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Abstract

A central concern in the study of learning and decision-making is the identification of neural 

signals associated with the values of choice alternatives. An important factor in understanding the 

neural correlates of value is the representation of the object itself, separate from the act of 

choosing. Is it the case that the representation of an object within visual areas will change if it is 

associated with a particular value? We used fMRI adaptation to measure the neural similarity of a 

set of novel objects before and after subjects learned to associate monetary values with the objects. 

We used a range of both positive and negative values to allow us to distinguish effects of 

behavioral salience (i.e., large versus small values) from effects of valence (i.e., positive versus 

negative values). During the scanning session, subjects made a perceptual judgment unrelated to 

value. Crucially, the similarity of the visual features of any pair of objects did not predict the 

similarity of their value, so we could distinguish adaptation effects due to each dimension of 

similarity. Within early visual areas we found that value similarity modulated the neural response 

to the objects following training. These results show that an abstract dimension, in this case 

monetary value, modulates neural response to an object in visual areas of the brain even when 

attention is diverted.

INTRODUCTION

The neural representation of a visual stimulus must code many dimensions, and so the 

similarity space of a set of objects is multi-dimensional, even in a single brain region. For 

example, the similarity of the neural responses in V1 reflects both stimulus orientation and 

spatial frequency (Mazer et al., 2002), and the similarity of neural codes in V4 reflects both 

stimulus color and shape (Roe et al., 2012). The voxel-level BOLD response can reflect 

multiple stimulus dimensions that are coded, at the neural level, either independently or 

conjointly (Drucker et al., 2009).

For these basic visual dimensions and beyond, it is clear that neural responses early in the 

visual pathway are shaped by learning, both of categorical boundaries along visual stimulus 

dimensions (Folstein et al., 2012) and of abstract information about objects (e.g., biological 
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class structure of living things; Connolly et al., 2012). The goal of the current study is to 

explore whether (and where) neural responses to novel visual stimuli reflect the abstract but 

behaviorally relevant variable of value. We show that early in the visual processing 

pathway, nonvisual information is coded in the neural response, even when (i) the abstract 

dimension is orthogonal to all visual dimensions; (ii) the abstract dimension is newly 

learned; and (iii) responses are measured during a task that makes no reference to the 

abstract (value) dimension.

Many recent experiments have sought to identify neural signals associated with the values of 

choice alternatives (see Bartra et al., 2013 for review). It has been suggested that the process 

of choosing between items is a two-staged process, in which values are first assigned to each 

option and then compared to yield a choice (Kable and Glimcher, 2009; Levy et al., 2011). 

This two-staged process of choice suggests that the process of tracking values of items is 

independent of choosing between them (Lebreton et al., 2009). Several studies have shown 

brain responses that engage automatically to different kinds of valuations, including, 

monetary value (Tallon-Baudry et al., 2011), facial attractiveness (e.g. Chatterjee et al., 

2009), houses and paintings (e.g. Lebreton et al., 2009), consumer goods (e.g. Levy et al. 

2011), and to faces that have learned associations to monetary values (Rothkirch et al., 

2012). These results address if values are stored separately from a choice task, but their use 

of familiar objects makes it difficult to disentangle the value of a stimulus from its cultural 

significance and familiarity (Erk et al., 2002; Rangel et al., 2008). In Rothkirch et al., 

(2012), a baseline measure of brain response to the face stimuli before value learning is not 

provided to compare the fMRI results after value learning, thus leaving their findings 

ambiguous.

Finally, prior work has suggested that coupling reward with visual stimuli may modulate the 

visual representation of the reward predicting stimuli (Seitz et al., 2009; Arsenault et al., 

2013), and improve performance during perceptual tasks (Pessiglione et al., 2006; 

Engelmann and Pessoa, 2007; Serences, 2008; Nomoto et al., 2010). Stanisor et al., 2013 

showed that V1 neurons that exhibited a strong response to value, also exhibited a strong 

attention effect. We add to this literature by showing that these behaviorally relevant 

changes to visual representations of reward related stimuli are present even when attention is 

diverted away from value, and engaged instead in a perceptual task that is not reward 

related. Using fMRI, we measured neural responses to novel objects with learned values 

while subjects performed an unrelated perceptual task. We calculated the degree of fMRI 

adaptation (Grill-Spector and Malach, 2001) as a measure of neural similarity between 

objects along the value dimension, to determine if the response of neurons in visual cortex is 

modulated by the newly learned value of these objects.

