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Abstract

The prevailing approach to the neuroscientific study of concepts is to characterize the neural 

pattern evoked by a given concept, averaging over any variation that might occur upon multiple 

retrieval attempts (e.g., across time, tasks, or people). This approach— which diverges 

substantially from approaches to studying conceptual processing with other methods—treats all 

variation as noise. Here, our goal is to determine whether variation in neural patterns evoked by 

semantic retrieval of a given concept is more than just measurement error, and instead reflects 

variation arising from contextual variability. We measured each concept’s diversity of semantic 

contexts (“SV”) by analyzing its word frequency and co-occurrence statistics in large text corpora. 

To measure neural variability, we conducted an fMRI study and sampled neural activity associated 

with each concept when it appeared in three separate, randomized contexts. We predicted that 

concepts with low SV would exhibit uniform activation patterns across stimulus presentations, 

whereas concepts with high SV would exhibit more dynamic representations over time. We 

observed that a concept’s SV score predicted its corresponding neural variability. This finding 

supports a flexible, distributed organization of semantic memory, where a concept’s meaning and 

its neural activity patterns both continuously vary across contexts.

Keywords

semantic memory; object concepts; context-dependent representations

1. Introduction

When cognitive psychologists and psycholinguists consider the variability that arises when 

thinking about concepts, it is often understood to emerge from dynamic interactions between 

concepts and contexts. When cognitive neuroscientists and neurolinguistics consider this 

variability, it is usually treated as “noise”, and consequently minimized or discarded. For 

example, efforts to classify multi-voxel patterns activated by thoughts about a chair require 
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averaging over many chair-evoked responses, or by limiting analyses to voxels with the 

most consistent activity patterns. Moreover, experimental subjects are often encouraged to 

think of the same set of stimulus features upon repeated presentations of the same concept 

(e.g., Mitchell et al., 2008; Shinkareva et al., 2011). Such methods can decode object-

associated patterns with impressive classification accuracy. However, the methods which 

provide the most predictive power achieve this by collapsing cross-context variations into a 

single prediction. This implicitly assumes that conceptual representations are situationally 

invariant.

Rather than being “nuisance noise”, neural variation might instead vary across concepts in 

meaningful, predictable ways. An obvious example of this variation occurs in the case of 

homonyms (for example, the pattern evoked by “driver” might look more like that evoked 

by other people or by other tools, depending whether you are thinking about your chauffeur 

or your golf game). We propose that this is just an extreme case of a more general principle, 

namely that all concepts exhibit some degree of context-dependent variation in their 

meaning. In turn, semantic variability should predict the extent of variability in neural 

signals associated with a concept. Testing this hypothesis requires measuring two 

characteristics of a given concept: semantic (or contextual) variability and neural variability. 

We briefly introduce our approach to each of these measures below.

1.1 Semantic Variability

When considering how we might quantify the extent of semantic variability, we consulted a 

wide body of previous research: Studies have sampled large linguistic corpora to count of 

the number of unique paragraphs (e.g., Adelman et al., 2006); documents (e.g., Steyvers & 

Malmberg, 2003) or movie subtitles (e.g., Brysbaert & New, 2009) in which certain concept 

names (i.e., words) occur. Other work has quantified the similarity of all of the documents in 

a text corpus that contains a given word, using either Latent Semantic Analysis (e.g., 

Hoffman et al., 2012) or topic modeling (e.g., Pereira et al., 2011). These methods assume 

that words are experienced throughout discrete episodic contexts, and these instances are 

operationalized as the documents in a corpus. Each word receives a quantified description of 

its entropy over documents, such that “promiscuous” words appearing in many contexts and 

with many different words are distinguished from “monogamous” words that appear more 

faithfully in particular contexts (McRae & Jones, 2012). Drawing from these diverse corpora 

and linguistic methods, we developed a composite measure that reflects the variety of 

contexts in which each concept occurs, which we henceforth refer to as “semantic 

variability” (SV).

1.2 Neural Variability

We measured the extent of neural variability by measuring the neural patterns evoked by a 

particular concept, and computing the correlations between these patterns as the concept’s 

surrounding context varied over time. There are several ways in which we could have 

experimentally manipulated the variety of contexts in which a given concept appeared. For 

instance, a concept could be embedded in several different sentence contexts, or it could be 

probed in various task contexts (e.g., living/non-living or abstract/concrete judgments; for an 

example, see Hargreaves et al., 2012). However, not all contexts vary in the same ways, and 
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hence some contexts may be more variable than others. While a central hypothesis of this 

work is that any concept’s representation may be modulated by context, we have no a priori 

estimates of the magnitude or quality of this effect. For that reason, we have sought to 

generate contexts without any systematic bias or definition whatsoever. This is best 

accomplished with a list of random words.

We measured the variability in neural signals elicited by a given concept as it appeared in 

three distinct, randomly generated word lists. Here, a concept’s context is the items that 

precede it in a list. Such an approach is common in episodic memory studies: a stimulus 

item is embedded amongst other words in a sequentially presented list, and the episodic 

context is thought to gradually drift over time and throughout the list (e.g., the Temporal 

Context Model; see Polyn, Norman, & Kahana, 2008).

