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Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic form
of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic prediction
may elicit form-based estimates in sensory cortex. We tested this hypothesis by conducting multi-voxel
pattern analysis (MVPA) of fMRI data from early visual cortex (EVC), left ventral temporal (VT) cortex, and
a subregion of the latter – the left mid fusiform gyrus (mid FG), sometimes called the ‘‘visual word form
area.’’ Crucially, we examined only those volumes sampled when subjects were predicting, but not
viewing, nouns and verbs. This allowed us to investigate prediction effects in visual areas without any
bottom-up orthographic input. We found that voxels in VT and mid FG, but not in EVC, were able to
classify noun-predictive trials vs. verb-predictive trials in sentence contexts, suggesting that sentence-
level predictions are sufficient to generate word form-based estimates in visual areas.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Language, like any other temporally ordered behavior, makes
use of top-down predictions in order to reduce uncertainty about
upcoming events. The fact that language processing is so remark-
ably fast is likely due to our ability to predict the types of struc-
tures found in natural language, whether these be phonological,
morpho-syntactic, lexical-semantic, or pragmatic. Given the
immense generative power of language, it is unlikely that linguistic
prediction operates only over the surface statistics of a language;
rather, efficiency would dictate that predictions be based on the
language’s ‘‘category statistics,’’ or the likelihood that one set of
elements is followed by another (Hunt & Aslin, 2010). The exis-
tence of linguistic categories such as, say, nouns and verbs, is rela-
tively easy to determine, but the predictive power of these
categories is limited, if not entirely obfuscated, by the apparently
arbitrary relationship between a word’s syntactic category and
the phonological features of that category’s members. The venera-
ble principle of the ‘‘arbitrariness of the sign’’ has provided not only
a descriptive account of why the phonological similarity of words,
such as cat, sat, and fat, determines neither their semantic meaning
nor syntactic category (de Saussure, 1916; Tanenhaus & Hare,
2007) but also a functional account: if a word’s form is uncoupled
from its meaning, this allows a finite set of forms to combine to
denote an infinite set of meanings (Chomsky, 1965). Thus it would
seem that language’s infinite generativity is at odds with optimal
conditions for word form prediction.

However, a study by Farmer, Christiansen, and Monaghan
(2006) provided evidence that a probabilistic relationship may
indeed exist between the phonological/orthographic form of a
word and its lexical category, which could in principle be used
by a reader/listener to predict word form features during sentence
processing. The study was prompted by a renewed interest in
research demonstrating that systematic, probabilistic, form-based
regularities exist among the words of a given lexical category
(Arciuli & Monaghan, 2009; Cassidy & Kelly, 1991; Kelly, 1992;
Monaghan, Christiansen, & Chater, 2007; but cf. Staub, Grant,
Clifton, & Rayner, 2009). In a corpus analysis of the phonological
properties of nouns and verbs, Farmer et al. found these two lexical
categories formed distinct clusters when plotted in a multidimen-
sional form feature space. They calculated the form feature dis-
tance between each possible two-word comparison based on the
number of overlapping and non-overlapping phonetic features.
They then obtained a ‘‘form typicality score’’ for each word by sub-
tracting its distance to all verbs from its distance to all nouns.
While many words were ‘‘neutral’’ – not strongly typical of either
nouns or verbs – the centers of noun-typicality and verb-typicality
were separated in this feature space such that clusters of typical
nouns and typical verbs could be distinguished. Furthermore, the
noun- or verb-typicality of a word was found to predict lexical
naming latencies and reading times. This typicality measure also
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influenced syntactic processing: whether a noun–verb homonym
was more typical of a noun or a verb predicted whether partici-
pants expected a noun or verb continuation of a given ambiguous
sentence. The effect of this typicality measure was significant even
after accounting for effects of onset phoneme, frequency, length,
neighborhood size, familiarity, and imageability.

The present work uses fMRI multi-voxel pattern classification to
test whether readers predict word forms corresponding to noun
and verb syntactic categories and to examine the neural instantia-
tion of these putative predictions. There are several candidates for
the neural read-out of such a predictive system. In this study, we
will explore areas where this prediction may engage the brain’s
extended visual system. Although Farmer et al. (2006) quantified
form typicality using a phonological feature metric and not a visual
orthographic metric per se, they found evidence that this form typ-
icality metric predicted reading times. English’s use of a phonemic
orthography (in which graphemes have a correspondence to
phonemes) leads one to expect that a syntactic–phonological–
orthographic correspondence could play a role in using lexical
category expectations to predict visual word form features. If so,
we would expect such prediction to recruit areas of the brain sen-
sitive to features of words and letter strings. One such candidate
region is the left mid fusiform gyrus, referred to by some as the
‘‘visual word form area’’ due to its putative specialization in iden-
tifying visual word forms (Dehaene & Cohen, 2011). Although the
functional specificity of this area is not uncontroversial, and there
may be other areas of the brain subserving written word recogni-
tion, the left mid fusiform gyrus is robustly sensitive to visual word
stimuli, and thus could be involved in generating word form pre-
dictions. We also looked at a larger swathe of ventral temporal cor-
tex surrounding mid FG, since the mid FG may be part of a more
diffuse posterior-to-anterior tuning gradient extending along the
left ventral temporal cortex and sensitive to (non-)orthographic
line junctions, alphabetic letters, bigrams, morphemes, and whole
words (Haushofer, Livingstone, & Kanwisher, 2008; Vinckier et al.,
2007).