MATERIALS & METHODS

Subjects

Thirteen right-handed subjects (mean age = 24.3 years, 9 females) with normal or contact 

corrected vision participated in the study for monetary compensation. Informed consent was 

obtained from each subject as approved by the University of Pennsylvania Institutional 

Review Board.
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Design and Procedure

Subjects learned the value for novel stimuli over the course of a four-session training 

protocol. Before and after training, subjects were scanned while performing a visual 

decision task unrelated to value. The total span of the experiment for each subject was one 

week.

The novel stimuli were nine closed contours, or “moon” shapes, that varied across three 

dimensions: color, shape, and monetary value. The nine objects were created by pairing each 

of three shapes with each of three colors (Fig. 1a), and they ranged in value from negative 

$10 to positive $10, in increments of $2.50. For any pair of objects, we could assign a 

distance along the color dimension (0–2 “steps”), the shape dimension (also 0–2 “steps”), 

and the value dimension (1–8 steps; 0 would occur only for two identical stimuli). So, for 

example, the stimuli in the upper left and lower left of Figure 1a would differ in 0 shape 

steps, 2 color steps, and 2 value steps. The values were assigned to the objects such that 

these three distances were uncorrelated across the set of stimuli, allowing us to measure the 

effect of value similarity independently of the effects of color or shape similarity.

During each trial of the training sessions the subject saw two objects next to each other on a 

computer screen. Subjects were asked to choose one object in an effort to maximize the total 

amount of money in their bank. On each trial during the choice task, the value of each object 

was drawn from a Gaussian distribution with a standard deviation of $0.25 that was centered 

on the mean value of the object. The variation was intended to be a way of presenting the 

stimuli and their associated values during the learning phase while preventing subjects from 

simply associating a number with an object (instead of thinking about these objects as 

having worth). After an object was chosen, it was highlighted and the amounts for both 

objects were displayed on the bottom of the screen. Next, a screen appeared showing the 

subject’s total bank up to that point. Each subject completed a total of twenty blocks, of 72 

trials each, of this task over a four-day period. Each object was paired with every other 

object an equal number of times, and identical objects were never presented together during 

a trial. Each subject received payment after the final scan. This payment included ten 

percent of the final bank value of a randomly chosen block, excluding blocks on the first 

day, from the training sessions. The average of this bonus payment across subjects was $29.

The primary dependent variable was a measure of fMRI activity obtained while subjects 

viewed these objects while performing a difficult cover task unrelated to value (Fig. 1b). On 

each trial, we presented one object on a gray background. A vertical line bisected the object, 

leaving 65% of the object either on the left or right side of the line. This line was randomly 

tilted between 10 and 40 degrees from the vertical. The subject indicated by button press on 

each trial whether more of the shape was to the left or to the right of the line. We chose this 

cover task because it required the subject to attend to the appearance of the stimulus, shown 

on each trial, but did not involve an explicit comparison between sequential stimuli, nor 

their respective monetary values (Drucker et al., 2009). The stimuli were back-projected 

onto a screen viewed by the subject through a mirror mounted on the head coil, and 

subtended 5° of visual angle. Each stimulus was presented for 1300 milliseconds (ms), with 

a 300 ms inter-stimulus interval (ISI) consisting of the mean gray background.
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We employed a pseudorandom and counterbalanced, continuous carry-over design (Aguirre, 

2007) that controlled the influence of stimulus order upon neural response. This allowed us 

to measure both fMRI adaptation and the direct effect for each item in a continuous 

sequence. The order of the stimuli was determined using a de Bruijn sequence (Aguirre et 

al., 2011). Given the nine stimuli and a null-trial, a k=10, n=3 de Bruijn sequence was 

sought, using a trial duration of 1600 ms, and three separate neural models (i.e., value, color 

and shape) (Fig. 1c). The sequence was optimized to detect adaptation responses predicted 

by the value dimension (and specifically, by the dimension of what we will refer to, below, 

as the signed value, in contrast to the unsigned or absolute value), but detection powers for 

effects of the unsigned value dimension and each of the visual dimensions were also taken 

into consideration while optimizing the sequence. Additional blank trials were added to the 

sequence to increase the power of the main effect (all stimuli vs. null-trials) and to increase 

the total length of the sequence to an integer multiple of TRs. This sequence was then 

broken into 5 runs of 128 TRs each. The last 8 TRs from each run were added to the 

beginning of the subsequent run to ensure that our sequence counterbalancing was not 

affected by breaking it into smaller runs.

