Photocatalytic Hydrogen Evolution from Hexaniobate Nanoscrolls and Calcium Niobate Nanosheets Sensitized by Ruthenium(II) Bipyridyl Complexes

Kazuhiko Maeda,^{†,‡} Miharu Eguchi,[‡] Seung-Hyun Anna Lee,[‡] W. Justin Youngblood,[‡] Hideo Hata,[‡] and Thomas E. Mallouk*,[‡]

Japan Society of Promotion Science, and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received: January 28, 2009; Revised Manuscript Received: February 26, 2009

Hexaniobate nanoscrolls (NS-H₄Nb₆O₁₇) and acid-restacked calcium niobate nanosheets (R-HCa₂Nb₃O₁₀) were compared as oxide semiconductors in photocatalytic assemblies for H₂ production using ethylenediamine-tetraacetic acid (EDTA) as a sacrificial electron donor and platinum (Pt) nanoparticles as catalysts. Ru(bpy)₃²⁺ and Ru(bpy)₂(4,4'-(PO₃H₂)₂bpy)²⁺ (bpy = 2,2'-bipyridine) were employed as visible light sensitizers (abbreviated as Ru²⁺ and RuP²⁺, respectively). RuP²⁺, which is anchored by a covalent linkage to the NS-H₄Nb₆O₁₇ surface, functions more efficiently than the electrostatically bound Ru²⁺ complex, because of more efficient electron injection from the excited sensitizer to NS-H₄Nb₆O₁₇. RuP²⁺-sensitized NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀ both produce H₂ photocatalytically using visible light ($\lambda > 420$ nm) with initial apparent quantum yields of 20–25%. At the optimum sensitizer concentration and Pt loading, the photochemical hydrogen evolution process is primarily limited by the efficiency of light absorption and charge injection from the oxide semiconductor particles. The dependence of the hydrogen evolution rate on Pt loading suggests that the scavenging of conduction band electrons by Pt is substantially faster than charge recombination or EDTA reduction of the oxidized sensitizer under optimized conditions.

Introduction

Dye-sensitization of wide-gap semiconductor particles, which was demonstrated by Gerischer in 1972,¹ has since been extensively studied as a potential means of producing H₂ from sunlight and water.^{2–11} Semiconductor particles mediate the transfer of electrons from photoexcited dye molecules to catalytic species such as platinum (Pt) nanoparticles, where the reduction of water to H₂ competes kinetically with back electron transfer to oxidized dye molecules. The quantum efficiency of dye-sensitized H₂ production is thus strongly dependent on the semiconductor employed, as well as the sensitizer and the catalyst.^{2–4,5b,6,7b,9b,10b,11}

Particulate semiconductors that have been studied in these systems are usually "bulk-type" metal oxide particles (such as titanium dioxide), although some anisotropic nanoparticles, such as a carbon nanotubes, have been recently reported as building blocks for dye-sensitized H₂ production.¹⁰ Very recently, we reported that single crystalline nanoscrolls made by acid exchange of potassium hexaniobate (NS-H₄Nb₆O₁₇) can be sensitized by Ru^{2+.11} The negatively charged nanoscrolls bind the cationic Ru^{2+} complex, and H_2 is produced from aqueous ethylenediaminetetraacetic acid (EDTA) solutions under visible light ($\lambda > 420$ nm) even without a covalent linkage between the sensitizer and the nanoscroll surface. Dye-sensitized nanoscrolls catalyzed by Pt nanoparticles are more active for H₂ production than analogous composites based on lamellar hexaniobate particles or P25 titania, consistent with efficient mediation of electron transfer by the single-crystalline oxide scrolls. However, the competition of EDTA and Ru^{2+} for

adsorption sites on the nanoscroll surface limits the quantum yield and turnover number in these systems.

Among ruthenium polypyridyl complexes, phosphonic acidmodified derivatives have been found to be most effective for applications such as dye-sensitized solar cells¹² and photocatalysis, especially in aqueous media.^{9a,b} Choi et al. have examined the effects of anchoring groups on sensitized H₂ production using [Ru(bpy)₃]²⁺ derivatives.^{9b} RuP²⁺ was the most effective of the Ru-based sensitizers they examined. It is thus of interest to compare electrostatic vs covalent anchoring of Ru²⁺ and RuP²⁺ in the NS-H₄Nb₆O₁₇ system for visible-lightdriven H₂ production from aqueous EDTA solutions.

A Dion–Jacobson type perovskite, $ACa_2Nb_3O_{10}$ (A = H or K),¹³ has been studied by several researchers as a photocatalyst and a photoelectrode for UV light-driven water splitting.14-19 The structure of KCa₂Nb₃O₁₀ is schematically illustrated in Figure 1A, along with that of K₄Nb₆O₁₇ (Figure 1B).^{13,20} KCa₂Nb₃O₁₀ consists of negatively charged calcium niobate sheets that stack along the b axis to form a two-dimensional layered structure, in which K⁺ cations are located between the triple perovskite layers.^{13c} Upon photoexcitation, electrons and holes are generated in the perovskite blocks, causing redox reactions with reactant molecules adjacent to the layers. Acid exchange of KCa₂Nb₃O₁₀ produces HCa₂Nb₃O₁₀, which has a higher rate of H₂ production from aqueous methanol due to the hydration of interlayer galleries.14,18 HCa2Nb3O10 is one of the most active niobate photocatalysts,^{14a} and it can be exfoliated to unilamellar crystalline sheets by reaction with bulky base molecules.16-19,21 The nanosheet-based materials exhibit enhanced activity for H2 production, most likely because of larger specific surface area and smaller crystallite size.^{16a} It is thus expected that crystalline Ca₂Nb₃O₁₀⁻ nanosheets will function as effective electron transfer mediators for dye-sensitized H₂ production, as in the case of hexaniobate nanoscrolls.

^{*} To whom corresponding author should be addressed. Phone: +1-814-863-9637. Fax: +1-814-863-8403. E-mail: tom@chem.psu.edu.

[†] Japan Society of Promotion Science.

^{*} The Pennsylvania State University.

Figure 1. Schematic illustration of the structures of (A) $KCa_2Nb_3O_{10}$ and (B) $K_4Nb_6O_{17}$.

