dark” o~ values result in different Bcowpo predictions for “dark diamond,” and
our goal was to find the o that generated the most accurate predictions of Bcygo across the 45 noun concepts. D, In the additive model, we optimized the adjective weight for “dark”
(W=10.35) and “light” (W = 0.33) separately. E, In the multiplicative model, we optimized the parameter that scaled the noun concept for “dark” (M = 2.74) and “light” (M = 2.00) separately.
F, In the Bayesian model, we optimized the o of the “dark” (o = 8.42) and “light” (o~ = 10.27) distributions separately. We averaged the “dark” and “light” parameters within each model

to analyze fMRI data.

implementation of the additive model makes separate predic-
tions for “dark” and “light” combinations:

BCOMBO—DARK = BNOUN +Ww- BDARK

BCOMBO—LIGHT = BNOUN -W- BDARK

We optimized W between 0< W <1 (intervals of 0.01), sepa-
rately for “dark” and “light” combinations (Fig. 3D). This
resulted in a value of Wpark (0.35) that minimized the mean
squared error (MSE) of Bcompo.park predictions relative to the
explicit dark-combo brightness values, and a value of Wigur
(0.33) that similarly minimized the MSE of Bcompo-Ligur pre-
dictions. We used these optimized parameters to generate
Bcompo and Bepange predictions for each concept. The additive
model’s Bcompo predictions are shown in Figure 4D.

Multiplicative model

We also constructed a combinatorial multiplicative model in
which the predicted brightness of a combined concept is a prod-
uct of Byoun and a scaling parameter that reflects the influence
of the adjective. This model is interpreted as an integrative model
in computational models of distributional semantics (e.g., Chang
et al., 2009; Mitchell and Lapata, 2010). The general form is as
follows:

Beomso = Broun * Sapj

where S is a parameter that determines the influence of “dark”
and “light” modifiers on each noun concept. We optimized S
between 0< S <5 (intervals of 0.01), separately for “dark” and
“light” combinations (Fig. 3E). This resulted in a value of Sparx
(2.74) that minimized the MSE of Bcompo-park predictions rela-
tive to the explicit dark-combo brightness values, and a value of
SLIGHT (20) that similarly minimized the MSE of BCOMBO»LIGHT
predictions. Once the S parameter was optimized for each adjec-
tive, we used that parameter to generate Bcompo and Beuance
predictions for each concept. The multiplicative model’s Bcomso
predictions are shown in Figure 4E.

Bayesian model

We previously described how feature uncertainty can be reflected
in an entropy measure, but feature uncertainty can also be em-
bedded in probabilistic feature models. We thus constructed a
combinatorial Bayesian model of adjective-noun combinations
that incorporated brightness uncertainty. Brightness representa-
tions for adjective and noun concepts were captured in probabil-
ity distributions over brightness values, in which the peak of the
distribution reflects the mean brightness of the concept and the
variance of the distribution reflects brightness uncertainty (Fig.
3A). A narrow brightness distribution indicates more certainty
in the concept’s brightness, and a wide brightness distribution
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Bayesian combinatorial model best predicts brightness of combined concepts. 4, We compared the Bcqygo predictions of our five model against ground-truth Begypo data. The y

axis indicates the MSE of the model predictions. Lower values indicate better performance. The Bayesian model outperformed both the additive models (t 45 = 2.93, p = 0.005) and multiplica-
tive model (taq = 7.14, p < 0.001), providing further evidence that feature uncertainty is relevant for conceptual combination. Error bars indicate SEM. B—F, Bcoupo predictions of the 45
“dark” (dark purple) and 45 “light” (light purple) combinations for the adjective, noun, additive, multiplicative, and Bayesian models. Black dots represent the same ground-truth Bcgygo Values

presented in Figure 1B.

indicates more uncertainty. In our Bayesian model, the predicted
brightness of a combined concept is a function of the product of
the constituent concepts’ brightness distributions. If the bright-
ness probability distributions for adjectives (Papj) and nouns
(Pnoun) are Gaussian distributions defined by a mean (u) and
SD (o), then a Bayesian Bcompo prediction is the maximum a
posteriori estimate of the product of these distributions:

Beomso = argmax f{ Papy(i, o) - Pxoun(M, 0) }

We derived the 45 Pyoyn distributions (e.g., for DIAMOND, PAINT,
CHARCOAL) by fitting Gaussian distributions to histograms reflect-
ing the frequency of responses in the explicit brightness judg-
ment task. We do not have data corresponding to the Pap;
distributions; for simplicity, we assumed that Pparxu = 50 and
Prigarm = 0. We optimized separately for Pparxo and Ppiguro
(0< o <50; intervals of 0.01). Two example Ppark distributions
with Ppargo = 8 and Ppark 0 = 15 are shown in Figure 3B,C.
This procedure resulted in values for Ppsrxo (8.42) and
Priguro (10.27) that minimized the MSE of Bcompo predictions
relative to the explicit Bcompo values (Fig. 3F). Once the Popjor
parameter was optimized for each adjective, we used that pa-
rameter to generate Bcompo and Bcpance predictions for
each concept. This enabled us to compare the relative accu-
racy of the additive, multiplicative, and Bayesian models,
thereby determining whether the inclusion of feature uncertainty

in a combinatorial model improves predictions of feature modu-
lation. The Bayesian model's Bcompo predictions are shown in
Figure 4F.

