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The internal representation of stimuli is imperfect and
subject to bias. Noise introduced at initial encoding
and during maintenance degrades the precision of
representation. Stimulus estimation is also biased
away from recently encountered stimuli, a
phenomenon known as adaptation. Within a Bayesian
framework, greater biases are predicted to result from
poor precision. We tested for this effect on individual
difference measures. Through an online experiment,
202 subjects contributed data. During separate face
and color blocks, they performed three different tasks:
an immediate stimulus match, a delayed match-to-
sample, and a delayed match following 5 s of
adaptation. The stimulus spaces were circular, and
subjects entered their responses on a color/face
wheel. Bias and precision of responses were extracted
while accounting for the probability of random
guesses. We found that the adaptation manipulation
induced the expected bias in responses, and the
magnitude of this bias varied reliably and substantially
between subjects. Across subjects, there was a
negative correlation between mean precision and bias.
This relationship was replicated in a new experiment
with 192 subjects. This result is consistent with a
Bayesian observer model, in which the precision of
perceptual representation influences the magnitude of
perceptual bias.

Introduction

Perception is our ‘‘best guess’’ as to what is in the
world (von Helmholtz, 1867). When sensory informa-
tion is imperfect or incomplete, this best guess relies
more heavily on expectations and prior beliefs (Knill &
Richards, 1996). Prior knowledge influences perception
continuously and automatically, and may occasionally
lead to perceptual illusions (Bar, 2004; Summerfield &
Egner, 2009; Lafer-Sousa, Hermann, & Conway, 2015).
To achieve statistically optimal inference, sensory
evidence and prior beliefs are quantitatively combined
using Bayes’s rule (Bayes & Price, 1763).

While many aspects of human perception are found
to be consistent with Bayesian observer models (Knill
& Richards, 1996; Stocker & Simoncelli, 2006a), it has
been more difficult to apply this framework to the
ubiquitous phenomenon of sensory adaptation. Recent
sensory history tends to bias perception ‘‘away’’ from
observed stimuli (Levinson & Sekuler, 1976; Clifford,
2002; although see Gibson & Radner, 1937; Fischer &
Whitney, 2014), which seems at odds with a Bayesian
account of perception that is biased toward prior
beliefs. Recent theoretical work has attempted to
explain perceptual adaptation as arising from either an
asymmetric likelihood (Wei & Stocker, 2015) or a
modification of the prior (Chopin & Mamassian, 2012).

Citation: Mattar, M. G., Carter, M. V., Zebrowitz, M. S., Thompson-Schill, S. L., & Aguirre, G. K. (2018). Individual differences in
response precision correlate with adaptation bias. Journal of Vision, 18(13):18, 1–12, https://doi.org/10.1167/18.13.18.

Journal of Vision (2018) 18(13):18, 1–12 1

https://doi.org/10 .1167 /18 .13 .18 ISSN 1534-7362 Copyright 2018 The AuthorsReceived March 20, 2018; published December 28, 2018

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:mmattar@princeton.edu
mailto:mmattar@princeton.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/


In either case, larger perceptual biases should be
observed in the setting of greater imprecision.

Here we tested this key prediction of Bayesian
inference. Using a web-based visual-adaptation exper-
iment with color and face stimuli, we investigated the
relationship across individuals between variability in
response precision and in adaptation biases. We found
that precision and bias are relatively stable measures of
an individual, and that biases for color stimuli are
correlated with biases for face stimuli. We then
investigated the relationship between bias and precision
across individuals and found that biases for both
materials are larger when precision is lower. These
results conform with predictions of Bayesian observer
models, whereby perception is biased away from
recently observed stimuli when sensory information is
uncertain.

Methods

Participants

We recruited 1,002 people through Amazon Me-
chanical Turk: 530 for the main experiment (Table 1)
and 472 for the replication experiment (Tables 2 and 3).
This research was reviewed and deemed exempt from
oversight by the University of Pennsylvania Institu-
tional Review Board, and therefore informed consent
was not collected. Information on the home page of the

web-based experiment indicated the research nature of
the project. No information that could identify
participants was collected. All subjects received a fixed
minimum compensation of $0.25 for their participation
in addition to a performance-based bonus of up to
$12.00. The full experiment took approximately 75 min
to complete, and subjects that reached the end received
an average bonus of $7.68 (SD¼ $0.51).

Stimuli and materials

The experiment was programmed in JavaScript and
hosted on a custom-built website that subjects accessed
using their own computers (https://cfn.upenn.edu/
iadapt). Stimuli consisted of synthetic faces generated
with FaceGen Main SDK (Inversions, 2012) and
colored squares.

