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Abstract

A large empirical literature found that the correlation between insurance purchase and ex

post realization of risk is often statistically insignificant or negative. This is inconsistent with the

predictions from the classic models of insurance a la Akerlof (1970), Pauly (1974) and Rothschild

and Stiglitz (1976) where consumers have one-dimensional heterogeneity in their risk types. It

is suggested that selection based on multidimensional private information, e.g., risks and risk

preference types, may be able to explain the empirical findings. In this paper, we investigate

whether selection based on multidimensional private information in risks and risk preferences

can, under different market structures, result in a negative correlation in equilibrium between

insurance coverage and ex post realization of risk. We show that if the insurance market is

perfectly competitive, selection based on multidimensional private information does not result

in the negative correlation property in equilibrium, unless there is a sufficiently high loading

factor (e.g., administrative costs). If the insurance market is monopolistic, however, we show

that it is possible to generate the negative correlation property in equilibrium when risk and risk

preference types are sufficiently negative dependent, a notion we formalize using the concept

of copula. We also clarify the connections between some of the important concepts such as

adverse/advantageous selection and positive/negative correlation property.
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1 Introduction

The classic asymmetric information models of insurance pioneered by Arrow (1963), Pauly

(1974), Rothschild and Stiglitz (1976) and Wilson (1977) assume that potential insurance buyers

have one-dimensional private information regarding their risk type. These models predict a positive

correlation between insurance coverage and ex post realizations of losses. The reason is ex ante

adverse selection, namely, that the “bad risks” (i.e., those relatively likely to suffer a loss) have

a higher willingness to pay for insurance; and allowing for ex post moral hazard only strengthens

the positive correlation between coverage and ex post losses. This “positive correlation property”

of the classic asymmetric information models forms the basis for empirical tests of asymmetric

information in several recent papers (see Chiappori and Salanié 2000).

However, the results from a growing empirical literature testing for the correlation between

insurance coverage and ex post realization of risks are mixed and vary by market. In an auto

insurance market, Chiappori and Salanié (2000) find that the accident rate for young French drivers

who choose comprehensive automobile insurance is not statistically different from those opting

for the legal minimum coverage, after controlling for consumers’ characteristics observable to the

automobile insurers. In contrast, Cohen (2005), using data from an online Israeli insurer, finds

that new auto insurance customers choosing a low deductible contract tend to have more accidents,

leading to higher total losses for the insurer.1 In the life insurance market, Cawley and Philipson

(1999) find that the mortality rate of U.S. males who purchase life insurance is below that of

the uninsured, even when controlling for many factors such as income that may be correlated

with life expectancy.2 For the long term care (LTC) insurance market, Finkelstein and McGarry

(2006), using panel data from a sample of Americans born before 1923 (the AHEAD study), find

no statistically significant correlation between their LTC coverage in 1995 and their use of nursing

home care between 1995-2000, even after controlling for the insurers’ assessment of a person’s risk

type. Moreover, when Finkelstein and McGarry (2006) use whether respondents undertake various

types of preventive health care as a proxy for risk aversion, they find that people who are more risk

averse by this measure are both more likely to own LTC insurance and less likely to enter a nursing

home. In an annuity insurance market, Finkelstein and Poterba (2004) find systematic relationships

between the ex post mortality and the annuity characteristics, such as the timing of payments and

the possibility of payments to the annuitants’ estate, but they do not find evidence of substantive

mortality differences by annuity size. For the Medigap insurance market, Fang et al. (2008) find

that, conditional on controls for Medigap prices, those with Medigap spend on average $4,000

less on medical care than those without, providing a strong evidence for the negative correlation

between Medigap purchase and ex post realization of risk.

1Others have examined the evidence of asymmetric information in the choice of insurance contracts such as
deductibles and co-payments etc. For example, Puelz and Snow (1994) study automobile collision insurance and
argue that, in an adverse selection equilibrium, individuals with lower risk will choose a contract with a higher
deductible, and contracts with higher deductibles should be associated with lower average prices for coverage. They
find evidence in support of each of these predictions using data from an automobile insurer in Georgia. However, see
Chiappori and Salanié (2000) and Dionne et al. (2001) for critiques of the Puelz and Snow study.

2See He (2009) for a re-examination of the evidence.

1



These empirical findings fueled an emerging literature on the possibility that multidimensional

private information may lead to what has been called “advantageous selection.”3 The formal theo-

retical literature is sparse. de Meza and Webb (2001) postulate a model in which individuals differ

in their risk preferences, which they refer to as “timid” and “bold” types. They assume that more

timid types may lower their risk exposure through increased insurance purchase and greater precau-

tionary effort to reduce risks. They show that, in the presence of administrative costs in processing

claims and issuing policies, there exists a pure-strategy, partial pooling, subgame-perfect Nash

equilibrium in the insurance market that exhibits the negative correlation property. Thus, failure

to condition on risk aversion may then mask the positive correlation between insurance coverage

and ex post risk predicted by one-dimensional models. Following de Meza and Webb (2001), the

existing literature points to risk preferences as the primary suspect behind advantageous selection.

In general, however, any private information could function as a source of advantageous selection

if it is positively correlated with insurance coverage and at the same time negatively correlated

with risk. Finkelstein and McGarry (2006) argue that their findings on the LTC insurance market

is consistent with multidimensional private information and advantageous selection based on risk

aversion. In fact, their findings suggest that, on net, adverse selection based on risk and advanta-

geous selection based on risk aversion roughly cancel out in the LTC insurance market. Fang et

al. (2008) find that, for Medigap insurance market, risk preferences do not appear as a source of

advantageous selection, but cognitive ability is particularly important.

However, to the best of our knowledge, the precise conditions under which whether selection

based on multidimensional private information may generate in equilibrium a positive or negative

correlation between insurance purchase and ex post realization of risk is still unknown. Most of the

existing papers that invoked the possibility of multidimensional private information as a possible

explanation for the empirical findings discussed above rely on partial equilibrium intuition (much

in the spirit of Hemenway, 1990). An important exception is Chiappori, Jullien, Salanié and

Salanié (2006, henceforth CJSS), which argues that in a competitive insurance market the positive

correlation property is a general implication of insurance models with asymmetric information

even when the private information is multidimensional in risks and risk preferences. The key

assumptions are consumer rationality and a condition which they refer to as “nonincreasing profit”

(NIP) condition - that is, the per contract expected profit does not increase with the coverage of

the contract.4 CJSS’s approach is general and elegant, and they prove their results using revealed

preference and the NIP condition. However, the non-increasing profit condition is not a primitive

condition; thus, whether it holds in equilibrium in environments where the market may not be

competitive and where loading costs for offering insurance exist is still an open question.

The goal of this paper is to help fill in this gap. We present a simple model of insurance market

where consumers have multidimensional private information in risk and risk preference types, and

investigate whether selection based on multidimensional private information can, under different

3The first description of this phenomenon in the economics literature appears to be Hemenway (1990), who used
the term “propitious selection.”

4We will discuss the connection between our results and theirs in Section 4.
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market structures, result in negative correlation in equilibrium between insurance coverage and ex

post realization of risk. We show that if the insurance market is perfectly competitive, selection

based on multidimensional private information does not generate the negative correlation property

in equilibrium unless there is a sufficiently high loading factor, possibly because of administrative

or marketing costs. If the insurance market is monopolistic, however, we show that it is possible

to generate the negative correlation property in equilibrium when consumers’ risk type and risk

preference type are sufficiently negative dependent, a notion we formalize using the concept of

copula. It should be noted that the fully specified model considered in our paper is not as general

as that in CJSS; our contribution is to state the connections between the primitives of the model

(including multidmensional private information and market structure) and the positive or negative

correlation property in a transparent way.

The remainder of the paper is structured as follows. In Section 2 we provide a detailed discussion

of the related literature. In Section 3, we describe our model environment in which consumers are

heterogeneous in both risk and risk preference types. In Section 4, we consider the perfectly

competitive market structure. In Section 5, we analyze the monopolistic market.5 In Section

6, we clarify the confusions in this growing literature about the connections between some of

the important concepts such as adverse/advantageous selection and positive/negative correlation

property. In Section 7, we partially endogenize the contract space and again show that our results

for the single contract case derived in Sections 4 and 5 continue to hold with natural and mild

generalizations of the assumptions imposed in Section 3. In Section 8, we summarize our main

findings and suggest directions for future research. All proofs are relegated to an Appendix.

2 Related Literature

To the extent that our paper investigates on whether the positive correlation property is ro-

bust to environments with multidimensional consumer heterogeneity, it is most related to CJSS

(2006) and de Meza and Webb (2017). CJSS argue that, as long as consumers are rational and the

per contract expected profit does not increase with the coverage of the contract (which they refer

to as “nonincreasing profit” (NIP) condition), then the positive correlation property is robust to

multidimensional private information. This conclusion is similar to our results for the competitive

insurance market presented in Propositions 1-2 and Proposition 7. Their results are proved using

the revealed preference argument implied by the hypothesized consumer rationality and the nonin-

creasing profit condition assumed on the supply side, and as such they do not have to exploit the

full set of equilibrium restrictions. In contrast, we exploit the full set of the equilibrium restrictions

and as a result our positive correlation predictions for the competitive insurance market are sharper

for the case of proportional loading factor. We will provide more details of the comparison when

we discuss Proposition 2. Also related, de Meza and Webb (2017) provide an insightful discussion

that the positive correlation test is not a valid test to distinguish asymmetric information from

5In an online appendix, we show that our results for the monopolistic market structure can be generalized to a
version of an imperfectly competitive market structure.
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symmetric information environment. The reason is that under symmetric information, the only

insurance purchased by consumers will be the one with full coverage, unless the claim processing

costs (or other loading factors) are formally modeled. The results in our paper are more relevant

in distinguishing multi- vs. one-dimensional private information models of insurance as opposed to

symmetric vs. asymmetric information models of insurance.

Our paper is also related to a recent literature that attempts to analyze the selection markets

with potentially multidimensional private information. Einav et al. (2010b) propose an approach to

conduct empirical welfare analysis in insurance markets based on directly estimating the demand

and average (and marginal) cost curves using exogenous variations in prices.6 Based on their

graphical analysis of the demand and cost curves for the selection market, where the defining feature

is that insurers’ costs depend on which consumers purchase their products and hence are endogenous

to price, they also argue that the slope of the estimated marginal cost curve provides a direct test

of the existence and the nature of selection, i.e., whether the selection is adverse or advantageous.

Specifically, they argue that a rejection of the null hypothesis of a constant marginal cost curve

is a rejection of the null hypothesis of no selection, whereas the selection is adverse (respectively,

advantageous) if the marginal cost is increasing (respectively, decreasing) in price. They also

emphasize that an attractive feature of their approach of relying only on the estimated demand and

cost curves is that “it does not require the researcher to make (often difficult-to-test) assumptions

about consumers’ preferences or the nature of ex ante information” (Einav et al., 2010b, p. 879). In

Section 6, we show that an important limitation of their approach is that typically the marginal cost

curve is non-monotonic when consumer heterogeneity is multidimensional.7 In fact, in our setting

with two-dimensional private information in risk and risk aversion, it is monotonic only when the

two dimensions are perfectly correlated. Therefore, depending on the range of the price variations

available in the data that is used to estimate the demand and cost curves, it is likely the estimated

cost curve only reflects the nature of the selection – adverse or advantageous– locally.8 We also

provide an example (Example 4) in which the nature of the local selection being advantageous at

the equilibrium price level does not imply a negative correlation between insurance purchase and

ex post realization of risk in equilibrium.

We explicitly model consumers’ multidimensional heterogeneity in this paper. The intuition

for why the marginal cost curve is unlikely to be monotonically increasing in the market size in

our model can be easily explained for the case of bounded consumer type space. Consider an

environment where consumers’ willingness to pay for insurance is increasing in their risk type m

and risk aversion type λ. Suppose that risk type and risk aversion type are bounded in [m,m] and[
λ, λ

]
respectively. Then the marginal cost of insurance when the market size is close to 0 will

6See also Einav et al. (2010a), Einav and Finkelstein (2011) and Chetty and Finkelstein (2013) for related discus-
sions of the demand and cost analysis of selection markets.

7Einav and Finkelstein (2011) are aware of the non-monotonicity issue of the marginal cost curve, as they stated:
“More generally, once we allow for preference heterogeneity, the marginal cost curve needs not be monotone. However,
for simplicity and clarity we focus our discussion on the polar cases of monotone cost curves.” (footnote 7, p. 124).

8In empirical applications, the range of the exogenous price variations is often quite limited. For example, Einav
et al. (2010b) have a total of six price levels (or three price levels if one only considers those with somewhat large
number of consumers).
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be close to m and the marginal cost when the market size is close to 1 will be close to m. That

is, the marginal cost curve must always have at least one decreasing segment! Another benefit

of modeling consumers’ multidimensional heterogeneity explicitly is that it allows us to examine

how the market outcome changes when the dependence structure of individuals’ multidimensional

heterogeneity varies. We use the concept of copula to parameterize the degree of dependence

between the consumers’ multidimensional types.

Mahoney and Weyl (2017) build and analyze a model of imperfect competition in selection

markets. They parameterize the degree of both market power and selection, and use graphical

price-theoretic reasoning to analyze the interactions between selection and imperfect competition.

Their parameterization of selection follows Einav et al. (2010b) by hypothesizing whether the

marginal cost curve is either upward or downward sloping.

Azevedo and Gottlieb (2017) propose an equilibrium concept for competitive insurance mar-

ket where consumers may have multidimensional heterogeneity, and insurance companies compete

for consumers by choosing contracts from a compact space and setting their corresponding prices.