Modeling Results

Bayesian model best predicts brightness of combinations

We tested the success of each of our models (i.e., adjective, noun,
additive, multiplicative, Bayesian) at predicting the brightness of
combined concepts (i.e., Bcompo). The predictions of each
model are shown in Figure 4B-F. For each model, we calculated
the MSE for each of the 90 combinations, averaged across “dark”
and “light” modifiers for each item, and then averaged across
items to calculate the overall error for each model (Fig. 4A). As
expected, the adjective model (MSE =258.6) and noun model
(MSE =207.3) performed poorly relative to the combinatorial
models. Restricting our analyses to the combinatorial models, a
one-way ANOVA confirmed that overall MSE differed across
the additive, multiplicative, and Bayesian models (F(132) =
23.06, p < 0.001). Pairwise comparisons revealed that the multi-
plicative model performed worse than both the additive model
(taay = 5.59, p<<0.001) and the Bayesian model (f(4) = 7.14,
p <<0.001). Most interestingly, the Bayesian model also signifi-
cantly outperformed the additive model (t(44) = 2.93, p=0.005).
The Bayesian model therefore made the most accurate predic-
tions regarding the ground-truth conceptual brightness of adjec-
tive-noun combinations. The Bayesian model still outperformed
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the additive (f4q) = 2.29, p=0.027) and multiplicative (f(44) =
7.65, p<0.001) models when the optimized “dark” and “light”
parameters were averaged within each model. This finding that
the Bayesian combinatorial model, which incorporates feature
uncertainty, outperformed the other combinatorial models fur-
ther suggests that feature uncertainty contributes to feature mod-
ulation in conceptual combination.

fMRI Methods

Participants

Twenty-four participants (67% female; mean * SD age, 25.6
*+10.2 years) from the University of Pennsylvania community
completed the fMRI study and were compensated $20/h for their
time. All fMRI participants were right-handed, fluent speakers of
English, with no self-reported neurologic disorders or damage.
Consent was obtained for all participants in accordance with the
University of Pennsylvania Institutional Review Board.

Experimental design

The fMRI study comprised six scanning runs; participants
viewed the 45 unmodified noun concepts in the first two scans
and the 90 adjective-noun combinations in the final four scans.
Participants completed two tasks simultaneously: a conceptual
color detection task (“color task”) and a fixation size-change
detection task (“fixation task”).

In the unmodified noun scans (1 and 2), items were presented
in an event-related design with 2 s stimulus presentation and a
fixation interstimulus interval of 2-8 s. In the color task, partici-
pants were asked to press a button on a hand-held response box
when an item referred to a cued color; the color cue (i.e., red or
green) was presented before each block of trials. We thus inter-
spersed filler items throughout each scan that were either typi-
cally red (e.g., “strawberry,” “ruby”), or typically green (e.g.,
“lettuce,” “frog”). This task was chosen to encourage visual im-
agery of the items without explicitly asking participants to think
about conceptual brightness. Each run comprised one block of
red-cued trials and one block of green-cued trials; the order of
red/green blocks was pseudorandomized across runs. Each of the
45 target noun concepts was presented once per scan in a pseu-
dorandomized order and was seen once in a red block and once
in a green block across the experiment. To increase engagement
with the stimuli, we included an additional fixation task in which
participants were asked to press a different button on the
response box when the fixation cross presented between the
noun stimuli briefly changed in size, which happened at random
intervals 8 times per scan (four per block).

In the combined concept runs (3-6), participants completed
the same color task and fixation task described above. The fillers
in the color task were combined concepts that are typically red
(e.g., “dark blood,” “stop sign”) or green (e.g., “light moss,” “foot-
ball field”). We included fillers that did not include “dark” and
“light” modifiers to encourage participants to process the full
combined phrases rather than focus on the final word alone.
Each of the 45 noun concepts appeared (modified by “dark” or
“light”) once per scan, resulting in two presentations of each spe-
cific combination across the experiment. Each combination (e.g.,
“dark diamond”) was seen once in a red block and once in a
green block.

