External Appendix to “Overcoming Participation Constraints”;
Detailed Calculations For the Example in Section 6.4.

Hanming Fang* Peter Norman'

February 28, 2006

Abstract

This document provides step by step calculations and explanations that are omitted from the presen-

tation of the example in Section 6.4 of the main paper.

*Department of Economics, Yale University, P.O. Box 208264, New Haven, CT 06520-8264. Email: hanming.fang@yale.edu
fDepartment of FEconomics, University of British Columbia, 909-1873 East Mall, Vancouver, BC V6T 1Z1

penorman@interchange.ubc.ca



1 Primitives

The reader may note that there are many sets of primitives that generate the same maximized surplus
function. The primitives below are picked mainly to make the calculations convenient. The reader may
also take note that once the maximized surplus function has been derived, there is no need to return to
the primitives, since interim expected payoffs from participation in the mechanisms depend only on the
maximized surplus function. However, it is still important to specify some underlying primitives: not every
surplus function sy : © — R and reservation payoff rj : © — R™ are consistent with surplus maximization,
so we need to demonstrate existence of primitives generating the surplus function and reservation payoff

function in the example.

1.1 Costs and Utility Functions

Let n = 2 and assume that, for each k and i = 1,2, the single issue k type space is given by ©% = {I,m, h}.

Assume that the set of alternative resolutions of issue k are Dy, = {dg, dfc, o, dZ} . In terms of interpretation

it is useful to think of dg as the “status quo” outcome, whereas di, 7t and dﬁ are surplus maximizing
alternatives for type profiles ll, mm and hh respectively.

The cost function is given by

0 ifdy=d?
C (di) = G ide=dj
k() = BBD® g = g

2(k+1)% ifdy, =dl

Assume that the valuation functions for the three types are given by;

0 if dy = d
2
Caopo ) PSR ifdi=d
Uk( k> )* .
0 if dp = dim
2
D™ [ — 1] if dy = dff
for 0% =1,
0 if dj, = dY
3 (k+1)? : _
vj. (di,m) = k(k+14)2 e relkt) i = di
RN 9k (k+1) (k+2) if dy = dy
2
R 3 (k +1)° if dy = dl
for A, = m, and
0 if dj, = d?
, —e(k+1) if dj, = dL.
Vi (i, h) = k(k+1)? .
— Bk if dy = djr
. 2
3(k+1)° — EEEUTif gy =



for @}, = h, where ¢ > 0. Further restrictions on ¢ will be derived below.

1.2 Reservation Payoffs

Since Cy, (d?) = 0 we take d{) as the status quo outcome. Hence, 7}, (92) = v} (dj), 92) =0 for all 6},

2 The Surplus Maximizing Rule

The primitives in the example have been constructed to make sure that: i) d. is optimal given type profiles
Im and ml (which generates surplus of order k), and; ii) d}]* is optimal given type profile mm (surplus of
order k%), and; iii) that dZ is optimal for profiles [h, hl and hh (surplus of order k3, and, which is of some
importance, that the surplus from hh is substantially larger than that from mm). As will be seen below,
this will make it possible for us to construct sequences where there is a significant effect on interim expected
payoffs when types that are realized with an arbitrarily small probability opt out from the mechanism.

Below, we provide the details of the derivation of the maximized surplus function.

2.1 Type Profile lI

It is immediate that v}, (d2,1) + v (d2,1) — Cj, (d})) = 0. If instead dj, = d}, we have that

1(k+1)°| (k+1)°
vp (df,, 1) + v (df,, 1) — Cy (d,) =2 5( - L - ) -0,
whereas, if dj, = dJ,
- - - k(k+1)°
b @)+ (@ 1) - O ) = -2 EED

and, finally, if dy = d}

k+1)° 1 ko1

vp (dl,1) + o (d, 1) — Cy (d}Y) :2( +1) k- —2k+1)°=(k+1)% |2 - —k-2]| <0
4 k 2 2k

We conclude that an efficient decision is z} (1) = d} (or d}), which generates a maximized surplus of

2.2 Type Profiles Im and ml

Again it follows trivially that v (d), 1) + v} (d}, m) — Cy (dj)) = 0, whereas the surplus generated by dj, = d},
is

+%(k+1) +e(k+1)—(k+1) _ L+ D) +e(k+1).

v (di, 1) + v (diym) — G (d)) = - =g




If d, = d} is chosen

k(k—+1)°
2
= —2k(k+1)(k+2) <0,

k(k+1)°

vp (di*, 1) + 3 (dit,m) — Cp (dfY) = 0+ — 2k (k+1)(k+2) —

and, for d = dZ

k+1)2 17 k(k+1) : ,
vp (d,1) +0f (dffym) — Cy (df) = (z) [k—k}+(4+)—3(k+1)3—2(k+1)5
_ 2|k 1o
= (k+1) {2 T 5]<0

Using symmetry, we conclude that the efficient decision is x} (Im) = a* (ml) = d}, and that the associated

maximized surplus is

si (Im) = s (ml) = i (k+1)

+e(k+1)

2.3 Type Profile mm

Trivially, vi (df),m) + v} (df),m) — Cy, (d) = 0. If instead dj, = dj, we have that

ok (d,m) + o2 (dhym) — Oy, (dL) =2 i(k21)2+5(k+1) (k::l)Z—;(kzl)Qms(kﬂbo
and if dj = dp"
ol (dm) + 02 (4 m) — Ci (dF) = 2 W—2ak(k+1)(k+2) _W
_ W—4ek(l€+1)(k+2),
while if dj, = dZ we have that
o (dftym) +of (dif,m) — Cy (d}Y) = 2 W—z),(kﬂ)?’ —2(k+1)° = (k+1)° [§—8k—8}<0

We conclude that dfc and di' are the only remaining candidates that could maximize the social surplus.
Define

A(k):@745k(k+1)(k+2)7%(k21)

If A (k) is strictly positive d}* is the surplus maximizing decision, whereas if A (k) is strictly negative, then

—2e(k+1).

di, is the unique maximizer.