Their equilibrium concept, which relies on perturbations, guarantees existence. Veiga and Weyl

(2016) instead study the incentives for a monopolistic insurer in its choice of insurance quality

facing consumers with multidimensional heterogeneity. They derive a condition of the optimal in-

surance quality to emphasize that the sorting incentives of the monopolist is the ratio of two terms:

the numerator is the covariance among marginal consumers between the marginal willingness to

pay for quality and the cost for the firm, and the denominator is marginal consumer surplus, which

measures market power. The analysis of Veiga and Weyl (2016) focuses on the marginal consumers,

and does not analyze correlation between insurance purchase and ex post realization of risk which is

about the average insurance buyers and non-buyers; and they also focus on the monopolistic mar-

ket structure, while our paper highlights the interactions between multidimensional heterogeneity

and market structure.9 In the basic model of our paper, the quality of insurance is assumed to be

exogenously fixed, and we focus on the determination of premium; while Veiga and Weyl (2016)

focus on how the monopolistic insurer determines the profit-maximizing quality of insurance. Nei-

ther Azevedo and Gottlieb (2017) nor Veiga and Weyl (2016) analyze whether multidimensional

consumer heterogeneity can generate a negative correlation between insurance purchase and ex post

realization of risk in equilibrium.10

3 The Model

Consumers. There is a continuum of consumers with heterogeneous types indexed by θ ≡
(m,λ), where m ∈ [m,m] with 0 ≤ m < m <∞ denotes consumer’s risk type, and λ ∈ [λ, λ] with

9Also related to our paper, Weyl and Veiga (2014) offer a quantitative strengthening of the notion of affiliation
for multidimensional random vectors that is useful to relate dependence between risk types and risk preferences to
the direction of selection.

10It should be noted that Azevedo and Gottlieb (2017) introduce a notion of “intensive margin selection coefficient”
that measures the difference between the marginal changes of the premium and the cost of insuring the marginal
consumers, both with respect to the insurance coverage. They suggest that this notion is related to the positive
correlation test. We will discuss its connection with our results in Sections 6 and 7 below.
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0 < λ < λ <∞ can be interpreted as any other characteristics of the consumer that may be related

to his/her risk preference.11 As a notational convention, we use M and Λ respectively to denote

the random variables for risk type and risk preference type, and their lowercase counterparts as

their realizations. In the population, consumers’ type, (m,λ) , is assumed to be drawn from joint

CDF H(m,λ), and we denote the marginal CDF of M and Λ by F (m) and G (λ) respectively. We

use h (m,λ) , f (m) and g (λ) to denote the corresponding joint and marginal density functions of

(M,Λ) ,M and Λ, respectively. We assume that the marginal distribution of M is such that M has

finite mean, denoted by E [M ] . We allow dependence between M and Λ in this paper, and we will

discuss the form of the dependence in detail in Section 5.

Insurance Contract. Consumers decide whether or not to purchase insurance. In the basic

model, we assume that insurance firms are regulated in the sense that they can only provide

insurance with quality x ∈ (0, 1] where a higher x indicates a contract with better coverage. Note

that we assume that the insurance coverage quality x is not a choice variable for the firms. As

such, our setup is in the spirit of Akerlof (1970) where insurance contract is exogenously given,

rather than Rothschild and Stiglitz (1976) where the insurance quality x is endogenously chosen.

While exogenous contract space is an important restriction, it is useful to point out that this

approach is adopted in most of the recent applied literature. For instance, Einav et al. (2010b)

assume that a consumer either buys a homogeneous insurance policy or does not buy any coverage.

Similarly, Handel et al. (2015) assume that there are only two options: a low-coverage contract and

a high-coverage contract.

The cost to the insurance firms, not including loading costs (e.g., contract processing cost

and other administrative costs), for providing quality-x insurance to a type-θ ≡ (m,λ) consumer,

denoted by C (θ;x) , is increasing in the consumer’s risk type m and the coverage quality x. Note

that it does not depend on the consumer’s risk preference type λ. In particular, we let C(θ;x) = x·m.

Consumer Preference. Type-θ ≡ (m,λ) consumer derives utility U(θ;x, p) from purchasing

a contract with quality x ∈ [0, 1] and premium p ∈ [0,∞). Without loss of generality, we assume

that consumers derive zero utility from the null contract (x, p) = (0, 0), that is, U(θ; 0, 0) ≡ 0 for

all θ.

Assumption 1 ∂U/∂p < 0. Moreover, fixing x ∈ (0, 1], there exist p′ and p′′ such that U(θ;x, p′) <

0 < U(θ;x, p′′).

Denote type-θ ≡ (m,λ) consumer’s willingness to pay (WTP) for an insurance policy with

quality x by v(θ;x). By definition, v(θ;x) is the solution to

U(θ;x, v) = U(θ; 0, 0) = 0. (1)

11We assume that m and λ are bounded above by m and λ respectively for the simplicity in describing some of the
intuitions for our results. Most of our results remain qualitatively unchanged if risk type and risk preference type
are supported on semi-infinite intervals, that is, (m,λ) ∈ [m,∞) × [λ,∞). In particular, see our discussion on the
differences caused by the semi-infinite support in Footnote 32.
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Assumption 1 guarantees the existence and uniqueness of such a solution for all x ∈ (0, 1]. We

make the following assumptions on v (·) :

Assumption 2 ∂v/∂x > 0, ∂v/∂m > 0, and ∂v/∂λ > 0.

Assumption 2 simply says that consumer’s WTP for insurance is increasing in her risk type, in

her risk preference type and the quality of the contract coverage.

Assumption 3 v(θ;x) > C(θ;x) ≡ x ·m, for all θ and any x ∈ (0, 1].

Assumption 3 holds for many economic framework of insurance as long as individuals are risk-

averse.12 The difference between the WTP for insurance v(θ;x) and C(θ;x) is commonly referred

to as the risk premium for type-(m,λ) consumer.

Facing a premium p for insurance coverage x, a type-(m,λ) consumer purchases insurance if

and only if U(θ;x, p) ≥ U(θ; 0, 0) ≡ 0, or equivalently, p ≤ v (θ;x). We use

B (p) ≡
{
θ : v(θ;x) ≥ p

}
(2)

to denote the set of consumers whose WTP for the insurance exceeds the premium and thus they

are the set of buyers; and use

NB (p) ≡
{
θ : v(θ;x) < p

}
(3)

to denote the set of non-buyers at price p. Assumption 2 implies that the iso-WTP curve is

downward sloping in the (m,λ) space for x ∈ (0, 1] and the set of consumers above (respectively,

below) the curve is the set of buyers (respectively, non-buyers). In addition, Assumption 1 together

with U(θ; 0, 0) = 0 implies that consumers’ WTP for zero coverage is zero, that is, v(θ; 0) = 0 for

all θ.

Remark 1 In practice, firm can charge premiums based on observable characteristics. In this paper

we simplify our analysis by assuming the observed characteristics are the same across all consumers.

It is useful to think of our analysis as being within the consumers of a particular risk classification

class. This simplification allows us to focus on the comparison between multidimensional and one-

dimensional private information.

Remark 2 We would like to emphasize that the key distinction between one-dimensional and mul-

tidimensional private information models is whether the ranking of consumers by their WTP is

perfectly aligned with the ranking by their costs. Assumption 2 implies that the two rankings are

not necessarily perfectly aligned in our model, whereas they are always perfectly aligned in the clas-

sic asymmetric information models of insurance with one-dimensional private information in risk

types. It is in this sense that our model is “multidimensional”. It should also be noted that, at a

12In an environment with heterogeneity in ex post moral hazard, such as that studied in Einav et al. (2013), it is
possible that v (θ;x) does not always exceed C (θ;x), as shown in Example 3 of Azevedo and Gottlieb (2017). Moral
hazard may also indirectly lead to a violation of Assumption 2 if consumers face budget constraints.
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technical level, it is always possible to encode multidimensional types in a single-dimensional vari-

able, so, as always, the content of the multidimensional signals depends on additional assumptions

made about the type space.13

Example 1 (Binary States) Each consumer has initial wealth y and is subject to a possible loss

ω ∈ (0, y) with probability κ. The consumer can purchase an insurance contract to cover a fraction

x of the loss if it occurs. Let u (·;λ) be consumer’s Bernoulli utility function where λ is the risk

preference parameter. Let m ≡ κω. Then the expected cost to the insurance firm for insuring

type-(m,λ) consumer is C(m,λ;x) = xκω = xm. Consumers’ net expected utility from purchasing

an insurance (x, p) is

U(θ;x, p) ≡

[
m

ω
u
(
y − p− (1− x)ω;λ

)
+

(
1− m

ω

)
u(y − p;λ)

]
−

[
m

ω
u(y − ω;λ) +

(
1− m

ω

)
u(y;λ)

]
.

It is straightforward to verify that Assumption 1 is satisfied and U(θ, 0, 0) = 0 for all θ. Consumers’

WTP for insurance of coverage x is determined by U(θ;x, v) = 0, or equivalently,

m

ω
u
(
y − v − (1− x)ω;λ

)
+

(
1− m

ω

)
u(y − v;λ) =

m

ω
u(y − ω;λ) +

(
1− m

ω

)
u(y;λ).

By the implicit function theorem, it can be verified that ∂v/∂x > 0 and ∂v/∂m > 0. In addition,

∂v/∂λ > 0 holds if λ orders types according to their risk aversion in the sense of Pratt (1964):

λ1 > λ0 ⇒
u′′(x, λ1)

u′(x, λ1)
≥ u′′(x, λ0)

u′(x, λ0)
∀x.

Therefore, Assumption 2 is satisfied. Lastly, the concavity of u(·;λ) implies that v(θ;x) > xm =

C (θ;x) and hence Assumption 3 is also satisfied.

Example 2 (CARA and Normal Shocks) Consumers have initial wealth y and may experi-

ence a medical expenditure Z ∼ N (m,σ2). A consumer has constant absolute risk aversion (CARA)

Bernoulli utility u(y) = − exp(−λy), where λ is consumer’s constant absolute risk aversion. With

CARA Bernoulli utility, it is without loss of generality to measure consumer’s utility by his certainty

equivalent, that is,

U(θ;x, p) ≡ xm+
x (2− x)

2
σ2λ− p.

Solving Equation (1) for v yields,

v(θ;x) = xm+
x (2− x)

2
σ2λ = C (θ;x) +

x (2− x)

2
σ2λ. (4)

13Multidimensional types can always be encoded in a single-dimensional variable using the inverse Peano function
[e.g., Sagan (1984, p. 36)] and other methods. The difficulty of such a one-dimensional representation of an intrin-
sically multidimensional problem, however, is that we could not impose reasonable restrictions on the information
structure, such as types being drawn from a continuous distribution. Similar issues concerning the representation of
multidimensional information with single-dimensional messages have been discussed in the mechanism design litera-
ture (see, e.g., Mount and Reiter (1974)). Also see Fang and Morris (2006) for similar discussions.
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It can be verified that Assumptions 1-3 are satisfied in Examples 1 and 2.14

4 Competitive Insurance Market

In a competitive insurance market, insurance firms choose a premium p for insurance coverage

with the given quality x to compete for consumers. A firm’s profit at premium p from offering

insurance with coverage x, if there is no loading cost of offering insurance, is given by:15

π(p) =

∫
θ∈B(p)

(p− xm) dH(m,λ). (5)

Denote p∗ as the equilibrium price under perfect competition which, in the absence of loading costs,

is simply determined by:

π(p∗) = 0. (6)

Remark 3 Equation (6) may have multiple solutions. Any premium greater than v(m,λ;x) sat-

isfies (6) because B (p) is empty for any p > v(m,λ;x). If consumers’ risk premium is sufficiently

large, it is also possible that the equilibrium premium is less than v (m,λ;x) ; in such a scenario,

all consumers purchase insurance. Because our goal is to compare the average risk of the con-

sumers with insurance and those without, we assume in the rest of the paper that there exists at

least one equilibrium with premium p∗ that lies strictly between v(m,λ;x) and v(m,λ;x) so that the

sets B (p∗) and NB (p∗) are of positive measures to ensure the conditional expectations (7) and (8)

below are both well defined.

Fixing the market price of the insurance p ∈
(
v(m,λ;x), v(m,λ;x)

)
, the average ex post real-

ization of risk among those who purchase insurance is:

E
[
M |B (p)

]
=

∫
θ∈B(p)mdH(m,λ)∫
θ∈B(p) dH(m,λ)

, (7)

where the denominator is the measure of the insurance coverage penetration, and the numerator

is the total cost realization of the insured. Similarly, the average ex post realization of risk among

those who do not purchase insurance is

E
[
M |NB (p)

]
=

∫
θ∈NB(p)mdH(m,λ)∫
θ∈NB(p) dH(m,λ)

. (8)

14See Online Appendix A for the details of the proof that Examples 1 and 2 satisfy Assumptions 1-3.
15We will consider how loading costs affect our results below.
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It is also useful to define the average ex post realization of the risk for the entire population:

E [M ] =

∫ λ

λ

∫ m

m
mdH(m,λ)

=

∫
θ∈B(p)

dH(m,λ)E
[
m|B (p)

]
+

∫
θ∈NB(p)

dH(m,λ)E
[
m|NB (p)

]
. (9)

Definition 1 (Positive and Negative Correlation Property) The insurance market exhibits

positive correlation property in equilibrium if E
[
M |B (p∗)

]
> E

[
M |NB (p∗)

]
, and it exhibits nega-

tive correlation property if E
[
M |B (p∗)

]
< E

[
M |NB (p∗)

]
, where the two terms are defined in (7)

and (8) respectively.

Note that Definition 1 defines the positive and negative correlation property for the case of

positive coverage versus zero coverage. It is straightforward to generalize our results below to the

case where the comparisons are between the expected cost realizations of high versus low coverage.

In Section 7 we will formally generalize the definition of positive and negative correlation property

when there are contracts with multiple levels of coverages.

Proposition 1 (Positive Correlation Property Always Holds in Competitive Equilib-

rium without Loadings) Suppose Assumptions 1, 2 and 3 are satisfied and that the equilibrium

price p∗ is such that the measure of buyers and non-buyers are both strictly positive. Then positive

correlation property always holds in equilibrium if the insurance market is perfectly competitive and

there are no loadings.

Note that Proposition 1 states that negative correlation property will not emerge in a com-

petitive insurance market without loadings, regardless of the dependence structure between risk

type and risk preference type. The intuition for the result is in fact very simple. If there were a

negative correlation between insurance purchase and ex post risk realizations, then in a competitive

insurance market, the equilibrium premium must be equal to the expected risk realization of the

insured, which is lower than that of the uninsured under negative correlation property. But if

the equilibrium premium were indeed lower than the expected risk realization of the uninsured, it

must also be lower than their average WTP under Assumption 3. This in turn implies that at the

equilibrium premium, some of the uninsured must prefer to purchase insurance as well, which is a

contradiction. The following simple three-type example illustrates the aforementioned intuition.

Example 3 (Illustrative Three-Type Example) Suppose that there are three types of consumers

in the population. For simplicity, we will describe their types by the combinations of their cost of

coverage and WTP for insurance: (c1, v1) , (c2, v2) and (c3, v3). Assumption 3 implies that vj > cj

for j ∈ {1, 2, 3}. Let qj denote the probability that a consumer is of type
(
cj , vj

)
, j ∈ {1, 2, 3} , in

the population. Suppose that c1 < c2 < c3.