By presenting all concepts in equally random contexts, any given concept’s relative 

semantic variability or stability could spontaneously emerge and manifest in the resulting 

neural patterns. Insofar as some concepts may have more ambiguous definitions, or stronger 

dependence on context, this method ensures that we are not simply analyzing the context 

alone. It trains our focus on the concept itself, without any presupposition about its 

modulating context.

1.3 Hypotheses

With this measure of neural variability, we could test a few key predictions. Firstly, and in 

part as a positive control, we compared the neural variability of single-sense nouns to multi-

sense nouns. As introduced above, polysemous and homonymous nouns are extreme 

examples of cross-context variation in meanings, because two or more concepts share a 

single word form. Under our assumptions, these words should especially exhibit semantic 

and hence neural variability. While not the main focus of our hypothesis, such a result would 

validate our metrics of semantic and neural variability.

Secondly, and critically for our overall aims, we predicted a parametric effect of SV among 

the single-sense nouns. That is, although these “single-sense” nouns would typically be 

described as referring to a single concept, they nonetheless exhibit a range of SV values, 

which we hypothesize will be correlated with the extent of neural variability. That is, words 

with low SV should activate more stable concepts, and thus more stable neural patterns 

across stimulus presentations, whereas words with high SV should activate more variable 

concepts, and thus more variable neural patterns.

2. Methods

Subjects

Twenty-one right-handed, native English speakers (13 females; aged 18–26 years) 

participated in this experiment. Subjects had normal or corrected-to-normal vision and no 

history of neurological or language disorders. All subjects were recruited from the 

University of Pennsylvania community and paid $20 per hour for their participation. 

Subjects gave written informed consent, which was approved by the University of 
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Pennsylvania Institutional Review Board. Three subjects were replaced for performing 

below chance on at least one of nine experimental tasks.

2.1 Design overview—We measured neural patterns evoked by three instances of 

semantic retrieval for each of twenty-five concrete, single-sense nouns (our “target” items), 

and we calculated neural variability among these three patterns for each word. The 

procedure was designed both to encourage elaborative episodic encoding of each word and 

to permit contextual variation to exert an influence on the resulting neural patterns: the task 

was an intentional episodic encoding paradigm, and the target items were randomly 

interspersed along a much larger list of stimuli (our “context” items). Details on each follow.

2.2 Materials

2.2.1 Stimuli: The stimulus set comprised 215 concrete, single-sense nouns. These words 

included both nonliving and living things, from a basic level of semantic categorization 

(e.g., “dog” instead of “pug” or “animal”). From this larger set, 25 nouns were chosen for 

target items. These words were pseudo-randomly selected to yield wide range semantic 

variability values across words. An additional 145 words served as “context” items, in that 

they appeared in lists with the target items during the episodic encoding task. Finally, 45 

nouns served as “lures” in the recognition memory tests that followed. In addition to these 

single-sense words, we selected 15 polysemous or homonymous nouns (hereafter called “PH 

words”) to serve as our positive control stimuli, based on their use in studies of lexical-

semantic ambiguity (e.g., Bedny et al., 2007; Klein & Murphy, 2001).

2.2.2 Semantic variability metric: Drawing from a variety of corpus analysis methods and 

text databases, we developed a metric of “semantic variability” (SV). SV is composed of 

seven different variables (Table 1). These variables quantify the magnitude (Variables 1–3) 

or range (Variables 4–7) of documents in which each word appears.

All target, PH, and context items with scores available for all seven variables were included 

in the development of SV, resulting in 161 items. To create a composite score for each item, 

we z-scored each variable to standardize their scales and averaged these z-scores. As a check 

on the interpretation of this metric, we compared SV scores of the target (single-sense) 

words and the PH words: As expected, the PH words were consistently assigned higher SV 

scores than the target words, t(37.6) = 3.29, p = 0.003 (two-tailed) (Figure 1). Stimulus 

characteristics for the selected target and PH words are listed in Table 2.

2.2.3 Presentation sequences: As noted in Section 2.1, we sought to elicit conceptual 

processing associated with each stimulus presentation, while also discouraging any 

deliberate or specific encoding strategies. Additionally, we sought to create a situation 

where contextual variability would likely emerge, and where all stimuli were presented in 

equally random contexts. With these aims in mind, we presented subjects with lists of the 

stimulus words, where the target items would reappear in separate lists (i.e., among different 

words). To minimize task constraints, subjects were not given any specific instructions for 

how to respond during stimulus presentations. However, they were told to remember the 

words for a subsequent memory test.
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Stimuli were assigned to nine lists, where each list consisted of 35 items: five to ten targets, 

five PH words, and 20–25 context words. Each of the 25 targets and 15 PH words appeared 

three times in separate, non-adjacent lists. For the context words, 15 of the items on each list 

were unique (i.e., they appeared in only one list) in order to increase each list’s 

distinctiveness. But, to remove novelty as a cue for task-relevant stimuli, each list (after the 

first) also included five context items from a previous list. The ordering of each list was 

completely randomized, with one exception: across its three presentations, a target item 

never preceded or followed a given context item more than once. New word lists and testing 

sequences were constructed for each subject.