In addition to the cover task, we collected fMRI data during two additional tasks. At the end 

of the first scanning session, subjects completed a one-back task with faces, objects, and 

scrambled objects. We included this functional localizer so that we could define regions of 

interest corresponding to early visual cortex (EVC), using the contrast of scrambled objects 

greater than objects (Fig. 2), and to lateral occipital cortex (LOC), using the contrast of 

objects greater than scrambled objects. The EVC region corresponds to the foveal 

confluence of visual areas V1–V3, which we confirmed by projecting a cortical surface 

template of these early visual areas (Benson et al., 2014) onto the volumetric data. During 

the second scanning session, after completing the cover task, subjects completed two short 

runs of a choice task in which they saw each object on the screen for 1300 ms and were 

asked to choose whether they would prefer to have the value of that object or one dollar. 

This choice task differed from the training task because we needed to present one stimulus at 

a time in the scanner so that we could later conduct item specific analyses. Each run of the 

choice task was 68 TRs.

Scanning

Scans were collected on a 3-T Siemens Trio using a 32-channel surface array coil. 

Echoplanar BOLD fMRI data were collected at a TR of 3 seconds, with 3x3x3 mm isotropic 

voxels covering the entire brain. A high-resolution anatomical image (3D MPRAGE) was 

also collected with 1x1x1 mm voxels for each subject. The stimuli were presented using a 

Sanyo SXGA 4200 lumens projector with a Buhl long-throw lens for rear projection onto 

Mylar screens, which subjects viewed through a mirror mounted on the head coil.

Data analysis

Image preprocessing and analyses were conducted using FSL (Smith et al., 2004). The first 

8 TRs from each scan were removed prior to analysis. The data were smoothed with a full-

width half-maximum Gaussian kernel of 5 mm. The functional images were aligned to the 

middle image of the time series with MCFLIRT (Jenkinson et al., 2002) and then 
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transformed to standard MNI space. Within-subject statistical models were created using a 

general linear model (Fig. 1d). Experimental conditions were convolved with a canonical 

hemodynamic response function and spikes caused by head motion were included as 

covariates in the model. Beta estimates from the model were then averaged across each ROI.

When using the continuous carry-over approach to measuring neural adaptation, the 

relationship of each stimulus to the prior stimulus forms the basis of the covariates (Aguirre 

2007). In our design, we used both positive and negative values to distinguish changes in 

responses due to the actual value of the objects from those due to the behavioral salience of 

each object (i.e., large versus small values, as reflected by the absolute value, or what we 

will call the unsigned value). With this in mind we modeled the distance between the value 

of each stimulus and the prior stimulus in two ways: One covariate models the “signed 

effect”, with nine different transition sizes, such that the stimulus associated with wins of 

$10 was maximally different from the one associated with losses of $10; the second 

covariate models the “unsigned effect”, with five transition sizes such that those two stimuli 

(positive and negative $10) would be maximally similar. The inclusion of the unsigned 

covariate was added to the analysis to demonstrate that our effect of interest, namely the 

signed adaptation effect in early visual cortex, was about value per se and not simply 

behavioral salience.

Our model included covariates for signed adaptation, unsigned adaptation, blank trials, and 

trials following a blank trial. When using the continuous carry-over approach to measure 

adaptation, a trial in the adaptation covariates represents the difference along a given 

dimension between the present stimulus and the one that precedes it. Therefore we included 

trials that followed blank screens as a covariate of no interest in the model because a blank 

screen trial does not have a value to serve as a comparison for the stimulus it precedes. For 

each subject, the five main task runs were first modeled individually and then combined 

using a higher-level fixed effects model. Data were then combined across subjects using a 

random effects model.