fMRI acquisition and analysis

fMRI data were collected on a 3-T Siemens Trio System
equipped with a 64-channel array head coil. Structural data
included axial T1-weighted localizer images with 160 slices and 1
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Figure 5. A priori neural ROls. We analyzed responses in four ROls; each 123-voxel spheri-
cal ROl was drawn around the peak voxel reported in a prior study. The LIFG ROI (blue) was
centered at MNI coordinates x = —54, y=24, z=10 based on an analysis of metaphor
processing (Cardillo et al., 2012). The LATL ROI (green) was centered at x = —40, y =16,
7= —32 based on a multivoxel analysis of combined concepts (Baron and Osherson, 2011).
The LAG ROI (orange) was centered at x = —52, y = —56, z=22 based on an analysis of
adjective-noun combinations (Price et al., 2015). The LFUS ROI (yellow) was centered at x =
—38, y = —47, 7= —14 based on an analysis of task-dependent color processing (Hsu et
al, 2012). A, Left lateral view; B, ventral view, projected onto a cortical surface in MNI
space.

mm isotropic voxels (TR =1850ms, TE=3.91ms, TI=1100ms,
FOV =240 mm, flip angle=28°). Functional data included six
acquisitions of echo-planar fMRI using a multiband sequence
performed in 78 axial slices and 2 mm isotropic voxels
(TR=2000 ms, TE =30 ms, FOV =192 mm, flip angle = 75°).

Data were preprocessed and analyzed using FSL. Preprocessing
included motion correction using MCFLIRT, spatial smoothing
with a Gaussian kernel of FWHM 5 mm, and high-pass temporal
filtering. Motion outliers were modeled as covariates of no inter-
est. All scans were analyzed with a GLM, including item-level
regressors modeling the individual TRs for each concept or com-
bination contrasted against the fixation baseline. We added regres-
sors for TRs in which filler items or instructions were presented,
TRs in which the fixation cross changed size, and TRs in which
participants made a response on the button box. These data were
averaged across scans, resulting in whole-brain 8 maps for the 45
unmodified noun concepts, 45 dark combinations, and 45 light
combinations for each participant. Individual subjects’ data were
transformed to MNI standard space using FLIRT linear regression
in FSL, with a final isotropic voxel resolution of 2 mm. We
excluded time points in which participants incorrectly responded
to an experimental item from all subsequent analyses.

Defining a priori ROIs

We analyzed neural responses to combined concepts within a
priori ROIs. We selected four neural regions based on their asso-
ciation with theoretically relevant aspects of language compre-
hension and conceptual knowledge: LFUS, LAG, LATL, and
LIFG. Each of these regions has been implicated in a cognitive
process that could contribute to conceptual feature modulation
in comprehension of combined concepts; instead of running
multiple functional localizers, we referred to previous fMRI stud-
ies that report the peak voxel from an analysis that targeted one
of these cognitive processes of interest (Fig. 5). Each of these
spherical ROIs comprised 123 voxels, although we also report
results of analyses performed in smaller and larger ROIs to con-
firm the robustness of our findings.

The representation of a conceptual feature that has been
modulated by or integrated within a combined concept could
take place in the same neural region(s) that represent the concep-
tual feature in single concepts. While primary visual cortex is
recruited for color and brightness perception (e.g., Rossi et al,,
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1996; Shapley and Hawken, 2011), LFUS is involved in semantic
retrieval of color and other visual features in language tasks (e.g.,
Thompson-Schill et al., 1999; Hsu et al., 2011; Martin, 2007).
Specifically, Hsu et al. (2011) observed increased activation in
LFUS when the task required more detailed or specific color knowl-
edge. Hypothesizing that this context-dependent activation of color
information might correspond with context-dependent feature
modulation in combined concepts, we drew our LFUS ROI around
the peak voxel in the analysis reported by Hsu et al. (2011).

LAG has been widely implicated in studies of conceptual
combination (Bemis and Pylkkédnen, 2013a; Price et al., 2015,
2016; Boylan et al., 2015, 2017). Specifically, Price et al. (2015)
observed increased activation in LAG for adjective-noun combi-
nations that were more plausible (e.g., “plaid jacket” vs “fast blue-
berry”). Hypothesizing that this adjective-noun comprehension
might correspond with feature modulation in our adjective-
noun combinations, we drew our LAG ROI around the peak
voxel reported by Price et al. (2015).

LATL has also been heavily implicated in conceptual combina-
tion (Baron et al., 2010; Baron and Osherson, 2011; Bemis and
Pylkkdnen, 2011, 2013a,b; Westerlund and Pylkkdnen, 2014;
Boylan et al, 2017). Specifically, Baron and Osherson (2011)
observed that the multivoxel fMRI patterns evoked by combined
concepts in LATL could be predicted by multiplicative and additive
combinations of the patterns evoked by the constituent concepts.
Hypothesizing that the integration of simple concepts in LATL
might reflect the modulation of conceptual features, we drew our
LATL ROI around the peak voxel reported by Baron and Osherson
(2011). This ROI was less ventral, and/or more anterior, than the
ATL sites considered by Lambon Ralph and colleagues to be a
“semantic hub” (e.g., Pobric et al., 2007; Lambon Ralph et al., 2009;
Visser and Lambon Ralph, 2011); our fMRI sequence was not opti-
mized to account for the reduced FOV and signal quality to which
these ventral ATL regions are susceptible (Visser et al., 2010).