The present paper compares two different kinds of exfoliated lamellar niobates (derived from KCa₂Nb₃O₁₀ and K₄Nb₆O₁₇) and ruthenium sensitizers (Ru²⁺ and RuP²⁺) as photocatalysts for dye-sensitized H₂ production from water-containing EDTA as an electron donor under visible light ($\lambda > 420$ nm). The efficiency of charge injection and photocatalytic H₂ evolution are compared, and their dependence on the loading of RuP²⁺ and Pt provides insight into the relative rates of electron transfer and recombination reactions.

Experimental Section

Preparation of Hexaniobate Nanoscrolls and Restacked **Calcium Niobate Nanosheets.** $K_{4-x}H_xNb_6O_{17}$ ($x \approx 2$) and HCa₂Nb₃O₁₀ powders were made as described in our previous papers.^{11,18} $K_{4-x}H_xNb_6O_{17}$ ($x \approx 2$) and $HCa_2Nb_3O_{10}$ were exfoliated using aqueous tetra(n-butyl)ammonium hydroxide (TBA⁺OH⁻, Alfa Aesar, 40 wt % in H_2O) at room temperature. Nanoscrolls were obtained by shaking $K_{4-x}H_xNb_6O_{17}$ ($x \approx 2$) in aqueous TBA⁺OH⁻ solution (8.0 wt %) for 1 day.¹¹ To exfoliate HCa2Nb3O10, the powder was shaken in aqueous TBA⁺OH⁻ solution (ca. 7.3 mM) for 1 week according to the method of Ebina et al.¹⁶ In each case, the resulting suspension was centrifuged, and the precipitate was discarded, yielding a colloidal suspension of nanoscrolls or nanosheets. The colloids were restacked by adding aqueous hydrochloric acid (2.5 M). The resulting precipitate was then rinsed several times with pure water to remove excess HCl, followed by drying in an oven at 333 K overnight and grinding into a powder using a mortar and pestle. Energy dispersive X-ray spectroscopy revealed that the acid-precipitated colloids contained only a small amount of residual potassium, with K/Nb ratios of 0.01-0.05. The final products are thus abbreviated below as $NS-H_4Nb_6O_{17}$ (NS = nanoscroll) and R-HCa₂Nb₃O₁₀ (R = restacked).

Modification with Platinum Nanoparticles. Nanoparticles of platinum (Pt) as catalysts for H_2 evolution were loaded by an in situ photodeposition method²² onto the external surface of the as-prepared materials using H_2PtCl_6 as described in our previous paper.¹¹ The loading of Pt was 0.3 wt % unless otherwise stated.

Adsorption of Sensitizers. $[Ru(bpy)_2(4,4'-(PO_3H_2)_2bpy)](PF_6)_2$ was synthesized by the method of Schmehl et al.²³ and was used as a visible light sensitizer for H₂ production. For comparison, $Ru(bpy)_3Cl_2$ (99.95%) was purchased from Aldrich and was used without further purification. The structures of the two complexes are compared in Figure 2.

The spectroscopic and electrochemical properties of RuP^{2+} and Ru^{2+} have been reported previously^{12c,23} and are summarized in Table 1.

The Ru²⁺-based complexes were adsorbed onto the surface of Pt-loaded NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀ at room temperature. The solid complex was dissolved in methanol or H₂O, and the Pt-loaded samples were dispersed in an aqueous solution containing the Ru²⁺-based sensitizers (pH \approx 5.5) under continuous stirring in the dark to establish adsorption—desorption equilibrium. After 1 h, the solid was separated from the suspension by centrifugation, and the resulting supernatant was then analyzed by using a UV—visible spectrometer (Hewlett-Packard, 8452A diode array spectrophotometer). The amount of Ru²⁺-based complex adsorbed was calculated from the difference in absorbance between the initial solution and the supernatant. The resulting solid sample was washed with H₂O several times, and was dried in an oven at 333 K overnight.

Characterization of Materials. Powder X-ray diffraction (XRD) patterns were obtained with a Philips X'Pert MPD diffractometer using Cu K α radiation, and transmission electron micrography (TEM) was obtained using a Jeol JEM-1200EX II microscope. The Brunauer, Emmett, Teller (BET) surface area was measured using a Micromeritics ASAP 2010 instrument at liquid nitrogen temperature. Before nitrogen adsorption isotherms were acquired, the samples were evacuated at 353–363 K for at least 24 h.

Steady-State Luminescence Measurements. Steady-state luminescence spectra were acquired at room temperature in front-face detection mode under 450 nm excitation using a Spex Fluorolog F212 fluorimeter. The composition of the suspension was identical to that used to measure visible-light-sensitized hydrogen production, as will be described below. The scan rate was 1 nm s⁻¹.

Sensitized Hydrogen Production Reaction. The reaction was performed by dispersing 5.0 mg of the sample with adsorbed Ru²⁺-based sensitizer in an aqueous solution (2.0 mL) containing 0.01 M EDTA using a Pyrex reaction cell (10 mL capacity) sealed with a rubber septum unless otherwise stated. EDTA was used as a sacrificial electron donor^{5d} in order to study the photochemical hydrogen evolution half-reaction without the possibility of Pt-catalyzed H₂ oxidation by the oxidized electron donor. Because the ultimate goal of this work is to develop visible light water splitting systems, the initial pH of the solution was fixed at 5.5. At pH 5-6, O₂ evolution catalysis on metal oxides (e.g., RuO_2 and IrO_2) coupled with $Ru(bpy)_3^{2+}$ -based sensitizers proceeds most efficiently.²⁴ The reactant solution was purged with argon for 5-10 min to remove dissolved air and was then placed in an outer glass jacket where argon gas flowed continuously, to prevent air contamination during reaction. After that, the reaction vessel was irradiated with a 300-W xenon lamp fitted with a cutoff filter ($\lambda > 420$ nm). Under these conditions, the NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀ components do not undergo photoexcitation because the band gaps are too wide to absorb visible photons.^{14,25} The evolved gases were analyzed by gas chromatography with a thermal conductivity detector and molecular sieve 5A columns at ambient temperature. The reproducibility of the rate of H₂ evolution in this system was confirmed to be within $\sim 20\%$ under the same reaction conditions.

