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Does the Approximate Number System Serve as a Foundation for
Symbolic Mathematics?
Emily Szkudlarek and Elizabeth M. Brannon

Department of Psychology, University of Pennsylvania

ABSTRACT
In this article we first review evidence for the approximate number system
(ANS), an evolutionarily ancient and developmentally conservative cognitive
mechanism for representing number without language. We then critically
review five different lines of support for the proposal that symbolic repre-
sentations of number build upon the ANS, and discuss potential causes of
conflicting findings in the literature. Finally, we consider potential mechan-
isms that could drive a relationship between the ANS and symbolic math. We
conclude that while there is considerable evidence the relationship between
the ANS and symbolic math is meaningful, we are far from understanding the
cognitive and neural mechanisms that underlie this relationship.

Introduction

Although we are not always explicitly aware of our deep dependence on number, mathematics is an
integral part of our daily lives. Every time we tell time, determine how many quarters to put in the
parking meter, pay our bills, grade a student’s exam, or determine the materials needed for a kitchen
renovation we are relying on our numerical abilities. Many of these tasks rely on skills honed
through years of school-based mathematics education. The concept of natural number, the set of all
whole, non-negative numbers, is fundamental to symbolic mathematical thought. A central question
in cognitive science is how and from where do natural number concepts arise. To resolve this
question, we must come to understand the preverbal cognitive capacities that mathematical educa-
tion builds upon, discover the evolutionary foundations that support mathematical thinking, and
ultimately identify how natural number concepts emerge from these foundations.

While non-human animals and human infants will never prove an algebraic theorem, calculate the tip at
a restaurant, or double the proportions to implement a recipe, there is nevertheless extensive evidence that
many animals and even the youngest of babies have an intuitive number sense termed here the approx-
imate number system (ANS; Feigenson, Dehaene, & Spelke, 2004). The ANS has two behavioral hallmarks,
the distance and size effects. The distance effect refers to the fact that it is easier to discriminate numbers
that are further apart in numerical distance (2 vs. 7 is easier than 2 vs. 4), while the size effect refers to the
observation that it is easier to discriminate smaller numbers compared to larger numbers at the same
distance (2 vs 4 is easier than 22 vs 24). Thus, ANS representations of number followWeber’s law such that
the difficulty in discriminating any two numbers is dependent on the ratio between them, rather than their
absolute difference. In this way the representations supported by the ANS are fundamentally distinct from
the exact representations made possible by Arabic numerals. Arabic numerals, for example, allow us to
appreciate that the difference between 18 and 19 is exactly the same as the difference between 1,834 and
1,835. The ability to precisely represent number is a necessary prerequisite for humans to perform complex
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calculations and a myriad of other mathematical endeavors. In contrast, the ANS only supports fuzzy
magnitude representations that are ratio dependent. Despite these profound differences, there is growing
evidence of a link between the ANS and symbolic mathematical ability. In this review, we first summarize
properties of the ANS by examining the number sense of infants and non-human primates.We then review
the evidence linking symbolic math skill to the ANS, and discuss the potential causes of conflicting findings
in the literature. Finally, we discuss implications of this relationship both for the genesis of natural number
concepts and educational applications.

Properties of the ANS—evidence from infants and non-human primates

Numerical competence has been observed throughout the animal kingdom, from insects to primates.
Numerical representations allow North Island robins to determine successful caching strategies,
mosquito and stickleback fish to determine the more numerous social group, and elephants to
choose the larger amount of food (Agrillo, Dadda, Serena, & Bisazza, 2008; Garland, Low, & Burns,
2012; Mehlis, Thünken, Bakker, & Frommen, 2015; Perdue, Talbot, Stone, & Beran, 2012). This
widespread use of quantity discrimination throughout the animal kingdom is evidence of either the
emergence of numerical abilities in a very early common ancestor, or of convergent evolution.
Regardless of the evolutionary origin of numerical ability, the ubiquity of these competencies
suggests that being able to discriminate the larger of two sets is highly adaptive.

Similarly, infants just moments after birth are sensitive to the numerical attributes of the world
around them (Izard, Sann, Spelke, & Streri, 2009). Multiple experimental methods that make use of
infants’ gaze direction, gaze duration, and brain waves all provide converging evidence that infants
rely on the ANS to make numerical discriminations (Hyde & Spelke, 2011; Libertus & Brannon,
2009, 2010; Lipton & Spelke, 2003; Xu & Spelke, 2000). For example, when 6-month-old infants are
shown two image streams displaying dot arrays that frequently change in the spacing, location, and
size of the dots, infants preferentially attend to the stream that is changing numerically over the
stream that is numerically constant (Libertus & Brannon, 2010). Whereas newborns require a 1:3
ratio to detect differences in numerosity (Izard et al., 2009), by 6 months of age babies can handle a
1:2 ratio, and by 9-months a 2:3 ratio (Libertus & Brannon, 2010; Lipton & Spelke, 2003; Xu &
Spelke, 2000). This increase in acuity continues throughout childhood (Halberda & Feigenson,
2008), and in a large-scale online study was seen to continue to improve until around 30 years of
age (Halberda, Ly, Wilmer, Naiman, & Germine, 2012).