2.3 Procedure—The stimuli were presented in nine scanning runs, with one word list per 

run, and one testing sequence between each run. Subjects were instructed to pay attention to 

the words on each list, in order to prepare for a recognition memory test that would 

immediately follow. Each word was visually presented in the center of the screen for 2,500 

ms, with a variable, jittered inter-trial interval (500 ms – 12500 ms), during which a 

centrally-located fixation cross was present (timings developed using optseq2; http://

surfer.nmr.mgh.harvard.edu/optseq/). Word stimuli ranged in size from 3–10 letters, with 

each letter horizontally subtending approximately 0.5° visual angle. Each word list 

presentation lasted the entire duration of a single scanner run, approximately 3.5 minutes. 

The stimulus timing and presentation was controlled by E-prime 2 software (Psychology 

Software Tools). A schematic of the stimulus display is depicted below (Figure 2).

Immediately after each encoding list, subjects performed a self-paced yes-no recognition 

memory test. fMRI data were not collected during these tests. Subjects responded via button 

press whether or not each of the ten words was present in the immediately preceding word 

list. Each test consisted of five context items and five lure items, in a random order. The 

context items were randomly selected from any of 20 context items from the immediately 

preceding word list (that is, either unique or repeated items). The lure items were five unique 

and novel concrete nouns. Target items never appeared in the recognition memory tests. The 

next word list presentation, and corresponding scan run, began immediately following the 

completion of the recognition test.

Across the nine between-list recognition memory tests, subjects successfully responded to 

89% of all trials (average hit rate = 84%; correct rejection rate = 94%), with no subjects 

performing below 50% chance on any of the nine tests.

2.4 fMRI data acquisition—Functional and structural data were collected with a 32-

channel array head coil on a 3T Siemens Trio system. The structural data included axial T1-

weighted localizer images with 160 slices and 1 mm isotropic voxels (TR = 1620 ms, TE = 

3.87, TI = 950 ms). We collected 44 axial slices (3 mm isotropic voxels) of echoplanar fMRI 

data (TR = 3000 ms, TE = 30 ms). Each of the nine functional scanning sessions lasted 219 

seconds. Twelve seconds preceded data acquisition in each functional run to approach 

steady-state magnetization.

2.5 fMRI preprocessing—Image preprocessing and statistical analyses were performed 

using the AFNI and SUMA software package (Cox, 1996) and MATLAB (MathWorks). 
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Before all other analyses, time series data were preprocessed to minimize the effects of noise 

from various sources, and consequently to provide for a better estimation of the BOLD 

signal: First, images were corrected for differences in slice acquisition time due to the 

interleaved slice order within the 3000 ms TR. Next, individual volumes were spatially 

registered to the last volume of the last functional run in order to correct for head movement, 

since this was the volume closest in time to the high-resolution anatomical scan. Third, the 

data were despiked to remove any large values not attributable to physiological processes. 

For each subject, anatomical gray-matter probabilistic maps were created in Freesurfer 

(http://surfer.nmr.mgh.harvard.edu/) and applied to the functional data. The volumes were 

then spatially smoothed using a 3 mm FWHM Gaussian kernel. Finally, the time series data 

were z-normalized within each run. For the searchlight analysis, these preprocessing steps 

were repeated, except that subjects’ gray matter masks were not applied.

Each stimulus presentation was separately modeled as a three-second boxcar function 

convolved with a canonical hemodynamic response function. Six motion parameters, which 

were estimated during the motion-correction step, were also regressed out of the time series 

data at this step. Beta coefficients were estimated using a modified general linear model that 

included a restricted maximum likelihood estimation of temporal auto-correlation structure, 

with a polynomial baseline fit as a covariate of no interest. This GLM analysis yielded a 

single beta value at each voxel for each stimulus event.

2.6 Neural similarity analysis—For each subject, we selected a set of voxels across 

which we could compute a measure of neural variability. Voxels were selected using two 

different methods, each described below. In each subject’s voxel set, we extracted three beta 

values for each of the three item presentations of every target and PH word. Across the 

selected voxels, we then computed the average pairwise Pearson correlation between the 

beta values for each item’s three separate stimulus presentations. This value served as the 

metric of neural similarity for a given item.

2.6.1 Whole brain feature selection: For each subject, we selected a set of voxels across 

which we could compute a measure of neural variability. These voxels were identified in 

each subject’s native space from any voxels labeled as gray matter. We selected voxels with 

the highest F-statistics yielded by the model described above, in which all stimulus events 

are separately modeled as a single, unique regressor. For a given voxel, the F-statistic value 

reports the variance explained by a model that contrasted (1) words versus fixation and (2) 

differences across word presentations. Although we did not limit the voxel selection to any 

specific brain regions, we also added a contiguity constraint: every selected voxel needed to 

share a face with at least one other selected voxel. We then selected the n voxels with the 

highest F-statistic values.