The face set used in the main experiment varied in
age and gender. Two base stimuli were generated by
varying the gender of an identity-neutral face from
male to female, and another two base stimuli were
generated by varying the age of an identity-neutral face
from 15 to 65 years. Based on these four stimuli, a set
of 360 faces were generated in a circular space by
varying both dimensions, with main axes correspond-
ing to age and gender.

The color set varied in hue, with no nominal
variation in lightness and saturation. A set of 360 color
values were generated in HSL space with L* held fixed
at 25 and saturation equal to 7. This saturation value
was determined in pilot experiments to produce stimuli
whose response variance approximately matched that
of face stimuli. The set of HSL values was then
converted to sRGB space.

For the replication experiment, new sets of face and
color stimuli were generated. The face stimuli were
again generated based on four stimuli that varied by
apparent age (15–65 years) and gender (male–female).
To produce more distinctive faces than the previous set,
the four base stimuli also varied in internal facial
features. This was realized by displacing each base face
stimulus along a random vector direction within the

Completed

registration

Completed

screening

Completed

experiment

Number of subjects 530 422 202

Age (M 6 SD) 36 6 12 36 6 11 35 6 11

Number male/female 252/277 191/231 92/110

Number left-/

right-handed

18/508 14/405 3/197

Table 1. Subject enrollment and exclusion in the main
experiment. Notes: Totals may not match the total number of
subjects due to missing responses from some subjects.

Completed

registration

Completed

screening

Completed

experiment

Number of subjects 191 149 98

Age (M 6 SD) 37 6 12 37 6 12 39 6 12

Number male/female 110/81 87/62 60/38

Number left-/

right-handed

8/176 4/139 0/95

Table 2. Subject enrollment and exclusion in the replication
experiment with colors. Notes: Totals may not match the total
number of subjects due to missing responses from some
subjects.

Completed

registration

Completed

screening

Completed

experiment

Number of subjects 281 234 94

Age (M 6 SD) 36 6 12 37 6 12 37 6 12

Number male/female 164/117 134/100 48/46

Number left-/

right-handed

19/262 13/221 3/91

Table 3. Subject enrollment and exclusion in the replication
experiment with faces. Notes: Totals may not match the total
number of subjects due to missing responses from some
subjects.
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face-stimulus space, orthogonal to both age and
gender. The color stimuli were again generated in HSL
space with L* held fixed at 25, but now with saturation
equal to 20 (the maximum value that produced sRGB
values within the 0–255 range displayable in regular
monitors), producing more distinctive colors than in
the main experiment.

Experimental procedure

Subjects recruited through Mechanical Turk were
redirected to the experiment website, where they
entered their responses using mouse and keyboard
input. Upon completion, subjects received an anony-
mous code that they provided to Mechanical Turk for
payment. Each experimental session started with a
basic description of the procedures, followed by a
demographic questionnaire. Subjects then completed a
screen-calibration procedure and a color-perception
test, followed by the main experimental blocks.

In the screen-calibration procedure, subjects were
presented with a set of discrete color gradients
organized in rows, each ranging from black to a
distinct, saturated color value. They were then asked to
adjust the screen settings or the angle of their laptop
screen to allow them to simultaneously distinguish
between neighboring colors on both ends of the each
gradient. In the color-perception test, subjects com-
pleted eight trials of the Ishihara test, a test for
congenital color deficiencies. Subjects proceeded to the
main experimental blocks only if at least seven
responses were correct. This online test was not capable
of detecting subtle color-vision deficits but did ensure
that the subjects and their computers could support a
baseline level of color-discrimination ability.

Subjects then completed a battery of tests designed to
estimate representation precision, precision after a delay,
and precision and bias after adaptation. Data were
collected over two to six blocks of each of the following
experiments: stimulus match, delayed match, and
adaptation (Figure 1a). Results from the delayed-match
task are not further considered here. Each block
consisted of 15–30 trials (each lasting between 2 and 5
min) in which subjects were instructed to report the
value of a target stimulus—a color or a face—by clicking
and moving the mouse cursor around a stimulus wheel
(Figure 1b), allowing a fine adjustment of their
responses. Prior to performing each type of experiment
for the first time, subjects were presented with detailed
instructions, a mini-quiz containing three questions with
three alternatives each about the instructions, and five
practice trials. If any answer to the quiz was incorrect,
subjects were repeatedly presented with the instructions
and the quiz until all three answers were simultaneously
correct. Similarly, subjects repeated the practice exper-

iment as many times as necessary until all five responses
were within 58 of the target. Together, these approaches
ensured that subjects comprehended the experiment
instructions and were able to adequately perform the
experiment on their computers.