A contentious question in both the comparative and developmental literatures has been whether
the putative ability to represent approximate number can be better explained as a sensitivity to
continuous variables such as surface area or contours (Clearfield & Mix, 1999, 2001; Cordes &
Brannon, 2009; Davis & Pérusse, 1988). For example, Mix and colleagues argued that poor stimulus
controls in many infant studies likely resulted in effects that were driven by infants’ attending to
perimeter or surface area rather than numerosity (Mix, Huttenlocher, & Levine, 2002). A recent
series of studies with human infants came to a contrary conclusion using the change detection
procedure (Libertus, Starr, & Brannon, 2014; Starr & Brannon, 2015). In one study infants were
presented with a screen in which images changed by a 1:3 ratio in area and were constant in
numerosity, and a second screen in which the stimuli changed by a 1:3 ratio in numerosity and
remained constant in area. Infants overwhelmingly preferred the screen that changed in numerosity.
Only when the change in area was increased to a 1:10 ratio did infants look equally long at the two
streams. These findings provide strong evidence that when young infants are presented with arrays
of discrete items, numerosity is more salient than the cumulative continuous variables of the sets.
Cordes and colleagues conducted another series of studies with the visual habituation procedure and
came to similar conclusion (Cordes & Brannon, 2008). In those studies, 6-month old infants
required a 1:2 ratio change in numerosity to show a reliable novelty effect when tested in the visual
habituation paradigm. However, when cumulative surface area of the dot arrays was manipulated,
Cordes and colleagues found that 6-month-old infants required a 4-fold change in the cumulative
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surface area of an array to show a novelty effect. These studies suggest that infants represent both
number and continuous variables, but show greater sensitivity to numerical attributes of discrete
arrays.

Studies of animal numerical cognition have yielded similar controversies over the relative salience
of numerosity and continuous variables of dot arrays. For example, Davis and Pérusse (1988) argued
that animals only attend to the numerical attribute of the stimuli when they have had extensive
artificial laboratory training to do so, and thus as a “last resort strategy.” In contrast, Gallistel (1990)
proposed that number, along with time and space, are critical attributes of the world that all
organisms represent. Cantlon and colleagues addressed the question of the relative salience of
numerosity and other non-numerical attributes in rhesus macaques (Macaca mulatta). Monkeys
were trained in a match-to-sample task where the sample and the correct match were the same both
in number and in cumulative surface area. Monkeys were then given non-differentially reinforced
probe trials where one choice matched the sample in number and not total area, and the other
matched in total area and not number. Rhesus monkeys were more likely to match arrays based on
numerosity than surface area when the two cues were in conflict (Cantlon & Brannon, 2007).
Collectively these studies suggest that although it may seem intuitive that number is more cognitively
challenging to represent than continuous variables, this intuition is misleading. Instead, when babies
and monkeys are presented with sets of discrete items they are more likely to detect numerosity than
they are to form summary statistics of continuous variables.

A powerful aspect of the ANS is that despite its imprecision, it supports arithmetic calculations.
For example, rhesus monkeys are capable of performing addition and subtraction operations using
ANS representations (Cantlon & Brannon, 2007; Cantlon, Merritt, & Brannon, 2015). In these
studies, monkeys were shown addition operations where two sets disappeared behind an occluder,
or subtraction operations where after an initial set was occluded a subset of the first array emerged
from behind the occluder and left the screen. Monkeys were then given a choice between an array
that numerically summed the two addends (or represented the difference in the subtraction
problem) and a distractor array. Monkeys were then tested on probe trials with novel numerical
values, where they performed above chance expectation indicating acquisition of the arithmetic
rules. Training and probe trial performance was dependent on the ratio between the correct answer
and the distractor, following Weber’s law.

The violation of expectancy paradigm suggests that infants also keep track of objects over
addition and subtraction events. Karen Wynn pioneered the method demonstrating that infants
form expectations about the number of objects that should be behind an occluder when they watch
addition and subtraction events (Wynn, 1992). However, in these early experiments it was unclear
whether infants relied on the ANS or instead relied on an object-file system that is limited to
representing small sets. If infants were relying on the object-file system they would detect incorrect
arithmetic solutions by tracking each object, holding these objects in memory, and then noticing the
difference between the number of objects stored in memory and the number presented after the
arithmetic event. However, McCrink and Wynn (2004, 2009) showed nine-month-old infants
animations of arithmetic problems with sets too large to be represented by an object tracking system.
When shown events such as 5 + 5 = 5 or 5 + 5 = 10 infants looked significantly longer at the
impossible outcomes, presumably because they found them surprising. In other studies, Spelke and
colleagues have shown that young children make approximate arithmetic calculations that show
systematic ratio dependence (Barth, La Mont, Lipton, & Spelke, 2005; Gilmore, McCarthy, & Spelke,
2010). Moreover, animals and human infants are both adept at approximate ordinal numerical
comparisons. Monkeys show ratio dependent number discrimination when trained to choose the
larger of two numerical arrays and transfer to novel numerical values (e.g., Brannon & Terrace,
1998) and human infants habituated to a sequence of images that increased (or decreased) in
numerosity dishabituated to novel sequences that displayed the reverse ordinal relationship (e.g.,
Brannon, 2002).
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The ANS also supports the capacity to reason about second order numerical relationships.
Drucker, Rossa, and Brannon (2015) presented rhesus monkeys with two arrays that each contained
one or more positive items that were associated with reward or negative items that were associated
with the absence of reward (see Figure 1A). The monkeys were reinforced for choosing the array that
had the more favorable ratio of positive to negative items while ignoring the absolute number of
positive or negative items in each array. The monkeys were then tested with novel ratio comparisons.
During these unreinforced probe trials the moneys continued to choose the array with a higher ratio
of positive to negative items. The monkeys’ performance improved as the ratio between ratios
increased, following Weber’s law. This finding demonstrates that monkeys are able to represent
the ratio of good to bad items in an array, and compare these two ratios to choose the array that is
more favorable.

Human infants also represent the ratio between sets of discrete quantities (McCrink & Wynn,
2007). When infants were habituated to arrays that showed a constant proportion of blue to yellow
shapes they selectively dishabituated to new arrays that featured a different proportion of yellow to
blue shapes (See Figure 1B). Thus, the ANS not only allows for the approximate representation of
numerical values, it supports mental transformations across those representations. These transfor-
mations include arithmetic operations, ordinal relationships, and proportional reasoning in human
infants and non-human primates.

Is The ANS foundational for symbolic mathematics?