The turnover number (TON) for H_2 production with respect to the sensitizer was estimated as

$$TON = 2H/S \tag{1}$$

Figure 2. Structures of (A) $Ru(bpy)_2(4,4'-(PO_3H_2)_2bpy)^{2+}$ (RuP^{2+}) and (B) $Ru(bpy)_3^{2+}$ $(Ru^{2+})_3^{2+}$ $(Ru^{2+})_3^{2+}$ $(RuP^{2+})_3^{2+}$ $(RuP^{2+})_3^{2+}$ (R

TABLE 1:	Spectroscopic	and Electrochemical	Properties of RuP ²⁺	⁺ and Ru ²⁺ Co	nplexes ^a
----------	---------------	---------------------	---------------------------------	--------------------------------------	----------------------

	MLCT absorption band in H ₂ O ^{12c}				
Ru complex	maximum/nm	coefficient/M ⁻¹ cm ⁻¹	pK_{a}^{23}	$E_{(3+/2+)}/V^{9c}$	$E_{(3+/*2+)}/V^{9c}$
RuP ²⁺ Ru ²⁺	455 452	10200 14400	1.0 (pK_{a_1}) 12.0 (pK_{a_2})	1.26 1.26	-0.95 -0.86

^a Superscripts denote cited references.

where H and S represent the number of moles of H₂ produced and sensitizer used in the reaction, respectively. The factor of 2 comes from the assumption that H₂ production takes place when two protons react with electrons injected from the photoexcited sensitizer molecules.

The apparent quantum yield (AQY) was measured using the same experimental setup but with a band-pass filter ($\lambda = 450 \pm 20$ nm) and was estimated as

$$AQY(\%) = (R/I) \times 100 \tag{2}$$

where *R* and *I* represent the initial rate at which H₂ molecules are evolved and the rate at which photons impinge on the sample, respectively. We assume that one photon forms one H₂ molecule because of a current doubling effect, as discussed in more detail below. It should be also noted that the AQY values are uncorrected for reflection and scattering losses, incomplete electron injection by sensitizer molecules, and for the optical density of sensitizer in the suspension. Therefore, AQY values calculated by eq 2 represent a lower limit and likely underestimate the internal quantum yield (hydrogen yield per photon absorbed) by a factor of \sim 3–4. The flux of incident photons was measured using a power meter to be ca. 4.08 × 10¹⁹ photons h⁻¹.

Results and Discussion

Physicochemical Properties of Niobate Nanosheets and Nanoscrolls. Figure 3 shows the XRD patterns of (A) R-HCa₂Nb₃O₁₀ and (B) NS-H₄Nb₆O₁₇, along with the corresponding H⁺-exchanged lamellar materials. The XRD pattern of R-HCa₂Nb₃O₁₀ has a broad and weaker (001) diffraction peak, which is shifted to lower angle than the corresponding (002) peak in HCa₂Nb₃O₁₀. There is a complete absence of (00*l*) ($l \ge$ 2) peaks in contrast to the parent solid, indicating a much less ordered lamellar structure in the restacked material. However, (100) and (110) diffraction peaks corresponding to in-plane lattice directions are preserved in the XRD pattern of R-HCa₂Nb₃O₁₀. This indicates that the in-plane crystalline order of the Ca₂Nb₃O₁₀⁻ sheets is preserved after the exfoliationreassembling procedure. The identical behavior has been reported for $HSr_2Nb_3O_{10}$ nanosheets,²⁶ which are also in the Dion–Jacobson structural family of layered perovskites. For NS-H₄Nb₆O₁₇ (Figure 3B), a similar tendency in XRD pattern was observed; namely, three-dimensional ordering of the lamellar structure disappeared, but the in-plane crystalline order within the individual nanoscrolls persisted after the exfoliation-reassembling procedure, as reported previously.^{11,27}

TEM images of (A) R-HCa₂Nb₃O₁₀ and (B) NS-H₄Nb₆O₁₇ are shown in Figure 4. In R-HCa2Nb3O10 (Figure 4A), individual sheets with edge lengths of several hundred nanometers are randomly restacked to form larger aggregates, although there are some irregularly shaped aggregates in the product. This observation is consistent with the previous report by Osterloh et al.^{17a} The thickness of the calcium niobate perovskite layer is 1.16 nm, based on the crystallographic data.^{13b} In NS-H₄Nb₆O₁₇ (Figure 4B), on the other hand, addition of HCl to the colloidal suspension results in production of nanoscrolls with diameters of about 30 nm and lengths of several hundred nanometers.²⁷ Because the Nb₆O₁₇⁴⁻ sheets do not have mirror symmetry (i.e., the individual sheet is asymmetric), there is an intrinsic tension in the sheet, which leads to spontaneous scrolling in order to release the strain energy.^{27a} The specific surface areas of R-HCa2Nb3O10 and NS-H4Nb6O17 were 50-51 and 250–300 m² g^{-1,27b} respectively, which are much larger than those of the proton-exchanged parent solids prior to exfoliation (ca. $1-3 \text{ m}^2 \text{ g}^{-1}$).^{16,28}

It is important to examine the surface charge of semiconductor particles in the suspension, because electrostatic attraction is one of the driving forces for adsorption of charged sensitizers to the surface of a semiconductor particle. ζ -potential measurements for R-HCa₂Nb₃O₁₀ showed a trend similar to that reported previously for NS-H₄Nb₆O₁₇.¹¹ The surface of both materials is negatively charged over the range of pH 3–11, although the surface charge of R-HCa₂Nb₃O₁₀ becomes positive from pH 3.3 to 2.3; the point of zero charge (PZC) is thus estimated to be about 2.5 (see Supporting Information, Figure S1). For most "bulk-type" metal-oxides having surface hydroxyl groups (e.g., TiO₂ and Nb₂O₅), the surface charge varies from positive to negative with increasing pH because of the ionization of metal OH groups.^{4,9c,29} Although R-HCa₂Nb₃O₁₀ shows the identical tendency to the bulk-type metal oxides, the (estimated) PZC values of R-HCa₂Nb₃O₁₀ (ca. 2.5) and NS-H₄Nb₆O₁₇ (<2.7) are smaller than that of bulk Nb₂O₅ (ca. 4.1).²⁹ At pH 5–6 where these materials could catalyze overall water splitting, the surface charge of the materials is negative. Thus, sensitizers whose net charge is positive could be bound to the surface of both materials by ion exchange.