In the standard one-dimensional private information model, consumers differ only regarding

their risk types. Hence the discrete analog of Assumption 2 would imply that v1 < v2 < v3. Thus,

it is immediate that the positive correlation property must hold in any competitive equilibrium.

10



In a multidimensional private information model, the order of consumers’ WTP may differ

from the order of their risk types (or their costs of coverages) due to the possibility that consumers

with lower risk may be more risk averse. In order for a pure-strategy competitive equilibrium to

exhibit the negative correlation property, there are only three possibilities:16 (i) only type (c1, v1)

consumers buy coverage in equilibrium at a premium p∗ = c1; (ii) type (c1, v1) and type (c2, v2)

consumers purchase coverage in equilibrium at a premium p∗ = q1
q1+q2

c1 + q2
q1+q2

c2 and type (c3, v3)

consumers remain uninsured; (iii) type (c1, v1) and type (c3, v3) consumers purchase coverage in

equilibrium at a premium p∗ = q1
q1+q3

c1 + q1
q1+q3

c3 and type (c2, v2) consumers remain uninsured.

We show that none of the cases are possible.

For case (i), equilibrium requires type (c1, v1) consumers to prefer to buy coverage and type

(c3, v3) consumers to prefer to remain uninsured, that is,

v1 ≥ p∗ = c1 ≥ v3.

The above inequality, together with v3 > c3, implies immediately that c1 > c3, a contradiction.

Similarly, for case (ii) to constitute an equilibrium, we must have that type (c2, v2) consumers

purchase the policy and type (c3, v3) consumers choose to opt out, that is,

v2 ≥ p∗ =
q1

q1 + q2
c1 +

q2

q1 + q2
c2 ≥ v3.

The above inequality, together with v3 > c3, implies immediately that q1
q1+q2

c1 + q2
q1+q2

c2 > c3, which

cannot be satisfied due to the postulated c1 < c2 < c3.

For case (iii), in order for the equilibrium to have negative correlation property, we need to have

p∗ =
q1

q1 + q3
c1 +

q1

q1 + q3
c3 < c2,

but then it implies v2 > p∗ because v2 > c2, i.e., type (c2, v2) consumer will also buy insurance,

which is a contradiction.

Now we consider the role of loading factors, which include both underwriting-based loading and

claim-based loading. Denote the loading factor by ` > 0, and by p∗ (`) the competitive equilibrium

price in a market with the loading factor `, which is determined by:

p∗ (`) = (1 + `)xE
[
M |B

(
p∗ (`)

)]
. (10)

Define

m† ≡ E(M) (11)

as the average risk type in the population of consumers. We have the following result:17

16It is straightforward to generalize the argument to allow for mixed strategies.
17If the loading factor is additive instead of multiplicative, i.e., if the equilibrium premium satisfies

p∗ (`) = xE
[
M |B

(
p∗ (`)

)]
+ `,
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Proposition 2 (Positive Correlation Property Holds in Competitive Equilibrium with

Low Loadings) Suppose Assumptions 1, 2 and 3 are satisfied. A sufficient condition for the

positive correlation property to hold in equilibrium if the insurance market is perfectly competitive

is

` ≤
v
(
m†, λ;x

)
xm†

− 1. (12)

Note that the upper bound on the loading factor specified by (12) depends on the ratio of the

WTP relative to its expected claim for a consumer who has the average risk and the lower-bound

risk preference. Proposition 2 shows that if the loading factor is bounded above by (12), then the

competitive insurance market will always exhibit a positive correlation property in equilibrium even

in the presence of loading factors. The intuition is again quite simple. In order for an equilibrium

that the low risk types purchase insurance, while the high risk types do not, to exist, it must be

the case that the premium is higher than the WTP for the high risk types. But the only way for

such levels of premium to be consistent with equilibrium when the insured is actually of low risk

types is that the loading factor is very high, which is ruled out by the upper bound (12) on the

loading factor.

Remark 4 We could have redefined consumers’ “risk type” to be inclusive of the insurance loadings.

Such a redefinition of risk type will make Assumption 3 more stringent. The sufficient condition

(12) stated in Proposition 2 requires the risk premium for the average risk type to be sufficiently

high.

To illustrate why the stated upper bound on loading factors is sufficient to rule out the negative

correlation property in a competitive equilibrium, we introduce loadings into Example 3.

Example 3 (Continued, Impossibility of Negative Correlation Property with Low Loadings)

Suppose that c2 =
∑

j∈{1,2,3} qjcj = E [M ]; in words, c2 is the average risk type m† in the population

of consumers, as defined in (11). Now suppose that the market equilibrium price p∗ is such that only

type (c1, v1) consumers are purchasing insurance, i.e., that the market equilibrium exhibits negative

correlation property. For this to be an equilibrium, it must be the case that the equilibrium price

p∗ = (1 + `) c1 and it satisfies

max {v2, v3} < p∗ ≤ v1. (13)

However, this inequality is ruled out by the upper bound on the loadings in (12), which for this

example is reduced to

1 + ` ≤ v2

c2
. (14)

then the corresponding sufficient condition for Proposition 2 is

` ≤ v
(
m†, λ;x

)
− xm†.
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To see this, note that (14) implies that

p∗ = (1 + `) c1 ≤
v2

c2
c1 < v2, (15)

which is a contradiction against (13), implying that type (c2, v2) consumers would have preferred to

purchase insurance as well at p∗.

Proposition 2 states that the positive correlation property is robust to a sufficiently small

loading factor. However, when the loading factor is large enough, it is possible to obtain the

negative correlation property. Again we continue with Example 3 to elaborate this point.

Example 3 (Continued, Possibility of Negative Correlation Property with Moderate Loadings)

Suppose for simplicity that q2 = 0 and thus there are two types of consumers. In order for the mar-

ket to exhibit the negative correlation property, we must have that type (c1, v1) consumers purchase

the insurance policy whereas type (c3, v3) consumers remain uninsured, that is,

v3 ≤ p∗ = (1 + `)c1 ≤ v1,

which is possible if and only if
v3

c1
− 1 ≤ ` ≤ v1

c1
− 1. (16)

Therefore, if the load is higher than v3
c1
−1 but lower than v1

c1
−1, there exists an equilibrium in which

negative correlation property holds. Note that (16) indicates that a necessary condition for negative

correlation property to emerge is that v1 ≥ v3, which cannot be satisfied with one-dimensional

consumer heterogeneity in risk types.

The logic underlying Propositions 1 and 2 suggests that whether multidimensional private in-

formation, particularly private information related to risk preferences, can explain the observed

negative correlation between insurance purchase and ex post risk realization must be related to

large loading factors, or some non-competitive features of the insurance market.18

The importance of the size of the loading factor highlighted in Propositions 1 and 2 suggests

that the different findings in Chiappori and Salanié (2000) and Cohen (2005) we mentioned in the

introduction can potentially result from the differential loading factors in the two markets. Recall

that Cohen’s (2005) data is from an online Israeli insurer, while Chiappori and Salanié (2000) is

from a traditional French insurance company. The online insurer is likely to have a much lower

loading than the traditional insurer. Therefore Proposition 2 suggests that positive correlation

property is more likely to hold in the Israeli data. Systematic empirical studies of the size of the

loading factor are rare. de Meza and Webb (2001, p. 250) note that “Between 1985 and 1995 for

U.K. insurers, expenses as a percentage of premium income averaged 25% for motor insurance and

18This constrasts with a view that was shared by many in the literature. For example, Chetty and Finkelstein
(2013, p.125) stated that “... if preferences are sufficiently important determinants of demand for insurance and
sufficiently negatively correlated with risk type, the market can exhibit what has come to be called advantageous
selection.” See, however, CJSS (2006, p.785).
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37% for property damage insurance.” The Affordable Care Act in the United States regulates that

health insurers need to maintain a minimum “medical loss ratio” – the fraction of premium that

need to be used to pay for claims – of 80 percent, which implies a loading factor of no more than 25%

[since 80% = 1/
(
1 + 25%

)
].19 It is useful to point out that such levels of average expense/premium

ratio can still be consistent with the sufficient condition stipulated in Proposition 2, which is a

condition imposed only on the average risk type m† as defined by (12).

Relationship to CJSS (2006) Let us now discuss in details the connections between our Propo-

sitions 1-2 and the results in CJSS (2006). Formally, using the notation in CJSS, a contract Ci

reimburses the insured an amount Ri (L) when loss L occurs, and they say that contract C2 covers

more than contract C1 if R2 (L)−R1 (L) is nondecreasing in L. Let

π (Ci) = pi −
∫
Ri (L) dFi (L)− Γ

denote the per contract profit from contract Ci where Fi (L) is the distribution of loss among

consumers purchasing contract Ci, and Γ is the fixed costs associated with the contract, and it

is assumed to be the same across the contracts. The nonincreasing profit (NIP) condition states

that π (C2) ≤ π (C1) if contract C2 covers more than C1. CJSS’s main result, Proposition 2

(p. 789), states that under assumptions on consumer rationality (which we also assume) and the

nonincreasing profit condition, it must be true that∫
R2 (L) dF2 (L) ≥

∫
R2 (L) dF1 (L) . (17)

In the notation of our paper, the case we considered in Proposition 1 is the case with Γ = 0,

R2 (L) = xL and R1 (L) = 0 where L = M.20 The NIP condition is automatically satisfied in our

competitive market setting because of the zero profit condition. Under this interpretation, CJSS’s

inequality (17) is equivalent to

E
[
M |B

(
p∗
)]
≥ E

[
M |NB

(
p∗
)]
.

Thus, our result as stated in Proposition 1 is consistent with CJSS’s inequality (17).

When there is a proportional loading factor ` > 0, the per contract profit from contract Ci is

then

π (Ci) = pi − (1 + `)

∫
Ri (L) dFi (L) ,

and CJSS show that their testable implication is given by (their inequality (7) on p. 790, with tax

19See https://www.healthcare.gov/glossary/medical-loss-ratio-MLR/
20When Γ > 0, CJSS’s Proposition 1 can not be used to show that the average ex post realization of risk for the

insured is higher than the uninsured, as CJSS pointed out in their Footnote 5 (p. 789).
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rate t = 0):21

∫
R2 (L) dF2 (L)−

∫
R2 (L) dF1 (L) ≥ `

[∫
R1 (L) dF1 (L)−

∫
R2 (L) dF2 (L)

]
. (18)

Again, if we let R2 (L) = xL and R1 (L) = 0 where L = M to match the setting considered in our

Proposition 2, the inequality (18) can be simplified as

E
[
M |B (p)

]
− E

[
M |NB (p)

]
≥ −`E

[
M |B (p)

]
,

which does not correspond to the positive correlation property even if the loading factor ` is suffi-

ciently small. Indeed, CJSS comment that (p. 791), “... we can test some well-defined implication of

asymmetric information (which may not look like a positive correlation property any more)” [italics

added]. We thus believe that our Proposition 2 is complementary to CJSS (2006) and provides

some new insights to the existing literature.

5 Monopolistic Insurance Market

In this section, we focus on the other extreme of the insurance market structure, assuming

that there is a monopolistic insurance firm that chooses a premium to maximize its profit.22 We

ask whether correlated multidimensional private information can lead to the emergence of negative

correlation property (see Definition 1) in a monopolistic insurance market.23

We first provide some background on how we will model dependence of the two dimensional pri-

vate information M and Λ. In Section 3, we stated that, in the population, consumers’ type, (m,λ) ,

is independently drawn from joint CDF H(m,λ), with marginal CDFs for M and Λ respectively

denoted by F (·) and G (·) . It turns out to be easier to parameterize the dependence structure of

the two random variables M and Λ using the concept of copula.24 By Sklar’s Theorem, for every

joint distribution H (m,λ), there exists a unique copula C(·, ·) such that H(m,λ) = C(F (m), G(λ)).

That is, the dependence structure between M and Λ can be represented by a copula and remains

unchanged under strictly increasing transformations of the random variables.

We first consider the case of positive dependence between the risk type M and the risk preference

type Λ. Although intuition suggests that the positive correlation between risk and risk preference

would exacerbate adverse selection and thus strengthen the positive correlation between insurance

coverage and ex post realization of risk, here we provide a precise sufficient condition for such a

conclusion.

21CJSS used the notation Ei [L] to denote the expected claims under contract Ci, and they wrote Ei [L] =∫
LdFi (L) . We believe that it is a typo and should be Ei [L] =

∫
Ri (L) dFi (L) .

22We will allow the monopolistic insurance firm to choose both the premium and the coverage in Section 7.
23In Online Appendix B, we introduce a parameterization of the imperfectly competitive market structure and

show that our results for the monopoly case are robust.
24See Nelsen (2006) for an excellent introduction to copulas.
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Definition 2 (Positive Stochastic Monotonicity Dependence) Λ is stochastically increasing

in M if Pr(Λ > λ|M = m) is a nondecreasing function of m for all λ.

Nelsen (2006, Corollary 5.2.11, p. 160) proved that Definition 2 is equivalent to C11(z1, z2) ≤ 0

for all (z1, z2) ∈ [0, 1]2 in the language of copula. Positive stochastic dependence means that a high

realization of z1 shifts the conditional distribution of z2 according to first-order stochastic domi-

nance. Because marginal distribution functions are monotonic, this property of copula translates

directly into corresponding dependence property of the joint distribution of (M,Λ).

Proposition 3 (Positive Stochastic Monotonicity Dependence Implies Positive Corre-

lation Property) Suppose Assumptions 1, 2 and 3 are satisfied. If Λ is stochastically increasing

in M , then positive correlation property holds under monopoly.

In fact, the positive correlation property result in Proposition 3 applies to any market structure.

Moreover, it is useful to point out that Proposition 3 is general in the sense that it does not rely

on the functional form of consumer’s WTP. As long as consumers’ WTP is increasing in both m

and λ, Proposition 3 holds.

In the rest of the section we focus on the case in which the risk type M and the risk prefer-

ence type Λ exhibit negative dependence (to be made precise below) and investigate whether the

negative dependence between M and Λ may lead to the emergence of negative correlation property

under a monopolistic market structure. We consider the tractable case of CARA utility function

and normally distributed shocks as described in Example 2. Note that for this CARA-Normal spec-

ification, it is without loss of generality to assume that x = 1;25 thus from (4), we have C(θ) = m,

and

v(m,λ) = m+ kλ where k ≡ σ2

2
. (19)

We will interpret the parameter k ≡ σ2/2, where σ2 is the variance of the health expenditure shock,

as the relative importance of risk aversion as a determinant of the consumer’s WTP for insurance:

a higher σ2 means that consumers are subject to more volatility in health expenditure, and as a

result risk aversion becomes more important in determining the WTP for insurance.