The previous section established the existence of a preverbal number sense present in nonhuman
animals and human infants. In this section we explore five lines of evidence that this primitive
system is meaningfully related to our uniquely human mathematical mind. The first line of evidence
comes from studies that demonstrate a positive correlation between ANS acuity and symbolic math
ability. In the first study to show this relationship, Halberda and colleagues demonstrated that Weber
fraction measured at 14 years of age retroactively predicted standardized math scores at age 5, even
after controlling for verbal IQ (Halberda, Mazzocco, & Feigenson, 2008). This positive correlation
has since been found in adults (Agrillo, Piffer, & Adriano, 2013; DeWind & Brannon, 2012; Halberda
et al., 2012; Libertus, Odic, & Halberda, 2012; Lourenco, Bonny, Fernandez, & Rao, 2012); in school-
aged children (Geary, Hoard, Nugent, & Rouder, 2015; Pinheiro-Chagas et al., 2014) ; in children
just beginning formal math education (Gilmore et al., 2010; Keller & Libertus, 2015; Mundy &

Figure 1. (A) Example stimuli presented to rhesus monkeys in Drucker et al. (2015). In this example the black circle is the positive
stimulus and the white diamond is the negative stimulus. The correct answer is on the left. Figure modified from Drucker et al.
(2015). (B) Example stimuli presented to 6-month-old infants in McCrink and Wynn (2007). The example habituation ratio shown
here is 1:4. Figure modified from McCrink and Wynn (2007).
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Gilmore, 2009); and in preschool aged children before they begin formal math education (Chu,
vanMarle, & Geary, 2015; Libertus, Feigenson, & Halberda, 2011, 2013; Mazzocco, Feigenson, &
Halberda, 2011b; Soto-Calvo, Simmons, Willis, & Adams, 2015; Starr, Libertus, & Brannon, 2013;
van Marle, Chu, Li, & Geary, 2014;). Three meta-analyses have concluded there is a significant
correlation between ANS and math ability (Chen & Li, 2014; Fazio, Bailey, Thompson, & Siegler,
2014; Schneider et al., 2016). A correlation between ANS acuity and math has, however, failed to
emerge in other studies (Holloway & Ansari, 2009; Iuculano, Tang, Hall, & Butterworth, 2008;
Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Nosworthy, Bugden, Archibald, Evans, & Ansari,
2013; Sasanguie, Defever, Maertens, & Reynvoet, 2014). We return to these discrepant results and
their implications for understanding the role the ANS plays in symbolic math knowledge later in this
article.

A second line of evidence comes from longitudinal studies investigating the relationship between
numerical acuity and later symbolic math performance. In one study, numerical change detection
scores at 6 months of age predicted some of the variance in both ANS acuity and the Test of Early
Mathematical Achievement, but not verbal IQ, in 3.5 year-olds. (Starr et al., 2013). Recent long-
itudinal studies that follow children in the preschool years have revealed a nuanced relationship
between the ANS and early symbolic math skills (Purpura & Logan, 2015; Soto-Calvo et al., 2015).
Soto-Calvo and colleagues measured preschoolers’ ANS ability, a variety of symbolic math skills,
phonological awareness, and visual-spatial short term memory at age 4 and then again 14 months
later (Soto-Calvo et al., 2015). ANS ability, along with visual-spatial short term memory and
phonological awareness, predicted children’s accuracy in solving addition and subtraction word
problems, but did not predict early counting proficiency. Purpura and Logan (2015) assessed
children aged 3–5 at the beginning and end of 1 year of preschool on a battery of cognitive skills
including ANS acuity, math language ability, and early symbolic math skills. ANS acuity predicted
symbolic math ability only for children in the 25th percentile of the distribution of math scores,
while math language ability predicted math scores of the 50–75th percentile of this distribution.
These non-linear relationships highlight the fact that different math skills may be important for the
acquisition of complex math abilities at different stages of math development. As symbolic math
ability develops the connection to ANS acuity may become more complex, but these findings provide
evidence for an ongoing link in early childhood.

Evidence that the ANS acuity of young children predicts aspects of math performance suggests a
particular directional effect whereby ANS acuity facilitates math performance. However, there is also
evidence that the ANS is refined through practice with the symbolic number system (Matejko &
Ansari, 2016; for review, Mussolin, Nys, Leybaert, & Content, 2015). Work with the Mundurukú, an
indigenous group in Brazil who do not have words for numbers greater than 5, supports this
position. Members of this community who have had some formal schooling in math displayed
significantly better ANS acuity than members of the community with less formal schooling (Piazza,
Pica, Izard, Spelke, & Dehaene, 2013). Mussolin, Nys, Content, and Leybaert (2014) twice assessed
the ANS acuity and symbolic math ability of preschool children 7 months apart. Children’s
performance at time 1 on the full battery of symbolic math assessments and a number word
knowledge test predicted accuracy at time 2 on the non-symbolic comparison task. The reverse
predictive relationship was not significant. Taken together, the directionality of a potential causal
relationship between the ANS and symbolic math is unclear. The possibility of an ongoing bidirec-
tional relationship across development is plausible, and warrants further investigation.