Experimental blocks in the main experiment were
completed in the following order: color stimulus match;
face stimulus match; color delayed match; face delayed
match; color adaptation; face adaptation; color delayed
match; face delayed match; color adaptation; face
adaptation; color stimulus match; face stimulus match.
In the replication experiment, blocks (only one stimulus
class) were completed in the following order: stimulus
match; delayed match; adaptation (six blocks); delayed
match; stimulus match.

We calculated subject accuracy on every trial by
linearly mapping from errors (08–908) to accuracy
(100%–0%); at the end of each block, we calculated the
average accuracy for that block (100% being perfect
performance). The compensation accumulated by
subjects increased at the end of each experimental block
by an amount proportional to the average accuracy.
Subjects were presented with their average accuracy in
the finished block, the corresponding dollar amount
accumulated, and the total compensation accumulated
in the experimental session up to that point. If the
accuracy on any block ended up below 20%, the
experimental session was terminated and subjects were
directed back to Amazon Mechanical Turk to receive
their payment. Only subjects who maintained accuracy
above 20% in all blocks were able to reach the end of
the experiment; those subjects received twice the
regular compensation. Out of the 1,002 subjects
recruited across both the main experiment and the
replication experiment, 197 were excluded for either
abandoning or not passing the color-perception test
and 411 for not maintaining accuracy above 20%
throughout the entire session. Only data from the
remaining 394 subjects were included in the analyses
described in this article (Tables 1, 2, 3).

Stimulus-match experiment

Each block consisted of 15 trials, with target values
sampled uniformly (248 spacing) from the circular
space; each target was presented once per block. On
each trial, subjects were presented with a target
stimulus on both the left and right sides of the black
background screen, along with a stimulus wheel
containing eight equally spaced thumbnails with
representative stimuli from the circular space (Figure
1c, top). Because we could not control the properties of
the display used to present the stimulus to each subject,
we could not ensure that the perceptual similarity
between equally spaced stimuli was uniform around the
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wheel. Further, the perception of the stimuli may be
subject to long-term priors over the stimulus space.
However, by sampling uniformly from the wheel and
providing test stimuli in both the clockwise and
counterclockwise directions, we expected to ameliorate
either of these forms of stimulus bias on average.
Moreover, the specific thumbnails, their position, and
the mapping of stimulus value to screen position varied
randomly on each trial (i.e., there was no systematic
relationship between stimulus values and screen loca-
tion). Subjects were instructed to click once with the
cursor positioned on the region of the screen corre-
sponding to the target location. The selected stimulus
was then presented in the center of the screen, and
subjects were allowed to fine-tune their response by
moving the cursor around the stimulus wheel before
confirming their selection with a second mouse click
(Figure 1b).

During the fine-tuning phase, the stimulus presented

in the center of the screen varied (in steps of 18), to

allow subjects to precisely match their responses to the

target stimulus. The second (confirmation) click was

registered only if it occurred within 2–10 s after the trial

onset. If no response was entered for 10 s, a dialog box

was displayed warning the subject to pay attention and

click the ‘‘OK’’ button to continue. On these trials, an

accuracy of 0% was registered (for the purpose of

calculating the average block accuracy), though they

were not included in the main analyses. Similarly, if

responses were more than 908 away from the target, a

modal dialog box was displayed warning the subject to

pay attention. These measures ensured that subjects

maintained continuous attention throughout the entire

block and slowed down subjects who attempted to rush

through the experiment without care.

Figure 1. Experiment setup and methods. (a) Experiment structure. Each subject completed two blocks of each experiment, for both

color and face stimuli. Prior to each experiment, subjects were presented with instructions and a comprehension quiz; the first time

they performed each block of a given experiment, they also completed five practice trials. Each block of the stimulus-match

experiment had 15 trials. Each block of the delayed-match and adaptation experiments had 30 trials. (b) Response procedure.

Subjects were presented with eight equally spaced representative stimuli around the wheel. To enter their responses, they first

performed a coarse selection by clicking on the region of the wheel that approximately matched the target. They then adjusted their

selection more precisely by dragging the pointer around the wheel and clicking a second time to confirm their responses. (c) Block

types. Top: On each trial of the stimulus-match experiment, subjects were instructed to match to a stimulus presented on both sides

of the screen; the target stimulus remained on the response screen while they made the match. Middle: On each trial of the delayed-

match experiment, subjects were instructed to match to a target stimulus following a 4-s interval. The data from this task are not

further considered in this article. Bottom: On each trial of the adaptation experiment, subjects were instructed to match to a target

stimulus that was presented after a 5-s adaptation period and followed by a mask. An interval of 50 ms separated adaptor and target

