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Abstract

Several formal models of awareness have been introduced in both
computer science and economics literature as a solution to the prob-
lem of logical omniscience . In this chapter, I provide a philosophical
discussion of awareness logic, showing that its underlying intuition
appears already in the seminal work of Hintikka. Furthermore, I
show that the same intuition is pivotal in Newell’s account of agency,
and that it can be accommodated in Levi’s distinction between epis-
temic commitment and performance. In the second part of the chap-
ter, I propose and investigate a first-order extension of Fagin and
Halpern’s Logic of General Awareness, tackling the problem of repre-
senting “awareness of unawareness”. The language is interpreted over
neighborhood structures, following the work of Arl6-Costa and Pacuit
on First-Order Classical Modal Logic. Adapting existing techniques,
I furthermore prove that there exist useful decidable fragments of
quantified logic of awareness.

Introduction

Since its first formulations (cf. [Hin62]), epistemic logic has been confronted
with the problem of logical omniscience. Although Kripkean semantics ap-
peared to be the natural interpretation of logics meant to represent knowl-
edge or belief, it implies that agents are reasoners that know (or at least are
committed to knowing) every valid formula. Furthermore, agents’ knowl-
edge is closed under logical consequence, so that if an agent knows ¢ and
1 is a logical consequence of ¢, then the agent knows ¢ as well. If we fo-
cus on representing pure knowledge attributions, rather than attributions of
epistemic commitment, such a notion of knowledge (or belief) is too strong
to be an adequate representation of human epistemic reasoning. It is pos-
sible to attack the problem by building into the semantics a distinction
between implicit and explicit knowledge (or belief). The intuition behind
such a distinction is that an agent is not always aware of all propositions.
In particular, if ¢ is a valid formula, but the agent is not aware of it, the
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agent is said to know ¢ implicitly, while she fails to know it explicitly.
The agent explicitly knows ¢, on the other hand, when she both implicitly
knows ¢ and she is aware of ¢. In their fundamental article [FH88|, Fagin
and Halpern formally introduced the concept of awareness in the context
of epistemic logic, providing semantical grounds for the distinction between
implicit and explicit belief. The technical concept of “awareness” they in-
troduce is amenable to different discursive interpretations that can possibly
be captured by specific axioms.

In the last decade, recognizing the importance of modeling asymmetric
information and unforeseen consequences, economists have turned their at-
tention to epistemic formalizations supplemented with (un)awareness (cf.
[MR94], [MR99]), and noticed that partitional structures as introduced by
Aumann cannot represent awareness [DLR99]. The model in [MR99] defines
awareness explicitly in terms of knowledge. An agent is said to be aware of ¢
iff she knows ¢ or she both does not know that ¢ and knows that she does not
know . [Hal01] shows that such a model is a particular case of the logic of
awareness introduced in [FH88]. [HMS06b] present a set-theoretical model
that generalizes traditional information structures ¢ la Aumann. Its ax-
iomatization in a 3-valued epistemic logic is provided in [HRO5]. A further,
purely set-theoretical model of awareness is given by [Li06b]. Awareness,
or lack thereof, plays an important role in game-theoretic modeling. Re-
cently, a significant amount of literature has appeared in which the issue of
awareness in games is taken into account. [Fei05] incorporates unawareness
into games and shows that unawareness can lead to cooperative outcomes in
the finitely repeated prisoner’s dilemma. A preliminary investigation on the
role of awareness in the context of game-theoretical definitions of convention
can be found in [Sil05]. [HRO6a] define extensive-form games with possibly
unaware players in which the usual assumption of common knowledge of the
structure of the game may fail. [HMS06a] take into account Bayesian games
with unawareness. In [Li06a] the concept of subgame perfect equilibrium is
extended to games with unawareness.

This paper makes two main contribution to the literature on aware-
ness. On the one hand, I provide philosophical underpinnings for the idea
of awareness structures. On the other, I propose a new system of first-order
epistemic logic with awareness that offers certain advantages over existing
systems. As for the first contribution, I build on epistemological analyses of
the problem of logical omniscience. Although the authors I consider need
not align themselves with advocates of the awareness structures solution,
I argue in the following that their analyses are not only compatible with
formal models of awareness, but also compelling grounds for choosing them
as the appropriate solution to the logical omniscience problem. I consider,
for example, Levi’s idea of epistemic commitment. In a nutshell, ideally
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situated agents possess, in their incorrigible core of knowledge, all logical
truths, and the agents’ bodies of knowledge are closed under implication.
Although agents are committed by (ideal) standards of rationality to hold-
ing such propositions as items of knowledge, actual agents are aware only of
a subset of them (cf. [Lev80], pp. 9-13.) Furthermore, I consider Newell’s
theory of agency (as advanced in [New82]) and show that it contains a fore-
shadowing of the notion that awareness allows us to discriminate between
an agent’s explicit and implicit knowledge. Although Newell’s analysis is
conducted at a fairly abstract level, it is arguable that he is endorsing a rep-
resentation model in which knowledge explicitly held by a system is given by
its (implicit) knowledge plus some kind of access function (cf. in particular
[New82], p. 114). It is not hard to see that this intuition corresponds to the
intuition behind awareness structures. Finally, I argue that the intuition
behind Hintikka’s own treatment of logical omniscience in [Hin62] can also
be considered as related to awareness structures in a precise sense that will
be elucidated in the following.

As for the second contribution, I identify two main motivations for the
introduction of a new formal system of awareness logic. First and foremost,
it addresses the problem of limited expressivity of existing (propositional)
logics of awareness. Indeed, [HRO6b] notice that both standard epistemic
logic augmented with awareness and the awareness models set forth in the
economics literature cannot express the fact that an agent may (explic-
itly) know that she is unaware of some proposition without there being an
explicit proposition that she is unaware of. This limitation of the existing
models needs to be overcome, since examples of “knowledge of unawareness”
are often observed in actual situations. Consider Levi’s idea of commit-
ment mentioned above: we are committed to knowing (in fact, we explicitly
know) that there exists a prime number greater than the largest known
prime number, although we know that we do not know what number that
is. Or, consider David Lewis’s theory of convention® as a regularity in the
solution of a recurrent coordination game: when trying to learn what the
conventional behavior in a certain environment might be, an agent might
know (or, perhaps more interestingly, deem highly probable) that there is a
conventional regularity, without having yet figured out what such a regular-
ity actually is. Or, in the context of a two-person game with unawareness,
a player might explicitly know that the other player has some strategy at
her disposal, yet not know what such a strategy might be. Halpern and
Régo propose in [HRO6b] a sound and complete second-order propositional
epistemic logic for reasoning about knowledge of unawareness. However, the
validity problem for their logic turns out to be no better than recursively

L Cf. [Lew69] and the reconstruction offered in [Sil05], in which awareness structures
find a concrete application.
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enumerable, even in the case of S5, which was proven to be decidable in
[Fin70]. Halpern and Régo conjecture that there are three causes for unde-
cidability, each one sufficient: (i) the presence of the awareness operators,
(ii) the presence of more than one modality, (iii) the absence of Euclidean
relations. Undecidability of second-order, multi-modal S5 should not come
as a surprise. For example, [AT02] shows that adding a second modality
to second-order S5 makes it equivalent to full second-order predicate logic.
My aim is to present a decidable logic for reasoning about knowledge of un-
awareness. The strategy I adopt consists in extending predicate modal logic
with awareness operators and showing that it allows to represent knowledge
of unawareness. Using the techniques introduced in [WZ01] and [SWZ02],
I can then isolate useful decidable fragments of it.

There is a further reason for the introduction of predicate epistemic
logic with awareness. The extension from propositional to predicate logic
takes place in the context of classical systems interpreted over neighborhood
structures (cf. [Che80]), rather than in the traditional framework of normal
systems interpreted over Kripke structures. In so doing, I aim at bringing
together the recent literature (cf. [AC02], [ACPO06]) on first-order classical
systems for epistemic logic and the literature on awareness structures. The
rationale for this choice lies in the fact that I intend to formulate a system
in which Kyburg’s ‘risky knowledge’ or Jeffrey’s ‘probable knowledge’ is
expressible as high probability (or even as probability one belief, as Aumann
does in the game-theoretical context). High probability operators give rise
to Kyburg’s lottery paradox, which, in the context of first-order epistemic
logic (cf. [ACPO06]) can be seen as an instance of the Barcan formulas. Thus,
first-order Kripke structures with constant domains, in which the Barcan
formula is validated, cease to be adequate models. The use of neighborhood
structures allows us to work with constant domains without committing to
the validity of the Barcan formulas (cf. [AC02]), hence presents itself as
a natural candidate for modeling high probability operators. The second-
order logic of Halpern and Régo also requires the Barcan formulas to be
validated, and hence does not lend itself to the modeling of knowledge as
high-probability operators.