A third and related line of evidence supporting the proposal that the ANS is meaningfully related
to symbolic math is that ANS acuity is impaired in at least a subset of children with math specific
learning disabilities (Wilson & Dehaene, 2007; Butterworth, Varma, & Laurillard, 2011; Desoete,
Ceulemans, De Weerdt, & Pieters, 2012; Mazzocco, Feigenson, & Halberda, 2011a; Piazza et al.,
2010; Pinheiro-Chagas et al., 2014). Developmental dyscalculia is a math specific learning disorder
diagnosed in children struggling to learn about numbers and arithmetic, but whose performance on
tests of vocabulary, IQ, and working memory are within the range of typically developing children
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(Butterworth et al., 2011; Landerl, Bevan, & Butterworth, 2004). Researchers have investigated low
ANS acuity as one cause of this domain-specific impairment. Piazza et al. (2010) found that school
aged dyscalculics (mean age 10.69) have roughly the same ANS acuity of an average typically
developing 5-year-old. Mazzocco et al. (2011a) demonstrated that slightly older dyscalculics (mean
age 14.83) had significantly lower ANS acuity as compared to low achieving, typically achieving, and
high achieving peers. This result persisted after controlling for other domain general abilities that
contribute to math ability, such as working memory for spatial locations and lexical retrieval of color
and number words. Further, school aged children with math specific difficulties perform poorly on
both non-symbolic comparison and non-symbolic addition, two different tasks that both utilize the
ANS (Pinheiro-Chagas et al., 2014). It is important to note that developmental dyscalculia is a
heterogeneous disorder with evidence supporting multiple causal factors contributing to severe
mathematical difficulties (Bugden & Ansari, 2015; Defever, De Smedt, & Reynvoet, 2013; Defever,
Reynvoet, & Gebuis, 2013; Fias, Menon, & Szucs, 2013; Geary, 2010). For example, Rousselle & Noël
(2007) and Noël & Rousselle (2011) find little evidence of ANS deficits in very young dyscalculic
children, and argue that this may reflect the fact that symbolic math sharpens the acuity of ANS
representations rather than vice versa. There are likely multiple subtypes of dyscalculia, and one of
these subtypes may comprise children with specific impairment in the ANS (Bartelet, Ansari,
Vaessen, & Blomert, 2014; Skagerlund & Träff, 2016).

A fourth line of evidence that the ANS is meaningfully related to symbolic math is that over-
lapping brain structures are recruited when people engage in non-symbolic and symbolic numerical
tasks (e.g., Butterworth & Walsh, 2011; Dehaene, Piazza, Pinel, & Cohen, 2003). Using an fMRI
adaptation design, Piazza and colleagues showed participants dot patterns and Arabic digits in a
sequence. The same numerical magnitude was repeatedly presented as dots or as a digit to create a
decrease in BOLD signal. Recovery of the BOLD signal occurred when a new numerical magnitude
(i.e., switch from 8 to 16) was presented, but not when a new stimulus format (i.e., switch from dots
to digits) was presented. This cross notation adaptation and recovery occurred in the horizontal
segment of the intraparietal sulcus (hIPS), suggesting that the hIPS codes numerical quantities and
number symbols in the same way (Piazza, Pinel, Le Bihan, & Dehaene, 2007). In an fMRI study that
systematically looked at the conjunction in neural activation when completing a symbolic or non-
symbolic magnitude comparison task, the right inferior parietal lobule emerged as a region sig-
nificantly activated by both task formats (Holloway, Price, & Ansari, 2010; see also Libertus,
Woldorff, & Brannon, 2007). Similarly, Lussier and Cantlon (2016) had participants perform within
format comparisons across dot arrays, number words, and object sizes. The authors found that the
right IPS in children and bilateral IPS in adults showed a distance effect for both dot and number
word comparisons, but not when comparing object sizes.

In contrast, other functional imagining studies have found evidence against format independent
representation of numerical quantities in the IPS using both adaptation designs and comparison
tasks (Bulthé, De Smedt, & Beeck, 2014; Bulthé, De Smedt, & Beeck, 2015; Cohen-Kadosh et al.,
2011; Lyons, Ansari, & Beilock, 2015). Using an adaptation paradigm, Cohen-Kadosh and colleagues
(2011) presented numerals or dots in a sequence where either the magnitude, the format, or the color
of the presented stimulus changed as the sequence progressed. Results indicated a recovery of the
BOLD signal during a format change in the absence of a change in magnitude of the stimulus,
establishing at least some degree of format dependent representation. Damarla and Just (2013) found
common neural patterns for different pictorial representations of a given numerosity (i.e., 3
tomatoes and 3 cars), but different neural patterns for pictorial and symbolic representations (e.g.,
3 trees and the Arabic numeral 3). However, in a later study Damarla, Cherkassky, and Just (2016)
found evidence of shared representation across visual and auditory modalities for small numerical
values. The way in which number is defined in the brain is currently far from being fully
characterized, and even evidence for co-activation during symbolic and non-symbolic number
processing is not necessarily evidence of a shared representation. Future fMRI studies are needed
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to elucidate the implications of overlapping brain activation, and clarify how approximate and
symbolic number are represented in the brain.

The final source of evidence we will review that supports the idea that there is a meaningful
relationship between the ANS and math comes from recent studies that have employed training
designs in an effort to move beyond correlation and address causality (Hyde, Khanum, & Spelke,
2014; Park & Brannon, 2013, 2014). In the first of these studies, Park & Brannon (2013) trained
adults to solve approximate arithmetic problems and asked how this affected their ability to perform
simple symbolic calculations. On addition trials, participants observed two arrays of dots each
disappear behind a centrally located occluder. On subtraction trials, participants observed a single
array move behind an occluder and then a subset of items float out from behind the occluder and
leave the screen. The participant’s task was to estimate the total number of dots behind the occluder
to solve the addition or subtraction problem. On some trials, the participant was required to match
their mental sum (or difference) to one of two presented arrays. On other trials the participant was
shown a single target array and asked to compare their mental sum (or difference) to this new target
array to make a greater or less than judgment. Before and after approximate arithmetic training,
symbolic math performance was measured by how many two and three-digit addition and subtrac-
tion problems a participant could solve within two 5-min blocks. As a control task, a vocabulary test
was also administered. For comparison, an age-matched no-contact control group was given the pre
and post-tests, but not the ANS training sessions. Results showed that the participants who trained
on the approximate arithmetic task improved in symbolic arithmetic performance, but not vocabu-
lary performance. As expected, the no-contact control group did not improve on either measure.