We report analyses in five regions of interest (ROIs). We included two functionally defined 

ROIs in visual cortex, EVC and LOC, as described above. While we were primarily 

interested in the effects of value on object representations in EVC (and potentially LOC), we 

included value-related ROIs to provide a point of reference for our findings in EVC. For 

example, if we find that the signed value covariate does explain variance in EVC after 

training, how does that compare with more traditionally value-related ROIs? Is there 

dissociation between EVC and these other regions, or are the effects similar across these 

different cortical regions? Because there is not currently an agreed upon way to functionally 

localize value-related brain areas, we defined value-related ROIs based on the anatomical 

coordinates reported in a meta-analysis of fMRI experiments that examined subjective value 

(Bartra et al., 2013); we defined ROIs in ventromedial prefrontal cortex (VMPFC), 

dorsomedial prefrontal cortex (DMPFC), and striatum.
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RESULTS

Behavioral results

During each day of the training, and at the end of the second scan, subjects performed a 

choice task that required them to use their knowledge of the values of the objects to optimize 

their winnings. Subjects chose the object with the greater associated reward more frequently 

from the first training day (mean ± SEM correct = 69.7%±2.7) to the final training day 

(mean ± SEM correct = 90.1%±3.4). The scores at the end of training were above chance 

(50%) for all subjects (Fig. 3) and significantly different than the scores on day one (t(12) = 

9.7, p<0.001). Subjects were also able to identify the values associated with the stimuli 

during the alternate choice task (i.e. object versus $1) at the end of the second scan (mean ± 

SEM correct = 89.7%±2.3).

fMRI results

We measured the degree to which the learned value of an object modulates the neural 

response to the presentation of subsequent objects of greater or lesser value. This neural 

adaptation effect could be manifest as proportional to the signed value of an object, meaning 

that an object associated with a loss of $10 would be treated as maximally different from an 

object associated with a gain of $10. Alternatively, neural populations could encode the 

absolute value of an object, and thus reflect behavioral salience. In this case, an object 

associated with either a gain or a loss of $10 would be treated as maximally different from 

an object with a small relative value (e.g., $2.50). We tested for both of these possible 

effects in each of five regions of interest. Additionally, we examined these effects before 

and after learning of object value.

The primary question of this experiment is whether nonvisual value information is coded in 

the neural response early in the visual processing pathway, even when it is orthogonal to all 

visual dimensions, and the responses are measured during a task that makes no reference to 

the abstract (value) dimension. As expected, prior to training, no significant adaptation 

effect related to either signed or unsigned value was found in any region of interest (Fig. 4). 

In contrast, significant neural adaptation related to shape similarity was found in multiple 

regions. This indicates that object value and shape were unrelated prior to training.

Following training, we observed an adaption effect for the signed model in EVC 

(t(12)=2.87, p<.02) (Fig. 5a). This effect was greater than that observed during the pre-

training scan (marginally significant interaction, t(12)=2.11, p=.057). Signed value was not 

associated with adaptation in any of the other ROIs, nor did we find significant effects with 

the unsigned model in any of our ROIs.

Prior studies of value representation have examined the overall magnitude of neural 

response associated with item value (Tusche et al., 2010; Levy et al., 2011; and Bartra et al., 

2013 for review). We tested for similar item effects in our data by determining if the 

magnitude of the BOLD fMRI signal was proportional to object value, independently of the 

similarity of value to preceding or following stimuli. We did not observe a significant item 

effect for signed value in any of our ROIs during either scan session. Given that prior studies 

have shown monotonic increase of activity in the PFC and striatum as a function of stimulus 
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value during value related decision tasks, we also measured these effects during the value 

task at the end of the second scan session. We analyzed the data from these scans in the 

same way as the data from the main task. Whereas we did not find adaptation effects of 

value during this task, we did find direct effects of relative value in DMPFC (t=2.77, p < 

0.02), but not in striatum or VMPFC (both p-values > 0.1). While the inability to measure a 

significant response to value in striatum and VMPFC may seem odd, it could be because 

subjects did not expect a reward based on their performance in this task (i.e., subjects were 

aware that we were simply testing their knowledge of the values).