(not shown), and an interval of 100 ms separated target and mask. (d) Stimuli. A circular space with 360 stimuli was used for both

color and face stimuli. Color stimuli were generated to vary in hue but not saturation or luminance (HSL space). Face stimuli varied in

age and gender, each forming one axis of the space. Color masks were a checkerboard composed of various stimuli randomly sampled

from the color space. The eight stimuli that are shown in the figure and in the response screen are equally spaced examples from the

entire set of 360, and were selected at random on each trial. Face masks were created using the steerable pyramids method to match

various low-level visual properties (Portilla & Simoncelli, 2000).
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Delayed-match experiment

Each block consisted of 30 trials, with target values

sampled uniformly (128 spacing) from the circular

space—that is, each target was presented once per

block. On each trial, subjects were presented with a
target stimulus in the center of the screen for 2,000 ms,
followed by a mask stimulus at the same location for
200 ms (interstimulus interval: 100 ms), followed by a
4,000-ms interval of a blank screen during which no
response was allowed (Figure 1c, middle). After this

Figure 2. Mixture model-fitting approach. The distribution of errors was modeled as a superposition of probability distributions to

account for different types of responses. (a) In the stimulus-match and delayed-match experiments, responses could be concentrated

near the target value (von Mises distribution centered at the target value) or fall randomly in any position of the space with equal

probability (von Mises distribution with concentration parameter equal to 0, equivalent to a uniform distribution). Two parameters

were estimated: the concentration parameter of the responses near the target and the probability of random responses. (b) In the

adaptation experiment, responses could be concentrated near the target value (von Mises distribution displaced from the target by a

fixed amount), be concentrated near the adaptor value (a stimulus that the subjects were instructed to ignore, modeled as a von

Mises distribution centered at the adaptor value), or fall randomly in any position of the space with equal probability (von Mises

distribution with concentration parameter equal to 0). Four parameters were estimated: the magnitude of the displacement of

responses near the target (bias), the concentration parameter of the responses near the target, the probability of responses near the

adaptor, and the probability of random responses. (c) Example of a good fit for a subject in the adaptation experiment. Data are

collapsed across both blocks of the adaptation experiment and indicate the existence of a positive (repulsive) bias in relation to the

adaptor.

Figure 3. Estimation of adaptation biases at the population level. (a) Group adaptation results for all color trials. The bars provide the

histogram of error (58 bins) in responses across all trials and all subjects in the adaptation experiment that used color stimuli. If

subjects reported the color of the target stimulus perfectly, all trials would have zero error. Each trial in the adaptation experiment

featured a 5-s adaptor stimulus, which in this plot has a relative location of�458 and is indicated with the blue dotted line. The black

curve shows the fit to the data provided by the model shown in Figure 2b. As can be seen, the peak of the distribution of error

responses is shifted to the right of 0, indicating that subjects had a bias (M¼ 7.88) in reporting the value of the target stimulus. (b)

Similar results for all face trials. As can be seen, the peak of the distribution of error responses is again shifted to the right of 0,

indicating that subjects had a bias (M ¼ 5.08) in reporting the value of the target stimulus.

Journal of Vision (2018) 18(13):18, 1–12 Mattar et al. 5



interval, subjects entered their responses using the same
procedure described previously (Figure 1b). The same
measures described previously were used to ensure that
subjects maintained continuous attention throughout
the entire block.

Color masks were checkerboards composed of
various colors randomly sampled from within the
stimulus set. Face masks were created by synthesizing
textures based upon the original face stimuli using the
steerable pyramid approach (Portilla & Simoncelli,
2000; Figure 1d). The resulting textures were placed
within the outlines of the face stimuli, resulting in a
mask that had similar low-level feature properties to
the faces (e.g., spatial frequency, line curvature) but
was not recognizable as a face.

Adaptation experiment

Each block consisted of 30 trials, with target values
sampled uniformly (128 spacing) from the circular

Figure 4. Individual differences in representation precision are negatively correlated with adaptation bias. (a) We fitted data from

each subject collapsed across both blocks of the color stimulus-match experiment and across both blocks of the color adaptation

experiment, using the mixture-model approach described for Figure 2. The correlation between representation precision in both

experiments was r ¼ 0.45. (b) Similar to (a), for face stimuli. The correlation between representation precision in in the stimulus-

match and adaptation experiments was r ¼ 0.44. (c) We fitted data from each subject collapsed across both blocks of the color

adaptation experiment, using the mixture-model approach described for Figure 2. The Spearman’s rank-correlation coefficient

between representation precision and adaptation bias was q ¼�0.26. (d) Similar to (c), for face stimuli. The Spearman’s rank-

correlation coefficient between representation precision and adaptation bias was q ¼�0.13.