The rest of the paper is organized as follows: In the first section, I re-
view and discuss the philosophical accounts of logical omniscience offered by
Hintikka, Newell and Levi, stress their structural similarities, and show how
these accounts compare with their intuition underlying Fagin and Halpern’s
logic of awareness. In the second section, I build on Arlé-Costa and Pacuit’s
version of first-order classical systems of epistemic logic, augmenting them
with awareness structures. I then show that such a quantified logic of aware-
ness is expressive enough to represent knowledge of unawareness and that
Wolter and Zakharyashev’s proof of the decidability of various fragments of
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first-order multi-modal logic (cf. [WZ01]) can be slightly modified to carry
over to quantified logic of awareness.

1 Logical Omniscience

In this section, I consider accounts of the problem of logical omniscience
provided in Hintikka’s presentation of epistemic logic, Newell’s theory of
agency and Levi’s epistemology. I show through my analysis that all such
approaches to logical omniscience share a common structure, and that Fagin
and Halpern’s logic of awareness has reference to such a structure.

1.1 Hintikka: Information and Justification

Hintikka’s essay Knowledge and Belief is commonly regarded as the seminal
contribution to the development of epistemic logic. Logical omniscience is
an essential philosophical element in Hintikka’s conceptual analysis, as well
as in the formal construction stemming from it. Consider, for instance, the
following quote:

It is true, in some sense, that if I utter (10) ‘I don’t know whether
p’ then I am not altogether consistent unless it really is possible,
for all that I know, that p fails to be the case. But this notion of
consistency is a rather unusual one, for it makes it inconsistent for
me to say (10) whenever p is a logical consequence of what I know.
Now if this consequence-relation is a distant one, I may fail to know,
in a perfectly good sense, that p is the case, for I may fail to see that

p follows from what I know?.

Hintikka notices ([Hin62], p. 23) that we need to distinguish two senses of
“knowing”. A first, weak, kind of knowledge (or belief) is simply concerned
with the truth of a proposition p. In natural language, this is the sense
of “knowing p” related to “being conscious® that p”, or “being informed
that p” or “being under the impression that p”, etc. The second, stronger,
sense of knowing is not only concerned with the truth of p, but also with the
justification of the agent’s knowledge. According to different epistemological
accounts, “knowing” in this latter sense may mean that the agent has “all
the evidence needed to assert p”, or has “the right to be sure that p”, or has
“adequate evidence for p”, etc. Whichever of these epistemological stances
one chooses, the strong sense of knowing incorporates both the element
of bare “availability” of the truth of p (information) and the element of
the epistemological justification for p. Such a distinction is essential in

2 [Hin62], or p. 25 of the 2005 edition of the book, from which the page references are
drawn hereafter.

3 Referring to the weak sense of “knowing”, Hintikka actually mentions natural language
expressions as “the agent is aware of p”. In order to avoid confusion with the different,
technical use of “awareness”, in this context I avoid the term “awareness” altogether.
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Hintikka’s analysis of the notion of consistency relative to knowledge and
belief, which in turn is crucial for the design of his formal system.

Syntactically, Hintikka’s system does not essentially differ from the epis-
temic systems that have come to prevail in the literature, the only notable
difference being the explicit mention of the “dual” of the knowledge op-
erator, P;, to be read as “it is compatible with all i knows that ... 7.
The pursuit of consistency criteria for the notions of knowledge and be-
lief moves from the analysis of sets of formulas in which both knowledge
and “possibility” operators are present. The main idea is that if the set
{Kip1,...,Kipn, P;q} is consistent, then the set {K;p1,..., K;pn,q} is also
consistent. The distinction between the two senses of “knowing” above is
crucial to the justification of this idea. If “knowing p” is taken in the weak
sense of “being conscious of p”, then a weaker notion of consistency is ap-
propriate, according to which if {K;p1,..., K;pn, P;q} is consistent, then
{p1,...,Pn,q} is consistent as well. Such a weaker notion, however, is no
longer sufficient once we interpret K;p as “i is justified in knowing p”, ac-
cording to the stronger sense of knowing. In this case, g has to be compatible
not just with the truth of all statements pq,...,p,, but also with the fact
that ¢ is in the position to justify (strongly know) each of the p1,...,pn,
that is to say, ¢ has to be consistent with each one of the K;p1,..., K;p,.

Other criteria of consistency are those relative to the knowledge operator
(if X\ is a consistent set and contains K;p, then A U p is consistent), to the
boolean connectives (for instance, if A is consistent and contains p A ¢, then
AU {p,q} is consistent), and to the duality conditions (if A is consistent
and - K;p € A, then A U P,—p is consistent; while if -P;p € A, then A U
K;—p is consistent). The duality conditions trigger the problem of logical
omniscience. Consider again the quote at the onset of this subsection: if
K;q holds, and p is a logical consequence of ¢, then —K;p is inconsistent.
Thus, at this juncture, a modeling decision has to be made. If we want to
admit those cases in which an agent fails to know a logical consequence of
what she knows, either (i) we may tweak the notion of knowledge in a way
that makes such a predicament consistent, or (ii) we may dispense with the
notion of consistency, weakening it in a way that makes such a predicament
admissible. The two routes, of course, lead to different formal models.
Hintikka chooses the latter strategy, while epistemic systems with awareness
d la Fagin and Halpern choose the former. However, the two routes are but
two faces of the same coin. Hintikka’s concept of defensibility, intended as
“Immunity from certain standards of criticism” ([Hin62], p. 27), replacing
the notion of consistency, allows us to consider knowledge (of the kind that
allows for logical omniscience to fail) as the intersection of both the weak
and the strong sense of “knowing” above, in a way that, at least structurally,
is not far from considering explicit knowledge as the intersection of implicit
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knowledge and awareness in [FHS88|.

To make more precise the notion of defensibility as “immunity from cer-
tain standards of criticism”, and to see more clearly the similarity with
awareness logic, let me briefly summarize Hintikka’s formal system. Hin-
tikka’s semantics is kindred in spirit to possible worlds structures. There
are, however, proceeding from the notion of defensibility, important differ-
ences with standard possible worlds semantics. First, define a model set,
with respect to booleans connectives, as a set u of formulas such that

- lpep—-péu
N](pAg)Epn—peEpandqgep
V](pVvgep—peporqgepn
[~ ]-wpep—pep

A ] =(pAg)Ep—pEpOrgE
[~V 1=(pVva) = -pepand ~gcp

In order to add epistemic operators to model sets, Hintikka postulates
the existence of a set of model sets (called the model system Q) and of an
alternativeness relation for each agent, and adds the clauses

[P ] If P;p € p, then there exists at least a u* such that p* is an alternative
to u for i, and p € p*

[KK | K;p € p — if pu* is an alternative to u for 4, and K;p € p*
K |Kppep—pep

Thus, we have consistent sets of formulas constituting a model system,
an accessibility relation between model sets in the system for each agent,
and a semantic account of knowledge that does not differ importantly from
the standard Kripkean one (to see that, notice that KK and K taken to-
gether imply that if K;p € p then p € p* for all p* alternative to p in Q).
The fundamental difference with Kripke models, thus, lies in the elements
of the domain: model sets (i.e. consistent sets of formulas) in Hintikka’s
semantics, possible worlds (i.e. mazimally consistent sets of formulas) in
Kripke’s. Thus, Hintikka’s model sets are partial descriptions of possible
worlds?.

4 Hintikka has made this claim unexceptionable in later writings: “The only viable
interpretation of logicians’ “possible worlds” is the one that I initially assumed was
intended by everyone. That is to understand “possible worlds” as scenarios, that is,
applications of our logic, language or some other theory to some part of the universe
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The notion of defensibility is now definable as follows: A set of formulas
is defensible iff it can be embedded in a model set of a model system. As
the notion of consistency is replaced with that of defensibility, the notion of
validity is replaced with that of self-sustainance. It follows easily from the
definitions that p — ¢ is self-sustaining iff the set p, ~¢ is not defensible®.
This is key for overcoming logical omniscience: although an agent knows ¢
if she knows p and p — ¢ is self-sustaining, it need not be the case that she
knows ¢ if she knows p and p — ¢ is valid, since, in this case, p — ¢ need not
be self-sustaining®. This may occur if ¢ does not appear in the model sets
of §, so that p, ~q is embeddable in them, making —K;q defensible (since,
by the duality rule, P,—~¢ € u and, by rule [K], there exists a p* such that
—q € p*). Thus, —K;q is defensible as long as ¢ can be kept out of some
model set p, provided that ¢ does not incur in criticism according to certain
epistemic standards. That is to say, for an agent to be required to know g, it
is not enough, say, that ¢ logically follows from the agent’s knowledge, but
it also needs to be the case that ¢ belongs to a model set p. Similarly”, in
[FHS8S], for an agent to know ¢ explicitly, it is not sufficient that ¢ logically
follows from the agent’s knowledge, but it also needs to be the case that ¢
belongs to the agent’s awareness set. In this sense, a formula not appearing
in a model set and a formula not belonging to an awareness set may be
regarded as cognate notions.

