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ABSTRACT 
The excitation of multiple surface-plasmon-polariton (SPP) waves guided by the interface of a metal and a one-
dimensional photonic crystal in the grating-coupled configuration was studied both experimentally and theoretically. 
Only p-polarized incident light was considered in the visible and near-infrared regimes. When the absorptance was 
plotted against the angle of incidence, the excitation of an SPP wave was indicated by an absorptance peak whose 
angular location did not change with the number of periods (beyond a threshold) of the photonic crystal. A decrease 
in the period of the metal grating resulted in shifting the excitation of the SPP waves to smaller wavelengths.  
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1. INTRODUCTION 

A surface plasmon-polariton (SPP) wave is an evanescent surface wave whose propagation is guided by the 
interface of a metal and a dielectric material.1 SPP waves have been studied intensively in recent years for a wide 
range of potential and actual applications such as chemical sensors,2 biological sensors,3 photovoltaics,4-7 photo-
electrochemical cells,8 solar fuel production,9 and solar thermal photovoltaics.10  

Both the metal and the dielectric material are conventionally taken to be homogeneous. SPP waves can only be 
excited by p-polarized light when light is incident parallel to the grating vector of a one-dimensional (1D) metallic 
grating.1 Furthermore, only a single SPP-wave mode can be excited at a specific free-space wavelength λo. The 
excitation of only a single p-polarized SPP-wave mode seriously limits this techinique from being a viable choice 
for enhancement of light harvesting in solar cells, because incident s-polarized light is inefficiently used. Our recent 
theoretical11  and experimental12 studies have shown that multiple SPP-wave modes of both linear polarization states 
can be excited at the interface of a 1D gold grating and a 1D photonic crystal. Gold gratings with a fixed period but 
different depths and duty cycles were used to excite multiple SPP-wave modes. As expected, the absorptance of the 
metal-grating/photonic-crystal structure is highly sensitive to the grating profile. We present here the results of our 
investigations on the effect of grating period on the excitation of multiple SPP-wave modes. 
 

2. MATERIALS AND METHODS 

Gold gratings were fabricated as described in detail elsewhere.13 In brief, ZEP520A photoresist (Zeon,Tokyo) was 
spin cast onto a silicon wafer at 4000 rpm. The silicon wafer was then patterned by electron-beam lithography at 100 
keV on ZEP520A photoresist and developed in N-amyl acetate for 180 s, followed by immersion in  a solution of 
isopropanol:methyl iso butyl ketone (8:1) and then rinsing with water. After development, the photoresist yielded 
the inverse pattern of the desired gold grating. The pattern in the photoresist was transferred to a silicon wafer by 
inductively coupled reactive ion etching on a Versalock 700 (Plasma-Therm, St. Petersburg, FL) with pure chlorine 
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Figure 2. TEM image of a cross-section of a three-period-thick photonic crystal backed by a gold grating with a period of ~300 
nm. The thickness of each dielectric layer in the photonic crystal is ~52 nm except for the ninth layer in each period, which is ~80 
nm in thickness. 
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The refractive index of every layer, whether dielectric or metallic, was measured with an RC2 spectroscopic 
ellipsometer (Woollam, Lincoln, NE) as a function of λo. For that purpose, a layer of the specific material was 
deposited on either a glass slide or a polished silicon wafer. The measured relative permittivities of all nine dielectric 
layers present in the photonic crystal are presented in Fig. 3(a), and  that of gold in Fig. 3(b). 

Reflectance measurements were performed on a Lambda 950 UV-Vis (Perkin Elmer, Waltham, MA) with a 
Universal Reflectance Accessory. Measurements were performed in steps of 1 nm for λo  and 1º for the angle of 
incidence θ. 
 

 
 

Figure 3. (a) Relative permitivity as a function of λo  of all dielectric layers; the label (1) denotes the layer closest to the metal 
grating, the label (9) denotes the layer farthest away from the gold within a given period, and the intermediate layers are 
numbered in the order in which they appear betwen layers labeled (1) and (9). (b) Real and imaginary parts of the relative 
permittivity of an optically thick gold film as a function of λo . 
  
 

3. RESULTS AND DISCUSSION 
 
The specular reflectance R0p and the total reflectance Rp of a photonic crystal backed by a gold grating were 
calculated for p-polarized incident light using the rigorous coupled wave approach (RCWA),11 when the period of 
the grating was 308 nm. The number of terms in the expansion of field phasors in terms of Floquet harmonics and 
that of the permittivity as a Fourier series was taken to be 31. The protuberances of the grating were taken to be of 
sinousoidal shape. According to the calculations, the non-specular components of the total reflectance in the 
considered spectral regime were very small and the metal grating was thick enough to prevent transmission across 
itself; therefore,  the absorptance Ap = 1–R0p. As previous work12 has shown that the gratings with protuberance near 
50 nm in height (as is the case in this work) do not assist in the excitation of s-polarized SPP-wave modes, 
calculations were not made for  s-polarized incident light. 

The measured absorptance Ap is plotted in Fig. 4 as a function of the angle of incidence θ, when the period of 
the grating is either ~300 nm or ~350 nm, and λo = 850 nm. As the peak at  θ ≅ 35o in Fig. 4(a) is independant of the 
thickness of the photonic crystal, it represents the excitation of a p-polarized SPP-wave mode. However, no 
waveguide modes or SPP-wave modes are excited  when the period of the grating is 300 nm because no absorptance 
peaks are present in Fig. 4(b). 
 

(a) (b)
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Figure 6. Measured absorptance Ap as a function of the angle of incidence θ  of  a three-period-thick photonic crystal backed by a 
gold grating with a period of either ~300 nm or ~350 nm, when λo = 575 nm.   
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Figure 6 shows the plot of measured absorptance Ap in relation to the angle of incidence θ  for a three-period 

thick  photonic crystal backed by a grating with a period of either 350 nm or 300 nm, when λo =  575 nm.   Multiple 
peaks show that   multiple guided modes (either SPP or waveguide) were excited in both samples. However, the 
grating with the smaller period leads to greater absorptance at shorter wavelengths. 

No absorptance peaks are observed at infrared wavelengths when the grating period is smaller (Figure 4), but 
absorptance peaks appear at shorter wavelengths (Figures 5 and 6). The grating with the larger period (350 nm) 
exhibits more absorptance peaks  at the same wavelengths. This shows that the decrease in the period of the grating 
shifts the SPP-wave modes to shorter wavelengths; however, the decrease in the period also results in higher 
efficiency of excitation.   

  
4. CONCLUDING REMARKS 

 
One-dimensional photonic crystals backed by gold gratings of different periods were used to study the effect of the 
period of the grating on the excitation of p-polarized SPP-wave modes. Multiple SPP-wave modes with distinct 
characteristics were excited using two different gratings; however, the grating with the smaller period supports 
multiple SPP-wave modes that are shifted to smaller wavelengths relative to the grating with the larger period. 
Multiple SPP-wave modes are expected to provide a route to enhance the efficiency of photovoltaics if incorporated 
into a thin-film solar cell or planar concentrator system. 
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