Rather more controversial, however, is evidence that syntactic
predictions during reading may generate form-based estimates as
early as occipital cortex (Dikker, Rabagliati, Farmer, & Pylkkanen,
2010). In an event-related magnetoencephalographic (MEG) study,
Dikker et al. compared brain responses across two syntactic viola-
tion conditions. In both conditions, the syntax of the sentence
selected for a verb, but in one case the next word was a form-
typical noun and in the other it was a form-neutral noun, which
had form features consistent with both nouns and verbs. It was
found that the amplitude of the MEG component called the
M100 (i.e., 100 ms post-stimulus onset) was significantly greater
when a typical noun violated the sentence continuation than when
a neutral noun did. Although the type of syntactic violation was
equivalent in both cases, only the typicality scores predicted this
M100 modulation. In other work, the M100 has been localized to
early visual cortex (EVC) – specifically the cuneus, lingual gyrus,
and BA 17 (Itier, Herdman, George, Cheyne, & Taylor, 2006). Thus,
these data compelled us to look at EVC in addition to more anterior
regions in VT.

In the present work, we were concerned not only with the ques-
tion of where in the brain lexical-syntactic categories might map
onto form features, but also the questions of how and when. Could
the early visual form typicality effect in MEG have marked an
in situ violation detection, or might a lexical class violation gener-
ate an error signal elsewhere in the brain that is then relayed to
visual areas via re-entrant pathways? Is the expectation violation
detected first in higher-level areas, after the word has been fully
analyzed for lexical syntactic properties, or do visual areas have
enough information about the predicted word form features to
‘‘raise the first alarm’’? One hypothesis entails top-down
prediction, while the other requires no such prediction, but rather
a fast bottom-up analysis of a word before the lexical class viola-
tion can be detected. While the M100 has been shown to be sensi-
tive to orthographic frequency and transition probability of letter
strings, there is no evidence that the M100 is sensitive to lexical
factors of words in isolation (Solomyak & Marantz, 2009;
Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999). For
this reason, the MEG findings led to the hypothesis that top-down
prediction must be involved (Dikker et al., 2010); however, this
hypothesis has not been directly tested until now.

One way to distinguish top-down prediction effects of word
form estimation from bottom-up perceptual effects of word recog-
nition is simply to remove the word stimulus. We did just this in
the following experiment: we presented subjects with syntacti-
cally predictive sentence fragment cues followed by a series of ran-
dom dot patterns in which the subject was to search for either a
noun or a verb. Subjects viewed sentence fragments that highly
constrained the category of word that could continue the sentence
(e.g., a noun was expected but not a verb, or vice versa) but did not
constrain expectation for a specific word within that category (see
Appendix for list of stimuli). Instead of seeing the sentence-final
word immediately, subjects searched for an appropriate sentence
completion in a series of noisy images and indicated when an
appropriate word was discernible (see Fig. 1).

There is precedent in the MVPA literature for successful decod-
ing of imagined shapes (Stokes, Thompson, Cusack, & Duncan,
2009; Stokes, Thompson, Nobre, & Duncan, 2009), objects (Lee,
Kravitz, & Baker, 2012), and object categories (e.g., people vs. cars;
Peelen & Kastner, 2011) from distributed BOLD activity. Extending
this method to highly abstract grammatical word categories, we
were able to successfully classify nouns vs. verbs in VT and mid
FG when a syntactic context was provided. In contrast, EVC did
not support classification in this study. These results suggest that
syntactic, or at least sentence-level, prediction prompts form-
based estimates in early visual word form areas, and that a proba-
bilistic relationship between word form and word category is
indeed exploited by the neural circuitry.
2. Material and methods

2.1. Participants

Twelve subjects participated in this study. Two subjects’ data
were excluded due to excessive motion artifact, leaving ten sub-
jects analyzed here. Subjects ranged in age from 18 to 38 years,
and all were right-handed native speakers of English with normal
or corrected-to-normal vision and no reported history of neuro-
logic problems. Subjects gave written informed consent and were
provided monetary compensation for their time. The human sub-
jects review board at the University of Pennsylvania approved all
experimental procedures.
2.2. Task and stimuli

2.2.1. Sentence norming
The sentences used in this study were constructed such that the

final word in the sentence could be predicted with near certainty
to be either a noun or a verb, depending on the condition. Four sen-
tence conditions were included: two noun-terminal (‘‘Noun1’’ and
‘‘Noun2’’ conditions) and two verb-terminal (‘‘Verb1’’ and ‘‘Verb2’’
conditions), each corresponding to a different structural template
as in (1)–(4) below. ‘‘Wh’’ indicates a wh-word, ‘‘Vaux’’ indicates
an auxiliary verb (either did or was), ‘‘NP’’ indicates a noun phrase,
‘‘VP’’ indicates a verb phrase, and ‘‘PP’’ indicates a prepositional
phrase.



(1) Noun1:
Wh Vaux NP PP______?

e.g., Where was the woman for the ______?
(2) Noun2:

Wh Vaux NP VP______?
e.g., When did the janitor mention the ______?
(3) Verb1:

Wh NP Vaux NP VP______?
e.g., Which budget was the mechanic permitted to ______?
(4) Verb2:

Wh NP Vaux NP VP______?
e.g., What crib did the broker plan to ______?
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In order to control for the possibility that a verb phrase-termi-
nal sentence might accommodate the insertion of a direct object,
we constrained verb-terminal sentence completions by using a
wh-question frame (and in (3) and (4) above). While this necessar-
ily limited the verb completions of verb-terminal sentences to
transitive verbs only, the wh-type noun phrases such as ‘‘Which
budget’’ and ‘‘Which crib’’ blocked the insertion of a direct object,
thus preventing ‘‘run-away’’ phrasal completions. In order to
match sentence frames across conditions as much as possible,
noun-terminal sentences were also wh-questions (see (1) and (2)
above).