1.2 Newell: Knowledge and Access

The interest of the AT community in the logic of knowledge and its represen-
tation does not need to be stressed here. Intelligent agents must be endowed
with the capability of reasoning about the current state of the world, about
what other agents believe the current state of the world is, etc. Planning,
language processing, distributed architectures are only some of the many
fields of computer science in which reasoning about knowledge plays a cen-

that can be actually or at least conceptually isolated sufficiently from the rest”, cf.
[Hin03], p. 22. But cf. also [Hin62], p. 33-34: “For our present purposes, the gist of
their [model sets] formal properties may be expressed in an intuitive form by saying
that they constitute [...] a very good formal counterpart to the informal idea of a
(partial) description of a possible state of affairs”.

If the set {p, g} is not defensible, then it cannot be embedded in any model set p,
meaning that either —p or ¢ (or both) must belong to u, making p — ¢ self-sustaining,
and vice versa.

Notice however ([Hin62], p. 46) that other aspects of logical omniscience are present:
the valid formula (K;p A K;q) — K;(p A q) is also self-sustaining.

A formal proof is beyond the scope of this paper, and the interested reader can find
it in [Sil07]. To see the gist of the argument, consider that model sets are partial
description of possible worlds. While one can (as it is the case, e.g., in [Lev84])
model the distinction between explicit and implicit knowledge by resorting to partial
descriptions of possible worlds, one can, equivalently, do so by “sieving” the description
of a possible world through awareness sets.

ot
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tral role. It is not surprising, then, that computer scientists paid attention
to the epistemic interpretation of modal logics and, hence, that they had
to confront the problem of logical omniscience. It is difficult (and probably
not particularly relevant) to adjudicate issues of precedence, but the idea of
using some conceptualization of awareness to cope with the problem of logi-
cal omniscience appeared in the early 80s, possibly on a cue by Alan Newell.
In 1980, Newell delivered the first presidential address of the American As-
sociation for Artificial Intelligence. The title was The knowledge level, and
the presidential address was reproduced in [New82]. The article focuses on
the distinction between knowledge and its representation, both understood
as functional components of an intelligent system.

An intelligent system, in the functional view of agency endorsed by
Newell, is embedded in an action-oriented environment. The system’s activ-
ity consists in the process from a perceptual component (that inputs task
statements and information), through a representation module (that rep-
resents tasks and information as data structures), to a goal structure (the
solution to the given task statement). In this picture, knowledge is perceived
from the external world, and stored as it is represented in data structures.
Newell claims that there is a distinction between knowledge and its repre-
sentation, much like there is a one between the symbolic level of a computer
system and the level of the actual physical processes supporting the sym-
bolic manipulations. A level in a computer system consists of a medium
(which is to be processed), components together with laws of composition,
a system, and, determining the behavior of the system, laws of behavior.
For example, at the symbolic level the system is the computer, its compo-
nents are symbols and their syntax, the medium consists of memories, while
the laws of behavior are given by the interpretation of logical operations.
Below the symbolic level, there is the physical level of circuits and devices.
Among the properties of levels, we notice that each level is reducible to the
next lower level (e.g., logical operations in terms of switches), but also that
a level need not have a description at higher levels. Newell takes it that
knowledge constitutes a computer system level located immediately above
the symbolic level.

At the knowledge level, the system is the agent; the components are
goals, actions and bodies (of knowledge); the medium is knowledge and the
behavioral rule is rationality. Notice that the symbolic level constitutes the
level of representation. Hence, since every level is reducible to the next lower
level, knowledge can be represented through symbolic systems. But can we
provide a description of the knowledge level without resorting to the level of
representation? It turns out that we can, although we can only if we do not
decouple knowledge and action. In particular, says Newell, “it is unclear in
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what sense [systems lacking rationality] can be said to have knowledge®”,

where “rationality” stands for “principles of action”. Indeed an agent, at
the knowledge level, is but a set of actions, bodies of knowledge and a set
of goals, rather independently of whether the agent has any physical im-
plementation. What, then, is knowledge? Knowledge, according to Newell,
is whatever can be ascribed to an agent, such that the observed behavior
of the agent can be explained (that is, computed) according to the laws of
behavior encoded in the principle of rationality. The principle of rationality
appears to be unqualified: “If an agent has knowledge that one of its ac-
tions will lead to one of his goals, then the agent will select that action®”.
Thus, the definition of knowledge is a procedural one: an observer notices
the action undertaken by the agent; given that the observer is familiar with
the agent’s goals and its rationality, the observer can therefore infer what
knowledge the agent must possess. Knowledge is not defined structurally,
for example as physical objects, symbols standing for them and their spe-
cific properties and relations. Knowledge is rather defined functionally as
what mediates the behavior of the agent and the principle of rationality
governing the agent’s actions. Can we not sever the bond between knowl-
edge and action by providing, for example, a characterization of knowledge
in terms of a physical structure corresponding to it? As Newell explains,
“the answer in a nutshell is that knowledge of the world cannot be captured
in a finite structure. [...] Knowledge as a structure must contain at least as
much variety as the set of all truths (i.e. propositions) that the agent can
respond to'?”. Hence, knowledge cannot be captured in a finite physical
structure, and can only be considered in its functional relation with action.

Thus (a version of) the problem of logical omniscience presents itself
when it comes to describing the epistemic aspect of an intelligent system.
Ideally (at the knowledge level), the body of knowledge an agent is equipped
with is unbounded, hence knowledge cannot be represented in a physical
system. However, recall from above how a level of interpretation of the
intelligent system 4s reducible to the next lower level. Knowledge should
therefore be reducible to the level of symbols. This implies that the sym-
bolic level necessarily encompasses only a portion of the unbounded body of
knowledge that the agent possesses. It should begin to be apparent, at this
point, that what Newell calls “knowledge” is akin to what in awareness epis-
temic logic is called “implicit knowledge,” whereas what Newell refers to as
“representation” corresponds to what in awareness logic is called “explicit
knowledge”. Newell’s analysis endorses the view that explicit knowledge
corresponds to implicit knowledge and awareness as witnessed by the “slo-

8 Cf. [New82], p. 100.

9 Cf. [NewS82], p. 102. Although Newell, in the following, refines it, his principle of
rationality does not seem to be explicitly concerned with utility.

10 Cf. [New82], p. 107.
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gan equation'!”

Representation = Knowledge + Access.

The interesting question is then: in which way does an agent extract
representation from knowledge? Or, in other terms: Given the definition
of representation above, what can its theory be? Building a theory of rep-
resentation involves building a theory of access (that is, of awareness), to
explain how agents manage to extract limited, explicit knowledge (working
knowledge, representation) from their unbounded implicit knowledge. The
suggestive idea is that agents do so “intelligently”, i.e. by judging what is
relevant to the task at hand. Such a judgment, in turn, depends on the
principle of rationality. Hence, knowledge and action cannot be decoupled
and knowledge cannot be entirely represented at the symbolic level, since
it involves both structures and processes'?. Given the “slogan equation”
above, it seems that one could identify such processes with explicit and
effective rules governing the role of awareness. Logics, as they are “one
class of representations [...] uniquely fitted to the analysis of knowledge and
representation'®”, seem to be suitable for such an endeavor. In particular,
epistemic logics enriched with awareness operators are natural candidates
to axiomatize theories of explicit knowledge representation.

1.3 Levi: Commitment and Performance

Levi illustrates (in [Lev80]) the concept of epistemic commitment through
the following example: an agent is considering what integer stands in the
billionth decimal place in the decimal expansion of . She is considering
ten hypotheses of the form “the integer in the billionth decimal place in the
decimal expansion of 7 is j”7, where j designates one of the first ten integers.
Exactly one of those hypotheses is consistent with the logical and mathe-
matical truths that, according to Levi, are part of the incorrigible core of
the agent’s body of knowledge. However, it is reasonable to think that, if
the agent has not performed (or has no way to perform) the needed calcu-
lations'®, “there is an important sense in which [the agent] does not know
which of these hypotheses is entailed by [logical and mathematical truths]

1L Cf. [New82], p. 114.