LIFG has not yet been implicated in conceptual combination
but is known to support related cognitive processes, such as
semantic selection (Thompson-Schill et al., 1997, 1999) and figu-
rative language comprehension (Rapp et al., 2004, 2007; Eviatar
and Just, 2006; Lee and Dapretto, 2006; Stringaris et al., 2007;
Bambini et al.,, 2011; Cardillo et al., 2012); we have previously
reported LIFG sensitivity to the selection of conceptual features
during metaphor processing (Solomon and Thompson-Schill,
2017). Conceptual combination is very similar to figurative lan-
guage in that it involves the flexible selection and integration of
conceptual features across concepts (Wisniewski, 1997; Estes and
Glucksberg, 2000; Coutanche et al., 2020). Cardillo et al. (2012)
observed that LIFG activation was tuned by metaphor familiar-
ity, suggesting that LIFG is recruited during metaphor processing
when it requires integrating constituent concepts on-the-fly.
Hypothesizing that metaphor-related integration in LIFG might
relate to modulation of conceptual features, we drew our LIFG
ROI around the peak voxel reported by Cardillo et al. (2012).

Univariate fMRI modulation

We calculated a measure of univariate neural modulation (“uni-
variate effects”) that captured the extent to which neural
responses to the 45 noun concepts were modulated by “dark”
and “light” adjectives. This measure is the neural analog of the
ground-truth modulation measure described above. For each
participant, the voxel responses to each of the 45 noun concepts
were averaged across scans and then averaged within each ROI,
resulting in one univariate response for each of the 45 nouns.
These values were z-scored for each subject, such that the mean
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univariate response across all items in each ROI was set to 0 for
each participant. These standardized responses to the 45 items
were averaged across subjects, resulting in a univariate response
to each of the 45 noun concepts. Identical methods were used to
capture univariate responses to the 90 combinations, resulting in
standardized activation values for the unmodified noun, dark
combination, and light combination for each of the 45 items.

For each item, the univariate “dark” effect was the absolute
value of the difference between the dark combination (e.g., “dark
diamond”) and the noun (e.g., “diamond”); the univariate “light”
effect was the absolute value of the difference between the light
combination (e.g., “light diamond”) and the noun (e.g., “dia-
mond”). These values were averaged to result in the univariate
effect for each item, reflecting the extent to which neural responses
to noun concepts are modulated by adjective-noun combinations.
We discard the direction of change in fMRI analyses because there
is no a priori reason why an increase in conceptual darkness would
result in either an increase or decrease in neural response, and this
directionality could potentially differ across ROIs. Furthermore,
there is no reason to assume that these neural modulations reflect
changes in representational brightness per se as opposed to proc-
esses involved in adjusting representations elsewhere in the brain.

We calculated the significance of relationships between our
measures of interest and univariate effects in each ROI using
Spearman’s correlation and permutation testing. In each permu-
tation analysis, we ran 10,000 permutations in which items were
shuffled before correlating the behavioral and univariate meas-
ures, thereby generating a null distribution of correlation values.
In all cases, we predicted positive relationships between behav-
ioral and neural effects, and we considered negative relationships
to be uninterpretable (e.g., increased conceptual change corre-
sponding with decreased change in neural response). We thus
assessed significance in a one-tailed design, such that the uncor-
rected significance threshold was the 95th percentile of permuted
correlation values (a = 0.05). To correct for multiple compari-
sons across the four ROIs, the significance threshold was
adjusted to the 98.75th percentile (a = 0.0125).

Multivariate fMRI modulation

We also calculated a measure of multivariate neural modulation
(“multivariate effects”) that captured the extent to which multi-
voxel patterns (MVPs) corresponding to the 45 noun concepts
were modulated by “dark” and “light” adjectives. Instead of aver-
aging activity within each ROI, we analyzed the MVP across the
123 voxels. We calculated the Spearman’s distance between
MVPs evoked by the noun (e.g., “diamond”) and dark combina-
tion (e.g., “dark diamond”), as well as the distance between
MVPs evoked by the noun and the light combination (e.g., “light
diamond”), for each of the 45 items and separately for each sub-
ject. This distance measure corresponded to 1 — p, such that the
distance values ranged from 0 (patterns are identical) to 2 (pat-
terns are maximally different). These dark- and light-distance
values were averaged across subjects, resulting in a multivariate
dark and light effect for each item. These dark and light effects
were summed for each noun concept, resulting in an overall
multivariate effect for each of the 45 noun concepts. This mea-
sure captured the extent to which patterns of neural activity were
modulated by the combined concepts in each of the ROIs.