Adsorption of sensitizers on the metal-oxide surface is in general driven by both electrostatic attraction and chemical bond formation between the sensitizer and the metal oxide.^{9a} RuP²⁺ has two phosphonic acid groups from which four protons are dissociable, depending on pH.²³ At pH 5.5, two protons (one proton in each phosphonic acid group) are dissociated, and hence the net charge of RuP²⁺ is close to zero. The concentration of the predominant (uncharged) form of RuP²⁺ at pH 5.5 is approximately 100 and 10 times higher than the forms with overall +2 and -2 charge, respectively. Thus, we expect a dominant covalent interaction of this sensitizer with R-HCa₂Nb₃O₁₀ and NS-H₄Nb₆O₁₇. It has been reported that RuP^{2+} can be anchored to the surface of TiO₂ via mono-, bi-, and tridentate binding,^{9a} and one expects similar binding on the surface of the niobate particles. After adsorption of Ru²⁺-based complexes onto Pt-loaded materials, the positions of the lowangle layer lines in the diffraction patterns remained unchanged (data not shown), indicating that the complex is not intercalated into the interlayer gallery, but is adsorbed only on the external surface.

The conduction band potential of a semiconductor is one of the important parameters affecting the overall efficiency of dyesensitized H₂ production and should lie at a potential more negative than water reduction potential (<0 V vs NHE at pH 0). Several approximate formulas are available for calculating the flat band potentials (E_{FBP}) of metal-oxide semiconductors containing d⁰ and d¹⁰ metal ions from band gaps (E_g) and average electronegativities of the constituent elements.³⁰ Matsumoto used data from a large number of oxide semiconductors to obtain the empirical correlation³¹

$$E_{\rm FBP} \approx 1.23 - E_{\rm g}/2 \tag{3}$$

UV-visible diffuse reflectance spectroscopy showed that the band gap energies of R-HCa₂Nb₃O₁₀ and NS-H₄Nb₆O₁₇ are 3.50 and 3.33 eV, respectively (see Supporting Information, Figure S2). Thus, we estimate that the conduction band potential of R-HCa₂Nb₃O₁₀ is slightly more negative than that of NS-H₄Nb₆O₁₇, suggesting that electrons in the conduction band of the HCa₂Nb₃O₁₀ sample may be more rapidly scavenged by Pt catalyst particles to reduce water to H₂.

Sensitized Hydrogen Production Using Hexaniobate Nanoscrolls under Visible Light: RuP²⁺ vs Ru²⁺. We first compared the activity of the RuP²⁺-sensitized NS-H₄Nb₆O₁₇ system to the previously reported system sensitized by Ru²⁺.¹¹ Time courses of H₂ production using NS-H₄Nb₆O₁₇ sensitized by RuP²⁺ and Ru²⁺ (8.0 μ mol g⁻¹) with visible light ($\lambda > 420$ nm) are compared in Figure 5. Both systems produced H₂ with visible excitation and the amount of H₂ increased with reaction time. The fact that no reaction takes place in the dark and the TON in both systems far exceeds 1 indicates that the observed H₂ production is derived from photocatalytic cycle. As reported earlier, Ru²⁺ is an effective photosensitizer for Pt-loaded NS-H₄Nb₆O₁₇, binding to the surface by simple electrostatic attraction.¹¹ However, the activity of Pt-loaded NS-H₄Nb₆O₁₇ sensitized by RuP²⁺ was 6–7 times higher than that obtained

Figure 3. XRD patterns of (A) R-HCa₂Nb₃O₁₀ and (B) NS-H₄Nb₆O₁₇, along with reference patterns of HCa₂Nb₃O₁₀ and H_xK_{4-x}Nb₆O₁₇•*n*H₂O ($x \approx 2$).

Figure 4. TEM images of (A) R-HCa₂Nb₃O₁₀ and (B) NS-H₄Nb₆O₁₇.

using the same amount of Ru^{2+} . RuP^{2+} has a slightly smaller molar absorption coefficient of metal-to-ligand charge transfer (MLCT) band than Ru^{2+} (Table 1), and it is therefore a less efficient visible light absorber than Ru^{2+} . The higher activity of the RuP^{2+} -sensitized system is likely to be attributable to a more efficient electron injection process that originates from the strong covalent linkage between hydroxyl groups at the NS-H₄Nb₆O₁₇ surface and phosphonic acid groups of RuP^{2+} .^{9a,32}

The MLCT state luminescence of Ru^{2+} -based complexes is quenched in the presence of semiconductor particles as a result

Figure 5. Time courses of H₂ evolution from 0.3 wt % Pt-loaded NS-H₄Nb₆O₁₇ sensitized by RuP²⁺ or Ru²⁺ (8.0 μ mol g⁻¹) with visible light ($\lambda > 420$ nm). Data for Ru²⁺ are reproduced from ref 11. Reaction conditions: catalyst, 5.0 mg; aqueous EDTA solution (0.01 M, 2.0 mL); light source, xenon lamp (300 W) with a cutoff filter.

Figure 6. Luminescence spectra for 0.3 wt % Pt-loaded NS-H₄Nb₆O₁₇ sensitized by RuP²⁺ or Ru²⁺ with 450 nm excitation. The spectra were acquired at room temperature under Ar atmosphere using aqueous EDTA solution (0.01 M, 2.0 mL) containing 0.3 wt % Pt-loaded NNS-H₄Nb₆O₁₇ (5.0 mg) adsorbed with RuP²⁺ or Ru²⁺ (8.0 μ mol g⁻¹).

of electron injection into the conduction band.³³ Luminescence spectroscopy was thus employed to study quenching of the MLCT excited-state by NS-H₄Nb₆O₁₇ for RuP²⁺ and Ru²⁺. As shown in Figure 6, the luminescence intensity of the sensitizer decreased upon addition of NS-H₄Nb₆O₁₇ to the sensitizer solution in each case. Although the scattering of suspended particles may contribute to the reduction of the luminescence intensity to a certain extent, the use of silica powder, which is an insulator (i.e., no electron injection should occur), instead of NS-H₄Nb₆O₁₇ did not significantly affect the luminescence intensity. One can conclude that the observed decrease in luminescence intensity is mainly attributable to excited-state quenching via electron transfer to NS-H₄Nb₆O₁₇. The efficiency

Figure 7. Time courses of H₂ evolution from 0.3 wt % Pt-loaded NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀ sensitized by RuP²⁺ (8.0 μ mol g⁻¹) with visible light ($\lambda > 420$ nm). Reaction conditions: catalyst, 5.0 mg; aqueous EDTA solution (0.01 M, 2.0 mL); light source, xenon lamp (300 W) with a cutoff filter.