We tested our hypotheses at values of n ranging from 25 to 10,000 (following from Hindy et 

al., 2012). Below, we report detailed analyses for the 500-voxel input; however, the findings 

we report were robust for n of 250 to 1,000 selected features, and up to 2,000 at a trend 

level. Reports at additional voxel set sizes can be found in Appendix A.
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2.6.2 Searchlight analyses: In order to examine whether the putative relation between SV 

and neural variability was regionally specific, we also conducted a searchlight analysis 

across the brain. A 3-voxel radius sphere was iteratively centered on each voxel in the brain 

(Kriegeskorte et al., 2006). This sized sphere included 123 voxels when unrestricted by the 

brain’s boundary, and the diameter of the sphere was 9 mm. For the voxels in a searchlight 

sphere, we calculated each item’s average neural similarity. For each subject, we estimated a 

linear regression coefficient that used SV values to predict average neural similarity across 

items. The resulting beta value was then assigned to each searchlight center. Subjects’ 

searchlight maps were then resampled to the functional data resolution, normalized to 

Talairach coordinates (Talairach & Tournoux, 1998).

We then tested the reliability of the regression coefficient across subjects with a 1-sample t-

test. To perform this group-level analysis, we first estimated the smoothness of the data in 

three directions (i.e., xyz coordinates). These estimates were obtained using AFNI’s 

3dFWHMx on the residual time series data. The average subject-level values were then 

averaged across subjects (FWHMx = 4.83 mm; FWHMy = 4.85 mm; FWHMz= 3.95 mm). 

Based on a voxel-level uncorrected alpha of .01 (t=2.84), Monte Carlo simulations 

(n=50,000) performed with 3dClustSim in AFNI indicated a minimum cluster size of 19 

voxels for cluster-level corrected alpha of .05. Although results reported from the 

searchlight analysis are referred to as clusters of voxels, it is important to point out that such 

clusters only identify each sphere’s center voxel. Some of the sphere’s most informative 

voxels might be located in another region adjacent to the center voxel’s region.

3. Results

3.1 Whole-brain distributed patterns

3.1.1 Comparing neural similarity across word types—In each subject’s 500 

selected voxels, we compared the average within-item neural similarity for single-sense 

target words versus PH words. Across subjects, the single-sense target words exhibited more 

within-item neural similarity (mean r = .09) than did the PH words (mean r = .07), t(20) = 

3.03, p = 0.006 (two-tailed) (Figure 3).

3.1.2. Relating semantic variability to neural variability—In each subject, we 

computed a Pearson correlation between each target item’s average neural similarity and its 

SV score. At the group level, subjects’ resulting correlation coefficients were compared to 

zero in a 1-sample t-test. We found a negative relationship between SV and neural 

similarity, such that items with lower SV scores exhibited greater neural similarity across 

contexts, and items with higher SV scores had more variability among their cross-context 

neural patterns, mean r = −.12, t(20) = −2.89, p = 0.009 (two-tailed) (Figure 4).

3.2 Searchlight Localized patterns

3.2.1. Comparing neural similarity across word types—In each searchlight volume, 

we computed the average within-item neural similarity for all of the target and PH words. 

We then computed a mean neural similarity for each word type by averaging across all 

target items and all PH items. We created two searchlight maps, one in which the average 

Musz and Thompson-Schill Page 7

Neuropsychologia. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target neural similarity was assigned to the searchlight center, and one searchlight map with 

average PH neural similarity at searchlight centers. Across subjects, the two searchlight 

maps were then submitted to a dependent samples t-test to identify searchlight spheres with 

significant differences between word types. Seven clusters of contiguous searchlight centers 

emerged as significant (see Table 3).

Three clusters exhibited more neural similarity for target words than PH words, with peak 

searchlight centers in the right lingual gyrus and extending into the left lingual gyrus (Figure 

5) and the superior parietal lobule bilaterally (Figure 6). Four clusters showed the reverse 

pattern, with peak centers in the left inferior frontal gyrus (pars Triangularis) and right 

postcentral gyrus (Figure 7), left parahippocampal gyrus, and right superior parietal lobule.

3.2.2. Relating semantic variability to neural variability—In each searchlight 

volume, we performed an item analysis to test the parametric effect of SV on average 

within-item neural similarity in the target words. The beta coefficient for SV was then 

assigned to the searchlight’s center. We compared the resulting searchlight maps across 

subjects in a single-sample t-test versus 0 (two-tailed). Four clusters of contiguous 

searchlight centers emerged as significant. In three left-lateralized clusters, with peak voxels 

in lingual gyrus, fusiform gyrus (Figure 8), inferior frontal gyrus (par Triangularis) (Figure 

9), SV negatively predicted neural similarity. An additional cluster in the right superior 

medial gyrus showed the opposite effect, such that higher SV scores were associated with 

greater neural similarity.

Because regions often associated with semantic processing (e.g., the anterior temporal lobes) 

tend to have poor signal quality, and because no significant clusters emerged in these areas, 

we checked for signal coverage in these areas. For each subject’s wholebrain map, we 

calculated the temporal signal-to-noise (TSNR) ratio at each voxel by dividing the mean 

times series data by the standard deviation of the detrended time series data (Murphy et al., 

2007). We then normalized the data to a common space and computed a group average map 

of TSNR values (see Fig. D1). Throughout the bilateral temporal lobes, these values are well 

above the suggested minimum values for adequate signal detection (e.g., >20; Binder et al., 

2011), indicating that TSNR in the temporal lobes was sufficient for detecting fMRI 

activation.