Noun2-type sentences contained matrix verbs selective for a NP
complement (675%; Jennings, Randall, & Tyler, 1997; Trueswell,
Tanenhaus, & Kello, 1993). Matrix verbs of Verb-type sentences
were selective for infinitival complements (680%) and the verbs
in Verb1 and Verb2 sentences did not differ significantly in fre-
quency or length (Osterhout & Holcomb, 1992). Sentential subjects
for all sentence types were drawn from the same list of agent NPs.
We included two different types of sentence frames for both Noun
and Verb sentence conditions in order to ensure that any predic-
tion effects would not be specific to any one particular sentence
frame. We did not expect any differences between Verb1 and Verb
2 sentences; however, since the Noun1 and Noun2 sentences had a
different number of content words, we used this contrast to test
whether our ROIs were sensitive to the number of content words
in a given sentence (see Results for further discussion).

In order to prevent specific lexical item-based prediction effects
from confounding any putative effects of lexical category predic-
tion, sentence stimuli for this study were selected based on the
results of a separate web-based sentence completion study that
involved a larger set of sentence fragments. Sentence fragments
were selected for use in the fMRI study if they had a relatively
low Cloze probability but nevertheless still guaranteed either a
noun or verb completion. (Cloze probability is the probability that
a given sentence frame will end in one particular word.) For the
sentence completion study, 37 sentences of each Noun-type condi-
tion and 30 sentences of each Verb-type condition were presented,
for a total of 134 sentences. (The number of sentences originally
generated for each condition was limited by the type of matrix
verb used: verbs for the Noun-type sentences were more numer-
ous than for Verb-type sentences.) Seventy-five undergraduates
at the University of Pennsylvania, all native speakers of English
who received class credit for their participation, were instructed
to read the incomplete sentences and type whatever they thought
best completed each sentence. Subjects were told to write the first
completion that occurred to them, even if that rendered the sen-
tence odd or even nonsensical; otherwise, subjects were not
instructed how to limit their answers.

On the basis of the norming study, we removed from the stimuli
list any sentence completed with a phrasal constituent of more
than one word, and of the sentences that remained, any sentence
completed with the same word item by more than 22 of 75 sub-
jects. Thus the maximum item Cloze probability of the remaining
sentences was 29.3%, with the average being 2.8% and 2.9% for
noun- and verb-terminal sentences, respectively. Twenty-four sen-
tences in each of the four conditions were then selected for use in
the experiment such that no significant differences in CELEX-based
frequency or orthographic length existed between the set of noun
sentence completions and the set of verb sentence completions
(Baayen, Piepenbrock, & Gulikers, 1995).

2.2.2. Noise threshold assessment
Before collecting fMRI data from each subject, we determined

the subject-specific level of noise to apply to visual stimuli, using
a psychophysical staircase procedure (QUEST staircase technique;
Watson & Pelli, 1983) and a customized Matlab script to generate
noised images by taking the inverse Fourier transformation of the
mean amplitude spectra with randomized phase spectra (Sadr &
Sinha, 2004). Images for this procedure consisted of black word
tokens on white background. In the staircase session, the subject
viewed images the percentage phase coherence of which was grad-
ually reduced until the subject reached threshold on an identifica-
tion task (80% correct identification, 20 steps by QUEST staircase).
This subject-specific thresholded phase coherence was used to
generate both the noised word images and the images of pure
Gaussian white noise that were presented during fMRI experiment
(as in Fig. 1).

2.3. Experimental task and design

The subject’s task on each trial was to read a sentence fragment
presented one word at a time centrally and then look for an
‘‘appropriate’’ sentence completion among random dot noise
(Fig. 1), where ‘‘appropriate’’ was not specified but left to the sub-
ject’s judgment. The subject then would indicate with a button
press whether the word that was finally discernible met this crite-
rion. One out of every six sentences presented was ultimately com-
pleted ungrammatically (i.e., completed with a noun when a verb
was expected, and vice versa), but because even grammatically
well-formed sentences were often bizarre (see Appendix, e.g.,
‘‘What money did the baby start to . . . receive?’’), the average judg-
ments for the ostensibly well-formed sentences varied.

In a given trial, between four and eight noise-only images were
presented such that the length of time between a cue (the last
word of the sentence fragment) and a noise-thresholded target
word varied between 12 and 24 s. Subjects were unable to predict
the moment the target word would become visible, and therefore
had to be vigilant throughout the 12-to-24-s interval. Each word
in a given sentence appeared on the screen for 300 ms and was fol-
lowed by 300 ms of a blank screen ISI. Since Noun-type sentence
frames lasted 3600 ms (six words, 300 ms on, 300 ms off) but
Verb-type sentence frames lasted 4200 ms (seven words), the



Fig. 1. Experimental design. Each trial began with a sentence fragment (sans last word) presented one word at a time for a total of 3.6–4.2 s. The sentence fragment/cue was
then followed by four, six, or eight empty noised images. Every trial terminated in the 3 s presentation of a target token image noised at the subject’s threshold (here, the
words child, news, adopt and assist.).
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fixation time preceding the sentence was either 5400 ms (when
preceding a Noun-type sentence) or 4800 ms (when preceding a
Verb-type sentence). This allowed the subsequent noise image vol-
umes – the volumes of interest in this study – to remain of equal
length (3 s), commensurate in duration with TR.