The Role of Preferences We study the effect of the relative importance between risks and

preferences, i.e., the magnitude of k defined in (19), holding fixed the joint distribution H(·, ·).

Proposition 4 Suppose that consumers have CARA utility functions and experience normally

distributed risks as described in Example 2. For every H (·, ) , there exists a threshold k† > 0 such

that for all k < k†, E
[
M |B (p)

]
> E [M ] for all p ∈ (m+ kλ,m+ kλ).

Proposition 4 shows that if risk preference is not a sufficiently important determinant of the

demand for insurance, then negative correlation property will not emerge under monopolistic market

structure, regardless of the joint distribution, H(·, ·), of risks and risk preferences. Notice that this

25For x ∈ (0, 1), we can redefine v̂((m,λ) ; 1) ≡ v((m,λ) ;x)/x and Ĉ (θ; 1) ≡ C (θ;x) /x.
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holds true even when the risk type M and the risk preference type Λ exhibit strong negative

dependence. Figure 1 illustrates why this is so for the extreme case when M and Λ exhibit perfect

negative dependence. Since M and Λ are perfectly negative dependent, there exists a one-to-one

monotonic mapping between m and λ, which is shown in the dashed line in Figure 1. A sufficiently

small k yields a steep iso-WTP curve, which would imply that for any price in
(
m+ kλ,m+ kλ

)
,

the iso-WTP curve that separates purchasers and non-purchasers of insurance at that price would

intersect the dashed line as depicted: the higher risks (the darker segment of the dashed line) always

purchase insurance before the lower risks (the lighter segment of the dashed line). This results in

the positive correlation property.

insured�

uninsured�

m

λ

λ

m

Figure 1: Selection Based on Risk Type: The Case of Low k

Intuitively, when k is sufficiently small, a change in the price charged by the monopolist will have

a stronger influence on the support of risk type M rather than that of Λ; as a result, the market is

more susceptible to the risk-based adverse selection problem as in the case of one-dimensional pri-

vate information in risk, and the potential countervailing effect of selection based on risk preferences

is too weak to override the positive correlation property.

Now we consider the other limiting case, and show that if risk preference is a sufficiently im-

portant determinant for the demand of insurance, then when risk M and risk preference Λ are

negatively dependent (to be defined more precisely below), a monopolistic market may exhibit

negative correlation property in equilibrium. To this end, we first introduce the notion of negative

quadrant dependence:
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Definition 3 (Strict Negative Quadrant Dependence) M and Λ are strictly negatively quad-

rant dependent if for all (m,λ) ∈ [m,m]× [λ, λ],

H(m,λ) < F (m)G(λ).

Strict negative quadrant dependence formalizes the notion that two random variables are neg-

atively dependent if greater values of M are more likely to appear with smaller values of Λ and

vice versa. In the language of copula, it is equivalent to C(z1, z2) < z1z2. Notice that independent

random variables does not satisfy strict negative quadrant dependence (see Nelsen 2006).

Proposition 5 Suppose that consumers have CARA utility functions and experience normally

distributed risks as described in Example 2. If M and Λ are strictly negatively quadrant dependent,

then there exists a threshold k†† such that the negative correlation property emerges under monopoly

when k > k††.

The intuition for Proposition 5 is as follows. When risk aversion is a sufficiently important

determinant of the demand for insurance, the iso-WTP curve is sufficiently flat in the (m,λ) space.

Thus, a change in the price by the monopolistic firm will have a stronger impact on the distribution

of the risk aversion type than the distribution of risk types among the set of the purchasers; that

is, the selection of the consumers are more based on risk aversion type λ than on risk type m. In

the limit when k is sufficiently large, it is profit maximizing for the monopolist to price in a way to

select only consumers whose risk aversion is above λ∗ ≡ arg maxλ[1 −G(λ)]. Because higher risk

aversion is associated with lower risk type by the assumption of quadrant negative dependence,

consumers who purchase insurance have lower average risk than the entire population.

Proposition 5 represents a striking difference from the result reported in Proposition 1 for

the case of perfectly competitive market, where we show that negative correlation property will

not emerge under any joint distribution of M and Λ. To better explain the intuition why market

structure plays such an important role in whether or not negative dependence between M and Λ can

lead to negative correlation property in equilibrium, it is useful to further examine the difference,

when k gets large, between the competitive equilibrium price p∗(k) and the monopolistic price

pm (k).26 In Lemma 3 of the Appendix, we show that under monopoly, pm (k) /k converges to λ∗

when k gets large. Moreover, it is straightforward to show that p∗(k) ≤ E [M ] + kλ when k is large

enough.27

The difference between competitive and monopolistic market structure can be understood as

follows. As k gets larger, it becomes less costly for the insurance firms to offer insurance due to

26We use p∗ (k) and pm (k) to indicate the competitive equilibrium price and the profit-maximizing price respectively
when the relative importance parameter of the risk preference in WTP is k. pm (k) is formally defined in the Appendix
in (28).

27To see this, suppose k > k̃∗ :=
[
m− E [M ]

]
/λ and p∗ (k) > E [M ] + kλ. Then firm’s expected profit is

π(p∗ (k) ; k) =

∫
θ∈B(p∗(k))

[
p∗ (k)−m

]
dH(m,λ) >

∫
θ∈B(p∗(k))

[
E [M ] + k̃∗λ−m

]
dH(m,λ) = 0,

violating the zero profit condition required for the competitive equilibrium.
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λ
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m + kλ = pm

m + kλ = p*

mE M[ ]

Figure 2: Perfect Competition versus Monopoly: the Case of High k

the increase in the WTP for insurance for consumers of all risk types. This is true for both the

competitive and the monopolistic market structure. However, in a perfectly competitive market,

the competitive pressure will force insurance companies to reduce prices and cover more consumers,

leading to a low price level in equilibrium. Specifically, the competitive equilibrium price is lower

than E [M ] + kλ when k is sufficiently large. As a result, only consumers with low risk (lower

than the unconditional expectation) and low degree of risk aversion choose to opt out (the lower

dashed line in Figure 2). This implies directly that consumers with no insurance have lower average

risk than the entire population.28 In contrast, a monopolistic firm recognizes that, when M and

Λ exhibit strong negative dependence, most densities concentrate on the diagonal as indicated in

Figure 2. To maximize profit, a monopolist will choose a higher price relative to the competitive

equilibrium price p∗ so as to exclude the higher risk consumers (the upper solid line in Figure 2).

Comparative Statics with Respect to the Degree of Negative Dependence Proposition

5 is a limiting result under monopoly as the role of preference as a determinant of the demand for

insurance becomes sufficiently important. In this subsection, we further parameterize the nature of

the negative dependence between M and Λ, and examine its impact on the equilibrium outcomes

of the monopolistic market, including premium, market size and the correlation between insurance

28In the extreme case of perfect negative dependence, every consumer will buy insurance for any k > 0, hence

E
[
M |B

(
p∗ (k)

)]
= E [M ].
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purchase and ex post realization of risk.

To this end, we assume that both M and Λ are uniformly distributed between 0 and 1, and the

joint distribution of M and Λ can be represented by a Bivariate Fréchet copula parameterized by

µ ∈ [0, 1]:

C(z1, z2;µ) = µW(z1, z2) + (1− µ)Π(z1, z2), (20)

where Π(z1, z2) ≡ z1z2 is the product copula that exhibits independence andW(z1, z2) ≡ max{z1 +

z2 − 1, 0} is the Fréchet lower bound that shows perfect negative dependence between z1 and z2.

Hence, the parameter µ measures the degree of negative dependence between z1 and z2. With a

slight abuse of notation, we use pm (µ) to denote the monopolist’s profit maximizing premium, and

use D
(
pm (µ)

)
to denote the measure of consumers who will purchase insurance at the monopolist’s

price pm (µ). We know from Proposition 1 that positive correlation property emerges for all k and

µ if the market structure is perfect competition. For the case of monopolistic market structure, we

have the following result:

Proposition 6 Suppose that consumers have CARA utility functions and experience normally

distributed risks as described in Example 2, and the joint distribution is H(m,λ;µ) = µW(m,λ) +

(1 − µ)Π(m,λ). Assume M ∼ U [0, 1] and Λ ∼ U [0, 1]. Suppose the market structure is monopoly.

Then,

1. if k < 1, then the positive correlation property emerges for all µ;

2. if k > 1, then there exists a threshold µ† such that:

(a) the negative correlation property emerges if µ > µ†; and the positive correlation property

emerges if µ < µ†;

(b) dpm (µ)
/
dµ < 0 and dD(pm (µ))

/
dµ > 0.

The monopolist takes advantage of the increasing negative dependence between risk and risk

aversion. In particular, when these two consumer characteristics become more negatively depen-

dent, the monopolistic insurer has an incentive to set a high premium to rule out the “bad risks.” As

a result, the monopolist optimally chooses a price in the region where negative correlation property

emerges.

6 Local Adverse/Advantageous Selection and Positive/Negative

Correlation Property

In this section, we use the example we analyzed in the previous section to clarify the connections

between some important concepts related to the selection markets, such as adverse/advantageous

selection and positive/negative correlation property. In the classic models of insurance with one-

dimensional consumer heterogeneity in risk types (e.g., Arrow 1963, Pauly 1974, Rothschild and

Stiglitz 1976 and Wilson 1977), adverse selection refers to the idea that the average risk of those

20



who choose to purchase insurance worsens as the insurance premium rises. The reason is very

simple: as premium rises, the marginal consumer to drop out of coverage is the least risky among

the insured in a one-dimensional model. To the extent that the average risks will translate into

average cost of coverage for the insurance company, this translates into the average cost curve (and

the marginal cost curve) being an increasing function of price.29

Einav et al. (2010b) generalize this insight to models of potential multidimensional consumer

heterogeneity. Their approach to test for the nature of selection in the insurance market treats

the marginal cost curve as a sufficient statistics for the distribution of consumers’ potentially

multidimensional heterogeneity, and to the extent that researchers have access to exogenous price

variations to estimate the marginal cost curve, it would indeed be a very attractive approach relative

to a fully structural alternative.

The first clarification we would like to make in this section is the following: in models with

multidimensional consumer heterogeneity, the average cost and the marginal cost curves are typi-

cally non-monotonic functions of premium.30 Thus, it is useful to define a local notion of selection

based on how the marginal cost curve, which we will denote by MC (p) , is locally related to the

premium change:

Definition 4 (Local Adverse/Advantageous Selection) The market is said to be subject to

local adverse selection at price p if MC ′(p) > 0. Similarly, the market is said to be subject to local

advantageous selection at price p if MC ′(p) < 0.

Note that local adverse/advantageous selection defined above is not an equilibrium notion and

can be defined on any price p.

Remark 5 If consumers have one-dimensional heterogeneity in risk, local selection is always ad-

verse, as the marginal buyer is always riskier as the premium increases; thus there is no distinction

in the notion of local selection and global selection. Moreover, in the one-dimensional heterogene-

ity model, the average cost curve, which we denote by AC (p) , is always above the marginal cost

curve except at the price levels that exceed the maximum WTP for insurance (where the two curves

coincide). Thus AC ′ (p) > 0.

Remark 5 also implies that local advantageous selection is a phenomenon that may arise only

when consumer heterogeneity is multidimensional.

Remark 6 When consumers have multidimensional heterogeneity, whether AC (p) is increasing

(or decreasing) at p depends on whether AC (p) is larger (or smaller) than MC (p) . Thus, marginal

29Or equivalently, the average (and the marginal) cost curve is a decreasing function of the fraction insured because
the fraction insured is a monotonically decreasing function of the price.

30As we pointed out in Footnote 7, Einav and Finkelstein (2011) note this as well in a footnote in their paper, but
proceed assuming monotonicity. Mahoney and Weyl (2017) also realize the importance of studying non-monotone
cost curves (footnote 5, p. 4): “It is possible that these slopes have different signs over different ranges or that the
two have slopes of different signs over a particular range. All of these cases do not fall cleanly into one category
or the other and are not our focus in what follows. It would be interesting to extend our analysis to such cases.”
Our discussion below is to emphasize that the non-monotonicity is a typical property of models of multidimensional
heterogeneity.
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cost curve locally increasing at p does not imply, and is not implied by the average cost locally

increasing at p.

In contrast, the concept of positive or negative correlation property (see Definition 1 for the case

of competitive market structure, but can be obviously generalized to any market structure) refers

to whether the equilibrium correlation between insurance purchase and ex post realization or risk is

positive or negative. It is a property of the equilibrium, which depends on the complete distribution

of consumer heterogeneity, while the local adverse/advantageous selection is determined by the local

properties of the distribution of consumer heterogeneity on the iso-WTP sub-space – recall that

local selection can be defined on any price, including but not restricted to the equilibrium price. Of

course, the equilibrium market price also depends on the market structure: in the price-cost graph

as in Figure 3 below, the competitive market equilibrium price is determined by the intersection

of the 45 degree line with AC (p) curve, while the monopolistic equilibrium price is determined by

the intersection of the marginal revenue curve, which is p+D (p) /D′ (p) , with MC (p) curve.

Now we illustrate the notions of local adverse/advantageous selection in the context of the

environment we studied in Section 5. We define, as a function of premium p, the demand for

insurance, the total (expected) cost, the average (expected) cost and the marginal (expected) cost

at price p are equal to:

D(p) =

∫
θ∈B(p)

dH(m,λ),

TC(p) =

∫
θ∈B(p)

mdH(m,λ),

AC(p) = E
[
M |B (p)

]
=
TC(p)

D(p)
,

MC(p) = E
[
M |v(θ) = p

]
=

∫
θ∈{θ:v(θ;1)=p}mdH(m,λ)∫
θ∈{θ:v(θ;1)=p} dH(m,λ)

≡ dTC(p)

dp

/
dD(p)

dp
.

Let us focus on the case where k > 1.

When µ = 0, i.e., when the risk type and risk preference type are independent and uniformly

distributed, MC(p;µ = 0) is given by:

MC(p;µ = 0) =


1
2p, if p ∈ [0, 1]

1
2 , if p ∈ [1, k]

1
2 [(p− k) + 1], if p ∈ [k, k + 1].