Figure 5. Relationship between color bias and face bias. We

fitted data from each subject collapsed across both blocks of

the color and face adaptation experiments, using the mixture-

model approach described for Figure 2. The Pearson correlation

coefficient between adaptation bias for colors and faces was r¼
0.22.
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space. Each target was presented once per block. On
each trial, subjects were presented with an adaptor
stimulus in the center of the screen for 5000 ms, drawn
from a position in the stimulus space 6458 from the
target (adaptors at þ458 and �458 were intermixed
within a block). The adaptor was followed by a target
stimulus for 200 ms (interstimulus interval: 50 ms),
which was then followed by a mask stimulus at the
same location for 100 ms (interstimulus interval: 100
ms; Figure 1c, bottom). After the mask offset, subjects
entered their responses using the same procedure
described previously (Figure 1b). Subjects received a
warning if their responses were within 108 of the
adaptor stimulus position. In these cases, a modal

dialog box was presented indicating that subjects
should ignore the adaptor and report the value of the
target.

Data analysis

We used statistical methods for circular data (Fisher,
1995). We calculated the error on each trial as the
angular deviation on the stimulus wheel between the
target value and the response entered. We then used
maximum-likelihood estimation to fit the distribution
of error values in the circular space. In both stimulus-
match and delayed-match experiments, the distribution

Figure 6. Relationship between representation precision and adaptation bias in the replication experiment. (a) Replication-experiment

structure. Subjects completed a battery of tests designed to estimate representation precision, precision after a delay, and precision

and bias after adaptation. Each subject completed two blocks of the stimulus-match and delayed-match experiments and six blocks of

the adaptation experiment, for either colors or faces. Prior to each experiment, they were presented with instructions and a

comprehension quiz, and the first time they performed each block of a given experiment, they also completed five practice trials.

Each block of the stimulus-match experiment comprised 15 trials. Each block of the delayed-match and adaptation experiments

comprised 30 trials. (b) Color stimuli. A circular space with 360 stimuli was used. Colors were generated to vary in hue but not

saturation or luminance (HSL space), though saturation was higher than in the first experiment. (c) Face stimuli. A circular space with

360 stimuli was used. Face stimuli varied in age and gender, each forming one axis of the space. To maximize stimulus differences, the

extreme points on each axis also varied in identity. (d) We fitted data from each subject collapsed across all blocks of the color

adaptation experiment, using the mixture-model approach described for Figure 2. The Spearman’s rank- correlation coefficient

between representation precision and adaptation bias was q ¼�0.22. (e) Similar to (d), for face stimuli. The Spearman’s rank-

correlation coefficient between representation precision and adaptation bias was q ¼�0.19.
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of error values was decomposed into two parameters
representing a mixture of a uniform distribution
(corresponding to random responses) and a von Mises
distribution—the circular analog of the Gaussian
distribution on a line—centered on the target value.
The parameters fitted by this procedure correspond to
the probability of guesses, which is proportional to the
height of the uniform distribution, and the precision of
responses, which is the inverse of the standard
deviation of the best-fitting Gaussian distribution
(which is in turn related to the concentration parameter
of the fitted von Mises distribution; Figure 2a).

In the adaptation experiment, the distribution of
error values was decomposed into four parameters
representing a mixture of a uniform distribution
(corresponding to random responses), a von Mises
distribution centered on the adaptor value (corre-
sponding to responses where the subject mistakenly
attempted to report the value of the adaptor, due to not
seeing or not paying attention to the target), and a von
Mises distribution with equal concentration parameter
centered near the target value. The parameters fitted by
this procedure correspond to the probability of guesses,
the precision of responses (the inverse of the standard
deviation of the best-fitting Gaussian distribution), and
the bias, which is the mean of the von Mises
distribution centered near the target value (Figure 2b).

Results

We investigated the relationship between variation in
precision and adaptation bias across 530 individuals.
Each subject performed a series of psychophysics
experiments on their personal computers and received
compensation for their time (Figure 1a). On each
experimental trial, subjects were instructed to report
the value of a target stimulus—a color or a face—by
clicking and dragging the mouse pointer around a
stimulus wheel, allowing a fine adjustment of their
responses (Figure 1b). Wheels comprised 360 distinct
stimuli varying in hue (colors) or in age and gender
(faces; Figure 1d).

