Constructing complex social categories from distinct group membership information
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MOTIVATION

HOW ARE COMPLEX SOCIAL CATEGORIES CONSTRUCTED FROM
INFORMATION ABOUT THEIR CONSTITUENT GROUPS?

MODEL COMPARISON

Model performance In social concepts category

FAMILIARITY WITH COMBINATIONS

Familiarity modulates model performance

Previous research has examined how inferences about compound objects (e.g., fuzzy chair) are produced
from their constituent concepts’=, but little is known about the combinatorial processes that subserve our
ability to evaluate complex social categories (e.g., Irish musician).

Composite prediction error derived from averaging errors of both models;
higher composite error for more familiar social combinations,
but only when nationality and occupation are weighted equally

Both models perform best when occupation is weighted more than nationality,
In both the warmth and competence dimensions
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Baseline non-combinatorial models

Combinatorial models

Word2vec model trained on a large set of Google News articles
significantly predict social combination ratings.
Predictions for animal combination ratings were not significant.

If participants use only one concept in the combination rating,
head concepts (occupation/animal type) should be
prioritized over modifier concepts (nationality/animal habitat):

Additive model:

Weighted average of simple concept ratings
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