It can be verified that MC(p;µ = 0) is nondecreasing in p.31 Hence, the AC curve lies above the

MC curve and is increasing in p for p ∈ [0, k+ 1]. This corresponds to the graphical representation

of adverse selection in Einav et al. (2010b) and Mahoney and Weyl (2017). It is worth noting that

the monotonicity of MC and AC in this example is a sufficient but not a necessary condition for the

31If M and Λ are not uniformly distributed as in this example, the independence of M and Λ does not generally
imply that the MC curve is monotonic in p. See Example A1 in Online Appendix C for a construction.
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Figure 3: Cost Curves for µ ∈ (0, 1), k = 2

emergence of positive correlation property under any market structure. Indeed, from Proposition

3 we must have AC(p) > AC(m + kλ) = E [M ] for p ∈ (m + kλ,m + kλ) when µ = 0 regardless

the shape of cost curves.

When µ = 1, i.e., when M and Λ are perfectly negative dependent, MC(p;µ = 1) is given by,

MC(p;µ = 1) =
k − p
k − 1

for p ∈ [1, k].

The joint distribution H(·, ·) degenerates to a one-dimensional distribution and there exists a one-

to-one mapping between m and λ. In particular λ = 1 −m. Consumer’s WTP is k + (1 − k)m,

which is decreasing in m when k > 1. Therefore, the lower risk types have higher WTP for a given

price. This implies directly that the risk of the marginal consumer is decreasing as price increases

and AC(p) is decreasing in p. This corresponds to the graphical representation of advantageous

selection in Einav et al. (2010b) and Mahoney and Weyl (2017).

When µ ∈ (0, 1), the marginal cost MC
(
p;µ ∈ (0, 1)

)
curve is given by:

MC(p;µ ∈ (0, 1)) =


1
2p if p ∈ [0, 1][

µ
k−1

k−p
k−1 + 1−µ

2k

]/[
µ
k−1 + 1−µ

k

]
if p ∈ [1, k]

1
2 [(p− k) + 1] if p ∈ [k, k + 1].

It can be verified that MC is non-monotone in p. As depicted in Figure 3, the MC curve is increasing

in p for p ∈ [0, 1] and p ∈ [k, k + 1], and decreasing for p ∈ [1, k]. Hence, in the notion of local

selection as given by Definition 4, the local selection is adverse for p ∈ [0, 1] and p ∈ [k, k + 1], but

the local selection is advantageous when p ∈ [1, k]

The non-monotonicity of the MC curve is not a unique property of this example. In fact,

when we model dependence on the joint distribution with positive density almost everywhere on

[m,m] ×
[
λ, λ

]
, it is impossible to obtain a globally decreasing MC curve. To see this, notice

that only consumers with high risks purchase insurance when the price is below but sufficiently
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close to the maximum price m + kλ. Hence, the MC is high when price is close to m. By the

same token, when the price decreases gradually and is approaching to the minimum price m+ kλ,

the additional consumers are those with low risks. In other words, MC is low (close to m) near

the lowest price. Therefore, MC always starts up low and ends up high. For negative correlation

property to emerge, MC needs to change its monotonicity at least twice as Figure 3 illustrates.32

Only under joint distribution functions that put zero density on certain combinations of (m,λ) is it

possible to obtain a globally decreasing MC curve. For example, when M and Λ exhibit perfectly

negative dependence (i.e. µ = 1), the MC curve is globally decreasing as in Einav et al. (2010b)

and Mahoney and Weyl (2017).

Having clarified the distinction between the local notion of adverse/advantageous selection in

models of multidimensional heterogeneity and the equilibrium (and thus global) notion of posi-

tive/negative correlation property, the following claim discusses their connections:

Claim 1 (Connection between Local Advantageous/Adverse Selection and Equilibrium

Negative/Positive Correlation Property)

1. If the market exhibits negative correlation property in equilibrium, then the market is subject

to local advantageous selection at some prices.

2. However, the reverse does not hold.

3. Moreover, it is possible that selection is locally advantageous at the equilibrium price p∗, yet

the market exhibits positive correlation property in equilibrium.

The first part of Claim 1 is obvious. Suppose that the market is subject to local adverse selection

for all prices. Then MC(p) is increasing in p for all p by Definition 4. It follows immediately that

AC(p) is increasing in p globally, which implies that E
[
M |B (p∗)

]
= AC (p∗) > AC (0) = E [M ].

We provide an example to illustrate the second and third part of Claim 1.

Example 4 Suppose m ∈ {0.1, 0.2, 0.9} with Pr(m = 0.1) = Pr(m = 0.2) = Pr(m = 0.9) = 1/3,

and λ ∈ {0.3, 0.7} with Pr(λ = 0.1) = Pr(λ = 0.3) = 1/2. In addition, we assume that M and Λ

are independent and v(m,λ;x) = m+ 2λ. Consumer’s willingness to pay is summarized as follows:

λ \m m = 0.1 m = 0.2 m = 0.9

λ = 0.1 v = 0.3 v = 0.4 v = 1.1

λ = 0.3 v = 0.7 v = 0.8 v = 1.5

32If M and Λ are supported on semi-infinite intervals, then the monotonicity of the MC curve needs to be changed
at least once but not twice. To see this, suppose that (m,λ) ∈ [m,∞)× [λ,∞). In such a scenario, the maximum price
can be arbitrarily large. Again, the marginal cost at the lowest price m+kλ is m; while the marginal cost at any other
price must be no less than m because m is the lowest risk type. Therefore, we must have that limp↓m+kλMC(p) = m
and limp↑∞MC(p) ≥ m, which in turn indicates that MC needs to change its monotonicity at least once for negative
correlation property to emerge.
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The average cost and the demand curve can be derived as follows:

p [0, 0.3] (0.3, 0.4] (0.4, 0.7] (0.7, 0.8] (0.8, 1.1] (1.1, 1.5]

AC(p) 0.4 0.46 0.525 0.67 0.9 0.9

D(p) 1 5/6 4/6 3/6 2/6 1/6

It is straightforward to verify that there exist two competitive equilibrium premiums in this example:

p∗1 = 0.9 ∈ (0.8, 1.1] and p∗2 = 0.525 ∈ (0.4, 0.7]. From Proposition 1, the market always exhibits

positive correlation property under both equilibria. For p∗1 = 0.9, the marginal cost increases from 0.2

to 0.9 as the premium increases from 0.8 to 1.1, indicating local adverse selection.33 Interestingly,

for p∗2 = 0.525, the marginal cost decreases from 0.2 to 0.1 as the premium increases from 0.4 to

0.7, indicating local advantageous selection. Therefore, from this example we know that the market

can still be subject to local advantageous selection at the equilibrium premium p∗2 even though the

positive correlation property holds.

Discussions Clarifying the distinction between local selection (adverse or advantageous) and the

equilibrium positive/negative correlation is important. As noted by de Meza and Webb (2017),

this distinction is sometimes not clearly made. Einav et al. (2010a, p. 316) state that, “contract j

is adversely selected if the expected cost of insuring j’s enrollees under contract j is greater than

the expected cost of insuring the population I under contract j” and is advantageously selected

otherwise. This is in fact referring to the equilibrium positive or negative correlation property. In

contrast, Einav et al. (2010b, p. 879) state that “... the sign of the slope of the marginal cost curve

tells us whether the resultant selection is adverse (or the marginal cost is increasing in price) or

advantageous (if marginal cost is decreasing in price).” In our terminology, this is a local definition

of adverse or advantageous selection. Since the marginal cost curve is typically non-monotonic in

price, a property Einav et al. (2010b) do not emphasize but Einav and Finkelstein (2011, footnote

7, p. 124) do acknowledge, the two notions may reach different conclusions under multiple consumer

heterogeneity, as explicitly shown in our Claim 1 above. This is a point that was already made by

de Meza and Webb (2017) in their two-type (bad and good risks) example, where they also argue

that the local sign of the slope of the average cost with respect to quantity, which may not be

monotonic, can be a useful measure of selection as well.

Azevedo and Gottlieb (2017) introduce a notion of intensive margin selection coefficient that

measures the difference between the marginal changes of the premium and the marginal increase in

the cost of insuring the consumers choosing a particular level of coverage, if they were to switch to

a contract with an infinitesimally better coverage. Notice that their notion is with respect to the

local changes in coverage, as opposed to the local changes in the premium used in our definition

of local adverse/advantageous selection. They suggest that this notion is related to the positive

correlation test. Indeed if the intensive margin selection coefficient is positive (negative), it means

33We caution readers that the MC curve in this example is not well-defined at all premium levels because consumers
have discrete types. See Online Appendix C for a continuous-type version of Example 4.
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that, locally, there is a positive (negative) correlation between the ex post risk realization and

the insurance coverage generosity. More importantly, the intensive margin selection coefficient not

only provides the sign of the correlation but also the magnitude of the positive correlation. They

state that “It is possible that there is adverse selection in one region of the contract space, and

advantageous selection in another region.” In Section 7 below, we show in Proposition 7 that under

a set of mild conditions, the multiple contract competitive equilibrium exhibits positive correlation

property throughout the contract space. We will provide further connections between their intensive

margin selection coefficient and the standard correlation test after we present Proposition 7.

7 Extension: Endogenizing the Contracts

In the basic model, the quality of the insurance is predetermined, and hence we are comparing

no purchase with purchasing x ∈ (0, 1]. In this section we relax this assumption and show that

the main results derived in both the competitive (Section 4) and monopolistic (Section 5) case are

indeed robust.

Competitive Insurance Market: Endogenous Contract Consider a perfectly competitive

market. Instead of allowing the competing insurance firms to choose the quality of the contract

arbitrarily, we assume that a firm can provide contracts from a set X = {x0, x1, · · · , xN} with

0 = x0 < x1 < · · · < xN ≤ 1, where x0 refers to the null contract costing nothing (i.e., C(θ;x0) ≡
x0 ·m = 0) and providing zero utility (i.e., U(θ;x0, 0) = 0) to all consumers. This approach allows us

to endogenize the insurance quality with a minimal departure from the basic model we considered

in Section 3. We would like to study whether negative correlation or positive correlation property

will emerge in equilibrium when comparing xi versus xj for i < j, as well as those who do not

purchase. Denote the price of contract xi by pi for i ∈ {0, 1, · · · , N}. Fixing the premium vector

p = (p0, p1, · · · , pN ), denote the set and measure of consumers that selects contract xi by Bi (p)

and Di (p) respectively, that is,34

Bi (p) ≡
{
θ : U(θ;xi, pi) ≥ max

j<i

{
U(θ;xj , pj)

}
, U(θ;xi, pi) > max

j>i

{
U(θ;xj , pj)

}}
, (21)

and

Di (p) ≡
∫
θ∈Bi(p)

dH(m,λ). (22)

The average ex post realization of risk among those who purchase insurance contract xi, conditioning

on Bi (p) being non-empty, is:

E
[
M |Bi (p)

]
=

∫
θ∈Bi(p)mdH(m,λ)∫
θ∈Bi(p) dH(m,λ)

. (23)

34It is assumed that whenever a consumer is indifferent between two contracts, she always selects the one with the
higher coverage.
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Next, we define the employed equilibrium notion, which borrows from Azevedo and Gottlieb

(2017). This definition corresponds to the weak equilibrium in Azevedo and Gottlieb (2017).

Definition 5 The price vector p∗ = (p∗0, p
∗
1, · · · , p∗N ) is a competitive equilibrium if

i. For each contract xi, firms make no profits;

ii. Consumers make purchase decision and choose contracts optimally.

This price-taking definition requires firms to earn zero profit on each contract (either with

positive or zero demand) and hence rules out cross-subsidies between contracts.35 The existence of

equilibrium is guaranteed by Theorem 1 and Proposition 1 in Azevedo and Gottlieb (2017). It is

worth noting that the equilibrium premium of the null contract is zero if the corresponding demand

is strictly positive.

Next, we generalize the concept of positive and negative correlation property in Definition 1 to

the current case with multiple contracts. It is useful to denote the set of contracts that induces

positive insurance demand by X̃(p) and the corresponding price vector by p̃, holding fixed p and

X.

Definition 6 (Positive and Negative Correlation Property with Multiple Contracts)

Suppose |X̃(p∗)| ≥ 2. The insurance market exhibits positive correlation property in equilibrium if

for every pair xi, xj ∈ X̃(p∗) with i > j, E
[
M |Bi (p∗)

]
> E

[
M |Bj (p∗)

]
, and it exhibits negative

correlation property if E
[
M |Bi (p∗)

]
< E

[
M |Bj (p∗)

]
.

We assume that the insurance coverage x affects consumers’ WTP in the natural way. Specifi-

cally, we impose the following assumptions on the utility function U(·):

Assumption 4 Suppose xi > xj. Then U
(
θ;xi, pj + (xi − xj)m

)
> U

(
θ;xj , pj

)
for all pj.

Assumption 4 is intuitive: if the difference in the premium between two contracts is equal to

that in the expected cost, then consumers prefer the one with better coverage. It is useful to point

out that Assumption 4 is a natural extension of Assumption 3 (for the single contract case), and it

implies Assumption 3.36

Consider a pair of contracts (xi, pi) and
(
xj , pj

)
with xi 6= xj . The set of consumer types

that are indifferent between the two contracts, namely,
{
θ : U(θ;xi, pi) = U(θ;xj , pj)

}
, can be

35As argued by Azevedo and Gottlieb (2017), this equilibrium concept can be justified as the limit of a strategic
model with differentiated products. The intuition is simple: a firm that cross-subsidizes contracts has incentives to
sell contracts with positive profits only.

36To see this, we first let pj = v(θ;xj). It follows from the inequality in Assumption 4 that

U
(
θ;xi, v(θ;xj) + (xi − xj)m

)
> U

(
θ;xj , v(θ;xj)

)
= U (θ; 0, 0) = U

(
θ;xi, v(θ;xi)

)
,

where the two equalities follow from the definition of v(·). The above condition together with ∂U/∂p < 0 implies
that v(θ;xi) − v(θ;xj) > (xi − xj)m. Next we let xj = 0 and the derived condition is reduced to v(θ;xi) > xi ·m
from v(θ; 0) = 0. This coincides exactly with the condition specified in Assumption 3.
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represented by an indifference curve, which we denote by λ = Iij(m) for i 6= j. It is obvious that

Iij(m) = Iji(m). The following assumption imposes some additional properties of the indifference

curves.