of quenching was higher for RuP^{2+} (ca. 90%) than for Ru^{2+} (ca. 50%). Preliminary time-resolved measurements showed faster luminescence decays for Ru^{2+} -adsorbed on NS-H₄Nb₆O₁₇ than in the absence of semiconductors. Very similar results have been reported by Hashimoto et al.^{33a} and Kamat et al.^{33b} for titania adsorbed with Ru^{2+} -based complexes. More efficient quenching in the RuP^{2+} -based system implies stronger electronic coupling between RuP^{2+} and NS-H₄Nb₆O₁₇ than obtained by electrostatic binding of Ru^{2+} . A primary requirement for efficient H₂ production by dye-sensitization is strong adsorption of sensitizer molecules onto the surface of the metal-oxide, because the dye excited state is typically too short lived to allow for diffusion of the molecule to the surface.^{4,9} The higher quenching efficiency observed in the RuP^{2+} -based system is consistent with its substantially higher rate of H₂ production.

The photocatalytic activity of the RuP2+/Pt-loaded NS-H₄Nb₆O₁₇/EDTA system decreased as the reaction progressed, reaching a plateau value of $30-40 \ \mu mol H_2$ (Figures 7). The same plateau was reached over a range of RuP²⁺ and Pt loadings, corresponding to a range of H₂ evolution rates (see Supporting Information, Figure S4), implying that EDTA is the limiting reagent. Indeed, only 20 μ mol of EDTA is used in the experiment, and each H₂ molecule corresponds to two electrons. The evolution of 40 μ mol H₂ therefore implies that each EDTA molecule can donate a total of four electrons. In their studies of the analogous RuP2+/Pt-loaded TiO2/EDTA system, Choi et al. reported the generation of $\sim 140 \ \mu mol H_2$ from 30 μmol EDTA,^{9b} which is consistent with our observations. To verify that the decrease in H₂ evolution rate with time corresponds to consumption of EDTA, a photolyzed RuP2+/Pt-loaded NS-H₄Nb₆O₁₇/EDTA suspension was centrifuged and was washed with water. The solid was dispersed in a fresh EDTA solution, and then the activity was tested. In the second and third runs with the same sample, hydrogen was evolved at 40-50% of the initial rate in the first run (see Supporting Information, Figure S3). The loss of activity between the first and second runs is most likely due to the fact that some of RuP²⁺ molecules bound to the oxide surface undergo hydrolytic cleavage in the EDTA solution;³⁴ the activity of this system is strongly dependent on the amount of sensitizer adsorbed (as will be shown in Figure 8). Another possibility is partial decomposition of the sensitizer during the reaction. Choi et al. have observed similar deactivation behavior in the RuP²⁺/Pt-loaded TiO₂/EDTA system.^{9a}

RuP²⁺-Sensitized Hydrogen Production under Visible Light: Hexaniobate Nanoscrolls vs Calcium Niobate Nanosheets. Time courses of H₂ production using NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀ sensitized by RuP²⁺ (8.0 μ mol g⁻¹) with visible

Figure 8. Initial H₂ evolution rate from 0.3 wt % Pt-loaded NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀ sensitized by RuP²⁺ with visible light ($\lambda > 420$ nm) as a function of the amount of RuP²⁺ added. Reaction conditions: catalyst, 5.0 mg; aqueous EDTA solution (0.01 M, 2.0 mL); light source, xenon lamp (300 W) with a cutoff filter. The amount of RuP²⁺ adsorbed is also plotted.

light ($\lambda > 420$ nm) are shown in Figure 7. Both systems produced H₂ with visible light and in the initial stage of reaction, H₂ evolution was clearly visible to the naked eye as bubbles. The initial H₂ evolution rate obtained using R-HCa₂Nb₃O₁₀ was about 1.5 times higher than that achieved by NS-H₄Nb₆O₁₇.

Figure 8 shows the initial H₂ evolution activities of the NS-H₄Nb₆O₁₇- and R-HCa₂Nb₃O₁₀-based systems as a function of the amount of RuP²⁺ sensitizer added in the preparation. The amount of RuP²⁺ adsorbed is plotted in the same figures. In both cases, the activity increased markedly with addition of RuP²⁺, reaching saturation at a certain level. The activity of the NS-H₄Nb₆O₁₇-based system at the saturated level was higher than that of R-HCa₂Nb₃O₁₀; the AQYs were calculated to be ca. 26 (for NS-H₄Nb₆O₁₇) and 22% (for R-HCa₂Nb₃O₁₀), respectively. The amount of RuP²⁺ adsorbed on the semiconductor was almost quantitative up to 40 and 8.0 μ mol g⁻¹ for NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀, respectively. The difference in the adsorption capacity between the two oxide semiconductors is primarily due to the difference in their specific surface areas.

Photochemical H₂ production in a Ru²⁺-based dye-sensitized system is ordinarily interpreted according to the following series of reactions^{9b,11}

$$*Ru^{2+} \to Ru^{2+} \tag{5}$$

$$*Ru^{2+} \rightarrow \text{semiconductor } (e^{-}) + Ru^{3+}$$
(6)

semiconductor (e⁻) + Ru³⁺
$$\rightarrow$$
 Ru²⁺ (7)

semiconductor (e⁻) + H⁺
$$\rightarrow \frac{1}{2}$$
H₂ (on Pt) (8)

$$\operatorname{Ru}^{3+} + \operatorname{EDTA}(e^{-}) \rightarrow \operatorname{Ru}^{2+} + \operatorname{oxidized} \operatorname{EDTA}$$
 (9)

AQY values calculated according to steps (4-9) were not reasonable, however, because they imply an internal quantum yield >100% at the optimized RuP²⁺ and Pt loadings. A reaction rate of 18 μ mol h⁻¹ H₂ at a flux of 4.1 \times 10¹⁹ photons h⁻¹ would correspond to an AQY value of 53%, assuming $\frac{1}{2}$ H₂ per photon. However, at the optimum sensitizer loading (12 μ mol g⁻¹ × 0.005 g/0.002 L = 30 μ M), the absorbance of the solution at 450 nm (neglecting scattering) is 0.306, meaning that only 51% of the photons are absorbed. Reflection from the front face of the cell corresponds to a $\sim 15\%$ loss and the quenching efficiency (see below) is \sim 88%. The combination of these three factors sets the maximum AQY at \sim 37% without taking scattering into account. The effect of light scattering by the semiconductor particles is more difficult to quantify, but it is not unreasonable to estimate an additional loss of 25-50% through scattering.