Using combinatorial models to predict neural responses to com-
bined concepts

In our analysis of univariate and multivariate fMRI data, we sim-
plified the combinatorial models by averaging the optimized
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“dark” and “light” parameter estimates within each model. That
is, for the additive model, we averaged the weight parameter W
for “dark” and “light” and used the resulting W to generate
Bcuance predictions for each combination. We similarly aver-
aged the “dark” and “light” scaling parameters S for the multipli-
cative model, and the “dark” and “light” uncertainty parameters
o for the Bayesian model.

The dark and light Bcyange predictions were averaged for
each noun concept such that these Bcyange Values were analo-
gous to the ground-truth modulation measure. Averaging across
modifiers is important because it enables us to interpret the
Bcuange predictions as combinatorial; noncombinatorial mod-
els (i.e., the adjective and noun models) do not predict any differ-
ences in Bepgange across nouns when collapsing across “dark”
and “light” combinations. Thus, the ability of these Bcgance
measures to predict neural activity can be taken to reflect a com-
binatorial process, rather than a noncombinatorial process that
may nevertheless influence neural responses (e.g., feature satura-
tion effects).

Neural representations of conceptual brightness

We sought to determine whether any of the ROIs were sensitive
to conceptual brightness in the unmodified noun concepts. In a
univariate analysis, we used a regression analysis to determine
whether explicit brightness ratings could predict mean univariate
responses to the 45 noun concepts when controlling for word
length. Because there was no a priori hypothesis for the direc-
tionality between mean neural activity and conceptual bright-
ness, we used a two-sided regression analysis in a permutation
test similar to that described above. We implemented this by test-
ing for both a positive (@ = 0.025) and negative (a = 0.025) rela-
tionship. However, to control for multiple ROI comparisons, the
significance threshold was further reduced to assess both positive
and negative correlations (a = 0.006).

In a multivariate analysis, we compared neural similarity
spaces in each ROI to a brightness similarity model derived from
the explicit brightness data. This brightness similarity model cor-
responded to a 45 x 45 matrix in which each cell corresponds to
a pair of noun concepts. For each pair of concepts i and j, the
value at matrix location (ij) is the absolute difference of the
brightness ratings of i and j. Identical methods were used to gen-
erate a word-length similarity matrix. The corresponding ROI
similarity matrices were constructed by, for each subject, calcu-
lating the Spearman's distance between each of the 123-voxel
patterns evoked by the 45 unmodified concepts; the resulting
subject-specific similarity matrices were averaged into a concept
similarity space for each ROI, and the diagonal and redundant
similarity values (j,i) were removed. Because we were testing
whether concepts with similar brightness values would evoke
similar neural patterns, we used a one-sided positive regression
in a permutation analysis to determine whether brightness of the
noun concepts was reflected in patterns of neural activity in any
of the ROIs, when controlling for similarity in word length (a =
0.0125).

fMRI Results

Univariate neural modulation

We determined whether our behavioral measures of interest (i.e.,
brightness uncertainty, ground-truth modulation) predicted uni-
variate modulation evoked by combined concepts in our ROIs.
No significant positive relationships were observed between
LFUS univariate modulation and either brightness uncertainty

Solomon and Thompson-Schill @ Feature Uncertainty in Combined Concepts

or ground-truth modulation (p values > 0.9). Similarly, no posi-
tive relationships with these measures were observed in LAG (p
values > 0.8) or LATL (p values > 0.2).

However, we observed a positive relationship between bright-
ness uncertainty and univariate modulation in LIFG (p = 0.38,
R* = 14%), and permutation testing revealed this was significant
while correcting for multiple comparisons (p =0.005; a = 0.0125;
Fig. 6A). This significant relationship held when the analysis was
performed in smaller or larger ROIs (33 voxels: p=0.012, 81 vox-
els: p=0.004, 123 voxels: p=0.005, 179 voxels: p=0.009, 257
voxels: p=0.017). We also observed a positive relationship
between univariate modulation in LIFG and ground-truth mod-
ulation (p = 0.33, R*> = 11%), although this was not significant af-
ter controlling for multiple comparisons (p =0.013; a = 0.0125).
This result was consistent across a range of ROI sizes (81 voxels:
p=0.024, 179 voxels: p=0.015, 257 voxels: p=0.017). These
results reveal LIFG sensitivity to behavioral measures of feature
modulation, specifically feature uncertainty.