The experiment consisted of four runs, where each run included
four presentation blocks, one per condition (Noun1, Noun2, Verb1,
and Verb2; block order randomized within run), with each presen-
tation block consisting of six sentence trials, for a total of 24 trials
per run. Sentence types were blocked in order to utilize any possi-
ble effects of syntactic priming to our advantage: when sentences
with a similar syntactic frame follow one another, this syntactic
frame is primed, and such expectation facilitation might hone the
prediction of nouns vs. verbs. Also, form-typicality effects have
been shown to be sensitive to the global context of predictability
or ambiguity: Farmer, Monaghan, Misyak, and Christiansen (2011)
found that the presentation of an abundance of form-neutral or
–atypical words might attenuate sensitivity to the probabilistic
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relationship between a word’s form and its grammatical category,
but that during normal reading, when the syntactic context is
predictive of the noun/verb category, form typicality effects are
robust. By blocking sentences of similar syntactic category, we
aimed to facilitate this sensitivity to predictable syntactic context.
Note, however, that in terms of analysis, this was not a block
design, but rather a slow event-related design.

2.4. Image acquisition and pre-processing

fMRI data were collected at the Hospital of the University of
Pennsylvania on a 3T Siemens Trio System using an eight-channel
multiple-array Nova Medical head coil. After acquiring T1-
weighted anatomical images (TR = 1620 ms, TE = 3 ms, TI = 950 ms,
voxel size = 0.977 mm � 0.977 mm � 1.000 mm), we ran the
experimental blocks and collected T2*-weighted images using a
gradient-echo echoplanar pulse sequence (TR = 3000 ms,
TE = 30 ms, voxel size = 3 mm � 3 mm � 3 mm). Images were
rear-projected onto a Mylar screen at the head of the scanner
and viewed through a mirror mounted to the head coil. Words pre-
sented on the screen subtended about 5� � 2� of the visual angle
and were presented foveally at the center of the screen.

FMRI data were pre-processed offline using the VoxBo
(www.voxbo.org) and AFNI (Cox & Jesmanowicz, 1999) software
packages. Voxbo was only used to sort the raw DICOM files for fur-
ther processing in AFNI. The first four volumes of each functional
run were removed so as to allow the signal to reach steady-state
magnetization. These initial volumes included a short block in
which the target appeared after only 3 or 6 s rather than the full
12–24 s: this encouraged participants to start searching for a target
from the very onset of a trial. Functional images were slice-time
corrected, and a motion correction algorithm employed in AFNI
registered all volumes to a mean functional volume. We applied
a high-pass filter of 0.01 Hz on each run to remove low frequency
trends. Images were transformed to Talairach standardized space
(Talairach & Tournoux, 1988) and voxels were resampled in the
process to 3.5 mm � 3.5 mm � 3.5 mm. The data were left
unsmoothed for MVPA.

2.5. Analysis

Pattern analyses were implemented in MATLAB using scripts
adapted from the Princeton Multi-Voxel Pattern Analysis toolbox
(Detre et al., 2006). The analysis pipeline involved three main
steps: voxel selection, classifier training, and classifier testing.
The latter two steps in the analysis were performed in a 4-fold
cross-validation procedure whereby the classifier was trained on
three runs and then tested on a fourth in four separate iterations
in ‘‘leave-one-out procedure’’ on each individual subject separately
(Friedman, Hastie, & Tibshirani, 2001). Below we describe each
step of the procedure in detail.

2.5.1. Feature selection
Voxels were selected from several regions of interest (ROIs). The

VT mask, which included the fusiform gyrus but also extended to
lingual, parahippocampal, and inferior temporal gyri, was drawn
for each subject a la Haxby (2001). The mid left FG mask was
drawn for each subject based on previous reports of visual word
form area (VWFA) localization in left mid fusiform gyrus (mid
FG) (Cohen & Dehaene, 2004; Cohen et al., 2000, 2002; Hasson,
Levy, Behrmann, Hendler, & Malach, 2002; McCandliss, Cohen, &
Dehaene, 2003). We used the BA 17 label provided in AFNI’s Talai-
rach daemon database (Lancaster et al., 2000) to define the early
visual cortex (EVC) mask. Finally, in order to demonstrate the spec-
ificity of our findings to visual cortex, we included one additional
ROI, left BA46 (from the same AFNI database), as a negative control
region.

We further narrowed these ROIs using the following voxel
selection technique. We first created a boxcar regressor for each
condition (NOUN and VERB (Noun1 and Noun2 conditions were
combined, as were Verb1 and Verb2 conditions)) corresponding
to the time points when the subject was predicting, but not actu-
ally seeing, a word (separate regressors were also included for sen-
tence presentation, noised-word presentation, and ITI fixation
baseline). To preclude the possibility of overlap between bottom-
up sensory stimulation of visual areas and top-down activation
of these same areas by the preceding sentence or word cue, we
only looked at noised images presented at least two TRs (6 s) after
the prediction cue (Coutanche & Thompson-Schill, 2014). We then
convolved the condition regressors with a hemodynamic response
function (gamma-variate) and then computed the per-voxel F-sta-
tistics for these condition contrasts. Based on this analysis, we
selected the N voxels (where N was 20, 60, 100, or 200) that had
the highest F-statistics in a given ROI (McDuff, Frankel, &
Norman, 2009; Polyn, Natu, Cohen, & Norman, 2005). This proce-
dure was performed for each of the four iterations and only on
the three training runs: the test run was always left out in order
to avoid ‘‘peeking.’’ Since each iteration chose a different set of N
voxels, each classifier had a different N-unit input layer.