4. Discussion

The present study aimed to measure and predict neural variation in the conceptual 

processing of concepts across variations in their semantic contexts. We proposed that 

concepts with higher semantic variability should have correspondingly larger variations in 

their cross-context neural representations. We tested this prediction by measuring the 

similarity of neural activity patterns associated with a given concept, and how these patterns 

changed across time and context. In agreement with this prediction, significant categorical 

differences in activation patterns emerged for single- and multi-sense word groups. 

Additionally, while the neural activity associated with conceptual processing varied across 

repeated stimulus presentations, this variation was reliably predicted by a stimulus item’s 
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SV score. These findings were observed in subjects’ individually selected voxels, well as in 

group-level whole-brain searchlight analyses.

4.1 Categorical Effects

In support of our hypothesized categorical effect of word type, we observed more neural 

similarity for target words than PH words. In the group-level searchlight analysis, three 

brain clusters exhibited this pattern of results. The largest cluster, with a peak searchlight 

center in the right lingual gyrus, extended bilaterally into the left lingual gyrus and 

surrounding extrastriate cortex. Two additional searchlight center clusters also exhibited 

more neural similarity for target words: one in left superior parietal lobule, extending into 

the inferior parietal lobule, and one in the right superior parietal lobule. While this finding 

was not the main focus of our study, the result supports our metric of neural similarity. 

Although both word types exhibited large variation in their neural representations, this 

variation was reliably greater for PH words than single-sense target words.

Additionally, the searchlight analysis revealed the reverse pattern in four regions: left 

inferior frontal gyrus (LIFG), right postcentral gyrus, right superior temporal gyrus, and left 

parahippocampal gyrus. In these searchlight clusters, PH words exhibited greater neural 

similarity than target words. The LIFG’s response is particularly intriguing, since previous 

work has found that this area is involved in selecting contextually relevant semantic 

information amidst competition or ambiguity (Thompson-Schill et al., 1997, 1999; Bedny & 

Thompson-Schill, 2008). We will further discuss the potential functional roles of the LIFG 

in a following section.

4.2 Parametric Effects

While neural activity patterns associated conceptual processing varied across stimulus 

presentations, this variation was reliably predicted by the concepts’ SV scores. This 

correlation was observed in each subject’s uniquely distributed voxels that had also 

exhibited a categorical difference of word type. Additionally, this result was observed in a 

group-level whole-brain searchlight analysis, in local patterns centered in four searchlight 

clusters. In three left-lateralized clusters centered in the lingual gyrus, fusiform gyrus, and 

LIFG, higher SV scores inversely predicted neural similarity. These results comport well 

with our theoretical predictions, whereby variable semantic processing of concepts should in 

turn evoke more variable neural patterns. Intriguingly, searchlight centers clustered in the 

right superior medial gyrus showed the reverse result; here, concepts with higher SV scores 

exhibited greater neural similarity. The direction of this finding is the reverse of what we 

had predicted, but significance of the result validates our claim that item-wise semantic 

variability can be used to predict neural similarity.

Additionally, in the whole-brain searchlight analysis, which computed neural similarity in 

locally distributed multi-voxel patterns, two brain regions exhibited both categorical and 

parametric differences. In left lingual gyrus, the parametric and categorical effects were 

observed in overlapping voxels, and both effects were in the predicted direction. In contrast, 

in LIFG, the searchlight clusters that showed reliable effects did not overlap, and while the 

parametric effect here matched our hypothesis, the observed categorical difference was 
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opposite of what we had predicted. Below, we further discuss the findings in these brain 

areas.

4.3 Early Visual Cortex Findings

In visual cortex, the parametric effect of SV overlapped with searchlights that exhibited the 

categorical effect of word type: 31 contiguous searchlight spheres exhibited more neural 

similarity for (1) target words than PH words and (2) target words with low SV than target 

words with high SV. The center of the overlapping searchlights was located in the left 

lingual gyrus (Figure 10).

These early visual regions are implicated in studies of object visualization during imagery 

tasks (Lee et al., 2012) and maintenance of visual representations in working memory 

(Serences et al., 2009; Harrison & Tong, 2009). Typically, semantic effects in early visual 

cortex are reported under conditions of explicit mental imagery (e.g., Hindy et al., 2013; Lee 

et al., 2012). However, additional work has found that early visual areas are recruited even 

when subjects are not instructed to imagine objects. For example, previous studies from our 

lab have reported activity in lingual gyrus during retrieval of object shape knowledge (Hsu 

et al., 2014) and object color knowledge (Hsu et al., 2012). Furthermore, these effects have 

been found to correlate with subjects’ self-reported preference for a visual cognitive style 

(Hsu et al., 2011).

While we did not explicitly instruct our subjects to imagine the items, and did not debrief 

them on their encoding strategies, the use of mental imagery might partly explain our 

findings in these regions. In the context of an explicit episodic encoding paradigm, mental 

imagery could be an effective strategy for memorizing the presented concepts. One 

possibility is that subjects engaged in mental imagery while reading the concept names, and 

that PH and high SV words evoked especially different visualizations—and hence evoked 

more variable neural patterns—upon their separate presentations. This possibility is 

supported by recent work by Hindy and colleagues (2013), in which early visual cortex 

evoked dissimilar patterns when subjects imagined two alternative states of the same object.