In a second experiment, Park and Brannon (2013) examined the efficacy of approximate arith-
metic training in comparison to two different active control groups. One group was trained daily
with general world knowledge trivia questions and a second control group was required to make
rapid judgments about the order of Arabic numerals. The numerical order judgment condition is
particularly interesting in light of evidence suggesting that the ability to access the ordinal relation of
numbers could mediate the relationship between the ANS and symbolic math (Lyons & Beilock,
2011). In the numerical order judgment training participants were presented with triads of single
digit numbers that moved across the screen rapidly in both horizontal directions. The participant’s
task was to mouse-click on the triad of digits until all triads moving to the right were in ascending
order and all triads moving to the left were in descending order. Although there was clear evidence
that the numeral ordering group improved on a post-test assessment of numeral ordering, the group
showed no improvement on the timed symbolic arithmetic task. Participants in the approximate
arithmetic condition replicated the result from Experiment 1 by demonstrating significant improve-
ment on the symbolic arithmetic test. As expected, the participants in the knowledge training
condition did not improve on either measure. The lack of a transfer effect in the symbol-ordering
condition argues against the idea that the approximate arithmetic group improved due to a placebo
effect (e.g., Dillon, Pires, Hyde, & Spelke, 2015). If participants expected any numerical task to
improve their math skills they should have benefited as much or more from numerical ordering.

In a subsequent set of studies Park and Brannon (2014) sought to isolate the components of the
approximate arithmetic task that improved math performance. At minimum, approximate arith-
metic involves forming representations of approximate numerical magnitudes, holding magnitudes
in short-term memory, and combining approximate magnitudes. Would training on only one of
these components of approximate arithmetic be sufficient to induce an improvement in symbolic
arithmetic? In this study a new cohort of participants trained on approximate arithmetic, a tradi-
tional non-symbolic comparison task, a visuo-spatial short-term memory task, or a numeral symbol-
ordering task. Results showed that participants who trained in the approximate arithmetic condition
showed significantly greater improvement on the symbolic arithmetic test compared to participants
in all other training conditions. Training on visuo-spatial short term memory alone was not enough
to induce improvement in symbolic arithmetic. Collectively, these training studies suggest that there
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is a causal relationship between non-symbolic approximate arithmetic and symbolic arithmetic.
More research is needed to fully understand the nature of this transfer effect.

Hyde et al. (2014) asked a similar question in children. They gave 6-year-old children a single
short session of practice on approximate arithmetic, approximate line length addition, non-symbolic
numerical comparison, or approximate brightness comparison, and then tested the same children on
a timed symbolic arithmetic test part way through training and immediately after training. Children
in both the approximate arithmetic and numerical comparison conditions were faster at completing
the symbolic arithmetic test than children in the other two conditions, suggesting increased
arithmetic fluency after completing tasks that activated the ANS. Although generally consistent
with the Park and Brannon findings, children in the numerosity comparison condition appeared to
benefit in symbolic arithmetic, while the same condition had little effect in adults. An interesting
possibility for future research is to explore whether this is a true developmental or skill-based
difference. In adults with strong symbolic math skills, ANS training might induce improvement in
symbolic math ability only when there is a manipulation of mental magnitudes, rather than a simple
comparison. It is possible that manipulating arrays of dots for adults is simply a more challenging
ANS task that leads to greater motivation to train, whereas both non-symbolic comparison and
arithmetic were engaging for young children. Approximate arithmetic training likely utilizes other
cognitive abilities to a greater degree than approximate comparison, though as described in Park and
Brannon (2014), visuo-spatial short-term memory training alone was not sufficient to induce
improvements in symbolic arithmetic. Future work will need to uncover a mechanistic explanation
for the approximate arithmetic training effect that includes possible developmental differences in the
efficacy of approximate comparison training. We return to possible mechanisms of the relationship
between the ANS and arithmetic later in this article.

To further test if approximate arithmetic training improves the early math skills of preschoolers
using a pre/posttest design, Park and colleagues trained preschool aged children on an approximate
arithmetic or a memory iPad game, and tested their early symbolic math abilities (Park, Bermudez,
Roberts, & Brannon, 2016). Children in the approximate arithmetic condition showed significantly
greater improvements on the Test of Early Mathematical Achievement (TEMA-3) compared to
children in the memory game condition. Future work is exploring how approximate arithmetic
training stacks up against commercial applications aimed at teaching numerical symbols (Szkudlarek
& Brannon, in prep).

Challenges in describing the relationship between the ANS and symbolic math

As reviewed above, while many studies have reported a correlation between ANS acuity and math
performance, a substantial number of studies have failed to find a relationship (e.g., Holloway &
Ansari, 2009; Iuculano et al., 2008; Lyons et al., 2014; Nosworthy et al., 2013; Sasanguie et al., 2014).
Three meta-analyses found support for a modest but significant positive relation between ANS and
math ability (r = .2 to .4; Chen & Li, 2014; Fazio et al., 2014; Schneider et al., 2016). Fazio et al.
(2014) analyzed 19 studies, and found that the relationship between the ANS and math decreased in
strength after the onset of formal schooling, though it was still maintained. Chen and Li (2014)
analyzed 36 cross sectional studies and found that a positive relationship held even after controlling
for general cognitive abilities. ANS acuity also predicted later symbolic math performance, and ANS
acuity at a later age was correlated with early symbolic math performance. Schneider et al. (2016)
included 45 articles in their analysis, and found evidence of a link between ANS acuity and a wide
range of math competencies across all ages. Given the modest effect size described in these meta-
analyses, a potentially widespread reason for conflicting findings in the literature is that many studies
examining the link between the ANS and math ability are underpowered (Chen & Li, 2014).
Nevertheless, these three meta-analyses together lend support for the association between symbolic
math and the ANS.
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Beyond issues of sample size and power there are additional problematic factors that likely
contribute to discrepant findings. One possibility is that the correlation between the ANS and
symbolic math is an artifact of the stimulus control protocols employed in ANS tasks. To control
for non-numerical stimulus attributes, researchers commonly structure stimuli such that surface area
(or sometimes perimeter) is incongruent with numerosity on half of the trials. For example, on a
given ordinal comparison trial a stimulus with 10 dots with a total surface area of 100 cm2 might be
presented with another stimulus with 20 dots and a total surface area of 50 cm2. It has been
suggested that inhibitory control demands created by the nature of these incongruent trials drives
the observed relationship between ANS acuity and symbolic math (Fuhs & McNeil, 2013; Gilmore
et al., 2013; Negen & Sarnecka, 2015; Soltész, Szucs, & Szucs, 2010). To accurately judge numerosity
on incongruent trials, participants may need to inhibit a response based on surface area or another
stimulus feature typically confounded with numerosity, and focus on the numerosity of the stimulus
despite the incongruity. Thus under this proposal the relationship between inhibitory processes and
math is masked as a correlation between ANS and math. While this is an interesting possibility, both
congruent and incongruent trials have been found to correlate with symbolic math in a number of
data sets (e.g., Keller & Libertus, 2015; Libertus et al., 2013; Soto-Calvo et al., 2015).