In Fig. 3, we plot classifier performance against each voxel input
size (20, 60, 100, 200, where these voxel input sizes were arbi-
trarily chosen). We report permutation tests for only the 20-voxel
inputs.).

2.5.2. Classifier training and testing
The classification analyses reported here used a two-layer neu-

ral network classifier as implemented in the Princeton MVPA Mat-
lab toolbox, which itself also used the proprietary Matlab Neural
Networks toolbox. Before running the classifier, we z-scored the
functional data for each voxel and for each run. We then imple-
mented a simple neural network with an input layer of, e.g., 20
units corresponding to the best 20 voxels (z-scored raw BOLD sig-
nal, not GLM beta values), and an output layer, which had two
units (for Noun vs. Verb). This was trained on three runs using a
conjugate gradient descent backpropagation algorithm (Polyn
et al., 2005), and tested on a fourth run in a leave-one-out 4-fold
cross-validation procedure.

Classifier weights were initialized at random values and then
trained on the three training runs. The order of the training pat-
terns was randomized, and training was stopped when either the
output layer’s mean cross-entropy error fell to 0.001 or the net-
work made 200 passes through all the training patterns. To average
out the variability in classifier performance associated with the
random initialization settings, we repeated each fold’s classifier
procedure 100 times and averaged these output values to yield a
single classifier performance output for each fold (McDuff et al.,
2009). The folds’ performances were then averaged together for a
single classifier performance value for each subject.

2.5.3. Assessing classifier performance
To assess the significance of the classifier’s accuracy percent-

ages for each individual subject for the 20-voxel inputs, we used
a non-parametric statistical procedure to determine whether each
individual’s classification performance was greater than that
expected by chance (Gallivan, McLean, Smith, & Culham, 2011;
Golland & Fischl, 2003). The condition labels for each subject were
scrambled 100 times, and the classifier was trained and tested on
each new set of scrambled labels. These labels were scrambled
such that each new scrambled set had the same number of trials
and conditions per run as the original set. A group p-value was cal-
culated by randomly selecting from each subject’s 101 possible
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classification scores (100 permuted distributions plus the original
‘‘real’’ classification score), generating a population of 1000 mean
accuracies based on 1000 combinations of randomly drawn classi-
fication scores. The real mean group classification score was then
compared to this permuted null distribution of 1000 means to
identify the p-value.
3. Results

In a univariate test of differential activity in all ROIs between
noun-type and verb-type predictions, no clusters survived a signif-
icance threshold of p = 0.1. However, multivariate analyses
revealed a difference between noun and verb predictions in a sub-
region of VT corresponding to the left mid FG, inclusive of an area
sometimes called the ‘‘visual word form area.’’ Average classifica-
tion performance in the left mid FG mask was significantly above
50% chance (M = 0.58, two-tailed permutation test p = 0.023; 20-
voxel input). Group-level classification was highest for a 20-voxel
input in mid FG, but classification was also reliably above chance
for 60 and 100 voxels in mid FG. In order to examine whether
mid FG may be driving classification in VT, we ran a separate clas-
sifier over the complement set of voxels that were in VT but not in
mid FG (see Fig. 2). This VT complement classification did not reach
significance at the group level (M = 0.53, permutation test p = 0.14),
consistent with the hypothesis that within the left VT ROI, mid FG
is particularly sensitive to word form features underlying the
noun–verb distinction. Finally, classification of nouns vs. verbs
did not meet significance in either EVC (see Fig. 3; M = 0.50, per-
mutation test p = 0.41) or BA46 (M = 0.51, p = 0.20). These data
Fig. 2. ROI outlines. Extent of EVC (BA 17) shown in blue, VT in yellow, and mid FG
in red in representative subject. Note mid FG is a subregion of VT and thus the
borders of these ROIs overlap. Axial slice shown at z = �10, sagittal slice shown at
x = �18.

Fig. 3. Classification across subjects (n = 10) over all folds (n = 4) using best 20, 60, 100
ribbons indicate confidence intervals of classification performance across the ten subjec
together indicate that the left mid FG is tuned to lexical-syntactic
features of words in predictive contexts.

We next considered the possibility that successful classification
could have been the result of a confound between sentence type
and sentence length (specifically, the number of content words),
even though subjects were not viewing the sentences when the
relevant fMRI data were being collected. When we created sen-
tences for this study, we decided that maintaining suitable syntac-
tic structure was more desirable than matching the two conditions
on length, so we designed the experiment to allow us to test for
this possible length confound. Specifically, the first type of noun-
terminal sentence (Noun1) had one content word per sentence,
the second type of noun-terminal sentence (Noun2) had two con-
tent words, and both types of verb-terminal sentences (Verb1 and
Verb2) had three content words. In order to determine whether the
number of content words could drive classification, we tested clas-
sification on the two types of noun-terminal sentences (i.e., same
grammatical class, but one content word vs. two content words).
Classification was not significant in VT (Noun1 vs. Noun2:
M = 0.48, p = 0.52, 20 voxels). Because this null result may simply
have been due to insufficient power (since the number of volumes
used to train each pattern was half that used in the primary anal-
ysis), we also trained classifiers on the Noun1-vs.-Verb1 and the
Noun2-vs.-Verb2 comparisons in VT. VT voxels in mid FG were able
to train classifiers on Noun1-vs.-Verb1 above chance (M = 0.54,
p < 0.01). This pattern gives us confidence that classification per-
formance for Nouns vs. Verbs was due to differences in lexical-syn-
tactic prediction and not sentence length.