We also examined whether univariate modulation in our
ROIs could be predicted by the additive, multiplicative, or
Bayesian models. All of these models are combinatorial, but the
Bayesian model incorporates feature uncertainty, whereas the
other models do not. Univariate modulation did not positively
correlate with additive model Bcyange in LFUS (p>0.7), LAG
(p>0.9), or LATL (p =0.17). However, univariate modulation in
LIFG revealed a significant, positive relationship with the addi-
tive model’s Bcpange predictions (p = 0.36; R*= 13%; p=0.008;
a = 0.0125); this result was consistent across a range of ROI sizes
(33 voxels: p=0.036, 81 voxels: p=0.016, 123 voxels: p=0.008,
179 voxels: p=0.011, 257 voxels: p=0.019). Similar results were
observed for the multiplicative model, in which Bcyange predic-
tions did not correlate with univariate modulation in LFUS
(p>0.7), LAG (p>0.9), or LATL (p=0.19) but did correlate
with univariate modulation in LIFG (p = 0.34; R* = 12%;
p=0.011; a = 0.0125). As for the Bayesian model, Bcuange pre-
dictions did not positively correspond with univariate modula-
tion in either LFUS (p > 0.8) or LAG (p > 0.4). However, we did
observe evidence suggesting a positive relationship between
Bayesian Bcpange predictions and univariate modulation in
LIFG (p = 0.29; R* = 8%; p=0.027; a = 0.0125) and LATL (p =
0.29; R* = 8%; p=0.026; & = 0.0125). Although these results were
not significant after controlling for multiple comparisons, they
were robust across a range of ROI sizes in both LIFG (123 voxels:
p=0.027, 179 voxels: p=0.022, 257 voxels: p=0.016) and LATL
(81 voxels: p=0.03, 123 voxels: p=0.03, 179 voxels: p=0.021,
257 voxels: p=0.034). These results strongly suggest that univari-
ate responses to combined concepts in LIFG reflect a combinato-
rial process, whether or not this process incorporates feature
uncertainty. These results also suggest that univariate responses
in LATL may reflect a combinatorial process.

Multivariate neural modulation

We then determined whether our behavioral measures of interest
(i.e., brightness uncertainty, ground-truth modulation) predicted
multivariate modulation evoked by combined concepts in our
ROIs. Multivariate modulation reflects the extent to which
MVPs evoked by the noun concepts were influenced by the
“dark” and “light” adjectives. No significant positive relation-
ships were observed between LFUS multivariate modulation and
either brightness uncertainty or ground-truth modulation (p val-
ues > 0.2). Similarly, multivariate modulation in LAG did not
reveal a significant positive relationship with either brightness
uncertainty (p>0.9) or ground-truth modulation (p = 0.24;
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fMRI results. Sensitivity to our combinatorial measures of interest were found in LIFG and LATL. A, Brightness uncertainty predicted univariate modulation in LIFG during comprehension

of combined concepts (p = 0.38; p = 0.005; « = 0.0125). Significance of Spearman’s correlation was assessed in a permutation analysis (bottom). Blue histogram represents the permuted null dis-
tribution. Dashed line indicates the significance threshold o = 0.0125. Vertical blue line indicates the true correlation value, which exceeded the threshold. B, Ground-truth brightness modulation
predicted multivariate modulation in LATL during comprehension of combined concepts (p = 0.37; p = 0.006; v = 0.0125). Significance was assessed in a permutation analysis (bottom).

R* = 6%; p=0.059; @ = 0.0125). In contrast with the univariate
analyses above, we did not observe significant relationships
between multivariate modulation in LIFG and brightness uncer-
tainty (p > 0.3) or ground-truth modulation (p > 0.2).

In LATL, multivariate modulation was not predicted by
brightness uncertainty (p=0.17). However, we observed a posi-
tive relationship between ground-truth modulation and LATL
multivariate modulation (p = 0.37; R* = 14%; p=0.006;a =
0.0125; Fig. 6B); this result was robust across a range of ROI sizes
(33 voxels: p=0.021, 81 voxels: p=0.008, 123 voxels: p =0.006,
179 voxels: p=0.007, 257 voxels: p=0.012). Thus, ground-truth
behavioral modulation of conceptual brightness evoked by our
adjective-noun combinations positively predicted the extent to
which MVPs in LATL were influenced by those combinations.
These results suggest that LATL represents the output of a con-
ceptual combination process.

Neither the additive nor multiplicative model’s Bcyange pre-
dictions predicted multivariate effects in LFUS (p values > 0.4),
LAG (p values > 0.3), LATL (p values > 0.4), or LIFG (p values
> 0.3). Similarly, the Bayesian model’s Bcpange predictions did

not significantly predict multivariate effects in LFUS (p > 0.6),
LAG (p = 0.29; R* = 8%; p=0.067; a = 0.0125), LATL (p > 0.2),
or LIFG (p > 0.5).

Neural representations of conceptual brightness

We did not observe representations of conceptual brightness in
any of our ROIs. In LFUS, univariate responses did not positively
(p=0.3) or negatively (p > 0.6) relate to explicit brightness rat-
ings when controlling for word length; similar results were
observed in LAG (positive: p > 0.5; negative: p>0.4), LATL
(positive: p > 0.8; negative: p=0.13), and LIFG (positive: p > 0.3;
negative: p>0.6). In the multivariate analysis, similarity of
MVPs evoked by noun concepts did not reflect similarity in con-
ceptual brightness when controlling for word length in LFUS
(p=0.11), LAG (p > 0.5), LATL (p > 0.4), or LIFG (p > 0.7).