Many researchers are coming to appreciate that it is not possible to perfectly control for non-
numerical attributes of a stimulus array (e.g., DeWind, Adams, Platt, & Brannon, 2015; Leibovich &
Ansari, 2016). However, the response to this conundrum has differed. Leibovich and Ansari (2016)
suggest that the impossibility of controlling for all stimulus attributes at once is problematic for any
attempt to measure ANS acuity. They argue that any observed relationship between ANS acuity and
symbolic math cannot be dissociated from potential relationships between other magnitudes and
symbolic math abilities. In contrast, DeWind and colleagues (2015) suggest that mathematical
modeling can disentangle the contributions of different stimulus attributes (see Figure 2). In their
model, all features of the stimulus, both numerical and non-numerical (i.e. total surface area, total
perimeter, density, etc.), are expressed as linear combinations of the spacing, size, and numerosity of
a dot stimulus. Accuracy on a standard numerical comparison task is analyzed as a function of not
only the numerical ratio between the dot arrays that are compared, but also as a function of the size
ratio and the spacing ratio. Using this model Starr, DeWind, and Brannon (in prep) found that
young children’s numerical acuity, but not their size or spacing acuity, was correlated with symbolic
math measures. It will be important to apply this modeling technique to data with animals and
human infants.

Another problem for assessing the relationship between ANS acuity and symbolic math is the low
reliability of ANS measures. Low ANS reliability has in fact led some researchers to challenge the
enterprise of correlating ANS acuity with math ability (Clayton, Gilmore, & Inglis, 2015; Smets,
Sasanguie, Szücs, & Reynvoet, 2015). When participants were given the standard numerosity
comparison task used to measure ANS acuity with two different stimulus sets that control for
non-numerical attributes in different ways, performance was not significantly correlated for the two
stimulus sets (Clayton et al., 2015; Smets et al., 2015). However, DeWind and Brannon (2016) re-
analyzed the data collected by Clayton et al. (2015) with the model described above, and found that
ANS acuity was actually correlated for the two stimulus sets, although the correlation coefficients
were not very high. These findings collectively call for a deeper investigation of how stimulus
variables (e.g., range of numerosities, range of surface area, and density) influence ANS acuity
estimates, and how the choice of stimulus controls influences correlations between the ANS and
symbolic math. A gold standard for the assessment of the non-numerical features of a dot stimulus
will lead to greater consistency in the literature, and may help resolve whether ANS acuity and
symbolic math are fundamentally linked.

Another possible source of conflicting findings is the possibility that the relationship may
change over development, or with level of symbolic math skill (Castronovo & Göbel, 2012;
Halberda et al., 2012). Indeed, in a number of studies the relationship between ANS acuity and
symbolic math is much stronger in children than adults (Fazio et al., 2014; Inglis, Attridge,
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Batchelor, & Gilmore, 2011). It is also possible that ANS acuity change maps onto periods of
rapid symbolic math improvement, such as during late infancy or during the preschool years. For
example, Shusterman, Slusser, Halberda, and Odic (2016) found that change in ANS acuity
coincided with improved number word knowledge. A greater understanding of the trajectory
of ANS acuity change over the course of development could clarify this point. There is also
evidence that the relation between ANS acuity and symbolic math may differ as a function of
math skill during early schooling. In a longitudinal study, ANS acuity predicted symbolic math
ability only for children in the 25th percentile of the distribution of math scores, whereas math
language ability predicted math scores of the 50th- 75% percentile of this distribution (Purpura &
Logan, 2015). Consistent with that finding, Bonny and Lourenco (2013) tested 3–5 year olds on a
dot comparison task and the TEMA-3, a standardized symbolic math test. The authors found
that the correlation between performance on these two measures varied with level of symbolic
math ability. In children with low math scores there was a stronger correlation between their
performance on the dot comparison task and the TEMA-3 than for children who had a high

Figure 2. A stimulus space created by plotting the log of size, numerosity, and spacing of dot stimuli along the x, y, and z axes.
Any dot stimulus can be represented in this space as a linear combination of the values along these cardinal axes. Figure from
(Park, DeWind, Woldorff, & Brannon, 2015).
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TEMA-3 score. Interactions between the level of math knowledge a child brings to the experi-
ment and ANS acuity could also be a cause of the some of the differential findings in the
literature.

Discrepant findings may also result from the diversity in measurements used to operationally
define symbolic math. It is unlikely that all types of symbolic math skills are correlated with ANS
acuity. When researchers refer to math, they can be referring to any number of math problem types,
and usually these types are presented in combination on a standardized test. On the Test of Early
Mathematics −3, a standardized symbolic math test used with young children, ANS acuity is
correlated with informal, but not formal mathematics questions (Libertus et al., 2013). Formal
math questions involve reading and writing numerals, while informal questions included counting
the number of objects on a page, or symbolic number comparison. Using a longitudinal design, Toll,
Van Viersen, Kroesbergen, and Van Luit (2015) found that growth in non-symbolic comparison
ability was a predictor for math fluency of arithmetic facts in first grade, suggesting ANS ability is
foundational for early arithmetic. However, the authors found symbolic comparison skills to be the
best predictor of other basic math skills, such as math word problems. These findings highlight the
complexity of the interaction between symbolic and non-symbolic math skills during the beginning
of formal math training.