4. Discussion

Using multi-voxel pattern analysis (MVPA), we were able to
show that participants’ expectations of a noun or a verb can gener-
ate form-based predictions in higher level visual areas, including
the left ventral temporal (VT) cortex, and a subregion of the latter
– the left mid fusiform gyrus (mid FG), sometimes called the
‘‘visual word form area.’’ No evidence for form-based predictions
was observed in early visual cortex (EVC).

What differences between nouns and verbs might give rise to
their successful classification in VT and mid FG? Nouns and verbs
differ along a number of dimensions – phonological, lexical, syn-
tactic, and semantic – but because left mid FG was the primary
locus of noun–verb classification in VT and has been shown to be
most sensitive to bigrams and lexical-level properties of words, it
is likely that word form features are indeed the representational
, and 200 – voxels per fold. Lines indicate median classification performance, and
ts.
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substrate of noun–verb classification. While it has been found that
nouns are more highly imageable than verbs (e.g., Luzzatti &
Chierchia, 2002), effects of noun and verb imageability are more
often found in the right hemisphere (Crepaldi et al., 2006). Further-
more, in testing for gross differences between nouns and verbs
such as imageability, our univariate analysis of noun prediction
vs. verb prediction in both left mid FG and VT found no significant
differential activation between these two grammatical categories.
If imageability, or some other coarse visual property of nouns
and verbs deriving from their conceptual semantic associations,
were underlying classification, then we would expect to see this
borne out in the univariate test. Thus, it is very likely that we are
classifying word effects at a finer grain.

4.1. Syntactic prediction, or something else?

The nature of the prediction that generates the form-based esti-
mate in these visual areas is far from clear. Indeed, we cannot pre-
clude the possibility that visual word form estimates arise not from
syntactic cues, but via more general conceptual semantic proper-
ties of nouns and verbs intervening between a syntactic category
prediction and the word form estimation. It is also possible that
neither syntactic nor semantic information is necessary to make
the sort of noun-vs.-verb predictions seen in this study. Note that
the penultimate word in all Noun sentences was ‘‘the,’’ while the
penultimate word in all ‘‘Verb’’ sentences was ‘‘to.’’ To ensure we
did not sample bottom-up signal changes associated with process-
ing the word forms ‘‘to’’ or ‘‘the,’’ we did not include the first two
TRs after the prediction cue. Thus the single word forms ‘‘to’’ and
‘‘the’’ are unlikely to drive classification at the sensory-perceptual
level. However, that is not the only way ‘‘to/the’’ might have driven
classification. There is also the possibility that the subject only
needed the ‘‘to/the’’ cue, not the sentence frame, to generate a pre-
diction. That is, it may be possible to generate a noun- or verb-pre-
diction on the basis of the bigrams associated with ‘‘to’’ and ‘‘the,’’
without recourse to a syntactic structure per se. This is unlikely,
however, since the subject could not complete the task using only
the single word cue: the task was an acceptability judgment, not a
grammaticality judgment, and some grammatical sentences were
deemed unacceptable by most subjects (e.g., ‘‘Who was the boss
from the . . . lawyer?’’) Similarly, it is unlikely we are classifying a
rehearsal effect of ‘‘to’’ vs. ‘‘the,’’ since this would not be sufficient
for task completion.

We have further reason to believe syntactic structure, and not
lower-level prediction driven by single-word prediction, accounts
for these noun-vs.-verb prediction results. In a separate study,
we presented subjects with specific noun-typical nouns and
verb-typical verbs to search for in noisy dot patterns. This study
was identical in design and format to the one reported here, but
the cue was a specific word (e.g., ‘‘movie’’) rather than a sentence
fragment. We were unable to classify nouns vs. verbs above chance
in VT or mid FG. Despite the greater precision involved in predict-
ing a specific word, classification of sentence-cued prediction out-
performed word-cued prediction of nouns vs. verbs. While the
brain is likely generating predictions at multiple levels – semantic,
syntactic, phonological, orthographic – the presence of sentence
structure may direct attention away from irrelevant form-feature
information and toward those form-features most diagnostic of
nouns and verbs; thus, syntactic structure might serve to tune
word form prediction.