Finally, we examined the adaptation effect of shape similarity. Although this effect has no 

direct bearing on the goals of this study, we report it here as it establishes the sensitivity of 

our ROIs to object similarity, beyond value. We observed an adaptation effect of shape 

similarity in LOC (t(12)=2.96, p<.02), EVC (t(12)=2.31, p<.05), DMPFC (t(12)=3.05, p=.

01), VMPFC (t(12)=3.02, p=.01), and a marginal effect of shape similarity in striatum 

(t(12)=2.06, p=.06) (Fig. 5b). There were no reliable differences in the magnitude of the 

shape adaptation effect pre- versus post-training in any of these ROIs. We also tested for 

neural adaptation related to the sequential effect of color change. This effect was not 

significant during either scan in the EVC (both p-values > 0.3) or the LOC (both p-values > 

0.2).

In sum, EVC showed adaptation to shape before and after training, and adaptation to value 

after training. In contrast, LOC, DMPFC, VMPFC showed adaption to shape (at both time 

points) but no adaptation to value.

DISCUSSION

We scanned subjects while they viewed a set of nine novel objects that varied across two 

visual dimensions (color and shape) and one orthogonal, non-visual dimension (monetary 

value). We measured fMRI adaptation to characterize the neural similarity of these novel 

objects before and after a training period during which subjects associated monetary values 

with the objects. We found a recovery from adaptation along the monetary value dimension 

in EVC present only after training. We interpret this as evidence that object representations 

in the visual cortex are affected by value learning even when value is orthogonal to visual 

features, and even when subjects are engaged in a perceptual task unrelated to object value.

This value effect may be related to other effects of learning that have been reported in the 

visual system. (Folstein et al., 2012) mention that in previous studies in which shape spaces 

were created by morphing complex objects, the dimensions that define those spaces are 

unclear and may not have existed prior to category learning (Goldstone and Steyvers, 2001; 

Gureckis and Goldstone, 2008). The authors further posit that because the objects that differ 

along dimensions relevant to the learned categories are more perceptually discriminable 

after learning, category learning may create representations of those relevant object 

dimensions. In the present study, we believe that a similar process is at work. Specifically, 

learning the abstract property of value has modified the representations within certain 

assemblies of color and shape responsive neurons in EVC to better discriminate along the 

value dimension.
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Our results go beyond the evidence for attention effects of value in the visual system 

(Serences, 2008), or what others have called Visual Perceptual Learning (VPL) (Sasaki et 

al., 2009).These studies have shown that reward history associated with a specific feature of 

a set of stimuli will modulate responses to that feature in EVC and out into higher-level 

visual areas. Our results add to this literature by showing that even when reward history is 

orthogonal to the low level features of objects, neural activity in EVC tracks the value of 

each stimulus. Previous studies have suggested that coupling reward with visual stimuli may 

improve performance during perceptual tasks (Pessiglione et al., 2006; Engelmann & 

Pessoa, 2007; Serences, 2008; Nomoto et al., 2010).

While prior studies of the representation of value have examined the bulk neural response 

evoked by the stimulus, we measured here neural adaptation induced by the similarity of 

object values. We used neural adaptation to characterize the similarity space represented 

within separate neural populations. We chose this method because it allowed for us to 

manipulate and measure each stimulus dimension separately, and to observe neural 

sensitivity to each stimulus dimension across our ROIs. We did not observe a modulation of 

overall level of neural activity driven by object value in any of our ROIs. Interestingly, we 

also found that brain regions commonly found to be associated with value (dorsal and 

ventral mPFC) encoded the shapes of objects, but not their values, indicating that when 

value is irrelevant to the present task, these regions will instead track task-relevant 

dimensions of the presented stimuli. This finding is not surprising since it has been reported 

that regions of frontal cortex, including dorsal and medial PFC, play a crucial role in the 

active biasing of task-relevant processes against strong competing alternatives (Chadick et 

al., 2014; Chadick and Gazzaley, 2011; Miller and Cohen, 2001). Furthermore, evidence 

from several species suggests that the striatum contributes directly to decision-making, 

action selection and initiation (Green et al., 2012; Balleine et al., 2007). This finding 

suggests that the process of tracking values occurs early in perception, and that more frontal 

brain regions, involved in executive functions, are not recruited in value representation 

unless a choice between items is necessary.