12 The idea is taken up again in [CN94], where a broader, partly taxonomical analysis
of (artificial) agency is carried out. Moving along a discrete series of models of agents
increasingly limited in their processing capabilities, we find, at the “fully idealized”
end of the spectrum, the omnipotent, logically omniscient agent. Next to it, we find
the rational agent, which, as described above, uses the principle of rationality to sieve
its knowledge and obtain a working approximation of it.

Cf. [New82], p. 100.

It should be clear to the reader that Levi’s argument carries over also to those cases
in which the lack of (explicit) knowledge follows from reasons other than lack of com-
putational resources.

1
14
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and, hence, does not know what the integer in the billionth place in the
decimal expansion of 7 is'®”. Levi stresses that the agent is committed to
believing the right hypothesis, but she may at the same time be unaware of
what the right hypothesis is. While the body of knowledge of an ideally sit-
uated and rational agent contains all logical truths and their consequences,
the body of knowledge of real persons or institutions does not. Epistemic
(or, as Levi prefers, doxastic) commitments are necessary constituents of
knowledge, which, although ideally sufficient to achieve knowledge, must in
practice be supplemented with a further element. As Levi puts it: “I do
assume, however, that to be aware of one’s commitment is to know what
they are”16.

The normative aspect of the principle of rationality regulating epistemic
commitments and, hence, their relative performances, is further explored
in [Lev97]. Levi maintains that the principle of rationality in inquiry and
deliberation is twofold. On the one hand, it imposes necessary, but weak,
coherence conditions on the agent’s state of full belief, credal probability,
and preferences. On the other, it provides minimal conditions for the jus-
tification of changes in the agent’s state of full belief, credal probability,
and preferences. As weak as the coherence constraints might be, they are
demanding well beyond the capability of any actual agent. For instance,
full beliefs should be closed under logical consequence; credal probabilities
should respect the laws of probability; and preferences should be transitive
and satisfy independence conditions. Hence, such principles of rationality
are not to be thought of as descriptive (or predictive) or, for that matter,
normative (since it is not sensible to impose conditions that cannot possi-
bly be fulfilled). They are, says Levi, prescriptive, in the sense that they do
not require compliance tout court, but rather demand that we enhance our
ability to follow them.

Agents fail to comply with the principle of rationality requiring the de-
ductive closure of their belief set, and they do so for multiple reasons. An
agent might fail to entertain a belief logically implied by other beliefs of hers
because she is lacking in attention. Or, being ignorant of the relevant de-
ductive rules, she may draw an incorrect conclusion or even refuse to draw a
conclusion altogether. The former case, according to Levi, can be accommo-
dated by understanding belief as a disposition to assent upon interrogation.
In the latter, the agent needs to improve her logical abilities—by “seeking
therapy”. In both cases, however, what is observed is a discrepancy between
the agent’s commitment to hold an epistemic disposition, and her epistemic
performance, which fails to display the disposition she is committed to hav-
ing. The prescriptive character of the principle of rationality gives the agent

15 Cf. [Lev80], pp. 9-10.
16 Cf. [Lev80], p. 12.
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an (epistemic) obligation to fulfill the commitment to full belief. The agent
is thus committed'” to holding such a belief. The notion of full belief ap-
pears both as an epistemic disposition (commitment) of the agent, as well
as the actual performance of her disposition.

The discussion of Levi’s idea of epistemic commitment provides us with
three related, yet distinct concepts involved in the description of the epis-
temic state of an agent. On the one hand, we have epistemic commitments
(which we could think of as implicit beliefs). On the other, we have commit-
ments that the agent fulfills, that is to say, in the terminology of [Lev80],
commitments of which the agent is aware (we could think of those as explicit
beliefs). The latter, though, calls for a third element, the agent’s awareness
of the commitment she is going to fulfill.

1.4 Logical Omniscience and Awareness Logic

The three examinations of the problem of logical omniscience described here
do not deal directly with the logic of awareness, and actually all of them
pre-date even the earliest systems of awareness logic (for instance, [Lev84]).
In fact, Hintikka’s position on the issue has shifted over the years. Since
the introduction of Rantala’s “urn models” (cf. [Ran75]), the author of
Knowledge and Belief has endorsed the “impossible worlds” solution to the
problem of logical omniscience (cf. [Hin75]). In the case of Isaac Levi’s
approach, it is at best doubtful that Fagin and Halpern understand the no-
tions of implicit and explicit knowledge in the same way Levi understands
those of epistemic commitment and epistemic performance. However, the
three accounts analyzed above do share a common structure, whose form
is captured by Fagin and Halpern’s logic of awareness. In the case of Allen
Newell’s analysis of agency at the knowledge level, there is a marked con-
ceptual proximity between Newell’s notions of knowledge, representation
and access, on the one hand, and Fagin and Halpern’s notions of implicit
knowledge, explicit knowledge and awareness, on the other. But consider
also Hintikka’s distinction between a weak and a strong sense of knowing,
the former roughly related to the meaning of “having information that”,
the latter to the one of “being justified in having information that”. If
we interpret “awareness” as meaning “having a justification”, then strong
knowledge is yielded by weak knowledge and justification, just as explicit

17 She is committed in the sense (see [Lev97]) in which one is committed to keep a religious
vow to sanctity: occasional sinning is tolerated, and the vow is to be considered upheld
as long as the pious agent strives to fulfill the commitments the vow implies. However,
going back to the principle of rationality, one should notice that “epistemic therapy”
comes at a cost (of time, resources, effort etc.) and that, moreover, not all our doxastic
commitments (actually only a few of them) are epistemically useful (think of the belief
that p, which implies the belief that p V p, that p V p V p, and so on). Hence the idea
of “seeking therapy” or of using “prosthetic devices” to comply with the principle of
rationality leaves space for further qualification.
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knowledge is yielded by implicit knowledge and awareness. Also Levi’s dis-
tinction between epistemic commitment and epistemic performance can be
operationalized by stipulating that epistemic performance stems from the
simultaneous presence of both the agent’s epistemic commitment and the
agent’s recognition of her own commitment, just as explicit knowledge is
yielded by the simultaneous presence of implicit knowledge and awareness.

Fagin and Halpern’s logic of awareness was meant to be a versatile for-
mal tool in the first place'®, in such a way that its purely formal account
of “awareness” could be substantiated with a particular (concrete) inter-
pretation of “awareness”. Such an interpretation could be epistemological
justification, as in the case of Hintikka’s account; or it could be physical
access, as in case of Newell’s artificial agent; or it could be psychological
awareness, as in the case of Levi’s flesh-and-blood agents. All three interpre-
tations fit the general structure of Fagin and Halpern’s awareness logic. It is,
however, much less clear whether it is possible to capture axiomatically the
different properties that “awareness” enjoys in the philosophical accounts
delineated in the previous subsections. From a normative standpoint, one
would need to answer the question: given that the agents capabilities are
bounded, which are the items of knowledge that (bounded) rationality re-
quires that the agent explicitly hold? This line of inquiry is pursued by
Harman (cf. [Har86]) and by Cherniak (cf. [Che86]). Levi notices that the
“therapy” to be undertaken in order to better our epistemic performance
comes at a cost, triggering a difficult prescriptive question as to how and
how much an agent should invest to try and better approximate her epis-
temic commitment. Levi does not seem to think that such a question can
be answered in full generality'®. It seems to me that there is an important
dynamic component to the question (if one’s goal is such-and-such, then she
should perform epistemically up to such-and-such portion of her epistemic
commitment) that is well captured in Newell’s intuition that knowledge
representation and action cannot be decoupled in a physical system. The
formidable task of providing an aziomatic answer to the normative ques-
tion about the relation between implicit and explicit knowledge lies beyond

18 Cf, [FHS8S], p. 41: “Different notions of knowledge and belief will be appropriate for
different applications. We believe that one of the contributions of this paper is provid-
ing tools for constructing reasonable semantic models of notions of knowledge with a
variety of properties.” Also, “once we have a concrete interpretation [of awareness] in
mind, we may well add some restrictions to the awareness functions to capture certain
properties of ‘awareness’,” ibidem, p. 54.