4.2. Implications for models of syntactic prediction and word form
feature estimation

The speed at which the human brain processes language is
remarkable, and it is becoming increasingly clear that models of
strictly serialized, modular, bottom-up language processing are
insufficient to account for this performance. Language operates
on a number of representational levels, such modules including
phonology, syntax, semantics, etc., but it is not clear how possible
interstratal relationships among these levels may affect processing.
One such interstratal relationship – that between the phonology
(read out as orthography) and lexical-syntactic category of a word
– has been largely overlooked. The possibility that lexical-syntactic
categories have form-feature signatures at much lower levels of
representation may obscure our measure of when and where syn-
tactic effects occur. For instance, many neuro-cognitive accounts of
syntactic processing derive from electrophysiological studies
reporting that certain syntactic factors affect processing in an ear-
lier time window than lexical-semantic violations. Event-related
potentials (ERPs) modulated by syntactic violations have been
observed as early as �60 ms after the onset of an unexpected word
(many studies find a so-called Early Left-Anterior Negativity at
�125 ms post stimulus onset (Friederici, Pfeifer, & Hahne, 1993;
Neville, Nicol, Barss, Forster, & Garrett, 1991)), while others find
a mismatch negativity even prior to this at �60 ms p.s.o.
(Herrmann, Maess, Hahne, Schröger, & Friederici, 2011;
Herrmann, Maess, Hasting, & Friederici, 2009). In contrast, neural
correlates of lexical, semantic, and world knowledge violations
are typically indexed by a negative deflection of the ERP much later
at around 400 ms post-stimulus onset (the N400 component
(Kutas & Hillyard, 1980)). Many researchers interpret this pattern
as evidence of a ‘‘syntax-first’’ model of language comprehension,
where the initial stage of processing reflects syntactic computa-
tion, only after which lexical and semantic factors are accessed.

Friederici’s (2002) model, for instance, portrays different levels
of analysis occurring in an explicitly serial, modular, and bottom-
up fashion, and that identification of lexical-syntactic category
occurs at about 150–200 ms (Friederici, 2002). However, our study,
among others, now raises the possibility that some of these puta-
tively syntactic effects may fall out of form typicality effects, mod-
ulated by top-down syntactic prediction. While the prediction
effect we see may in some sense be syntactic, it certainly does
not entail bottom-up syntactic analysis of the word being pre-
dicted, but rather a form-feature prediction based on the syntactic
structure already built. Therefore, in order to distinguish syntactic
analysis per se from downstream effects of syntactic prediction,
future studies investigating early syntactic effects should account
for the form-feature properties of words in addition to manipulat-
ing syntactic context.

4.3. Neural circuitry of visual prediction

There is a growing body of research investigating top-down
effects on sensory processing, but most evidence for such expecta-
tion-induced processing comes from studies showing pre-activa-
tion of brain regions subserving rather coarse domains of sensory
information; e.g., gustatory cortex activating when subjects expect
food items (Simmons, Martin, & Barsalou, 2005), somatosensory
cortex activating during subjects’ anticipation of somatosensory
stimuli (Carlsson, Petrovic, Skare, Petersson, & Ingvar, 2000), and
fusiform face area activating when subjects expect faces, as
opposed to other objects (Summerfield et al., 2006). Likewise,
when subjects are anticipating some reading task, we would
expect to see enhanced activation of visual areas as opposed to,
say, auditory or somatosensory regions. However, while these sorts
of study provide interesting fodder for models of attention, they do
not themselves offer evidence for predictive coding of particular
percepts within these sensory domains, where ‘‘predictive coding’’
refers to a model whereby prior information facilitates top-down
conditional expectations at the level of the sensorium (Friston,
2003). That is, just because visual attention may be upregulated
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during reading does not mean that visual cortex has any predic-
tions about the upcoming word.

However, studies manipulating attentional demands during
predictive vs. non-predictive tasks have shed light on the neural
connectivity underlying expectation-based visual processing. For
instance, Summerfield and Koechlin (2008) found increased back-
ward connectivity from FG to EVC in prediction conditions of
low-level visual (non-linguistic) stimuli, but not non-predictive
conditions. Conversely, they found increased forward connectivity
from EVC to FG in cases of prediction mismatch, suggesting FG is a
hub for both generating and updating visual form-based predic-
tions. These data provided evidence for attentional modulation of
FG depending on whether the task was predictive or not, but did
not offer a means to detect whether FG was engaged in predictive
coding per se.

In the current study, we probed both FG and EVC for predictive
coding of nouns vs. verbs, but only found significant classification
in FG (and only when prediction was based on syntactic structure).
This is consistent with an account whereby FG mediates prediction
of visual features when prediction is maximally afforded. Failure to
classify nouns and verbs in EVC would be wholly unsurprising
were it not for previous evidence from MEG that early occipital
activity is sensitive to nouns’ form typicality (Dikker et al., 2010).
However, there are two caveats regarding the MEG evidence. First,
the source of the ERF was estimated using equivalent current
dipole analysis, a localization technique requiring an assumption
on the part of the investigator as to the number of sources contrib-
uting to a given field pattern. Second, while this technique is gen-
erally suitable for analyzing early sensory components such as the
M100, it is possible that both the waveform and the scalp topogra-
phy of the relevant magnetic field was distorted by use of a rela-
tively high cut-off of 1 Hz when high-pass filtering (Acunzo,
MacKenzie, & van Rossum, 2012). Thus, while the MEG data pro-
vide evidence of early sensitivity to noun form typicality, the effect
cannot be unequivocally localized to EVC.
5. Conclusions

The phenomenon of form typicality currently provides the
best account of how syntactic categories can map onto word
forms. However, it may be that the sentence-context cues in this
study allow for better prediction of nouns vs. verbs because they
sustain attention better – or longer – than single-word cues (see
Section 4.1). That sentence context appears to be privileged may
be an accident of the temporal structure of the sentence cue
rather than a function of the syntactic representation itself, and
the current study cannot differentiate between these two
possibilities.