Taken together, our findings that value learning modified the representations within certain 

neurons in EVC to better discriminate along the value dimension, and that neurons in brain 

regions commonly found to be associated with value are not tuned to the value dimension 

when it is irrelevant to the task, suggest that the sensory system plays a large role in the 

valuation process in the brain. This top-down facilitation in visual areas serves to assist in 

learning and in disambiguating input data, which can lead to faster reaction times and better 

accuracy in important situations (Bar, 2003; Hsieh et al., 2010; Nomoto et al., 2010). If 

neurons in executive brain regions are not tuned to dimensions irrelevant to task demands, 

then where does value information reside when not in use? Our data support the idea that 

neural tuning in EVC, as measured by fMRI adaptation, contains information that could 

facilitate faster processing during value-based decision tasks. However, the lack of a main 

effect of value in EVC suggests that value is represented in visual cortex differently from 

putative “value regions”. In this study, we did find an item-level effect of value in the 

striatum after training, indicating a different representation of value is associated with this 

brain region.
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An interesting topic for further examination is if altered neural representations in early 

visual cortex give rise to altered performance on simple perceptual tasks. Speeded 

discrimination judgments might reflect the value of the objects, suggesting that learning to 

associate a value with an object influences perceptual similarity, in addition to neural 

similarity.

In conclusion, we found that neural populations in early visual cortex encode value 

information. The response in EVC was measured during a demanding task that diverted 

attention away from the object value. The stimuli used were novel objects with no prior 

reward history, cultural significance, or familiarity, and the value dimension was orthogonal 

to the low level visual features of the stimuli. These findings suggest that the learned value 

of objects penetrates to the earliest level of cortical sensory representation.
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Figure 1. 
(a) Subjects learned the values of these nine two-dimensional closed contours, or “moon” 

shapes, that varied across three orthogonal Dimensions: color, shape, and monetary value. 

The values indicated here are the expected values of a normally distributed set of possible 

values for each object. (b) During fMRI scanning, subjects judged whether the majority of 

the area of the shape was to the left or the right of the bisecting line (right, in this example). 

(c) Stimuli were presented in a counterbalanced and pseudorandom sequence. Covariates 

were made for each stimulus that captured the stepwise difference between each stimulus 

and the one preceding it. (d) Simulated BOLD response for a counterbalanced stimulus 

presentation (red), and the model fit (blue) for the value covariate.
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Figure 2. 
The “Early Visual Cortex” (EVC) region of interest for an example subject, defined by 

having a greater response to scrambled as compared to intact objects in a functional localizer 

scan. The volumetric position of the visual areas V1–V3 as defined by reference to a cortical 

surface topology atlas (Benson et al., 2014) is shown.
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Figure 3. 
Value learning across subjects. Accuracy during each training session and the in-scanner 

choice task. Each session is the mean of all subjects’ accuracy during each session. Error 

bars represent +/− 1 standard error. Fit line is a third-order polynomial.
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Figure 4. 
Brain regions showing adaptation effects during the pre-scan. The adaptation effect for 

shape was significant in EVC, LOC, DMPFC, and VMPFC. Error bars represent +/− 1 

standard error.
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Figure 5. 
(a) Visual brain regions showing adaptation effects during the post-scan. The adaptation 

effect for shape was significant in LOC (t(12)=2.96, p=.01) and EVC (t(12)=2.31, p<.05) 

during pre- and post-scans. The adaptation effect for the signed model was significant in 

EVC (t(12)=2.87, p=.01) during the post-scan. Error bars represent +/− 1 standard error. (b) 

Frontal brain regions showing adaptation effects during the post-scan. The adaptation effect 

for shape was significant in DMPFC (t(12)=3.05, p=.01), VMPFC (t(12)=3.02, p=.01), and 

marginally significant in striatum (t(12)=2.06, p=.06) during pre- and post-scans. Error bars 

represent +/− 1 standard error.
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