“A lazy inquirer may regard the effort to fulfill his commitments as too costly where
a more energetic inquirer suffering from the same disabilities does not. Is the lazy
inquirer failing to do what he ought to do to fulfill his commitments, in contrast to the
more energetic inquirer? I have no firm answer to this question [...] We can recognize
the question as a prescriptive one without pretending that we are always in the position
to answer it in advance.”, [Lev9l], p. 168, n. 14.

19
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the scope of this contribution, and in the formal system advanced in the
next section, I will consider only those properties of awareness that are now
standard in the literature.

2 First-Order Logic of Awareness

In this section, I extend Fagin and Halpern’s logic of general awareness (cf.
[FHS88]) to a first-order logic of awareness, show that awareness of unaware-
ness can be expressed in the system, and prove that there exist decidable
fragments of the system. For a general introduction to propositional epis-
temic logic, cf. [MvdH95] and [FHMV95]. For detailed treatments of the
first-order epistemic systems, cf. [Che80] and the work of Arlé-Costa and
Pacuit ([AC02] and [ACP06]).

2.1 first-order classical models

The language L, of multi-agent first-order epistemic logic consists of the
connectives A and —, the quantifier V¥, parentheses and n modal operators
Ky,...,K,, one for each agent considered in the system. Furthermore, we
need a countable collection of individual variables VV and a countable set
of n-place predicate symbols for each n > 1. The expression ¢(x) denotes
that x occurs free in p, while ¢[x/y] stands for the formula ¢ in which the
free variable x is replaced with the free variable y. An atomic formula has
the form P(x1,...,x,), where ¢ is a predicate symbol of arity n. If S is a
classical propositional modal logic, QS is given by the following axioms:

S All axioms from S

V Vap(r) — ¢ly/]

Gen From ¢ — v infer ¢ — V1), where x is not free in .

In particular, if S contains the only modal axiom E (from ¢ < 1), infer
K;p « K;1b) we have the weakest classical system E; if S validates also
axiom M (K;(p AY) — (K;p A K;9)), we have system (E)M, etc. (see
[Che80] for an exhaustive treatment of classical systems of modal logic).

As to the semantics, a constant domain neighborhood frame is a tuple
F = (W,N,...,Npn, D), where W is a set of possible worlds, D is a non-
empty set called the domain, and each N is a neighborhood function from
W to 22" If we define the intension (or truth set) of a formula ¢ to be
the set of all worlds in which ¢ is true, then we can say, intuitively, that
an agent at a possible world knows all formulas whose intension belongs to
the neighborhood of that world. A model based of a frame F is a tuple
(W, N1,..., Ny, D, I), where I is a classical first-order interpretation func-
tion. A substitution is a function o : V — D. If a substitution ¢’ agrees
with o on every variable except x, it is called an z-variant of o, and such
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a fact is denoted by the expression o ~, o’. The satisfiability relation is
defined at each state relative to a substitution o:

(M,w) =6 P(x1,...,2y) iff (o(x1),...,0(xs)) € I(P,w) for each n-
ary predicate symbol P.

yw) Eo o iff (M, w) o ¢

)
yw) Ee o A iff (M, w) Es ¢ and (M, w) 4 ¥
,w) ':a K’L‘P iff {U : (M,’U) ’:a 90} GM(U))

)

(M
(M
(M
(M, w) Eq, Vzp(z) iff for each o' ~, o, (M, w) Eqs ¢(x)

As usual, we say that a formula ¢ is valid in M if (M,w) = ¢ for all
worlds w in the model, while we say that ¢ is satisfiable in M if (M, w) = ¢
for some worlds w in the model. Notice that QE axiomatizes first-order min-
imal?? models (in which no restrictions are placed on the neighborhoods);
QEM axiomatizes first-order monotonic models (in which neighborhoods
are closed under supersets); etc.

2.2 Adding awareness

Following [FH88], awareness is introduced on the syntactic level by adding
to the language further modal operators A; and X; (with ¢ = 1,...,n),
standing for awareness and explicit knowledge, respectively?'. The operator
X; can be defined in terms of K; and A;, according to the intuition that
explicit knowledge stems from the simultaneous presence of both implicit
knowledge and awareness, by the axiom

Semantically, we define n functions A; from W to the set of all formu-
las. Their values specify, for each agent and each possible world, the set
of formulas of which the agent is aware at that particular world. Hence
the straightforward semantic clauses for the awareness and explicit belief
operators:

(M,w) Es Ajp iff € A;(w)
(M, w) Es Xip iff (M,w) | A;p and (M, w) E K;p

20 For the terminology, see [Che80].

21 The use of neighborhood structures eliminates, of course, many aspects of the agents’
logical omniscience. However, axiom E is valid in all neighborhood structures. Thus,
the distinction between implicit and explicit knowledge remains relevant, since agents
may fail to recognize the logical equivalence of formulas ¢ and v and, say, explicitly
know the former without explicitly knowing the latter.
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In propositional awareness systems of the kind introduced in [FH88],
different interpretations of awareness are captured by imposing restrictions
on the construction of the awareness sets. For example, one can require
that if the agent is aware of ¢ A1), then she is aware of 1) and ¢ as well. Or,
one could require that the agent’s awareness be closed under subformulas,
etc. One of those interpretations (which, mutatis mutandis, is favored in the
economics literature when taken together with the assumption that agents
know what they are aware of) is that awareness is generated by primitive
propositions. In this case, there is a set of primitive propositions ® of which
agent 7 is aware at w, and the awareness set of i at w contains exactly
those formulas that mention only atoms belonging to ®. Similarly, we can
interpret awareness in a first-order system as being generated by atomic
formulas, in the sense that i is aware of ¢ at w iff i is aware of all atomic
subformulas in ¢. Thus, for each i and w, there is a set (call it atomic
awareness set and denote it ®;(w)) such that ¢ € A;(w) iff ¢ mentions
only atoms appearing in ®;(w). Such an interpretation of awareness can
be captured axiomatically. The axioms relative to the boolean and modal
connectives are the usual ones (cf., e.g., [FH88]):

Before discussing the axioms relative to the quantifiers, it is worth stress-
ing that the first-order setup allows the modeler to specify some details
about the construction of atomic awareness sets. In the propositional case,
the generating set of primitive propositions is a list of atoms, necessarily
unstructured. In the predicate case, we can have the atomic awareness set
built in the semantic structure. Notice that there can be two sources of
unawareness. An agent could be unaware of certain individuals in the do-
main or she could be unaware of certain predicates. Consider the following
examples: in a game of chess, (i) a player could move her knight to reach
a position x in which the opponent’s king is checkmated; however, she can-
not “see” the knight move and is, as a result, unaware that = is a mating
position; or (ii) a player could move her knight, resulting in a position
in which the opponent’s queen is pinned; however, she is a beginner and
is not familiar with the notion of “pinning”; she is thus unaware that x is
a pinning position. Hence, in order for an agent to be aware of an atomic
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formula she must be aware of the individuals occurring in the interpretation
of the formula as well as of the predicate occurring in it. It is possible to
capture these intuitions formally: for each ¢ and w, define a “subjective
domain” D;(w) C D and a “subjective interpretation” I; that agrees with
I except that for some w and P of arity n, I(P,w) # I;(P,w) = @. We can
then define the atomic awareness set for ¢ at w by stipulating that

. (i) o(xr) € Di(w), Vo, k=1,....n
Py, an) € i(w) 1ff{ () (o). o(ma) € T(P.w)

Notice that this is consistent with the notion that one should interpret a
formula like A;p(z), where x is free in ¢, as saying that, under a valuation
o(x), the agent is aware of ¢(x). Similarly, the truth of K;o(x) depends
on the individual assigned to x by the valuation o. Finally, we need to
introduce a family of special n-ary predicates?? A!; whose intuitive meaning
is “i is aware of objects o(z1),...,0(z,)”. Semantically, we impose that
(M,w) £, Ali(z) iff o(x) € D;(x).

2.3 Expressivity

Let us now turn our attention to the issue of representing knowledge of
unawareness. Consider the de re/de dicto distinction, and the following two
formulas:

The former says that agent ¢ (explicitly) knows that there exists an
individual enjoying property P, without her being aware of which particular
individual enjoys P. The formula, intuitively, should be satisfiable, since
P(z) ¢ A;(w) need not entail JxP(z) € A;(w). On the other hand, the
latter says that ¢ is aware, of a specific x, that = has property P. If this
is the case, it is unreasonable to admit that ¢ can be unaware of P(x).
By adopting appropriate restrictions on the construction of the awareness
sets, we can design a system in which formulas like (i) are satisfiable, while
formulas like (ii) are not.