Assumption 5 Suppose xi > xj. The indifference curve λ = Iij(m) satisfies the following prop-

erties: (i) Iij(m) is strictly decreasing in m; (ii) if
(
ṁ, λ̇

)
>
(
m, Iij(m)

)
, then type-

(
ṁ, λ̇

)
con-

sumer prefers contract (xi, pi) over (xj , pi); (iii) Ii0(m) and Ij0(m) obey single crossing condition

and Ii0(m) is steeper than Ij0(m) at the intersection.

Parts (i) and (ii) of Assumption 5 are natural generalizations of Assumption 2, and part (iii)

imposes a single crossing condition on the set of indifference curves.37

Lemma 1 Suppose that Assumptions 1, 4 and 5 are satisfied, and that xi > xj > x0, and

xi, xj , x0 ∈ X̃(p∗). Then p∗i /xi > p∗j/xj.

Lemma 1 states that the unit price of the high quality insurance must be higher than that of the

low quality insurance in a competitive equilibrium. The intuition is as follows. Consumers can be

roughly classified into four groups based on their risk type (high risk vs. low risk) and risk preference

type (high risk aversion vs. low risk aversion). Single crossing condition of the indifference curves

guarantees that consumers selecting the low quality insurance must have both lower risk and lower

risk aversion, and consumers of higher risk types (independent of risk preference type) will select

into the high quality insurance. Now suppose that the unit price of the high quality insurance is

lower relative to that of the low quality insurance. Then providing the low quality insurance helps

the insurance firms to maintain a high premium and to attract consumers of low risk type (and

lower risk aversion). This results in a net profit and contradicts to the zero profit condition required

by the definition of equilibrium. Therefore, the unit price of insurance has to be strictly increasing

in the insurance quality in a competitive equilibrium.

Proposition 7 (Positive Correlation Property Holds in Competitive Equilibrium with

multiple contracts) Suppose that Assumptions 1, 4 and 5 are satisfied, and that |X̃(p∗)| ≥ 2 and

x0 ∈ X̃(p∗). Then positive correlation property always holds in a competitive equilibrium without

loadings.38

It is useful to connect the result stated in Proposition 7 to the notion of the intensive margin

selection coefficient introduced in Azevedo and Gottlieb (2017), which they denoted by SI (x).

They defined SI (x) for continuous contract space, but it is easy to adapt it to our discrete contract

37We can analytically prove that both Assumptions 4 and 5 are satisfied in Examples 1 and 2, with the only
exception of Part (iii) of Assumption 5 for Example 1. Simulation shows that this part is also satisfied, at least for
CARA and CRRA Bernoulli utility function in Example 1. See Online Appendix A for the details of the proof.

38We conjecture that we can use arguments analogous to those in the proof of Proposition 2 to show that positive
correlation property holds in competitive equilibrium with multiple contracts under a positive proportional loading
factor as long as it is sufficiently low.
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space setting. Specially, the intensive margin selection coefficient evaluated at contract xn, n =

0, 1, 2, ..., N − 1 can be written as:

SI (xn) =

Marginal Premium Change︷ ︸︸ ︷
p∗n+1 − p∗n
xn+1 − xn

−

Average Marginal Cost Change︷ ︸︸ ︷
1∫

θ∈Bn(p∗) dH (θ)

∫
θ∈Bn(p∗)

[
C (θ;xn+1)− C (θ;xn)

]
dH (θ)

xn+1 − xn
, (24)

where the first term reflects the marginal premium change per unit increase in coverage locally

at contract xn, and the second term reflects the average marginal cost increase of covering those

consumers who purchase contract xn, i.e., those with θ ∈ Bn (p∗) , if they were to switch to contract

xn+1. In a competitive equilibrium, we have, for i = n and i = n+ 1

p∗i = E
[
C (θ;xi) |θ ∈ Bi

(
p∗
)]

=

∫
θ∈Bi(p∗)C (θ;xi) dH (θ)∫

θ∈Bi(p∗) dH (θ)
.

Thus we can rewrite (24) as

SI (xn) =
1

xn+1 − xn

[∫
θ∈Bn+1(p∗)C (θ;xn+1) dH (θ)∫

θ∈Bn+1(p∗) dH (θ)
−

∫
θ∈Bn(p∗)C (θ;xn+1) dH (θ)∫

θ∈Bn(p∗) dH (θ)

]

=
1

xn+1 − xn

xn+1

(∫
θ∈Bn+1(p∗)mdH (θ)∫
θ∈Bn+1(p∗) dH (θ)

−

∫
θ∈Bn(p∗)mdH (θ)∫
θ∈Bn(p∗) dH (θ)

)
=

xn+1

xn+1 − xn

{
E
[
M | (m,λ) ∈ Bn+1

(
p∗
)]
− E

[
M | (m,λ) ∈ Bn

(
p∗
)]}

,

where the second equality follows from our assumption that C (θ;xi) = xi ·m. Proposition 7 thus

implies that in our setting the intensive margin selection coefficient SI (xn) defined in Azevedo and

Gottlieb (2017) is always positive. Indeed, the examples in Azevedo and Gottlieb (2017) where they

find changing signs of SI (·) at different levels of x feature heterogeneity in ex post moral hazard,

which may cause a violation of our Assumptions 2 and 4.

Monopolistic Insurance Market: Endogenous Contract Now we consider a monopolistic

insurance firm that chooses premium pm and insurance coverage xm to maximize its expected

profit:39

max
{p,x}

π(p, x) ≡
∫
θ∈B(p,x)

(p− xm) dH(m,λ) (25)

where B(p, x) is defined as

B (p, x) ≡
{
θ : v(θ;x)− p ≥ 0

}
. (26)

39 We follow Veiga and Weyl (2016) and assume that the monopolist offers a single contract instead of a menu
of contracts. See Jullien et al. (2007) for the investigation of optimal menu of contracts in a two-outcome/two-type
model of moral hazard with adverse selection on the consumer’s risk aversion.
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For the sake of tractability, we employ the expression of WTP derived from the CARA-Normal

specification in Example 2, that is, v(θ;x) = xm + x (2− x) kλ. For this class of examples, we

will use π (p, x; k) and B (p, x; k) to indicate that both are related to the parameter k ≡ σ2/2 as

defined in (19), which measures the relative importance of risk aversion as a determinant of the

consumer’s WTP for insurance. The following lemma can be implied immediately from the linearity

of consumers’ WTP.

Lemma 2 Suppose v(θ;x) = xm+ x (2− x) kλ, then π(p, x; k) = xπ(p/x, 1; (2− x)k).

The proof follows directly from the fact that B(p, x; k) = B(p/x, 1; (2 − x)k) and is omitted

for brevity. Lemma 2 uncovers the trade-off between x and the degree of adverse selection in an

intuitive way: holding fixed the per-unit price of the insurance (i.e., p/x), increasing insurance

coverage x will directly increase the revenue received from each consumer that purchases insurance,

at the cost of yielding steeper iso-WTP curves in the (m,λ) space, which indicates more severe

adverse selection.

The next two propositions illustrate the role of preferences and report results that are parallel

to those in Proposition 4 and 5.

Proposition 8 Suppose that consumers have CARA utility functions and experience normally

distributed risks as described in Example 2. For every H (·, ) , there exists a threshold k̂† > 0 such

that for all k < k̂†, E
[
M |B (p, x; k)

]
> E [M ] for all p ∈ (m+ kλ,m+ kλ) and x ∈ (0, 1].

Proposition 9 Suppose that consumers have CARA utility functions and experience normally

distributed risks as described in Example 2. If M and Λ are negatively quadrant dependent, then

there exists a threshold k̂†† such that the negative correlation property emerges under monopoly

when k > k̂††.

Proposition 8 and 9 show that the results in Proposition 4 and 5 are robust to the endogenization

of insurance quality in a monopolistic market. Before we explain the results, it is useful to discuss

the sources of advantageous selection. Because both the joint distribution of M and Λ and the

shape of the iso-WTP curves will influence firm’s cost curves, there are two sources of advantageous

selection in a model of multidimensional private information. The first source of advantageous

selection comes from the joint distribution of M and Λ as emphasized in Section 5. Intuitively,

negative dependence between M and Λ favors the monopolist and decreases firm’s cost of providing

insurance. The second source of advantageous selection is a result of the downward sloping nature

of the iso-WTP curves. Fixing the risk type, consumers of a high risk aversion type are more

willing to purchase insurance relative to those of a low risk aversion type. As a result, consumers

with low risk type and high risk aversion type will purchase insurance, mitigating adverse selection

compared to a model of one-dimensional private information in risk where the low risk type will

opt not to purchase insurance.

Fixing the joint distribution of M and Λ, different from the model of exogenous insurance qual-

ity, the monopolist is able to choose insurance coverage x to change the composition of consumers
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and hence mitigates adverse selection it faces. However, the impact of x in influencing selection

is limited. Formally, the absolute value of the slope of the iso-WTP curve is given by (2 − x)k,

which is bounded from below by k and above by 2k. Therefore, the effect of k in determining se-

lection takes over as k becomes sufficiently large (respectively, small) and the result in Proposition

4 (respectively, Proposition 5) remains.

Next we report some numerical results to shed light on the role of dependence between M and

Λ on the design of the optimal contract, especially on the correlation between insurance purchase

and ex post realization of risk. To proceed, we assume that M ∼ U [0, 1], Λ ∼ U [0, 1], and the

joint distribution is H(m,λ;µ) = µW(m,λ) + (1− µ)Π(m,λ) as in Section 5. With slight abuse of

notation, we denote the monopolist’s optimal contract by
(
pm(µ, k), xm(µ, k)

)
.

We will first briefly describe the algorithm of searching for the optimal contract in the numerical

analysis.40 We use p̂m (µ, k) to denote the monopolist’s optimal premium fixing x = 1. We first

completely solve for p̂m (µ, k) for any k.

Suppose k > 1, the profit function is:41

π(p, 1; k) =



p− 1
2 for p ∈ (−∞, 0]

(p− 1
2)− (1− µ) 1

3kp
3 for p ∈ [0, 1]

(1− µ)
[
(p− 1

2) + −3p2+3p−1
3k

]
+ 1

2µ
k−p
k−1

[
2p− k−p

k−1

]
for p ∈ [1, k]

(1− µ)
[

(p−1)3

3k − (p−1)2

2 + k2

6

]
for p ∈ [k, k + 1]

0 for p ∈ [k + 1,∞).

From the proof of Proposition 6, the optimal premium is,

p̂m (µ, k) =
µ k2

k−1 + (1− µ)(k − 1
k )

µ(2 + 1
k−1) + 2(1− µ)(1− 1

k )
.

Similarly, suppose k = 1, the profit function is:

π(p, 1; 1) =


p− 1

2 for p ∈ (−∞, 0]

(p− 1
2)− (1− µ)1

3p
3 for p ∈ [0, 1]

(1− µ)
[

(p−1)3

3 − (p−1)2

2 + 1
6

]
for p ∈ (1, 2]

0 for p ∈ [k + 1,∞).

For this special case, the profit function is discontinuous at p = 1. It can be verified that p̂m(µ, 1) =

1 and the positive correlation property emerges in this case.

40The program used in the numerical analysis is available from the authors upon request.
41See Online Appendix D for details of the derivation of the profit function, the demand curve, and the cost curves.
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Figure 4: Positive or Negative Correlation Property under Monopoly with an Endogenous Contract

Lastly, suppose k < 1, the profit function is:42

π(p, 1; k) =



p− 1
2 for p ∈ (−∞, 0]

(p− 1
2)− (1− µ) 1

3kp
3 for p ∈ [0, k]

(1− µ)
[

1
6k

2 − 1
2(p− 1)2

]
+ µ

(
k − 1

2

)
(p−1)2

(k−1)2 for p ∈ [k, 1]

(1− µ)
[

(p−1)3

3k − (p−1)2

2 + k2

6

]
for p ∈ [1, k + 1]

0 for p ∈ [k + 1,∞).

It can be verified that the profit is increasing for p ∈ [0, k] and decreasing for p ∈ [1, k + 1].

Therefore, p̂m (µ, k) ∈ [k, 1]. Moreover, if µ ≤ (1/k − 1)2, the profit is increasing in p for p ∈ [k, 1],

indicating p̂m (µ, k) = 1. If µ > (1/k − 1)2, the profit is decreasing in p for p ∈ [k, 1], indicating

p̂m (µ, k) = k. From Proposition 6, the positive correlation property emerges.

The optimal coverage xm(µ, k) solves the following one-dimensional optimization problem:

max
x∈[0,1]

x · π
(
p̂m
(
µ, (2− x)k

)
, 1; (2− x)k

)
. (27)

After we numerically compute xm(µ, k), the optimal premium is given by pm(µ, k) = xm(µ, k) ·
p̂m
(
µ,
[
2− xm(µ, k)

]
k
)

from Lemma 2.

Figure 4 graphically illustrates our numerical results. The solid curve is the combination of

(µ, k) for which the expected risk conditional on purchase under the optimal contract is equal to

the unconditional expectation (i.e. the contour plot of E
[
M |B

(
pm (µ, k) , xm (µ, k)

)]
= E [M ] in the

42See Online Appendix E for details of the derivations for the case k < 1.
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(µ, k) space).43 The region of (µ, k) to the right (respectively, to the left) of the solid curve depicts

the combination of (µ, k) for which the negative correlation property (respectively, the positive

correlation property) emerges under optimal contract. The first pattern to notice is that fixing the

degree of negative dependence between M and Λ, the negative correlation property (respectively,

the positive correlation property) emerges under the optimal contract when k is sufficiently large

(respectively, small). This confirms the results in Propositions 8 and 9. Second, the result in

Proposition 6 is robust to endogenous insurance quality. Specifically, holding fixed the degree of

relative importance of risk aversion, negative correlation property is more likely to appear when M

and Λ are sufficiently negative dependent.44

8 Conclusion

A large empirical literature has found that the correlation between insurance purchase and ex

post realization of risk is often statistically insignificant or negative, which is inconsistent with the

predictions from the classic models of insurance a la Akerlof (1970), Pauly (1974) and Rothschild

and Stiglitz (1976), where consumers differ only in their risk types. It is suggested that the selection

based on multidimensional private information, e.g., risk type and risk preference type, may be able

to reconcile the empirical findings. In this paper, we investigate, under different market structures,

whether selection based on multidimensional private information can result in negative correlation

between insurance coverage and ex post realization of risk in equilibrium. We show that if the

insurance market is perfectly competitive, selection based on multidimensional private information

does not generate negative correlation property in equilibrium, unless there is a sufficiently high

loading factor. If the insurance market is monopolistic, however, we show that it is possible to

generate negative correlation property in equilibrium when risk type and risk preference type are

sufficiently negative dependent, a notion we formalize using the concept of copula. We further show

that this result generalizes when contracts are partially endogenized. We also clarify the confusions

in this growing literature about the connections between some of the important concepts such as

adverse/advantageous selection and positive/negative correlation property.