Subjects completed three types of experiments for
each stimulus class. In the stimulus-match experiment
(15 trials), designed to obtain a baseline response
precision for each subject, subjects were instructed to
select a value on the wheel matching the target stimulus
(Figure 1c, top). In the delayed-match experiment (30
trials), designed to estimate subjects’ working-memory
precision, a target stimulus was presented on the center
of the screen for 2.0 s, followed by a 4.0 s delay, after
which subjects were to select a value on the wheel
matching the target stimulus (Figure 1c, middle). In the
adaptation experiment (30 trials), designed to estimate

the magnitude of adaptation biases, an adaptor
stimulus was presented in the center of the screen for 5 s
followed by a target stimulus 6458 away from the
adaptor for 200 ms and by a brief mask, after which
subjects were to select a value on the wheel matching
the target stimulus (Figure 1c, bottom). Subjects
performed two separate blocks of each experiment in a
session, allowing for tests of measure reliability, and the
trials within each experiment were sampled uniformly
and in random order from the circular space (Figure
1d). Throughout the entire session, subjects were only
allowed to proceed to the next block of the experiment
if their accuracy remained above a minimum threshold
(see Methods). A total of 328 subjects either were
excluded or abandoned the experiment (108 at the
color-vision test and 220 during the main experimental
trials), leaving 202 subjects for the main analyses (Table
1).

We calculated the error on each trial as the difference
between the target value and the response entered (e ¼
htarget� hresponse), and we fitted the distribution of error
values for each subject using a superposition of
distributions defined over a circular support (�1808 , h
, þ1808; Zhang & Luck, 2008; Bays, Catalao, &
Husain, 2009). This procedure simultaneously esti-
mates the precision of the error distribution (i.e., the
inverse of the standard deviation of the best-fitting
Gaussian distribution; Jammalamadaka & Sengupta,
2001) and the probability of random guesses (Figure
2a).

In the adaptation experiment, biases expected to
result from adaptors located at þ458 and�458 away
from the target should have equal magnitude and
opposite sign. Thus, we combined the distribution of
error values from trials where the adaptor was located
at �458 from the target (e) with the distribution of
reflected error values (�e) from trials where the adaptor
was located at þ458 from the target. In these
experiments, the fitting procedure also estimates two
additional parameters: the mean of the error distribu-
tion (i.e., the bias induced by the paradigm) and the
probability that the selected response matches the
adaptor stimulus and not the target stimulus (Figure 2b
and 2c).

Adaptation produces a repulsive bias

To confirm the effectiveness of our adaptation
paradigm in inducing repulsive biases, we first fitted the
adaptation data from all subjects combined (12,120
trials per stimulus class) with a mixture of distributions
as described. We observed a positive (repulsive) bias of
7.88 and 5.08 for color and face stimuli, respectively. We
also estimated that subjects responded randomly in
2.6% and 4.1% of the trials, and that their responses
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matched the adaptor stimulus in 2.3% and 5.2% of the
trials, with the remaining 95.1% and 90.8% of responses
concentrated around the target value (Figure 3). These
results confirm that the paradigm induced the typical
repulsive aftereffects, in which subject responses to
target stimuli tend to be biased away from the
preceding, adapting stimulus (Table 4).

Individual differences in adaptation bias and
representation precision are negatively
correlated

We then fitted the response-bias data for each
individual subject. We found that adaptation bias did
not significantly differ between blocks (repeated-mea-
sures analysis of variance [ANOVA] with block and
stimulus class as within-subject factors), F(1, 201) ¼
0.0160, p ¼ 0.9, suggesting that the magnitude of
adaptation biases is a stable individual characteristic
for the duration of the experiment. For that reason, we
again fitted the response bias using data from both
blocks of each experiment. We then performed a
repeated-measures ANOVA to identify the sources of
variability in adaptation bias. We observed a small but
significant effect of stimulus class, F(1, 201)¼ 34.9, p ,
0.001, explaining only 6% of the total variance. The
effect of mean subject bias was more substantial, F(201,
201)¼ 1.56, p , 0.001, accounting for 57% of the total
variance in bias values. The distribution of individual
subject bias was well fitted with a Gaussian with a mean
of 8.08 for colors (95% confidence interval [CI] [0.28,
18.88]) and 5.38 for faces (95% CI [�4.98, 17.18]). These
results are consistent with an individual difference in
adaptation bias that is present across face and color
stimuli.