In particular, we need to weaken the condition that awareness is gen-
erated by atomic formulas, since we want to allow for the case in which
P(z) ¢ A;j(w), yet FzP(x) € A;(w). I argue that such an interpretation of
awareness is sensible. In fact, we may interpret P(z) not belonging to 4’s
awareness set as meaning that i is not aware of a specific instance of = that

22 Such predicates are akin to the existence predicate in free logic. However, the awareness
system considered here is not based on free logic: the special awareness predicates will
only be used to limit the range of possible substitutions for universal quantifiers within
the scope of awareness operators. The behavior of quantifiers is otherwise standard.
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enjoys property P, while we may interpret 3z P(z) belonging to i’s aware-
ness set as meaning that 7 is aware that at least one specific instance of x
(which one she ignores) enjoys property P. The versatility of the awareness
approach is again helpful, since the blend of syntax and semantics charac-
terizing the concept of awareness makes such an interpretation possible.

Let us see in more detail what restrictions on the construction of the
awareness sets correspond to the interpretation above. In particular, we
want

(i) X;3x—A;P(z) to be satisfiable, while
(ii) JzX;—A;P(x) should not be satisfiable.

Semantically, thus, if P(z) ¢ A;(w), then (against (ii)), ~A;P(z) &
A;(w). Yet the possibility that (i) Jz—A;P(z) € A;(w) is left open. The
following condition, along with the usual conditions for awareness being
generated by atomic formulas in the case of quantifier-free formulas, does
the job?? (weak 3-closure):

(*) If plz/y] € Ai(w), then Jzp(x) € A;(w).

It is easy to see that, if P(x) & A;(w), then (ii) is not satisfiable,
since there should exist an interpretation ¢’ ~, o such that (M,w) =,
A;—A;P(x). But that is impossible, since, for quantifier-free propositions,
awareness is generated by atomic formulas. On the other hand, (i) entails
that 3z—A;P(x) € A;(w), which remains satisfiable, since the weak condi-
tion (*) does not require that —A4; P(x) € A;(w).

Let me illustrate the reason why we are considering a weak closure of
awareness under existential quantification by means of an example: in the
current position of a chess game, White knows (or: deems highly prob-
able) that sacrificing the bishop triggers a mating combination, although
she cannot see what the combination itself precisely is. Take the variable
x to range over a domain of possible continuations of the game, and the
predicate P to be interpreted as “is a mating combination”. Thus, at w,
White is aware that there exists an = such that P(z). However she is not
aware of what individual o(x) actually is (—A;P(x)), hence A;Jz—A;P(x)
holds. Now, had (*) been a biconditional, since Jz—A4; P(x) € A;(w) holds,
it would have been the case that —=A;P[z/y] € A;(w), that is A;—A; P(y).
In the example, White would have been aware that she is not aware that the
specific combination o(y) led to checkmate, which is counterintuitive. The
fact that, limited to sentences, awareness is generated by atomic formulas
and that awareness is only weakly closed under existential quantification
rules out such undesirable cases.

23 Cf. [HRO6b], in which a similar requirement of weak existential closure is used.
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Notice that the weak 3-closure (*) can be expressed axiomatically as
follows:

(A6) Aiplz/y] — AiTzp(w).

What is the interplay between universal quantification and awareness?
Consider, in the example above, the situation in which White is aware that
any continuation leads to checkmate. It is then reasonable to conclude that
she is aware, of any specific continuation she might have in mind, that it
leads to checkmate. Thus, if, for any z, P(z) € A;(w), then P[z/y] € A;(w)
for all y such that o(y) € D;(w). Hence the axiom

(A7) Aivap(z) — (Ali(y) — Aiplz/y)).

This concludes the presentation of the syntax and the semantics of the
first-order system of awareness. Various first-order modal logics are proven
to be complete with respect to neighborhood structures in [ACP06]. Ex-
tending the proof to deal with awareness is also straightforward once we
add to the canonical model the canonical awareness sets A;(w) = {p(z) :
Aijp(x) € w}, where w stands for a canonical world. For example, consider,
in the proof of the truth lemma, the case in which the inductive formula
has the form A;4: if A;1) € w, then, by definition of the canonical A;(w),
P € Aj(w) or (M,w) s A1, and vice versa. Note that axioms A1-A7
ensure that awareness is weakly generated by atomic formulas.

2.4 Decidability

This section is based on Wolter and Zakharyashev’s decidability proof for
the monodic fragment of first-order multi-modal logics interpreted over
Kripke structures. The proof is here generalized to neighborhood models
with awareness. The monodic fragment of first-order modal logic is based on
the restricted language in which formulas in the scope of a modal operator
have at most one free variable. The idea of the proof is the following:

We can decide whether the monodic formula ¢ is valid, provided that
we can decide whether a certain classical first-order formula « is valid. This
is because, by answering the satisfiability problem for «, we can construct
a so-called “quasi-model” for . A “quasi-model” satisfying ¢, as it will be
clear in the following, exists if and only if a neighborhood model satisfying
@ exists. Furthermore, if a model satisfying ¢ exists, then it is possible to
effectively build a “quasi-model” for ¢. Hence the validity problem in the
monodic fragment of first-order modal logic can be reduced to the validity
problem in classical first-order logic. It follows that the intersection of the
monodic fragment and (several) decidable fragments of first-order classical
logic is decidable?*.

24 The mosaic technique on which the proof of the existence of an effective criterion for
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In carrying the proof over to neighborhood structures with awareness, a
few adjustments of the original argument are necessary. First, the overall
proof makes use of special functions called runs. Such functions serve the
purpose of encoding the modal content of the structure. Since the modal
operators are now interpreted through neighborhoods rather than through
accessibility relations, the definitions of runs and of related notions have to
be modified accordingly. Second, the proof of theorem 2.1 accounts for the
cases of the modal operators introduced in the present setup (i.e. awareness
and explicit knowledge operators). Third, a suitable notion of “unwinding”
a neighborhoods structure has to be found in order to prove lemma 2.2.
Fourth, the use of neighborhood structures slightly modifies the argument
of the left to right direction in theorem 2.3. In the rest of this subsection,
I shall offer the main argument and definitions, relegating the more formal
proofs to the appendix.

Fix a monodic formula ¢. For any subformula [;1)(z) of ¢, let P, (x)
be a predicate symbol not occurring in v, where O; = {Kj, A;, Xi}. P,y (x)
has arity 1 if ¢(x) has a free variable, 0 otherwise, and it is called the
surrogate of ¥(x). For any subformula 1 of ¢, define ¥ to be the formula
obtained by replacing the modal subformulas of ¥ not in the scope of another
modal operator with their surrogates, and call ¢ the reduct of 1.

Define sub,p = {¢[z/y] : ¥(y) € subp}, where subyp is the closure under
negation of the set of subformulas of . Define a type t for ¢ as any boolean
saturated subset of sub,p?°, i.e. such that, (i) for all 1 € sub,p, =) € t iff
Y & t; and (ii) for all ¥ A x € subyp,9 A x € t iff ¢ and x belong to 26,
Types t and ¢’ are said to agree on subyp (the set of subsentences of ) if
t N subgp = t' N subgp.

The goal is to encode a neighborhood model satisfying ¢ into a quasi-
model for . The first step consists in coding the worlds of the neighborhood
model. Define a world candidate to be the set T of ¢-types that agree on
subgyp. Consider now a first-order structure D = (D, PP,...), let a € D and
define tP(a) = {3 € subyp : D |= ¥[a]}, where |= stands for the classical
satisfiability relation. It easily follows from the semantics of = and A that tP
is a type for ¢. A realizable world candidate is the set T = {tP(a) : a € D}.

the validity problem is based was introduced by Németi (cf. for example [Nem95]). The
proof on which this subsection is based can be found in [WZ01]. The same technique
is used in [SWZ02] to show that first-order common knowledge logics are complete.
For a more compact textbook exposition of the proof, cf. [BG07].

25 Or, equivalently, as “any subset of sub; ¢ such that {E : ¢ € t} is maximal consistent”,
where 1 is any subformula of ¢: cf. [BGO7].

26 For example, consider ¢ := K; P(y) A X;3zR(y, z). Then subsp is the set {K; P(z) A
X;32R(z, z), K;P(z), P(xz), X;3zR(z, z), 3zR(x, z) }, along with the negation of such
formulas. Some of the types for ¢ are ® U {3zR(z, z), P(z)}, ® U {—-3zR(z, 2), P(z)},
etc; =@ U {JzR(z,2), P(z)}, =P U {3zR(x, z), ~P(x)} etc., where & = {K;P(x) A
X;3zR(x, z), K;P(x), X;3zR(x,2)} and =® = {—) : ¢p € O},
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Notice that T is a realizable world candidate iff a formula a7 is satisfiable
in a first-order structure, where ar is

(ar) /\tET Jat(z) AVa \/teT (),
in which #(z) := A ,)e ().