To complicate matters further, a correlation between complex math skills and ANS acuity in
adults points to the possibility that the ANS continues to support formal math skills as a child
progresses through math education. This would indicate that the specific math skills linked to the
ANS change over time. In college students ANS acuity is correlated with the mathematical section of
the SAT, a college entrance exam that includes many formal math abilities. This result holds even
when controlling for performance on the verbal portion of the SAT (Halberda et al., 2012; Libertus
et al., 2012). Geary and colleagues (2015) found that ANS acuity is positively correlated with specific
algebra skills in 9th grade students. ANS acuity was a significant predictor for accuracy of placing a
point in the coordinate plane and for accuracy in evaluating simple algebraic expressions, but not for
remembering algebra equations. Similar to the findings with algebra, Lourenco et al. (2012) exam-
ined how approximate magnitude representations could be related to specific forms of more
advanced math, namely complex calculation and geometry. The authors found that ANS precision
was correlated with complex calculation, while performance discriminating the total area of an array
of dots was correlated with geometry scores. This result implicates a more complex and longstanding
relationship between discrete and continuous magnitude representations and math into adulthood.
Often, math skills as a general construct can be too broad of a measure to determine the nature of
the relationship between the ANS and symbolic math abilities. By dissecting math skills into
different components researchers may be able to ascertain which skills are influenced by ANS acuity.

Mechanisms of the ANS and symbolic math relationship

As the field determines the extent of the relationship between the ANS and symbolic math, we must
simultaneously move beyond establishing a correlation to understanding the reason why such a
correlation might exist. How is the ability to make fuzzy, inexact numerical judgments related to our
ability to calculate the orbital trajectories of planets, or more simply, to learn the meaning of “2”?
Does ANS acuity influence only specific aspects of symbolic math performance, such as the under-
standing of ordinality? Does ANS acuity facilitate the acquisition of early math only as a child, or
have input throughout the lifespan? Does ANS acuity influence more complex aspects of symbolic
math beyond addition and subtraction?

One prominent mechanistic hypothesis is that sharper ANS acuity facilitates the acquisition of
early number word representations in young childhood through understanding of the cardinal
principle. The cardinal principle is a major milestone in children’s acquisition of the verbal counting
system, and specifies that the number of objects in a set refers to the last number produced when
counting the objects in that set. In two recent studies with preschool children the relationship
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between ANS acuity and early symbolic math achievement was fully mediated by a child’s under-
standing of the cardinal principle (Chu et al., 2015; van Marle et al., 2014). Relatedly, a longitudinal
study by Shusterman et al. (2016) found that improved ANS acuity coincided with the under-
standing of the cardinal principle. Thus, increased ANS acuity may facilitate acquisition of the
cardinal principle.

The idea that ANS acuity impacts learning of the cardinal principal is at odds with the proposal
that children only come to map approximate number representations onto number words after
learning the cardinal principle (Carey, 2009; Le Corre & Carey, 2007). However, there is growing
evidence that number words are mapped onto ANS representations before children have fully
grasped the cardinal principle (Huang, Spelke, & Snedeker, 2010; Odic, Le Corre, & Halberda,
2015; Pinhas, Donohue, Woldorff, & Brannon, 2014; Wagner & Johnson, 2011). Pinhas and
colleagues recorded event-related potentials (ERPs) as 3- to 5-year-old children heard the words
one, two, three or six and simultaneously looked at pictures of 1, 2, 3, or 6 objects (See Figure 3). On
half the trials the auditory number word was incongruent with the number of visual objects, and
congruent on the other half. Children with the least number-word knowledge did not show any ERP
incongruency effects, whereas those with intermediate and high number-word knowledge showed an
enhanced, negative-polarity incongruency response (Ninc) over centro-parietal sites from
200–500 ms after the number-word onset. This negativity was followed by an enhanced, positive-
polarity incongruency effect (Pinc) that emerged bilaterally over parietal sites at about 700 ms.
Moreover, children with the most number-word knowledge showed a numerical distance effect in
the Pinc (larger for greater compared to smaller numerical mismatches). Thus, they showed a larger
Pinc when the numerical disparity between the auditory number word and the visual object array was
greater. Critically, a similar modulation of the Pinc from 700–800 ms was found in children with
intermediate number-word knowledge. These results suggest that children map number words onto
ANS representations before they fully master the verbal count list.

The ERP findings are consistent with behavioral studies that suggest children map number words
to ANS magnitude representations before learning the cardinal principle (e.g., Odic et al., 2015).
Thus ANS representations may play some role in children’s acquisition of the verbal counting
system. However, if facilitating number word acquisition were the only function ANS acuity played
in symbolic math ability then we might expect the relationship to completely dissipate by late
childhood once number words are automatized. While the relationship may get weaker over time,
a positive correlation between the ANS and symbolic math skills has been demonstrated in multiple
adult samples (e.g., DeWind & Brannon, 2012; Halberda et al., 2012).

Another proposed mechanistic explanation for the relationship between ANS acuity and complex
calculation is that the ANS could function as an online form of error detection (Feigenson, Libertus,
& Halberda, 2013; Lourenco et al., 2012). As adults or children perform calculations underlying
magnitude representations of number could provide an estimate of the correct solution to the
problem, allowing the correct rejection of grossly inaccurate results. Adults and children with a
more accurate ANS would be able to more adeptly reject incorrect solutions, and therefore would
have higher accuracy when solving calculation problems. Similarly, online error detection should be
tested as a potential explanation for the mechanism by which approximate arithmetic training
enhances symbolic arithmetic in training studies (Park and Brannon, 2013, 2014). This proposal
merits further research to establish experimental support.