There are some interesting directions for future research. First, in this paper we studied the

role of additional consumer heterogeneity in risk preference. It is important to model and examine

whether other sources of heterogeneity, such as heterogeneity in moral hazard (Einav et al., 2013)

and heterogeneity in imperfect rationality (e.g. Fang et al., 2008), will lead to different conclu-

sions on the emergence of the positive or the negative correlation property. As we pointed out in

Footnote 12, introducing moral hazard is likely to lead to the violations of Assumption 2. Hetero-

geneity in imperfect rationality will call for a plausible behavioral model of consumers’ insurance

43The contour plots are shown only for (µ, k) ∈ [0, 1]× [0.1, 4.1].
44Some readers may want to compare the contour plot of (µ, k) when x = 1 and that when x is endogenously chosen

by the monopolist. Simulation shows that endogenizing x slightly shifts the contour plot to the left and enlarges the
region of the negative correlation property under the optimal contract. This result is intuitive: the monopolist can
better take advantage of the negative dependence of the joint distribution if it is allowed to design x. Therefore, the
negative correlation property is more likely to emerge under optimal contract.
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purchase decisions. Second, in our paper we have identified the potential role of loading factors

in possibly affecting the equilibrium of the insurance market under different market structures. In

particular, Proposition 2 shows that a sufficiently small loading factor is sufficient to ensure that

positive correlation property always holds under a competitive insurance market regardless of the

dependence structure of the multidimensional heterogeneity. Loading factors can also drive a wedge

between the WTP for insurance and marginal cost (inclusive of loading factors) of providing cover-

age. Further investigations, empirically about the magnitude of loading factors, and theoretically

about how loading factors – potentially heterogeneous among insurance firms – may impact the

equilibrium of the insurance market, are also an important avenue for future research. Finally, our

paper assumes that the contracts space is either exogenous (as in Sections 4 and 5) or endogenous

in a restricted way (as in Section 7). Generalizing the analysis when insurers are allowed to choose

menus of screening contracts is also an important area for future research.
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Appendix: Proofs

Proof of Proposition 1

Proof. We consider two cases depending on the level of the equilibrium premium relative to

v
(
m†, λ;x

)
, the WTP for insurance of type-

(
m†, λ

)
consumer, where m† is defined in (11).

Case I: p∗ ≤ v
(
m†, λ;x

)
. For any λ = λ̃ ∈

[
λ, λ

]
, we have

E
[
M |
(
m, λ̃

)
∈ NB

(
p∗
)]

= E
[
M |v

(
m, λ̃;x

)
< p∗

]
≤ E

[
M |v

(
m, λ̃;x

)
≤ v

(
m†, λ;x

)]
≤ E

[
M |v

(
m, λ̃;x

)
≤ v

(
m†, λ̃;x

)]
= E

[
M |Λ = λ̃,M ≤ m†

]
< m†,

where the first inequality follows from the assumption that ∂v/∂m > 0; the second inequality follows

from the assumptions that ∂v/∂λ > 0 and ∂v/∂m > 0. Therefore the average risk conditional on

no insurance purchase can be bounded from above by

E
[
M | NB

(
p∗
)]

=

∫ λ

λ
E
[
M |
(
m, λ̃

)
∈ NB

(
p∗
)]
dG
(
λ̃|NB

(
p∗
))

< m† = E [M ] .

From (7)-(9), it is clear that E
[
M |B (p∗)

]
> E

[
M |NB (p∗)

]
follows from E

[
M |NB (p∗)

]
< E [M ].

Case II: p∗ > v
(
m†, λ;x

)
. Since p∗ is determined by (6) in a competitive insurance market

without loadings, we have that

E
[
M |B

(
p∗
)]

=
p∗

x
>
v
(
m†, λ;x

)
x

> m† = E [M ] ,

where the second inequality follows from Assumption 3.

Proof of Proposition 2

Proof. It is clear that the desired result still applies in Case I in the proof of Proposition 1. Under

Case II, i.e., if p∗ (`) > v
(
m†, λ;x

)
, then we have

E
[
M | B

(
p∗ (`)

)]
=

p∗ (`)

(1 + `)x
>
v
(
m†, λ;x

)
(1 + `)x

≥ m† = E [M ] ,

where the second inequality follows from the postulated restriction (12) on the loading factor `.

Proof of Proposition 3
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Proof. For the ease of exposition, we define the function λ̃(m; p, x) so that v
(
m, λ̃(m; p, x);x

)
= p.

In words,
(
m, λ̃(m; p, x)

)
is the point on the iso-WTP curve valued at p in the (m,λ) space; or

equivalently, λ̃(m; p, x) is the threshold risk preference type for risk type m who is indifferent

between purchasing the insurance of quality x at premium p. Accounting for the lower and upper

bounds of λ, we define ̂̃
λ(m; p, x) ≡ min

{
max

{
λ̃(m; p, x), λ

}
, λ

}
.

With slight abuse of notation, we drop x in λ̃(·) and
̂̃
λ(·) in what follows. Assumption 2 implies

that
̂̃
λ(m; p) is nonincreasing in m for all p ∈

(
v (m,λ;x) , v

(
m,λ;x

))
.

Fix any price p ∈
(
v (m,λ;x) , v

(
m,λ;x

))
. The marginal density of M conditional on pur-

chasing insurance is,

f(m|B (p)) =

∫ λ̂̃
λ(m;p)

h(m,λ)dλ∫m
m

∫ λ̂̃
λ(m;p)

h(m,λ)dλdm
.

For m′′ > m′, we must have:

f(m′′|B (p))

f(m′′)
=

∫ λ̂̃
λ(m′′;p)

h(m′′, λ)dλ∫m
m

∫ λ̂̃
λ(m;p)

h(m,λ)dλdm

/
f(m′′)

≥ 1∫m
m

∫ λ̂̃
λ(m;p)

h(m,λ)dλdm

∫ λ̂̃
λ(m′;p)

h(m′′, λ)dλ

f(m′′)
=

Pr

(
Λ ≥ ̂̃λ(m′; p)|M = m′′

)
∫m
m

∫ λ̂̃
λ(m;p)

h(m,λ)dλdm

≥
Pr

(
Λ ≥ ̂̃λ(m′; p)|M = m′

)
∫m
m

∫ λ̂̃
λ(m;p)

h(m,λ)dλdm

=

∫ λ̂̃
λ(m′;p)

h(m′, λ)dλ∫m
m

∫ λ̂̃
λ(m′;p)

h(m,λ)dλdm

/
f(m′) =

f(m′|B (p))

f(m′)
,

where the first inequality follows from the fact that
̂̃
λ(m; p) is nonincreasing in m for all p; and the

second inequality follows from the definition of positive stochastic monotonicity dependence. Hence
f(m|B(p))
f(m) satisfies the monotone likelihood ratio property, which implies that F

(
m|B (p)

)
first-order

stochastically dominates F (m). Moreover, Assumption 2 implies that the first-order stochastic

dominance is strict for at least a positive measure of values of m. Therefore E
[
M |B (p)

]
> E [M ] ,

which is equivalent to the positive correlation property as stated in Definition 1.

Proof of Proposition 4

Proof. For notational convenience, denote the range of the risk preference type Λ by RΛ ≡ λ− λ.
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m m

λ

λ
k̂ = m − E M[ ]

λ − λ

′k =
E M[ ]−m
λ − λ

E M[ ]

Figure 5: Proof of Proposition 4 when p ∈
[
E [M ] + kλ,E [M ] + kλ

]
and k < k1 ≡ min

{
k′, k̂

}
When p ∈

(
m+ kλ,E [M ] + kλ

)
, if a consumer’s risk type m is such that m ≥ E [M ] , then her

WTP v (m,λ) ≥ m+ kλ ≥ E [M ] + kλ > p, thus such a consumer will for sure purchase insurance

at price p. Thus, all the consumers who do not purchase insurance must have risk type m < E [M ] ,

which implies that E
[
M |NB (p)

]
< E [M ] , or equivalently E

[
M |B (p)

]
> E

[
M |NB (p)

]
.

When p ∈
(
E [M ] + kλ,m+ kλ

)
, if a consumer’s risk type m is such that m ≤ E [M ] , then

her WTP for insurance v (m,λ) = m + kλ ≤ E [M ] + kλ < p for all λ ∈
[
λ, λ

]
. Thus, the risk

type of consumers who buy insurance at price p must be higher than E [M ] . This implies that

E
[
M |B (p)

]
> E [M ], or equivalently, E

[
M |B (p)

]
> E

[
M |NB (p)

]
.

Now we consider the case when p ∈
[
E [M ] + kλ,E [M ] + kλ

]
. Suppose k < k1 where

k1 ≡ min
{(
m− E [M ]

)
/RΛ,

(
E [M ]−m

)
/RΛ

}
.

Then the iso-WTP curve of the marginal types of consumers, namely those consumers with v (m,λ) =

m + kλ = p, will intersect the upper and lower bounds of the range of Λ (see Figure 5). For

p ∈
[
E [M ] + kλ,E [M ] + kλ

]
, those and only those consumers to the right of the iso-WTP line

will purchase insurance. Thus, we have:
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E
[
M |NB (p)

]
=

∫ p−kλ
m

∫ min{ p−m
k

,λ}
λ mh(m,λ)dλdm∫ p−kλ

m

∫ min{ p−m
k

,λ}
λ h(m,λ)dλdm

≤

∫ p−kλ
m

∫ min{ p−m
k

,λ}
λ mh(m,λ)dλdm+

∫ p−kλ
p−kλ

∫ λ
p−m
k

(p− kλ)h(m,λ)dλdm∫ p−kλ
m

∫ min{ p−m
k

,λ}
λ h(m,λ)dλdm+

∫ p−kλ
p−kλ

∫ λ
p−m
k
h(m,λ)dλdm

=

∫ p−kλ
m

∫ λ
λ mh(m,λ)dλdm∫ p−kλ

m

∫ λ
λ h(m,λ)dλdm

+

∫ p−kλ
p−kλ

∫ λ
p−m
k

(p− kλ−m)h(m,λ)dλdm∫ p−kλ
m

∫ λ
λ h(m,λ)dλdm

=

∫ p−kλ
m mf(m)dm∫ p−kλ
m f(m)dm

+

∫ p−kλ
p−kλ

∫ λ
p−m
k

(p− kλ−m)h(m,λ)dλdm∫ p−kλ
m

∫ λ
λ h(m,λ)dλdm

< E
[
M |M ≤ p− kλ

]
+ kRΛ

≤ E
[
M |M ≤ E [M ] + kRΛ

]
+ kRΛ,

where the first inequality follows from the fact that we are adding the set of consumers whose risk

type m is such that m ∈
[
p− kλ, p− kλ

]
and whose WTP is above the premium, while assuming

that their risk types were all p − kλ; and the second inequality follows from the fact that in the

integrand of the numerator in the second term, p− kλ−m ≤ kRΛ because m ≥ p− kλ.
Now consider η(k) ≡ E

[
M |M ≤ E [M ] + kRΛ

]
+ kRΛ. It is clear that η (k) is increasing in k;

moreover,

η(0) = E
[
M |M ≤ E [M ]

]
< E [M ] ;

η

(
m− E [M ]

RΛ

)
= m > E [M ] .

Let k2 ∈
(

0, m−E[M ]
RΛ

)
be the unique solution to the equation η(k) = E [M ]. Then η(k) < E [M ] for

all k < k† ≡ min{k1, k2}. This completes the proof.

Proof of Proposition 5

Proof. We first pin down the monopoly price in the limit. Note that the monopoly firm will choose

price pm to:

max
{p}

π(p; k) ≡
∫
θ∈B(p)≡{(m,λ):m+kλ≥p}

(p−m) dH(m,λ). (28)

Since we are interested in how the parameter k affects the emergence of the negative correlation

property in equilibrium, we use pm (k) to denote the monopolist’s profit maximizing premium where

k is the parameter measuring the importance of risk preference as a determinant of insurance
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demand. For what follows, it is useful to define

λ∗ ≡ arg maxλ[1−G(λ)], (29)

where G (·) is the marginal CDF of Λ. We assume that λ∗ is unique and λ∗ ∈
(
λ, λ

)
. To proceed,

it is useful to prove the following intermediate result.

Lemma 3 limk→∞
pm(k)
k = λ∗.

Proof. It is equivalent to prove that for any arbitrarily small ε > 0, there exists a threshold

k3 such that pm(k)
k ∈ (λ∗ − ε, λ∗ + ε) for k > k3. Without loss of generality, we assume ε <

min
{
λ− λ∗, λ∗ − λ

}
.

First, notice that:(
λ∗ − m

k

)[
1−G

(
λ∗ − m

k

)]
≤ 1

k
π
(
kλ∗; k

)
=

∫
λ∗≤m

k
+λ

(
λ∗ − m

k

)
dH(m,λ)

≤ λ∗

[
1−G

(
λ∗ − m

k

)]
.

Taking limit of the above inequality yields:

lim
k→∞

1

k
π(kλ∗; k) = λ∗

[
1−G(λ∗)

]
.

Second, when k > m/(λ∗ − λ − ε), λ∗ − ε > m
k + λ and m

k + λ > λ∗ + ε hold. For p
k that is

outside the neighborhood of λ∗, i.e., p
k ∈

[m
k + λ, λ∗ − ε

]
∪
[
λ∗ + ε, mk + λ

]
, we have

1

k
π(p; k) =

∫
p
k
≤m
k

+λ

(
p

k
− m

k

)
dH(m,λ) ≤ p

k

[
1−G

(
p

k
− m

k

)]
.

Now let δ ≡ λ∗[1 − G(λ∗)] − max[mk +λ,λ∗−ε]∪[λ∗+ε,mk +λ] λ[1 − G(λ)] > 0. By continuity, there

exists a threshold ǩ such that p
k [1 − G( pk −

m
k )] ≤ λ∗[1 − G(λ∗)] − δ

2 for k > ǩ. Therefore, for

k > k3 ≡ max{m/(λ∗−λ− ε), ǩ}, the profit at price p = kλ∗ is greater than the profit at any price

p such that p
k ∈

[m
k + λ, λ∗ − ε

]
∪
[
λ∗ + ε, mk + λ

]
. This completes the proof.