Discussion

Here we explored how conceptual information is flexibly acti-
vated during comprehension of combined concepts using
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behavioral, modeling, and neuroimaging methods. We specifi-
cally targeted the feature dimension of conceptual brightness,
which we modulated in adjective-noun combinations. We col-
lected explicit ratings of conceptual brightness for unmodified
nouns (e.g., “diamond,” “shadow”) and their “dark” and “light”
combinations (e.g., “dark diamond,” “light diamond”), and used
these data to characterize the extent to which conceptual bright-
ness could be flexibly modulated within different noun concepts.
We then explored whether brightness uncertainty related to
these ground-truth modulation effects, and characterized the
brain regions involved in this feature-based combinatorial
process.

Feature uncertainty was quantified using entropy, a measure
from information theory (Shannon, 1948) that reflects the uncer-
tainty of an outcome or the potential informativity of a signal. If
p is the probability of an outcome, entropy is highest when
p=0.5. For example, consider flipping a fair coin versus a biased
coin. A flip of a fair coin has Pygaps = 0.5 and Praprs = 0.5; the
result of the coin flip is maximally uncertain. On the other hand,
if a biased coin has Pypaps = 0.8 and Prayrs = 0.2, then the result
of the flip is less uncertain, as it is likely to result in heads. We
translated these ideas to the realm of conceptual knowledge to
explore the flexible activation of features in conceptual combina-
tion. If the brightness of a noun concept is characterized by com-
plementary values of Ppsrx and Prigur, then conceptual
brightness will be most uncertain when both Pparx and Prigur
= 0.5. Consider the concepts piaMOND and pAINT, which were
characterized by Pparx ~ 0.2 and Pparx ~ 0.5, respectively.
These values reflect the fact that diamonds are unlikely to be
dark, whereas paint is equally likely to be dark or light in color.
Because Ppjgyr = 1 - Ppark and because entropy is symmetrical
around p = 0.5, each concept can be assigned a single brightness
uncertainty value: pIAMOND has a lower brightness uncertainty
(0.73) than paiNT, which has very high brightness uncertainty
(0.99).

We predicted that brightness uncertainty would positively
correlate with the modulation of conceptual brightness across
verbal contexts. For example, we predicted greater change in
conceptual brightness for paNT when modified by brightness
adjectives (i.e., “dark paint,” “light paint”) than for piamonD
when paired with the same adjectives. Our results supported
these predictions: we observed a strong positive relationship
between brightness uncertainty and ground-truth brightness
modulation across the 45 noun concepts. We also embedded fea-
ture uncertainty within a predictive Bayesian combinatorial
model, in which a concept’s conceptual brightness is represented
as a probability distribution over brightness values. We assessed
the ability of this Bayesian model to predict brightness modula-
tions evoked by the adjective-noun combinations and compared
its performance with more traditional additive and multiplicative
models (Smith et al., 1988; Mitchell and Lapata, 2008, 2010). The
Bayesian model outperformed the other models, highlighting the
relevance of feature uncertainty in the conceptual combination
process. Our behavioral and modeling results suggest that con-
ceptual feature uncertainty influences how features are flexibly
modulated when concepts combine.

In order to understand the neural correlates of this flexible
combination process, we analyzed responses to the “dark” and
“light” adjective-noun combinations within a priori ROIs, each
of which has previously been implicated in a task requiring flexi-
ble conceptual or linguistic processing. We determined whether
neural responses in any of these regions reflected feature uncer-
tainty or flexible feature modulation. Our results reveal contribu-
tions of LIFG and LATL to these processes, which provide
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insights into the neural mechanisms of conceptual combination
and flexible conceptual processing more generally.