While there is building evidence that approximate arithmetic training enhances symbolic arith-
metic skill, it is less clear whether numerosity comparison training has a similar influence. Park and
Brannon (2014) found no evidence for improved symbolic arithmetic after numerosity comparison
training with adults, however, Hyde and colleagues (2014) did find evidence that brief exposure to
numerosity comparison enhanced arithmetic fluency in young children. If in fact approximate
arithmetic training is superior to numerosity comparison for enhancing symbolic arithmetic, a
possible mechanism for the transfer is the functional isomorphism between approximate non-
symbolic arithmetic and symbolic arithmetic. Young children are capable of solving non-symbolic
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approximate addition, subtraction, multiplication, division, and even addend-unknown algebra
problems well before they learn how to perform these operations with Arabic numerals (Barth,
Baron, Spelke, & Carey, 2009; Barth et al., 2006, 2005; Kibbe & Feigenson, 2015; McCrink & Spelke,
2016; McCrink & Wynn, 2004). When a mathematical operation is performed using only non-
symbolic quantities, and without symbols, the meaning of the operation may become more explicit.
For example, when solving a non-symbolic approximate arithmetic problem, two arrays are hidden
in the same location. Repeated enactment of the operation may thus facilitate a conceptual under-
standing of addition as the combining of two quantities. Supporting this idea, Pinheiro-Chagas et al.
(2014) found that performance on an approximate arithmetic task fully mediated the effects of non-
symbolic comparison on a test of symbolic addition, subtraction and multiplication. Thus training
approximate arithmetic may allow children, and even adults, to anchor arithmetic and algebra
operations conceptually.

There are a host of alternative domain general explanations for both the correlation between ANS
acuity and symbolic mathematics and the approximate arithmetic training effect. As Park and
Brannon (2013, 2014) discuss, there are notable working memory demands in the approximate
arithmetic training task. Although they attempted to control for the possibility that approximate
arithmetic benefits symbolic arithmetic by including a working memory control training task and a
short-term memory pre- post-test, this possibility remains important given that working memory is
known to be an important factor in math performance (e.g., Geary & Brown, 1991). Thus, future
work should continue to explore the possibility that approximate arithmetic facilitates symbolic
mathematics via domain general mechanisms such as working memory.

Finally, brain-imaging techniques may provide another avenue into understanding the mechan-
isms that drive the relationship between ANS acuity and symbolic math. Neuroimaging data analysis
techniques such as Multi-Voxel Pattern Analysis (MVPA) or Representational Similarity Analysis
allow for a nuanced look at how the brain represents number, both symbolically and non-symbo-
lically. If ANS and symbolic number tasks recruit overlapping brain regions, then training on one
may result in neural changes that benefit both. Future studies should test this hypothesis by
combining cognitive training paradigms with functional brain imaging methods to uncover how
the brain changes in response to ANS training (Bugden, DeWind, & Brannon, 2016).

Conclusion and future directions

In this article, we first reviewed properties of the ANS through research that examined the numerical
abilities of human infants and non-human primates. We then discussed five lines of evidence that
suggest there is a meaningful relation between ANS acuity and symbolic math abilities, and high-
lighted potential reasons for conflicting findings on the nature of this relationship. Finally, we
explored mechanistic explanations for the relation between ANS ability and symbolic math skills.
As a field we are only beginning to develop clear testable hypotheses about the mechanisms by which
ANS representations could facilitate symbolic numerical operations, but some early ideas have
emerged including ANS acuity influencing the acquisition of number words, ANS acuity grounding
symbolic arithmetic by facilitating error detection during arithmetic operations, approximate arith-
metic working to prime a conceptual understanding of arithmetic, and the possibility that shared
neural resources allow training on non-symbolic arithmetic to enhance symbolic arithmetic perfor-
mance. Many outstanding questions remain.

An important caveat is that even if ANS acuity accounts for unique variance in symbolic math, it
is likely that other variables account for equal or greater variance. Parental input (Berkowitz et al.,
2015; Casey, Dearing, Dulaney, Heyman, & Springer, 2014; Maloney, Ramirez, Gunderson, Levine, &
Beilock, 2015; Ramani, Rowe, Eason, & Leech, 2015) teacher quality (Beilock, Gunderson, Ramirez,
& Levine, 2010; Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006), and quantity of math-
talk (Gunderson & Levine, 2011; Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010) have
all been shown to influence math readiness in early school years and likely account for a larger
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percentage of the variance in math performance compared to ANS acuity. Additionally, early
symbolic math skills are important predictors of later math success. For example, in a large scale
cross sectional study (N = 1391) elementary school students in grades 1–6 were tested on a variety of
symbolic and non-symbolic math tasks, and performance on these tasks was used to predict
arithmetic skills. The best predictor of arithmetic skills changed by grade level, with numeral
ordering increasing in predictive power as children aged, while performance on a number line
estimation task predicted more variance in grades one and two. Performance on an ANS dot
comparison task did not predict unique arithmetic skill variance at any grade level (Lyons et al.,
2014). Thus we do not argue that the ANS is the sole or most important contributor to variability in
math, but instead we seek to determine whether ANS acuity accounts for any of the variance in
symbolic math ability and to define the mechanisms of this relationship.

Finally, there are important educational implications for this work. If the ANS is indeed founda-
tional for math skills, then finding ways to improve ANS acuity could contribute to a suite of tools to
improve math skills. This idea is not new and many early math interventions incorporate number
sense training into a larger set of tools (Clements & Sarama, 2011; Kuhn & Holling, 2014). As we
learn more about how abstract cognitive skills build upon evolutionarily ancient precursor abilities,
we hope that ultimately we can harness these foundational skills to benefit mathematical education
(Obersteiner, Reiss, & Ufer, 2013; Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009; Wilson,
Revkin, Cohen, Cohen, & Dehaene, 2006). While efforts to increase ANS acuity alone will be
insufficient, this foundational skill could be an important component in building a multifaceted
approach to improving math readiness in children at risk for poor math outcomes.
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