Alternatively, although our results indicate that neural variability in these early visual areas 

is predicted by SV, it is possible that other stimulus characteristics, which correlate with SV, 

might have contributed to these effects. For instance, amongst our stimulus items, SV is 

negatively correlated with word length, such that longer words tend to have lower SV 

values, and words high in SV have fewer letters. Previous studies have indicated that regions 

of occipital cortex that spatially overlap with our searchlight results are sensitive to letter 

length, such that there is a positive correlation of BOLD signal with number of letters in 

early visual regions while subjects read aloud words (e.g., Graves et al., 2010) and 

pseudowords (e.g., Valdois et al., 2005) and during lexical decision tasks (Schurz et al., 

2010). In one study, using word stimuli that matched ours in size, the authors found greater 

activation while subjects read longer words (7–9 letters long) versus shorter words (4–6 

letters long) in regions that overlap with our searchlight results, including left inferior 

occipital gyrus and left superior parietal gyrus (Church et al., 2011). Greater activation in 

brain regions associated with visual and attentional processing might reflect longer gaze 

durations for longer, less frequent words (Rayner, 1998).
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These findings indicate that longer words elicit greater magnitude of BOLD response in 

early visual regions; however, it is unknown how word length affects the variability of 

multi-voxel patterns evoked by the same word upon repeated presentations, which is the 

dependent measure in our study. The relationship between univariate BOLD activity and 

multivoxel neural similarity is not straightforward: an increased BOLD response could be 

associated with more stable multi-voxel patterns, or it might instead be associated with 

greater variability in responses. In order to address this possibility, we examined the relation 

between word length and neural similarity in subject-specific, distributed grey matter 

voxels; this was marginally significant, t(20)= 1.98, p=.06.

Because of the high correlation between word length and SV in our stimulus set, we cannot 

compare the unique variance that each explains. However, there are two reasons to believe 

that word length is not the entire story here. Firstly, neural similarity is inversely predicted 

by some of the individual measures of semantic variability (that compose our composite 

measure) that are not correlated with word length (e.g., Variables 5 and 7; see Appendix C). 

Secondly, prior word length effects on activation are mostly confined to early visual cortex 

but our correlations with SV are not: We tested whether it was necessary to include early 

visual regions in order to observe neural variability effects. We transformed anatomical 

masks of the medial occipital lobes (identified as left and right calcarine sulcus in the SPM 

Anatomy Toolbox, Eickhoff et al., 2005; see Fig. D1) into each subject’s native space. We 

re-ran our analyses on subjects’ whole-brain distributed patterns, now only selecting whole-

brain gray matter voxels that were located outside of the calcarine sulci masks. After 

excluding these regions, the pattern of results was unchanged. Neural similarity was reliably 

greater for target words (mean r=.09) than PH words (mean r= .07), t(20)= 2.54, p= .02. 

Additionally, SV inversely predicted item-wise neural similarity (mean r=.11), t(20)= −2.98, 

p= .007. These findings indicate the neural variability effects are also reliably supported in 

regions outside of early visual cortex. Finally, on this topic, we think it is likely that 

different stimulus characteristics will contribute to neural variability observed in different 

brain regions. Even if the effect in early visual cortex is due to a confound with word length, 

that does not mean this explanation holds across the brain.

4.4 Left Inferior Frontal Gyrus Findings

While the searchlight findings in left lingual gyrus supported our hypotheses and overlapped 

anatomically, the effects in the LIFG were more varied. In this region, we observed two 

distinct searchlight clusters which showed divergent effects (Figure 11). In an anterior and 

medial LIFG cluster, including voxels in the anterior cingulate cortex, SV inversely 

predicted neural similarity of target items. In line with our predictions, this parametric effect 

suggests that concept-evoked patterns in anterior regions of LIFG are sensitive to the 

semantic variability of conceptual representations.

In contrast, in posterior LIFG, the results ran counter to our predictions: PH words exhibited 

greater neural similarity than target words. One possibility, requiring further investigation, is 

that the semantically ambiguous PH words evoke a common set of frontally-mediated 

processes, and hence exhibit more consistent patterns in LIFG. However, such a role may be 

limited to more posterior regions of LIFG, which do not exhibit sensitivity to continuous 
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measures of semantic variability of traditionally “single-sense” words. This unexpected 

finding may also be related to other functional dissociations reported about prefrontal cortex 

subregions (e.g., Koechlin & Summerfield, 2007; Badre & D’Esposito, 2007), although 

more work is needed to examine the functional distinctions between posterior and anterior 

LIFG.