LIFG was particularly sensitive to feature uncertainty during
comprehension of combined concepts. Univariate modulation
effects refer to the extent to which univariate responses, averaged
within an ROI, were influenced by adjective-noun combinations
relative to the noun alone. When the brightness of a noun concept
was highly uncertain (e.g., paINT), “dark” and “light” modifiers
induced greater univariate modulation in LIFG. Additionally, uni-
variate modulation in LIFG was positively predicted by additive
and multiplicative models of adjective-noun combinations, further
suggesting LIFG contributions to the feature-based combinatorial
process induced by complex phrases. Weaker evidence also
implied that univariate modulation in LIFG positively correlated
with the ground-truth brightness modulation derived from behav-
ioral data. LIFG is not typically associated with conceptual combi-
nation but plays a role in metaphor processing (Rapp et al., 2004,
2007; Eviatar and Just, 2006; Lee and Dapretto, 2006; Stringaris et
al., 2007; Bambini et al., 2011; Cardillo et al., 2012; Solomon and
Thompson-Schill, 2017). Figurative language and conceptual com-
bination rely on similar conceptual devices (Wisniewski, 1997;
Estes and Glucksberg, 2000), in that they both involve the selection
and integration of conceptual features. The metaphor “His teeth
are pearls” and the noun-noun combination “pearl teeth” both
involve selecting the relevant conceptual features from the PEARL
concept (e.g., WHITE, sHINY) and mapping or integrating these fea-
tures into the TEETH concept. The feature is often preselected in ad-
jective-noun combinations (e.g., “white teeth”), but integration of
feature information is still required. Our current results suggest
that LIFG is involved in the feature integration process during
complex language comprehension, and we argue that this process
is relevant for combined concepts, figurative language, and natural
language use more generally. Our finding that LIFG is involved in
modulating feature representations in combined concepts is con-
sistent with broader claims that this region plays a crucial role in
semantic selection and control (e.g., Thompson-Schill et al., 1997,
1999; Jefteries, 2013).

In LATL, multivariate responses reflected the degree of con-
ceptual feature modulation evoked by the adjective-noun combi-
nations. Our multivariate modulation analysis examined the
extent to which MVPs evoked by a noun and its corresponding
adjective-noun combinations differed from each other. For noun
concepts with low brightness modulation (e.g., piamonD), “dark”
and “light” combinations evoked patterns in LATL that were
similar to the patterns evoked by the noun alone. For noun con-
cepts characterized by high brightness modulation (e.g., PAINT),
“dark” and “light” combinations evoked patterns in LATL that
were substantially different from the pattern evoked by the noun
alone. That is, dark” and “light” modifiers did not influence pat-
terns in LATL identically across nouns; the effect was modulated
by degree of conceptual change. These results suggest that
responses in LATL reflect an integration of conceptual features,
rather than a superimposition of constituent concepts.

LATL has been widely implicated in neuroimaging studies of
conceptual combination, in both fMRI (Baron et al., 2010; Baron
and Osherson, 2011; Boylan et al., 2017) and MEG methodolo-
gies (Bemis and Pylkkdnen, 2011, 2013a,b; Westerlund and
Pylkkdnen, 2014). The ATL also plays a central role in theories of
conceptual knowledge more generally, such as the hub-and-
spoke theory, a neurocomputational model in which ATL acts as
a semantic “hub” that integrates featural representations from
other regions (i.e., “spokes”). In this account, concepts in ATL
are not represented in terms of their features, but rather in a
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high-dimensional semantic space (Rogers et al., 2004; Patterson
et al,, 2007; Lambon Ralph et al., 2010, 2017). In related work,
Coutanche and Thompson-Schill (2015) find that representa-
tions in LATL reflect an integration of visual features (i.e., color
and shape), but not the visual features themselves. We suggest
that the integration of features (e.g., SHINY, EXPENSIVE) to form
coherent concepts (e.g., DIAMOND), and the integration of those
concepts to form a combined concept (e.g., DARK DIAMOND),
might recruit the same neural mechanisms. Our finding that
LATL representations reflect the integration of conceptual
brightness across concepts, but not conceptual brightness per se,
is consistent with this theory that LATL integrates conceptual in-
formation within and between concepts in a high-dimensional
semantic space.

We did not observe feature-based combinatorial responses in
LAG, despite its role in combining concepts more generally
(Graves et al.,, 2010; Bemis and Pylkkdnen, 2013a; Boylan et al,,
2015, 2017; Price et al., 2015, 2016). In particular, it has been
argued that LAG is sensitive to the plausibility of adjective-noun
combinations (Price et al., 2015), or to “relational” combinations
that imply an event or relation between two concepts, rather
than feature attribution (Boylan et al., 2015, 2017). The apparent
lack of LAG response to feature-based combinations in our task
is consistent with the theory that LAG is recruited for “relational”
rather than “attributive” conceptual combinations (Boylan et al.,
2015, 2017). We also found no evidence that LFUS is implicated
in a feature-based combinatorial process, or that it represents
conceptual brightness, despite previous findings that LFUS rep-
resents conceptual color (Martin et al., 1995; Simmons et al,,
2007; Hsu et al,, 2011, 2012). However, it is still an open question
whether cortical regions that contain feature-based representa-
tions can also flexibly represent those features in combined
concepts.

Here we characterized the computational and neural mecha-
nisms underlying the flexible modulation of conceptual informa-
tion during language comprehension. Using methods inspired
by information theory and Bayesian modeling, we provide evi-
dence that feature uncertainty plays a role in conceptual combi-
nation. Further, our analyses expose the LIFG and LATL as
regions involved in this flexible combinatorial process. These
findings are likely to extend more generally to complex language
processing and flexible concept use.
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