One possible explanation for this contradiction is that socalled "current doubling"³⁵ occurs in this system. Presumably, an intermediate radical species generated by the oxidation of EDTA (eq 10) can inject an electron into the conduction band of the semiconductor, reaction 10

oxidized EDTA (radical) \rightarrow semiconductor (e⁻) (10)

This injected electron is then consumed by reaction 7 or 8. Current doubling is not observed in the homogeneous [Ru(bpy)₃]³⁺-EDTA reaction, but it has been reported previously for semiconductor photoelectrodes where EDTA is adsorbed at the surface.³⁶ We conclude that current doubling can occur in these oxide semiconductor-based photocatalytic systems and perhaps has been overlooked previously because the AQY values are generally low. Our AQY values are thus calculated with the assumption that one photoinjected electron can produce one H₂ molecule through current doubling.

Factors Affecting the Activity for RuP²⁺-Sensitized Hydrogen Production Using NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀. When the same amount of $\operatorname{RuP}^{2+}(8.0 \,\mu\text{mol g}^{-1})$ was adsorbed onto NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀, the activity of the R-HCa₂Nb₃O₁₀-based system was about 1.5 times higher than that obtained using NS-H₄Nb₆O₁₇ (Figure 7). To examine the efficiency of electron injection from the excited-state RuP²⁺, steady-state luminescence spectra for the two systems were taken and the quenching efficiencies were compared. Table 2 lists the quenching efficiencies for the NS-H₄Nb₆O₁₇- and the R-HCa₂Nb₃O₁₀based systems, along with data for H₂ production. The quenching efficiency for the NS-H₄Nb₆O₁₇-based system is higher than that observed in the R-HCa₂Nb₃O₁₀-based system, indicating more rapid electron injection in the case of NS-H₄Nb₆O₁₇. This is consistent with the idea that the conduction band edge potential of NS-H₄Nb₆O₁₇ is more positive than that of R-HCa₂Nb₃O₁₀;

Figure 9. Initial H₂ evolution rate from Pt-loaded NS-H₄Nb₆O₁₇ sensitized by RuP²⁺ with visible light ($\lambda > 420$ nm) as a function of Pt loading. Reaction conditions: catalyst, 5.0 mg; sensitizer, 20 μ mol g⁻¹; aqueous EDTA solution (0.01 M, 2.0 mL); light source, xenon lamp (300 W) with a cutoff filter.

 TABLE 2: Luminescence Quenching Efficiencies and

 Activities for H₂ Evolution by the NS-H₄Nb₆O₁₇- and the

 R-HCa₂Nb₃O₁₀-Based system^a

material	quenching efficiency ^b /%	sensitized H_2 production activity/ μ mol h^{-1}
$\begin{array}{l} NS\text{-}H_4Nb_6O_{17} \\ R\text{-}HCa_2Nb_3O_{10} \end{array}$	$\begin{array}{c} 88\pm1\\ 64\pm2 \end{array}$	14.4 21.6

^{*a*} Reaction conditions: catalyst, 5.0 mg (0.3 wt % Pt-loaded); reaction solution, aqueous solution containing 0.01 M EDTA or 0.1 M methanol (2.0 mL). ^{*b*} Estimated based on the ratio of the luminescence intensity to the RuP²⁺ only case. ^{*c*} Initial activity sensitized by RuP²⁺ (8.0 μ mol g⁻¹) from aqueous EDTA solution (λ > 420 nm).

that is, the driving force for electron injection is larger in NS- $H_4Nb_6O_{17}$ than in R-HCa₂Nb₃O₁₀. However, it appears to be the opposite of the order of initial hydrogen evolution rates. The difference in activity may come from the different light scattering properties of the two materials; that is, the R-HCa₂Nb₃O₁₀ system harvests more light at a RuP²⁺ concentration of 8.0 μ mol·g⁻¹ than NS-H₄Nb₆O₁₇.

As the amount of adsorbed RuP²⁺ was increased, the hydrogen evolution rates of both the NS-H₄Nb₆O₁₇- and R-HCa2Nb3O10-based systems increased to a certain level, reaching saturation (Figure 8). Below this plateau value, the increase in activity corresponds to an increase in the fraction of incident light that is absorbed, a general trend in dyesensitized H_2 evolution photocatalysis.^{4,6,9b,c} The high AQY values obtained (22% for R-HCa $_2Nb_3O_{10}$ and 26% for NS-H₄Nb₆O₁₇ at each optimum RuP²⁺ loading) suggest that under these conditions photoinjected electrons are very efficiently converted to H_2 . That is, under these conditions, the rate of H_2 evolution is primarily limited by the fraction of incident light absorbed by the sensitizer and the efficiency of charge injection from the excited state. The ratio of AQY values corresponds approximately to the ratio of quenching efficiencies (88 vs 64%, Table 2) for RuP²⁺-sensitized NS-H₄Nb₆O₁₇ and R-HCa₂Nb₃O₁₀, respectively. The slightly different optimum RuP²⁺ loadings observed for NS-H4Nb6O17 and R-HCa2Nb3O10 may arise from the slightly different scattering properties of the two materials.

The fate of injected electrons in the conduction band is either to be consumed by water reduction or to recombine with the oxidized sensitizer, and the relative rates of these processes determine the quantum yield for water reduction. The high quantum yield for H_2 formation following electron transfer quenching (reaction 6) suggests that either reactions 8 or 9 are considerably faster than recombination reaction 7 under optimized conditions. While we do not yet have a quantitative measure of any of these rates, the dependence of the initial H₂ evolution rate on Pt loading (Figure 9) shows a clear volcano behavior. The drop in H₂ evolution rate with excess Pt can likely be attributed to an inner filter effect, in which excess Pt absorbs some of the light that would otherwise be absorbed by RuP²⁺. The volcano trend implies that at low Pt loading, neither reactions 8 nor 9 are fast enough to compete with reaction 7, whereas at higher Pt loading, reaction 8 is faster than 7. One can thus conclude that 9, the reaction of EDTA with the oxidized sensitizer, is slower than recombination reaction 7 and also slower than 8 under optimized conditions. The near independence of AQY values on the concentration of EDTA in the range of 0.01–0.05 M (see Supporting Information, Table S1) is consistent with this conclusion.