4.5 Characterizing Context

In this study, we observed variation in neural patterns by embedding the target items in 

randomized word lists. Alternatively, we could have more directly influenced subjects’ 

interpretations of each item presentation by constructing more item-specific contexts. This 

could have been accomplished, for example, by hand picking particular words to 

immediately precede a given target item upon each presentation. For instance, we could 

have preceded “tulip” by “vase”, “garden”, and “still life”, and we could have preceded 

“bench” by “park”, “courtroom”, and “ballpark”, in order to manipulate the specific 

conceptual instantiations of “tulip” and “bench”; however, in part due to the hemodynamic 

sluggishness of the BOLD signal, we would not be able to discriminate whether greater 

neural variability for “bench” over “tulip” was due to the variability in the patterns evoked 

by these two words or due to the variability lingering in the patterns evoked by “park”, 

“courtroom”, and “ballpark” (compared to “vase”, “garden”, and “still life”).

Instead, by randomly picking the words that preceded each of our target items, we could be 

sure that our measure of neural variability of the patterns evoked by the target was not 

unintentionally influenced by the neural variability of the words that preceded it. That is, 

across subjects (each of whom received a different random list sequence), any differences in 

the variability of the items that preceded the targets would average out, and so our measure 

of neural variability can be described as a pure measure of the target concept. With this 

approach, we observed neural variability that is both robust and reliably predictable by SV.

Amidst the random contexts, object concepts evoked highly variable neural patterns: mean 

within-item similarity correlations were r= .07 for the PH words, and r=.09 for target words. 

These weak correlations indicate that there are several additional sources of neural 

variability, in addition to the similarity that we have attributed to repeated retrievals of the 

same concept. For instance, a large portion of the neural variability might be explained by 

the items that precede a given item in a presentation sequence. Because we deliberately 

embedded the targeted items in randomized word lists, we are unable model the effects of 

the preceding items on the resulting neural variability. Future work might find some utility 

in more explicit manipulations of a concept’s contexts, such that the effects of preceding 

items on a given item can be accounted for. Such an approach would likely yield stronger 

correlations of within-item neural similarities.

In addition to the randomized word lists, context was also defined by the task conditions 

under which the concepts were retrieved. To encourage variable semantic processing, we 

used an episodic encoding paradigm. As we describe in Section 4.3, this task context might 

have encouraged subjects to engage in mental imagery. Such a strategy would activate 

concepts’ visual properties, relative to more abstract or nonvisual semantic features. In order 
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to encourage retrieval of a variety of semantic features, future studies might employ tasks 

that require more explicit retrieval of various kinds of semantic knowledge.

4.6 Predicting Neural Variability

Future studies will benefit from further characterizing the continuous stimulus dimensions 

that best describe the cross-context variability in multi-voxel patterns. The metric we used to 

describe neural variation was composed seven separate measures of words’ contextual 

variations, drawn from four different text databases. In addition to our summed z-score 

version of SV, we also performed a Principal Components Analysis (PCA) in order to 

reduce the information from the seven original variables into a smaller set of composite 

dimensions. The first component highly correlated with the SV measure reported above and 

also reliably predicted the neural data (see Appendix B). However, most of the seven 

original variables loaded highly on this first component. Moreover, most could predict 

neural variability independently, without being collapsed into a composite measure (see 

Appendix C). Future analyses should explore the format and content of text databases from 

which extracted variables can best explain neural variation.

Furthermore, neural variation might be predicted by additional stimulus properties that are 

related to a word’s breadth of contexts. Concepts high in semantic variability tend to be 

more frequent and less imageable (Hoffman et al., 2011), and shorter in length and less 

concrete, relative to concepts that have low semantic variability (see Table 2). The fact that 

we observe our reported effects when SV correlates with additional these variables suggest 

that our effects might be in part driven by stimulus characteristics other than SV. Future 

studies can control for these other stimulus characteristics by minimizing the correlations 

between them, such that the shared variance can be statistically removed, or through the 

selection of more controlled experimental stimuli. However, our reported effects are not 

solely driven by these other variables, because some of the individual measures of semantic 

variability are not correlated with these additional variables yet they still reliably predict 

neural variability (see Appendix C).

One could ask, however, whether any of these other variables are in fact producing the 

observed neural variability in ways in which we had not hypothesized. Perhaps these 

additional stimulus characteristics jointly or uniquely contribute to neural variability in ways 

that support additional predictions about semantic representation. Moreover, it is likely the 

case that different perceptual and psychological factors contribute to the variability in neural 

patterns observed across different brain regions. This is a potentially interesting, yet 

currently untested, research topic. But, absent a measure of neural variability, such 

possibilities could not be further considered. Any of these predictions would be interesting 

to explore, once one adopts the approach of measuring neural variability, rather than 

averaging over it.

Additionally, further work is needed to localize the neural activity that best captures this 

semantic variability. While many studies limit their analyses to voxels with the most stable 

activation profiles (e.g., Mitchell et al., 2008; Anderson et al., 2014), the present work 

examines voxels that exhibit maximally different responses across stimulus presentations. In 

our subjects’ gray matter masks, there is only a 0.001% overlap in the top 500 voxels 
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selected by these two criteria. However, rather than narrowing analyses to either maximally 

or minimally variable voxels, it is possible that conceptual information is most robustly 

represented by some combination of both stable and variable patterns of response.