Intuitively, the formula says that all the reducts of the formulas in every
type t € T are realized through some assignment in the first-order structure,
while all assignments in the structure realize the reducts of the formulas in
some type t € T. The existence of the satisfiability criterion for ¢ will
ultimately be given modulo the decidability of ar for each realizable world
candidate in the model, hence the restriction to the monodic fragment based
on a decidable fragment of predicate logic.

Set a neighborhood frame with awareness F = (W, N1, ..., Ny, A1, ..., Ap).
We can associate each world w in W to a corresponding realizable world-
candidate by taking the set of types for ¢ that are realized in w. Let f be
a map from each w € W to the corresponding realizable world candidates
Ty. Define a run as a function form W to the set of all types of ¢ such that

(1) r(w) € Ty,

(i) if K1) € subyo, then, K;¢ € r(w) iff {v: ¢ € r(v)} € N(w),

(iii) if A € subgyp, then A9 € r(w) iff ¥ € A;(w).

(iv) if X;9p € subyp, then X;¢ € r(w) iff {v: ¢ € r(v)} € N(w) and
Y€ Ai(w).

Runs are the functions that encode the “modal content” of the neighbor-
hood structure satisfying ¢ that was lost in the reducts 1, so that it can be
restored when constructing a neighborhood model based on the quasi-model
for ¢.

Finally, define a quasi-model for ¢ as the pair (F, f), where f is a map
from each w € W to the set of realizable world candidates for w, such that,
for all w € W and t € T, there exists a run on F whose value for w is t.
We say that a quasi-model satisfies ¢ iff there exists a w such that ¢ € t for
some t € T,,. We can now prove the following

Theorem 2.1. The monodic sentence ¢ is satisfiable in a neighborhood
structure M based on F iff ¢ is satisfiable in a quasi-model for ¢ based on

F.
Proof. See Appendix, section Al. Q.E.D.

It is now possible to show that an effective satisfiability criterion for ¢
exists by representing quasi-models through (possibly infinite) mosaics of
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repeating finite patterns called blocks?”.

Recall that quasi-models are based on neighborhood frames. We restrict
now our attention to monotonic frames?® and say that a quasi-model for ¢
is a tree quasi-model if it is based on a tree-like neighborhood frame. Sec-
tion 2.4 of the appendix, drawing from [Han03], describes how a monotonic
neighborhood model can be unravelled in a tree-like model. Hence,

Lemma 2.2. A (monodic) formula ¢ is satisfiable iff it is satisfiable in a
tree quasi-model for ¢ at its root.

Proof. The lemma stems obviously from the unravelling procedure described
in the Appendix, section A2. Q.E.D.

We now need to define the notion of a block for . We shall then be
able to represent quasi-models as structures repeating a finite set of blocks.
Consider a finite tree-like structure (called a bouquet) (F,, f), based on
W, = {wo,...,w,}, rooted in wy, such that no world in the structure but
wo has a nonempty neighborhood.

A root-saturated weak run is a function r from W, to the set of types
for ¢ such that

(i) r(wn) € T, ,

(i) if K, € suby, then, K;1 € r(wp) iff {v: ¢ € r(v)} € N(w),

(i) if A;9p € subyep, then A9 € r(wp) iff ¥ € A;(w).

(iv) if X9 € subgy, then X;9 € r(wp) iff {v: vy € r(v)} € M(w) and

A block is a bouquet (F,, fn), where f, is a map from each w € W,, to
the set of realizable world candidates for w such that, for each w € W,, and
t € T, there exists a root-saturated weak run whose value for w is t. We
say that ¢ is satisfied in a block (F,,, f,,) iff there exists a w such that ¢ € ¢
for some t € Ty,.

Finally, a satisfying set for p is a set S of blocks such that (i) it contains
a block with root wg such that ¢ € t for all ¢ € T, (that is, wo satisfies
v), and (ii) for every realizable world candidate in every block of S, there
exists a block in S rooted in such a realizable world candidate.

It is now possible to prove the following

Theorem 2.3. A monodic sentence ¢ is satisfiable iff there exists a satis-
fying set for ¢, whose blocks contain a finite number of elements.

27 For ease of exposition and without loss of generality, from now on attention will be
restricted to models with a single agent.

28 This restriction yields a less general proof, since it implies that the decidability result
does not hold for non-monotonic systems. Given the intended interpretation of the
modalities (high-probability operators, cf. the introductory section), the restriction is
not problematic.
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Proof. See Appendix, section A3. Q.E.D.
The effective satisfiability criterion now follows:

Corollary 2.4. Let £,, be the monodic fragment and £/, C L,,. Suppose
that for ¢ € L/ there is an algorithm deciding whether a world-candidate
for ¢ is realizable (that is, whether the classical first-order formula a7 is
satisfiable.) Then the fragment £),N QEM is decidable.

In particular, the monodic fragment is decidable if it is based on the
two- (one-) variable fragment, on the monadic fragment, and on the guarded
fragment of classical predicate logic (cf. [WZ01]).
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Appendix
A1l. Proof of Theorem 2.1

[=]. Let M be a neighborhood structure satisfying ¢. Construct a quasi-
model as follows: Define the map f by stipulating that

t¥ = {¢ € subyp: (M,w) =, ¥}, where a € D and o(x) = a,
Ty = {t¥ :a € D},

and let, for all a € D and w € W, r(w) = t¥. We need to show that
r is a run in (F, f). For (i), r(w) = t¥ € Ty, by construction. For (ii),
Kip(a) € rw) iff (M,w) =y Kab(@) iff {v: (M,v) o $(@)} € Ni(w)
but, for all a € D, t! = {¢ € subyp : (M,v) =, ¥(x)} and r(v) = t¥ by
definition, thus {v : (M,v) |E» ¥(2)} = {v : ¥(z) € r(v)}, as desired. For
(iii), (M, w) = Ay iff ¥ € A;(w), hence A;p € r(w) iff ¢ € A;(w). The
case for (iv) follows immediately from (ii) and (iii).

[«<]. Fix a cardinal k > Nj that exceeds the cardinality of the set £ of all
runs in the quasi-model. Set D = {(r,&) : r € Q,£ < k}. Recall that a world
candidate T is realizable iff the first-order formula o is satisfiable in a first-
order structure and notice that, since the language we are using does not
comprehend equality, it follows from standard classical model theory that we
can consider the first-order structure D to be of arbitrary infinite cardinality
k > Ng. Hence, for every w € W, there exists a first-order structure I(w)
with domain D that realizes the world candidate f(w). Notice that the
elements in the domain of such structures are specific runs indexed by the
cardinal €. Let?® r(w) = {¢ € subyp : I(w) | ¥[(r,£)]} for all r € Q and
& < k.

Let the neighborhood structure be M = (W, N1, ..., Ny, A1, ..., An, D, 1)
and let o be an arbitrary assignment in D. For all ¢ € subp and w € W,
we show by induction that

I(w) o ¢ iff (M, w) =0 9.

The basis is straightforward, since 1 = 1 when % is an atom. The
inductive step for the nonmodal connectives follows from the observation
that ¥ A = A, —ap = —p, Yarp = Varp, and the induction hypothesis.
Consider now the modal cases. Fix o(y) = (r,&) First, let ¢ := K;x(y).
The reduct of ¢ is the first-order formula Pk, (y). We have that

29 For a proof that this assumption is legitimate, cf. [SWZ02].
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I(w) Es Pr,x () iff (construction of quasi-model)
Kix(y) € r(w) iff (definition of run)

{v:x(y) er@)} e N;(w) iff (definition of r(v))

{v:Iw) Ex(y)} € Ni(w) iff (induction hypothesis)
{v:(M,v) Eo x(y)} € Ni(w) iff (semantics)

(M, w) Es Kix(y).

Second, let ¥ := A;x(y). The reduct of ¢ is the first-order formula
Pa,x(y). Then,

I(w) =5 Pa,y(y) iff (construction of quasi-model)
Aix(y) € r(w) iff (definition of run and of r(w))
x(y) € A;(w) iff  (semantics)

(M, w) =5 Aix.

Finally, let ¢ := X;x(y). We have that I(w) =, Px,(y) iff I(w) .
Pr (y) A Pa,y(y), which follows from the two cases just shown. q.E.D.