It is useful to point out that Lemma 3 does not depend on the assumption that M and Λ exhibit

negative quadrant dependence. Now we can prove Proposition 5. The average risk of the uninsured
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is given by:

E
[
M |NB

(
pm (k)

)]
=

∫
pm(k)
k
≥m
k

+λ
mdH(m,λ)∫

pm(k)
k
≥m
k

+λ
dH(m,λ)

>

∫m
m

∫ pm(k)−m
k

λ mh(m,λ)dλdm+
∫m
m

∫ pm(k)−m
k

pm(k)−m
k

mh(m,λ)dλdm∫m
m

∫ pm(k)−m
k

λ h(m,λ)dλdm+
∫m
m

∫ pm(k)−m
k

pm(k)−m
k

h(m,λ)dλdm

>

∫ pm(k)−m
k

λ mg(λ)dλ

G(p
m(k)−m

k )
− (m−m)

1−
G
(
pm(k)−m

k

)
G
(
pm(k)−m

k

)


= E
[
M |λ ≤ pm (k)−m

k

]
− (m−m)

1−
G
(
pm(k)−m

k

)
G
(
pm(k)−m

k

)
 ,

where the first inequality follows from the fact that we are adding the set of consumers whose risk

aversion type λ is such that λ ∈
[
(pm(k)−m)/k, (pm(k)−m)/k

]
and whose WTP is above the

premium, while assuming that their risk types were all m; and the second inequality follows from

the fact that m−m < m−m and
∫m
m

∫ pm(k)−m
k

pm(k)−m
k

h(m,λ)dλdm < G
(
pm(k)−m

k

)
−G

(
pm(k)−m

k

)
.

By Lemma 3, limk→∞
pm(k)−m

k = limk→∞
pm(k)−m

k = λ∗. Hence,

lim
k→∞

E
[
M |Λ ≤ pm (k)−m

k

]
− (m−m)

1−
G
(
pm(k)−m

k

)
G
(
pm(k)−m

k

)

 = E

[
M |Λ ≤ λ∗

]
.

From Definition 3, we must have

Pr(M ≤ m|Λ ≤ λ) < Pr(M ≤ m) for all (m,λ) ,

which implies that E
[
M |Λ ≤ λ∗

]
> E [M ] .Hence, there exists a threshold k†† such that E

[
M |NB

(
pm (k)

)]
> E [M ] for k > k††.

Proof of Proposition 6

Proof. (1) Suppose that k < 1. First consider Π (m,λ) , which is the joint distribution when M

and Λ are independent, which trivially satisfies the definition of positive stochastic monotonicity

dependence (see Definition 2). Thus Proposition 3 applies; and thus, for all p ∈ (0, k+ 1), we must
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have:45 ∫
θ∈B(p)mdΠ(m,λ)∫
θ∈B(p) dΠ(m,λ)

> E [M ]

⇔
∫
θ∈B(p)

mdΠ(m,λ) > E [M ]

∫
θ∈B(p)

dΠ(m,λ). (30)

Now consider W (m,λ) . For p ∈ (0, k], we have,

∫
θ∈B(p)mdW(m,λ)∫
θ∈B(p) dW(m,λ)

=

∫ 1

max
{
p−k
1−k ,0

}mdm∫ 1

max
{
p−k
1−k ,0

} dm =
1

2

[
max

{
p− k
1− k

, 0

}
+ 1

]
≥ 1

2
= E [M ] .

For p ∈ [k, k + 1), we have
∫
θ∈B(p)mdW(m,λ) =

∫
θ∈B(p) dW(m,λ) = 0. Combining these, we

conclude that for all p ∈ (0, k + 1):∫
θ∈B(p)

mdW(m,λ) ≥ E [M ]

∫
θ∈B(p)

dW(m,λ). (31)

Now since H(m,λ;µ) = µW(m,λ) + (1 − µ)Π(m,λ), the average risk of the insured can be

bounded from below by

E
[
M |B (p)

]
=

∫
θ∈B(p)mdH(m,λ)∫
θ∈B(p) dH(m,λ)

=
(1− µ)

∫
θ∈B(p)mdΠ(m,λ) + µ

∫
θ∈B(p)mdW(m,λ)

(1− µ)
∫
θ∈B(p) dΠ(m,λ) + µ

∫
θ∈B(p) dW(m,λ)

>
(1− µ)E [M ]

∫
θ∈B(p) dΠ(m,λ) + µE [M ]

∫
θ∈B(p) dW(m,λ)

(1− µ)
∫
θ∈B(p) dΠ(m,λ) + µ

∫
θ∈B(p) dW(m,λ)

= E [M ] ,

where the second equality follows from the definition of H(·, ·), and the inequality follows from (30)

and (31).

(2) Suppose k > 1. The profit function can be derived as:46

π(p;µ) =


(p− 1

2)− (1− µ) 1
3kp

3 for p ∈ [0, 1]

(1− µ)
[
(p− 1

2) + −3p2+3p−1
3k

]
+ 1

2µ
k−p
k−1

(
2p− k−p

k−1

)
for p ∈ [1, k]

(1− µ)
[

(p−1)3

3k − (p−1)2

2 + k2

6

]
for p ∈ [k, k + 1].

(32)

Notice that ∂π/ ∂p = 1−(1−µ)p2/k > 0 for p ∈ [0, 1] and ∂π/ ∂p = (1−µ)(p−1)[(p−1)/k−1] <

0 for p ∈ [k, k + 1]. Moreover, ∂2π
/
∂p2 < 0 for p ∈ [1, k]. Therefore, pm (µ) is the solution to

45Note under the assumed support of M and Λ, the maximum WTP for insurance m+ kλ is k + 1.
46See Online Appendix D for details of the derivations of the profit function, the demand curve, and the cost curves.
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∂π/ ∂p = 0 for p ∈ [1, k]. Solving for pm yields,

pm(µ) =
µ k2

k−1 + (1− µ)(k − 1
k )

µ(2 + 1
k−1) + 2(1− µ)(1− 1

k )
.

The market size is,

D(pm (µ)) = µ

(
k − pm (µ)

k − 1

)
+ (1− µ)

{
1 +

1

k

[
1

2
− pm (µ)

]}
.

It can be verified that dpm (µ)
/
dµ < 0 and dD(pm (µ))

/
dµ > 0. Finally, the average risk of the

insured can be derived as,

E
[
M |B

(
pm (µ)

)]
=

1
2µ
[
k−pm(µ)
k−1

]2
+ (1− µ)

{
1
2 + 1

k

[
1
3 −

1
2p
m (µ)

]}
µ
[
k−pm(µ)
k−1

]
+ (1− µ)

{
1 + 1

k

[
1
2 − pm (µ)

]} .

Carrying out the algebra, it can be verified that E
[
M |B

(
pm (µ)

)]
< E [M ] is equivalent to

[k − pm(µ)][pm(µ)− 1]− 1

6

1− µ
µ

(k − 1)2

k
> 0.

Denote the left hand side of the inequality as χ(µ). Then we have,

dχ(µ)

dµ
= 2

(
k + 1

2
− pm (µ)

)
dpm (µ)

dµ
+

1

6µ2

(k − 1)2

k
> 0,

where the inequality follows from the fact that dpm (µ)
/
dµ < 0 and pm(µ) > pm(1) = k2/(2k−1) >

(k + 1)/2. Therefore χ(µ) is strictly increasing in µ; moreover,

lim
µ→0

χ(0) = −∞ < 0;

χ(1) =
k(k − 1)3

2k − 1
> 0.

Let µ† be the unique solution to the equation χ(µ) = 0. Then E
[
M |B

(
pm (µ)

)]
> E [M ] for all

µ < µ† and E
[
M |B

(
pm (µ)

)]
< E [M ] for all µ > µ†. This completes the proof.

Proof of Lemma 1

Proof. Because xi, xj , x0 ∈ X̃(p∗), both Ii0(m) and Ij0(m) cut the support [m,m] ×
[
λ, λ

]
into

two pieces. Moreover, we have that p∗0 = 0 due to the zero profit condition of the null contract x0.

Suppose to the contrary that p∗i /xi ≤ p∗j/xj . We consider three cases depending on whether Ii0(m)

and Ij0(m) intersect.
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(a) Case I (b) Case II

(c) Case III

Figure 6: Proof of Lemma 1
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Case I: Ii0(m) and Ij0(m) intersect at
(
m̂, λ̂

)
∈ [m,m]×

[
λ, λ

]
. Note that if Ii0(m) and Ij0(m)

intersect at
(
m̂, λ̂

)
, then type-

(
m̂, λ̂

)
consumer must be indifferent between contracts (xi, pi) and(

xj , pj
)
, thus Iij(m) also intersects both Ii0(m) and Ij0(m) at

(
m̂, λ̂

)
. This case is depicted by

Figure 6(a). From Assumption 5, the set of consumers selecting xj can be rewritten as:

Bj
(
p∗
)
≡
{
θ : U(θ;xj , p

∗
j ) ≥ max

j<i

{
U(θ;xi, p

∗
i )
}
, U(θ;xj , p

∗
j ) > max

j>i

{
U(θ;xi, p

∗
i )
}}

⊆
{
θ : U(θ;xj , p

∗
j ) ≥ U(θ;x0, p

∗
0), U(θ;xj , p

∗
j ) ≥ U(θ;xi, p

∗
i )
}

=
{

(m,λ) : λ ≥ Ij0(m), λ ≤ Iij(m),m ≤ m ≤ m,λ ≤ λ ≤ λ
}

=
{

(m,λ) : m ≤ m ≤ m̂, Ij0(m) ≤ λ ≤ min{λ, Iij(m)}
}

:= B′j
(
p∗
)
.

The shaded region of Figure 6(a) illustrates B′j (p∗), which can be decomposed into two groups:

those who only prefer contract
(
xj , pj

)
over not purchasing (the dark dotted region in Figure 6(a))

and those who prefer both (xi, pi) and
(
xj , pj

)
over not purchasing, but prefer

(
xj , pj

)
over (xi, pi)

(the light dotted region in Figure 6(a)).

Next, notice that type-
(
m̂, λ̂

)
consumer is indifferent between contracts (0, 0) and (xi, pi), we

must have that pi−0 ≥ (xi−0)m̂ from Assumption 4, which is equivalent to m̂ ≤ p∗i /xi. Therefore,

we have that

E
[
M | Bj

(
p∗
)]
< m̂ ≤ p∗i

xi
≤
p∗j
xj
,

which is a contradiction to the zero profit condition required for contract xj .

Case II: Ii0(m) lies above Ij0(m). This case is depicted by Figure 6(b). First, note that Iij(m)

must cut the support [m,m]×
[
λ, λ

]
into two pieces. Otherwise, either Di(p

∗) = 0 or Dj(p
∗) = 0, a

contradiction. Second, from the definition of indifference curve, Iij(m) does not intersect with either

Ii0(m) or Ij0(m). Together with Assumption 5, Iij(m) must lie above Ii0(m) (see Figure 6(b))

and the risk type of consumers selecting xj can be bounded from above by m̌, where m̌ = I−1
ij (λ)

if U(m,λ;xi, p
∗
i ) > U(m,λ;xj , p

∗
j ), and m̌ = m otherwise. By definition, type-(m̌, λ) consumer

weakly prefers contract
(
xj , p

∗
j

)
to
(
xi, p

∗
i

)
. Together with Assumption 4, we must have that

p∗i − p∗j ≥ (xi − xj)m̌,

Therefore, m̌ can be bounded from above by,

m̌ ≤
p∗i − p∗j
xi − xj

≤
p∗j
xj
,

where the second inequality follows from the postulated p∗i /xi ≤ p∗j/xj . Therefore,

E
[
M | Bj

(
p∗
)]
< m̌ ≤

p∗j
xj
,
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which is a contradiction to the zero profit condition required for contract
(
xj , p

∗
j

)
.

Case III: Ii0(m) lies below Ij0(m). This case is depicted by Figure 6(c). By the same argument

as in Case II, Iij(m) does not intersect with either Ii0(m) or Ij0(m), and Iij(m) must lie below

Ii(m) (See Figure 6(c)). This implies that a consumer whose type is above or on λ = Ii0(m) will

purchase contract
(
xi, p

∗
i

)
, and will end up with no insurance otherwise. Therefore, there will be

no insurance demand for contract
(
xj , p

∗
j

)
, a contradiction to Dj(p

∗) > 0.

Proof of Proposition 7

Proof. Suppose |X̃(p∗)| = 2. Then Proposition 1 applies and the positive correlation property

must hold. Suppose |X̃(p∗)| ≥ 3, for xi > xj > 0, we must have,

E
[
M | (m,λ) ∈ Bi

(
p∗
)]

=
p∗i
xi
>
p∗j
xj

= E
[
M | (m,λ) ∈ Bj

(
p∗
)]
,

where the two equalities follow from the zero profit condition required for contract xi and xj , and

the strict inequality follows from Lemma 1.

Let xs ≡ min
{
X̃(p∗)\{x0}

}
. It remains to be shown that

E
[
M | (m,λ) ∈ Bs

(
p∗
)]
> E

[
M | (m,λ) ∈ B0

(
p∗
)]
.

To prove this, suppose there is only one contract of quality xs available on the market where

consumer characteristics are drawn from the set Bs(p∗) ∪ B0(p∗). It is obvious that p∗s is an

equilibrium price in such a market. Moreover, the set of buyers and the set of non-buyers of

contract xs are Bs(p∗) and B0(p∗) respectively. We can thus apply Proposition 1 to conclude

E
[
M | (m,λ) ∈ Bs (p∗)

]
> E

[
M | (m,λ) ∈ B0 (p∗)

]
. This completes the proof.

Proof of Proposition 8

Proof. From Lemma 2, π(p, x; k) = xπ(p/x, 1; (2 − x)k). Notice that (2 − x)k < 2k. Applying

Proposition 4 with k̂† = 1
2k
† completes the proof.

Proof of Proposition 9

Proof. From Lemma 2, π(p, x; k) = xπ(p/x, 1; (2 − x)k). Notice that (2 − x)k ≥ k. Applying

Proposition 5 with k̂†† = k†† completes the proof.
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