We next extracted the width (i.e., precision) of the
error distribution for each subject, separately for each
block of each experiment. Again, because precision did
not significantly differ between blocks (repeated-mea-
sures ANOVA with block and stimulus class as within-
subject factors), F(1, 201)¼ 0.86, p¼0.36, we combined
data from both blocks of each experiment. We then
performed a repeated-measures ANOVA to identify the
sources of variability in response precision. We
observed a significant effect of stimulus class, F(1, 201)
¼ 170.1, p , 0.001, accounting for 16.5% of the total
variance, with response precision being higher for
colors. We also observed a significant effect of mean

subject precision, F(201, 201) ¼ 3.28, p , 0.001,
accounting for 64% of the total variance. Furthermore,
response precision estimated from stimulus-match trials
was well correlated with precision estimated from the
adaptation experiment (color: r¼0.45, p , 0.001; faces:
r¼ 0.44, p , 0.001; Figure 4a and 4b). This correlation
is possibly due to shared sources of variability between
experiments. Note, however, that the variance associ-
ated with reporting the target on stimulus-match trials
is smaller than that associated with reporting the target
in the adaptation experiment, possibly due to the fact
that the latter is presented briefly and involves a short-
term-memory component.

We then asked if subjects with a lower representa-
tion precision are more or less prone to adaptation
biases. We investigated the statistical relationship
between average representation precision and adap-
tation bias, both estimated from the adaptation
experiment. We observed that, across subjects, there
was a negative correlation between mean precision
and bias (Spearman’s rank correlation)—color: q ¼
�0.26, jackknife resampling 95% CI [�0.28, �0.25], p
, 0.001; faces: q¼�0.13, jackknife resampling 95% CI
[�0.15, �0.12], p , 0.001 (Figure 4c and 4d). This
suggests that subjects with lower representation
precision exhibit larger biases away from the adapting
stimulus, consistent with predictions from a Bayesian
observer model.

We also examined the relationship between color
bias and face bias across subjects (Figure 5), finding a
weak positive correlation in these scores (Pearson
correlation), r¼ 0.22, jackknife resampling 95% CI
[�0.21, �0.23], p , 0.001. A possible source for this
relationship is the shared effect of individual differences
in precision. We cannot, however, be certain that this is
the entire explanation, as the correlation between face
and color bias values remains in partial correlations
that attempt to account for individual variation in
precision (partial Pearson correlation), r¼ 0.18,
jackknife resampling 95% CI [�0.17,�0.19], p , 0.001.
We considered the possibility that individual differ-
ences in reaction time could account for individual
differences in adaptation magnitude. The magnitude of
perceptual bias decays following cessation of the
adaptor (Greenlee, Georgeson, Magnussen, & Harris,
1991). Perhaps subjects who respond quickly tend to
experience more bias due to less decay. However, this
prediction was not confirmed. For faces, we found no
significant relationship between response bias and
average response time (Spearman’s rank correlation), q
¼ 0.07, p ¼ 0.30. For colors, the opposite pattern was
found: Subjects who responded quickly experienced
less bias (Spearman’s rank correlation), q ¼ 0.20, p¼
0.0047. We do not have a specific mechanism (neural or
otherwise) to offer as the basis for this small correlation

Bias Concentration P(target) P(adaptor) P(random)

Colors 7.88 10.3 95.1% 2.3% 2.6%

Faces 5.08 7.0 90.1% 5.2% 4.1%

Table 4. Parameters from group fit of the adaptation data in the
main experiment.
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in induced adaptation bias between materials across
subjects.

Replication experiment

We wished to replicate the observed relationship
between representation precision and adaptation bias
with more trials per subject. An additional group of 472
people were recruited through Amazon Mechanical
Turk. From this set, 89 were excluded or abandoned at
the color-vision test and 191 during the main experi-
mental trials, leaving 192 subjects for the replication
analyses (Tables 2 and 3). Subjects performed a slightly
modified version of our experiment: two blocks of the
stimulus-match experiment (30 trials), two blocks of the
delayed-match experiment (60 trials), and six blocks of
the adaptation experiment (180 trials). Each subject
performed the experiments for only one of the two
stimulus classes (faces: 94 subjects; colors: 98 subjects;
Figure 6a). A slightly more saturated version of the
stimuli was used in an attempt to increase overall
performance (Figure 6b and 6c).

After fitting the data using the same approach as
described previously (Figure 2), we analyzed the
sources of variability in response precision. Across both
color and face experiments, experimental block ex-
plained 0.9% of variance, F(5, 950) ¼ 3.72, p¼ 0.002,
and subject explained 53.5%, F(190, 950) ¼ 5.873, p ,
0.001. We then analyzed the sources of variability in
adaptation bias. Similarly, experimental block ex-
plained 0.8% of variance, F(5, 950)¼2.75, p¼ 0.02, and
subject explained 47.1%, F(190, 950)¼ 4.51, p , 0.001.
To investigate whether the inverse relationship between
representation precision and adaptation biases was
replicated, we extracted the bias and precision values
for each subject using data from all blocks and
calculated the correlation between these two quantities.
We again observed that, across subjects, there was a
negative correlation between mean precision and bias—
color: q¼�0.22, jackknife resampling 95% CI [�0.25,
�0.20], p , 0.001; faces: q¼�0.19, jackknife
resampling 95% CI [�0.22,�0.17], p , 0.001 (Figure 6d
and 6e).