In sum, our results suggest that a concept’s meaning varies continuously as a function of its 

context, such that concepts do not have a fixed, discrete number of senses, but rather a 

continuous, context-dependent variation in their meaning. Furthermore, neural data that is 

typically discarded as “noise” might instead represent context-modulated variation in an 

object’s representation. These findings illustrate the possibility of applying a more dynamic 

view of concepts to investigations of their associated neural patterns.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We measured the neural variability of an object concept in distinct contexts

• We used corpus statistics to measure each concept’s diversity of semantic 

contexts

• Concepts with low semantic variability had stable neural patterns across 

contexts

• Concepts with high semantic variability had more variable neural patterns

• Homonyms and polysemes showed more neural variability than single-sense 

nouns

Musz and Thompson-Schill Page 17

Neuropsychologia. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Percentage of Semantic Variability (SV) scores across single-sense target words and multi-

sense polysemous/homonymous (PH) words.
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Figure 2. 
Stimulus presentation and experimental task. (A) Words appeared for 2.5s, followed by a 

fixation cross of variable duration. (B) After each word list presentation, subjects performed 

old/new judgments, where half of the words were context items from the list. Responses 

were self-paced and made via button press.
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Figure 3. 
Average neural similarity by word type in subjects’ selected 500 voxels chosen from 

distributed grey matter voxels. Error bars reflect within-subject standard error.

Musz and Thompson-Schill Page 20

Neuropsychologia. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Relationship between target words’ semantic variability (SV) scores and within-item neural 

similarity, averaged across subjects. Correlations were calculated in each individual 

subject’s 500 selected voxels. Depicted results are averaged across subjects.
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Figure 5. 
Searchlight centers that exhibited more neural similarity for single-sense target words than 

PH words. Peak voxels are centered in the right lingual gyrus, extending into the left lingual 

gyrus. Sagittal view depicts this result in the right lingual gyrus and in the right superior 

parietal gyrus.
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Figure 6. 
Searchlight centers that exhibited more average neural similarity for single-sense words than 

PH words. Clusters are centered in the superior parietal lobule bilaterally.
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Figure 7. 
Searchlight centers that exhibited more average neural similarity for PH words than single-

sense target words. Clusters are centered in the left inferior frontal gyrus (pars Triangularus) 

and right postcentral gyrus.
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Figure 8. 
In searchlights centered in the left lingual gyrus and left fusiform gyrus, semantic variability 

scores were inversely correlated with average neural similarity across single-sense target 

words.
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Figure 9. 
In peak searchlight centers in the left inferior frontal gyrus and surrounding left anterior 

cingulate, semantic variability scores were inversely correlated with average neural 

similarity across single-sense target words. Effects in left lingual gyrus are depicted as well.
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Figure 10. 
Whole-brain searchlight results in the left lingual gyrus. In 31 contiguous searchlight 

centers, (1) target words exhibited more neural similarity than PH words and (2) SV scores 

inversely correlated with neural similarity across single-sense target words.
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Figure 11. 
Whole-brain searchlight results in the left inferior frontal gyrus. The categorical effects from 

Comparison 1 are depicted in blue, in which PH words exhibited more neural similarity than 

target words. The orange voxels show the parametric effects from Comparison 2, in which 

item-wise semantic variability scores inversely predicted neural similarity. The center of 

mass of the parametric effects is in the left anterior cingulate.
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Table 1

Variables included in the development of Semantic Variability (SV) Scores

Authors Corpus Method Variables

1 Brysbaert & New (2009) SUBTLEX US movie counts number of movies in which the word occurs in the 
subtitles

2,3 Hoffman et al. (2012) British National Corpus; 
TASA corpus

document counts number of paragraphs in which word occurs

4,5 Hoffman et al. (2012) British National Corpus; 
TASA corpus

LSA In high-dimensional space, the distances between all of 
a word's paragraphs

6 Pereira et al. (2011) Wikipedia articles Topic Modeling Number of topics in which a word occurs

7 Pereira et al. (2011) Wikipedia articles Topic Modeling Probability that word occurs in its most dominant topic, 
where a word's topic inclusion probabilities must sum 
to 1
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Table 2

Summary of linguistic features of the word stimuli.

Stimulus characteristics Target words PH words Correlation with SV

Semantic variability (SV) −0.09 (.70) 0.51 (.46)* --

Concreteness 604 (30) 585 (18)* −0.25

Familiarity 519 (25) 540 (34) 0.37*

Imageability 592 (47) 578 (49) −0.24

Word length 6.08 (1.93) 4.53 (1.19)* −0.46*

Number of phonemes 5.21 (.83) 3.67 (.49)* −0.44*

Number of syllables 2.08 (1.79) 1.33 (1.05)* −0.47*

Word frequency 25.36 (27.16) 74.67 (67.35)* 0.59*

Table 2. Values are means with standard deviations. Concreteness, Familiarity, and Imageability ratings were rated on a 100–700 scale and were 
obtained from the MRC psycholinguistic database (Coltheart, 1981) and were available for 80%; 85%; and 83% of the items, respectively. Norms 
for word frequency were obtained from the WebCelex database (Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; http://
celex.mpi.nl) and reflect word frequencies per million instances.

Asterisks in PH words column denote significant differences between Target and PH word groups; in Correlation column, asterisks denote 
significant Pearson correlations between SV and stimulus characteristic, p<.05.
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