It should also be noted that the current study cannot distinguish
between a model involving true predictive coding (i.e., where a
syntactic prediction is transformed to a phonological/orthographic
form feature distribution) and a model whereby attention to a cer-
tain subset of noun-diagnostic features is upregulated when a
noun is expected (vs. a verb), and vice versa for verb prediction.
The difference between these two models is subtle, and computa-
tionally these two models may be indistinguishable: both entail
pre-activation of certain features based on syntactic information,
and both entail lateral inhibition of irrelevant features. Rather,
the distinction lies in our understanding of noun/verb form typical-
ity, and it may be that the notion of ‘‘form typicality’’ as currently
delineated encompasses more features than are strictly necessary
for distinguishing noun and verb forms. A more explicit definition
of phonological/orthographic ‘‘form typicality,’’ at least insofar as it
discriminates nouns from verbs, is a crucial desideratum for a
future theory of word form prediction.
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Appendix A

Sentence fragment stimuli with final completion word, which
was presented in noise.

1. *Who was the broker from the . . . include?
2. Where was the doctor for the . . . baby?
3. Who was the reporter in the . . . story?
4. Who was the senator from the . . . movie?
5. Who was the singer in the . . . band?
6. Where was the teacher with the . . . child?
7. Which crib did the broker plan to . . . destroy?
8. *Which opera did the reporter agree to . . . sofa?
9. What sermon did the woman struggle to . . . believe?

10. Which test did the senator agree to . . . take?
11. What band did the judge hope to . . . accuse?
12. Which army did the tailor hope to . . . assist?
13. *What bank was the doctor implored to . . . bible?
14. What child was the broker persuaded to . . . adopt?
15. What money was the reporter selected to . . . spend?
16. Which patient was the senator forced to . . . abduct?
17. What story was the judge advised to . . . review?
18. Which course was the tailor hired to . . . take?
19. When did the broker accept the . . . money?
20. *Where did the woman forget the . . . amuse?
21. When did the senator learn the . . . news?
22. Where did the judge maintain the . . . order?
23. When did the tailor observe the . . . murder?
24. Where did the general recall the . . . story?
25. *Where did the mechanic teach the . . . lend?
26. When did the minister reveal the . . . bible?
27. Where did the teacher demand the . . . salary?
28. When did the burglar discover the . . . house?
29. Where did the dentist stress the . . . teeth?
30. When did the janitor mention the . . . flood?
31. Which budget was the mechanic permitted to . . . accept?
32. What turtle was the teacher urged to . . . adopt?
33. Which student was the burglar ordered to . . . remove?
34. What product was the policeman persuaded to . . . examine?
35. *Which defendant was the dentist invited to . . . marble?
36. What committee was the janitor bribed to . . . attend?
37. *What car did the general refuse to . . . bible?
38. Which bird did the minister start to . . . adopt?
39. What patient did the mechanic refuse to . . . assist?
40. Which paper did the singer decide to . . . read?
41. What clinic did the teacher plan to . . . attend?
42. What story did the dentist hope to . . . write?
43. Who was the burglar from the . . . movie?
44. Where was the dentist for the . . . lawyer?
45. Where was the nurse with the . . . child?
46. Where was the journalist from the . . . paper?
47. *Where was the governor for the . . . lend?
48. Who was the nephew in the . . . movie?
49. What staircase was the prince encouraged to . . . use?
50. Which book was the man hired to . . . read?
51. What store was the governor convinced to . . . close?
52. Which soldier was the nephew persuaded to . . . respect?
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53. What doctor was the salesman induced to . . . hire?
54. Which country was the executive ordered to . . . bomb?
55. Where did the nurse accept the . . . money?
56. When did the journalist advise the . . . editor?
57. *Where did the governor confirm the . . . include?
58. When did the nephew forget the . . . rumor?
59. *Where did the salesman learn the . . . adopt?
60. When did the executive maintain the . . . order?
61. Where was the salesman with the . . . bible?
62. Who was the executive from the . . . firm?
63. Who was the writer from in the . . . movie?
64. Where was the woman with the . . . baby?
65. Who was the mother from the . . . movie?
66. Where was the baby for the . . . diaper?
67. Which company did the janitor try to . . . join?
68. What lesson did the governor decide to . . . give?
69. *What play did the salesman try to . . . marble?
70. Which child did the executive plan to . . . adopt?
71. What transaction did the professor try to . . . amuse?
72. Which faucet did the writer decide to . . . use?
73. *What actress did the woman struggle to . . . movie?
74. Which mayor did the mother agree to . . . marry?
75. What money did the baby start to . . . receive?
76. *Which job did the lawyer want to . . . sofa?
77. What drug did the boss want to . . . abuse?
78. What insect did the juggler desire to. . . eat?
79. Who was the man in the . . . line?
80. Who was the prince from the. . . castle?
81. Who was the boss from the . . . lawyer?
82. Where was the banker for the . . . deal?
83. Where was the aunt with the . . . money?
84. Who was the nanny from the . . . story?
85. *When did the lawyer demand the . . . include?
86. Where did the boss discover the . . . drugs?
87. When did the banker stress the . . . truth?
88. *Where did the juggler mention the . . . adopt?
89. When did the man accept the . . . cash?
90. Where did the policeman advise the . . . lawyer?
91. What palace was the professor allowed to . . . inhabit?
92. Which engine was the writer urged to . . . avoid?
93. Which vase was the baby permitted to . . . break?
94. Which bird was the nanny scared to . . . touch?
95. What statue was the gymnast required to . . . avoid?
96. Which umbrella was the nun meant to . . . carry?
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