A2. Unravelling a neighborhood structure

In this subsection I describe the procedure defined in [Han03] to unravel
a core-complete, monotonic model M into a monotonic model whose core
neighborhoods give rise to a tree-like structure that is bisimilar to M.

Definition 2.5. (Core-complete models)

Let the core N¢ of N be defined by X € N¢(w) iff X € N (w) and for all
Xo C X, Xo € N¢(w). Let M be a neighborhood model. M is core-complete
if, for all w € W and X C W, If X € M (w), then there exists a C € N¢(w)
such that C' C X.

The idea is that we can unravel a core-complete, monotonic neighbor-
hood structure (with awareness) into a core-complete neighborhood which
is rooted and whose core, in a sense that will be made precise below, con-
tains no cycles and has unique, disjoint neighborhoods. The unravelling
procedure described above is given in [Han03].

Define the following objects:

Definition 2.6. Let M be a core-complete monotonic model. For any
X C W, define N5(X) and S, (X) as the union, for all n > 0, of the objects
defined by double recursion as:

So(X) = X, NE(X) =U,ex N(2)

Sn(X) = UYe/\/’flil(X) Y, Ni(X)= Uzesn(X)Nﬁ(x)

In words, we start with a neighborhood X, and take N§(X) to be the
core neighborhoods of the worlds in X. We add all worlds in such core
neighborhoods to the space set of the following stage in the inductive con-
struction, and then consider all core neighborhoods of all such worlds, etc.
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If the set of all worlds in a model M is yielded by S, ({w}), then M is said
to be a rooted model.
We can now define a tree-like neighborhood model as follows:

Definition 2.7. Let M be a core-complete monotonic neighborhood model
with awareness, and let wg € W. Then M, is a tree-like model if:

(i) W= Su({wo});

(ii) For all w € W, w & ;5.0 Sn({w});

(iii) For all w,w’,v € W and all Xy, X; C W: If v € Xy € N°(w) and
v € Xy € Né(w'), then Xy = X3 and wy = w.

That is to say, (i) M is rooted in wp; (ii) w does not occur in any
core neighborhood “below” w, thus there are no cycles; and (iii) all core
neighborhoods are unique and disjoint.

The neighborhood model M = (W, N, A, ) can now be unravelled into
the model M,y = (Wags Nugs Awgs Tw,) as follows:

(1) Define its universe W, as

W = {(woXjwy ... Xpwy) :m > 0and foreach I =1,...,n: X; €
N(wi—1),w € X1}

In English, W,,, contains all sequences of worlds and neighborhoods
obtained by beginning with wgy and appending to each state w; the sets be-
longing to its neighborhood, and by further appending the worlds contained
in the element of the neighborhood under consideration. For example, if the
model contains a world w whose neighborhood contains the set {x,y} the
space of the unravelled model rooted on w contains also worlds w{z,y}x
and w{z,y}y.

In order to define the neighborhoods of the unravelled model, we need
to define two maps pre and last as:

pre : (woXiwy ... Xpwy) — (woXiwy ... Xp)
last : (woXjws ... Xpwy) — Wy

(2) Define now a neighborhood function N : Wy, — P(P(Wy,)) as
follows, with 5 € W,,, and Y C W,

Y € NS, (%) iff for all 7 € Y and some X € P(W), pre(7) = X
and U76Y last(7) = X € N(last(3)).

Thus, every neighborhood in the original model N (last(s)) originates
exactly one neighborhood Y in NV (%) and all sets Y are disjoint. Closing
the core neighborhoods under supersets yields now the neighborhoods of

the monotonic model.
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(3) Define an awareness function A,,, such that ¢ € A, (W) iff p €
A(last(W)).

(4) Finally, we take m,, () to agree with w(last(3)).

It follows that (M, (wo)) E ¢ iff (My,, W) = ¢, since we can root
the unravelled model on the world w satisfying ¢ in the original model.
Moreover, if, as we are assuming, the original model M is core-complete,
the core neighborhoods of the unravelled tree-like model still give rise to a
model that is bisimilar to M.

A3. Proof of Theorem 2.3

[=] If ¢ is satisfiable, by the lemma above there exists a tree quasi-model
satisfying ¢ at its root. For all X € N(w), with w € W, either there
are sufficiently many sets Y, called twins of X such that Y € P(W), the
submodel generated by Y is isomorphic to the one generated by X and, for
allze X and all y € Y, f(z) = f(y), or we can make sure that such is the
case by duplicating, as many time as needed, the worlds in the neighborhood
X in a way that the resulting structure is equivalent to the given one, and
thus still a quasi-model for .

For every w € W, now, construct a finite block B,, = (Fy, fw) with
Fy, = Wy, Ny) as follows:

For every t € T,,, fix a run in the quasi-model such that r(w) = ¢. For
every K € sub,p such that K¢ & r(w), we select an X € P(W) such that
X € N(w) and there exists v € X such that ¢(z) € r(v) and put it in an
auxiliary set Sel(w) along with one of its twins Y. Take W, to be w along
with all selected worlds, N, to be the restriction of A" to W,,, and f,, to
be the restriction of f to W,,. The resulting structure B,, is a block for ¢
since it is based on a bouquet (of depth 1) and it is a subquasi-model of the
original quasi-model for ¢3°.

We now illustrate precisely the construction sketched above, and show
that for all w € W and ¢, € T, there exists a root-saturated weak run
coming through t,,. For this purpose, let u € W,,,t € T, and r be a weak

30 To see this, consider, for instance, the case that K € t = r(w). Then, for all
v € Nyw(w), ¥ € r(v). Now, if there does not exist any type ¢’ such that K1 & t’, we
are done. If there is such a type, however, there exists a run r’ such that Kt ¢ r’(w)
and we select sets X,Y € P(W) such that they belong to N (w), {v: (M,v) Ev} =X
and, for all z,y in X,Y respectively, 1 belongs to both r(z) and r(y). The idea of
the construction, now, is to define a further run, which goes through the types of,
say, « that does not contain 1), making sure that it is ‘root-saturated.” Notice that
blocks constructed this way are always quasi-models, since they are root-saturated
weak quasi-models of depth one. However, if we consider also, as it is done in [WZ01],
the transitive and reflexive closure of the neighborhood functions (a sort of “common
knowledge” operator), then resulting bouquets have depth larger than 1, and blocks
are indeed based on weak quasi-models.
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run such that r(u) = ¢t. Consider the type r(w) and the set C = {x :=
Ky € subyp : x € r(w)}. For any such x, there exists a weak run r, such
that: (i) ry(w) = r(w), (ii) ¥ € r(wy) for some world w, € W,, in some
selected X € M (w) and (iii) v # w, wy. Define now, for any w’ € W, the
root-saturated weak run r’ such that (a) r(w’) if w’ # w,w, for all x € C,
and (b) ry (w') otherwise.

The satisfying set for ¢ is now obtained by taking the blocks B,, for each
w € W, each block containing at most 2 - [sub,¢| - 215%0=#| neighborhoods.

[<] If S is a satisfying set for ¢, we can inductively construct a quasi-
model for ¢ as the limit of a sequence of (weak) quasi-models (F,, f,,) with
n=12,...and F, = (W,,N,, A,). The basis of the inductive definition is
the quasi-model my, which is a block in S satisfying ¢ at its root. Assuming
we have defined the quasi-model my, let my11 be defined as follows: For
each w € W,,, — W,,,_1 (where Wy is the root of F7) select a block B,
such that f,(w) = f,rw’" and append the selected blocks to the appropriate
worlds in my. We can then take the desired quasi-model to be the limit of
the sequence thus constructed by defining the elements in (W, N, A, f) as

W= Unzl W, N = Unlenv A= Un21 An, f= Un21 fn-

Clearly, the resulting structure is based on an awareness neighborhood
frame, and f is a map from worlds in W to their corresponding sets of world
candidates. It remains to show that, for each world and type, there exists
a run in the quasi-model coming through that type. We define such runs
inductively, taking 7! to be an arbitrary (weak) run in m;. Suppose 7* has
already been defined: Consider, for each w € Wy, — Wy_1, runs r,,(w) and
such that r*(w) = r,(w). Now, for each w’ € Wy 41 — Wy, take r**1 to be
(i) r*(w’ iff w’' € Wy and (ii) 7, (w') iff w' € W, — Wy, Define r as (Jo 7"
The constructed function r is a run in the limit quasi-model since, at each
stage k of the construction, it has been “added” to r a root-saturated run
r* hence, in the limit, r is saturated at each w € W.  q.E.D.