Several of these rates have been measured in analogous systems and from these we can estimate the order of magnitude of the rates in the case of RuP2+-sensitized NS-NS-H4Nb6O17 and R-HCa2Nb3O10. Zang and Rodgers found that EDTA reduction of $[Ru(bpy)_3]^{3+}$ in the presence of colloidal TiO₂ was second-order with a rate constant of 6.0 \pm 0.2 \times 10 6 M^{-1} s^{-1} 37 similar to the value measured for EDTA and $[Ru(bpy)_3]^{3+}$ in homogeneous aqueous solutions.³⁸ Under the conditions of our experiments (0.01 M EDTA at pH 5.5) this rate constant would correspond to a time scale of $\sim 20 \ \mu s$ for 9. We can thus conclude a shorter time scale for 7 and 8. With Pt-loaded eosinsensitized TiO₂ colloids, Moser and Gratzel measured a recombination lifetime of \sim 4 μ s,³⁹ and a similar time scale for trapping of electrons by Pt. It is thus reasonable to estimate that 7 occurs on the microsecond time scale with RuP²⁺sensitized niobates and that reaction 8 is significantly faster than reaction 7 under optimized conditions of RuP²⁺ and Pt loading. It is interesting to note that electron-hole recombination in HCa₂Nb₃O₁₀ nanosheets, which is analogous to reaction 7, has recently been observed on a much faster (as in nanoseconds) time scale by UV flash photolysis.¹⁷ Because the recombination process is second-order, however, it is likely to be much slower under the lower fluences used in continuous photolysis experiments.

Conclusions

Dye-sensitized H₂ production from water containing EDTA as a sacrificial electron donor under visible light ($\lambda > 420$ nm) was studied using hexaniobate nanoscrolls (NS-H₄Nb₆O₁₇) and acid-restacked calcium niobate nanosheets (R-HCa2Nb3O10) sensitized by $\operatorname{Ru}(\operatorname{bpy})_3^{2+}$ (Ru^{2+}) or $\operatorname{Ru}(\operatorname{bpy})_2(4,4' (PO_3H_2)_2bpy)^{2+}$ (RuP²⁺) complexes. The use of RuP²⁺ affords a higher rate of visible-light-driven H₂ production than Ru²⁺, attributed to more efficient electron injection from the MLCT excited state. Platinized NS-H₄Nb₆O₁₇ was found to be a slightly better electron transfer mediator than R-HCa₂Nb₃O₁₀, with an apparent quantum yield of $\sim 25\%$ at 450 \pm 20 nm under optimized conditions. To adapt these sensitized semiconductor systems for use with nonsacrificial electron donors or with water as the electron donor (i.e., for overall water splitting), it will be essential to maintain the high yields of charge injection and hydrogen evolution observed here but with materials that cannot catalyze the recombination of conduction band electrons or H₂ with the oxidized electron donor. Studies of analogous systems incorporating composite noble metal-metal oxide catalysts are currently in progress.

Acknowledgment. The authors thank Prof. Mark Maroncelli and Dr. Sergei Arzhantsev (Department of Chemistry, The Pennsylvania State University) for assistance in steady-state luminescence measurements. This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Energy Biosciences, Department of Energy under contract DE-FG02-07ER15911. K.M. gratefully acknowledges the support of a Japan Society for the Promotion of Science Fellowship

Supporting Information Available: ζ -potential of R-HCa₂Nb₃O₁₀ and NS-H₄Nb₆O₁₇ as a function of the pH of the suspension, results of UV-visible diffuse reflectance spectroscopy and band gap estimation, and H₂ production data for Pt-loaded R-HCa₂Nb₃O₁₀ and NS-H₄Nb₆O₁₇ sensitized by RuP²⁺ with visible light at various reaction conditions. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Gerischer, H. Photochem. Photobiol. 1972, 16, 243.

(2) Houlding, V. H.; Grätzel, M. J. Am. Chem. Soc. 1983, 105, 5695.

(3) Shimizu, T.; Iyoda, T.; Koide, Y. J. Am. Chem. Soc. 1985, 107, 35

(4) Furlong, D. N.; Wells, D.; Sasse, W. H. F. J. Phys. Chem. 1986, 90, 1107.

(5) (a) Kim, Y. I.; Salim, S.; Huq, M. J.; Mallouk, T. E. J. Am. Chem. Soc. **1991**, *113*, 9561. (b) Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. J. Phys. Chem. **1993**, *97*, 11802. (c) Saupe, G. B.; Mallouk,

T. E.; Kim, W.; Schmehl, R. H. J. Phys. Chem. B 1997, 101, 2508. (d) Hoertz, P. G.; Mallouk, T. E. Inorg. Chem. 2005, 44, 6828.

(6) Hirano, K.; Suzuki, E.; Ishikawa, A.; Moroi, T.; Shiroishi, H.; Kaneko, M. J. Photochem. Photobiol. A 2000, 136, 157.

(7) (a) Abe, R.; Hara, K.; Sayama, K.; Domen, K.; Arakawa, H. J. *Photochem. Photobiol. A* **2000**, *137*, 63. (b) Abe, R.; Sayama, K.; Arakawa, H. J. *Photochem. Photobiol. A* **2004**, *166*, 115.

(8) Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A 2003, 160, 61.

(9) (a) Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093. (b) Bae, E.; Choi, W. J. Phys. Chem. B 2006, 110, 14792. (c) Park, H.; Choi, W. Langmuir 2006, 22, 2906.

(10) (a) Li, Q.; Jin, Z.; Peng, Z.; Li, Y.; Li, S.; Lu, G. J. Phys. Chem. C 2007, 111, 8237. (b) Li, Q.; Chen, L.; Lu, G. J. Phys. Chem. C 2007, 111, 11494.

(11) Maeda, K.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E. Chem. Mater. 2008, 20, 6770.

(12) (a) Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. J. Chem. Soc., Chem. Commun. 1995, 65. (b) Gillaizeau-Gauthier, I.; Odobel, F.; Alebbi, M.; Argazzi, R.; Costa, E.; Bignozzi, C. A.; Qu, P.; Meyer, G. J. Inorg. Chem. 2001, 40, 6073. (c) Park, H.; Bae, E.; Lee, J.-J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740.