Discussion

We investigated the relationship between individual
differences in adaptation bias and response precision
for colors and faces. In two cohorts of 202 and 192
subjects recruited through Amazon Mechanical Turk,
precision and adaptation bias were found to be stable
properties of the observer, with substantial variance in
the measurements arising from between-subjects dif-

ferences. Across experiments and materials, we found
that lower response precision in an individual was
associated with greater perceptual bias.

Two hypotheses have been proposed to reconcile
repulsive biases with the Bayesian framework. First,
adaptation may induce asymmetries in the likelihood
function (Stocker & Simoncelli, 2006b). Combined with
a symmetric prior around the adaptor, an asymmetric
likelihood can produce estimates that are shifted away
from an observer’s prior (Wei & Stocker, 2015).
Alternatively, adaptation may affect the prior itself,
according to the expectation that stimulus statistics in
recent history match the statistics accumulated over a
longer, more distant past (Chopin & Mamassian,
2012). After a prolonged stimulus presentation, a
Bayesian observer model would predict biases ‘‘away’’
from this stimulus to maintain balanced statistics in
recent history. Note that in the extreme case of infinite
variance, the first proposal predicts attraction toward
the adaptor (because the likelihood would no longer be
asymmetric, estimates would converge again toward
the prior, which is centered around the adaptor), while
the second continues to predict a bias away from the
adaptor and toward the long-term stimulus prior.

A notable finding of our study was the substantial
individual variation in the magnitude of perceptual
adaptation. This measurement was reproducible across
blocks within a testing session. As we did not measure
across testing sessions, our measurement likely also
contains a component of state variation (although prior
studies of individual variation in blur adaptation
suggest this component is small; Vera-Diaz, Woods, &
Peli, 2010). Stable variation across individuals ex-
plained almost an order of magnitude more variance in
bias measures than did variation within subject across
stimulus type (face and color). This indicates a shared
mechanism of variation in adaptation magnitude. We
find that individual differences in sensory precision
provide one such mechanism.

Our results are consistent with a model in which each
subject is a Bayesian observer, each of whom differs in
the fidelity with which they represent sensory input. We
estimated each subject’s precision by measuring re-
sponse variability. A Bayesian interpretation assumes
that response variability in turn reflects (to some
degree) individual differences in the precision of
sensory encoding. Although quite reproducible, the
magnitude of correlation between response precision
and adaptation bias was small (accounting for ap-
proximately 5% of between-subjects variability in
adaptation bias). Response precision is therefore an
imperfect proxy for sensory precision—or other factors
contribute to the substantial between-subjects variation
in the adaptation effect that is shared across stimulus
types.
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We recruited subjects through the Amazon Me-
chanical Turk platform and conducted our experiments
using a custom-built website. In addition to allowing a
larger sample size, web-based experiments improve
subject diversity (Woods, Velasco, Levitan, Wan, &
Spence, 2015). A major challenge of web-based data
collection is that subjects may be motivated not to
provide a high level of performance but instead to
complete the tasks as quickly as possible to obtain
payment. To meet this challenge, our online test was
designed so that it would be completed most rapidly if
the subject produced accurate responses. Additional
measures to improve data quality included quizzes to
ensure comprehension of the instructions and paying
proportionally large bonuses for compliant subjects.
While the exclusion of a large proportion of subjects
with low accuracy limited the range of precision values
we could have measured from our population, we
regarded this as an acceptable compromise to exclude
subjects who made no attempt to achieve the goals of
the measurement.

To conclude, our study provides support for the view
that adaptation biases conform with a key property of
Bayesian inference: Greater perceptual bias should be
expected in conditions of lower response precision.
While we cannot adjudicate between the conflicting
proposals that adaptation affects the prior (Chopin &
Mamassian, 2012) or the likelihood (Wei & Stocker,
2015)—or both—our results nonetheless rule out two
possibilities: first that adaptation is not modulated by
precision (which would suggest that adaptation bias is
not a result of optimal inference), and second that the
perceptual prior is centered on the adaptor when noise
is symmetric (which would predict smaller biases in
conditions of low precision). Future studies explicitly
manipulating expectations independently from sensory
evidence, or testing for asymmetries on response
distribution, may be conducted to provide further
mechanistic evidence.

Keywords: visual adaptation, individual differences,
face perception, color perception, Bayesian inference,
Amazon Mechanical Turk
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