(13) (a) Dion, M.; Ganne, M.; Tournoux, M. *Mater. Res. Bull.* **1981**, *16*, 1429. (b) Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. *Inorg. Chem.* **1985**, *24*, 3727. (c) Fukuoka, H.; Isami, T.; Yamanaka, S. *J. Solid State Chem.* **2000**, *151*, 40.

(14) (a) Domen, K.; Yoshimura, J.; Sekine, T.; Tanaka, A.; Onishi, T. *Catal. Lett.* **1990**, *4*, 339. (b) Domen, K.; Ebina, Y.; Sekine, T.; Tanaka, A.; Kondo, J.; Hirosei, C. *Catal. Today.* **1993**, *14*, 479.

(15) Ebina, Y.; Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Mater. 1996, 8, 2534.

(16) (a) Ebina, Y.; Sasaki, T.; Harada, M.; Watanabe, M. Chem. Mater.
2002, 14, 4390. (b) Ebina, Y.; Sakai, N.; Sasaki, T. J. Phys. Chem. B 2005, 109, 17212.

(17) (a) Compton, O. C.; Carroll, E. C.; Kim, J. Y.; Larsen, D. S.; Osterloh, F. E. *J. Phys. Chem. C* **2007**, *111*, 14589. (b) Compton, O. C.; Mullet, C. H.; Chiang, S.; Osterloh, F. E. *J. Phys. Chem. C* **2008**, *112*, 6202.

(18) Hata, H.; Kobayashi, Y.; Bojan, V.; Youngblood, W. J.; Mallouk, T. E. *Nano Lett.* **2008**, *8*, 794.

(19) Izawa, K.; Yamada, T.; Unal, U.; Ida, S.; Altuntasoglu, O.; Koinuma, M.; Matsumoto, Y. J. Phys. Chem. B 2006, 110, 4645.

(20) Nassau, K.; Shiever, J. W.; Bernstein, J. L. J. Electrochem. Soc. 1969, 116, 348.

(21) Treacy, M. M. J.; Rice, S. B.; Jacobson, A. J.; Lewandowski, J. T. Chem. Mater. 1990, 2, 279.

(22) Kraeutler, B.; Bard, A. J. J. Am. Chem. Soc. 1978, 100, 4317.

(23) Montalti, M.; Wadhwa, S.; Kim, W. Y.; Kipp, R. A.; Schmehl, R. H. *Inorg. Chem.* **2000**, *39*, 76.

(24) (a) Harriman, A.; Pickering, I. J.; Thomas, J. M.; Christensen, P. A.
J. Chem. Soc., Faraday Trans. 1 1988, 84, 2795. (b) Hara, M.; Waraksa,
C. C.; Lean, J. T.; Lewis, B. A.; Mallouk, T. E. J. Phys. Chem. A 2000, 104, 5275. (c) Morris, N. D.; Suzuki, M.; Mallouk, T. E. J. Phys. Chem. A 2004, 108, 9115. (d) Hoertz, P. G.; Kim, Y. I.; Youngblood, W. J.; Mallouk,
T. E. J. Phys. Chem. B 2007, 111, 6945.

(25) (a) Domen, K.; Kudo, A.; Shinozaki, A.; Tanaka, A.; Maruya, K.; Onishi, T. J. Chem. Soc., Chem. Commun. **1986**, 356. (b) Domen, K.; Kudo, A.; Shibata, M.; Tanaka, A.; Maruya, K.; Onishi, T. J. Chem. Soc., Chem. Commun. **1986**, 1706.

(26) Takagaki, A.; Sugisawa, M.; Lu, D.; Kondo, J. N.; Hara, M.; Domen, K.; Hayashi, S. J. Am. Chem. Soc. **2003**, *125*, 5479.

(27) (a) Saupe, G. B.; Waraksa, C. C.; Kim, H.-N.; Han, Y. J.; Kaschak, D. M.; Skinner, D. M.; Mallouk, T. E. *Chem. Mater.* **2000**, *12*, 1556. (b) Kobayashi, Y.; Hata, H.; Salama, M.; Mallouk, T. E. *Nano Lett.* **2007**, *7*, 2142.

(28) Abe, R.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. *Chem. Mater.* **1997**, *9*, 2179.

(29) Kosmulski, M. Langmuir 1997, 13, 6315.

(30) (a) Scaife, D. E. Sol. Energy **1980**, 25, 41. (b) Ginley, D. S.; Butler, M. A. J. Appl. Phys. **1977**, 48, 2019.

(31) Matsumoto, Y. J. Solid. State Chem. 1996, 126, 227.

(32) Francisco, M. S. P.; Cardoso, W. S.; Gushikem, Y.; Landers, R.; Kholin, Y. V. *Langmuir* **2004**, *20*, 8707.

(33) (a) Hashimoto, K.; Hiramoto, M.; Lever, A. B. P.; Sakata, T. J. *Phys. Chem.* **1988**, *92*, 1016. (b) Vinodgopal, K.; Hua, X.; Dahlgren, R. L.; Lappin, A. G.; Patterson, L. K.; Kamat, P. V. J. *Phys. Chem.* **1995**, *99*, 10883.

(34) Although RuP²⁺ complexes (8.0 μ mol g⁻¹) were quantitatively adsorbed on NS-H₄Nb₆O₁₇ in the absence of EDTA, the adsorption was slightly suppressed by addition of EDTA. In the presence of 0.01 M EDTA, 7–8% of the initially adsorbed RuP²⁺ on NS-H₄Nb₆O₁₇ was found to be desorbed.

(35) Current doubling is sometimes observed when organic compounds are oxidized on semiconductor electrodes under band gap irradiation. (a) Morrison, S. R.; Freund, T. J. Chem. Phys. **1967**, 47, 1543. (b) Micka, K.; Gerischer, H. J. Electroanal. Chem. **1972**, 38, 397. (c) Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. **1977**, 99, 4667.

(36) Matsumura, M.; Ohnishi, H.; Hanafusa, K.; Tsubomura, H. Bull. Chem. Soc. Jpn. **1987**, 60, 2001.

(37) Zang, L.; Rodgers, M. A. J. J. Phys. Chem. B 2000, 104, 468.

(38) Miller, D.; McLendon, G. Inorg. Chem. 1981, 20, 950.

(39) Moser, J.; Graetzel, M. J. Am. Chem. Soc. 1984, 106, 6557.

JP900842E