1

51, then A(-) is strictly increasing in k on the interval [1,00)

Claim 1 Suppose that € <



Proof. Rearrange to get

2 2
A(k) = @—45k(k+1)(k+2)—%(k—;1)

= %(kﬂ)2 (kzlc) —dek(k4+1)(k+2) -2 (k+1).

—2e(k+1)

Differentiation yields,

Al(k) = (k+1) (k—llg>+;(k+1)2 (1+];> —de[(k+1) (k+2) +k(k+2)+k(k+1)] - 2.

Simplify the bracketed expression to get

k+1)(k+2)+kk+2)+kE+D)=k+1)’+E+D+kk+)+k+k(k+1)

=(k+1)(k+2) =k(k+2)
= k+1)’+k+D)+EE+D)+G(+D)—1+kE+)=(k+1)"+2(k+1)+2kk+1)—1
= 3(k+1)°-1.
Hence
Al(k) =

(k+1) <k—]1€> +%(k+1)2 <1+klg> —de [3(k+1)2—1} ~ 2
= (k+1) <k_]1€> +%(k+1)2 <1+];—245)+2g.

The claim follows since all terms are strictly positive given that £ > 1 and ¢ < i. ]
Evaluating we have that

A(l)=2—-24e —2—4e=-28<0

for any € > 0. We conclude that (somewhat unfortunately since it is an additional complication for the

example) d} is the surplus maximizing decision for k = 1. However
9
A(2):9_965_1_66

Clearly, for £ small enough (the exact bound is £ < %, where it may be noted that 21—4 = % < %) we have

that A (2) is strictly positive. Combining with the fact that A (k) is monotonically increasing in k under the

condition that ¢ < 2—14 we conclude;

Claim 2 Suppose that ¢ < 5. Then x} (mm) = d' and x} (mm) = d* for every k > 2. The associated

social surplus is

2
s1 (mm) = %(k—zl) +2(k+1)
2
s (mm) = @—%k(k—kl)(l@—k?) fork>2



2.4 Type Profiles [h and hl

As for any other type profile v} (dz,l) + v? (dg7 h) — Cg (d%) = 0. For the non-trivial alternatives we have

that
1(k+1)? k+1)° 1(k+1)°
v,ﬁ(dfg,l)—i—v,%(dfwh)—c*k(dﬁg)25( k) —s(kz+1)—( k) :-5( k) —e(k+1)<0,
and ) )
k(k+1)7 E(k+1
o (1) + 0 (dgt. ) — Gy () =0 - BEEIT REELT a2 <
and
k+1)° 1 k(k+1)°
o (dp, 1) +vp (d,h) — Cr (d) = ( Z) [k—k}+3(k+1)3—(4+)—2(k+1)3
_ (k+1)? 5 o [k (k+1)—1
= S R =k D)

Hence, again using symmetry, z} (Ih) = z} (hl) = d? and the resulting maximized surplus is

4k:(k:+1)—1]

sk (Ih) = s (hl) = (k +1)? [ 7

2.5 Type Profiles mh and hm

Obviously, v (d?,m) + vE (d2, h) — Ck (d})) = 0. If instead dj, = d},

3(k+1)° E+1)?  1(k+1)°
v,ﬁ(dg,m)ﬂi(dg,h)—ck(dg):1( k) fe(kt1)—e(ha1) - k) :—1( k) <0,
and if dj, = d}*,
. . . k(k+ 1) k(k+1)7°  k(k+1)
o (@m) 40 (@ h) - G (@) = S oo gy kg gy - EEFIL RIED
12
~ iy Y

whereas if dj, = d}, we get that

k(k+1) k(k+1)°
op (dp,m) + o (di h) — Cy (d) = %73(k+1)3+3(k+1)37%—2(k+1)3
= —2(k+1)°<0

Hence, z} (mh) = x} (hm) = d, and the maximized surplus is si (mh) = s5, (hm) = 0

2.6 Type Profile hh

Again, v,i (dg, h) + v,% (dg, h) — C (d%) =0, and

<0

kE+1)2
vp (d, h) + o3 (d},, h) — Cy, (dfc):st(k+1)f( +k )



and

k(k+1)°| k(k+1)°  3k(k+1)°
oL (A 1)+ 07 (1) — O (g = —a | RS REELT SRR
and
k(k+1)° k(k+1)°
vop (it h) + v (dih) — Cy (df) =2 |3 (k+1)° - % —2(k+1)°=4(k+1)° - % >0
Hence, z} (hh) = d! and
2
sk (hh) = 4 (k+ 1) — % - {4(1@“) - ;] (k + 1)2

2.7 Summary: An Optimal Decision Rule and the Maximized Surplus
Combining all the cases above and ignoring k = 1 we have that an optimal social decision rule is'?

d? if 0 € {ll,mh, hm}

d if 0y, € {Ilm,ml

wi( =] o O limmt m

di’ if 8, = mm

drif 0, € {lh, hl, hh}
and the maximized surplus (given k > 2) is

0 if 0y, € {ll, mh, hm}

LOHD® 4o (4 1) 0 € {lm,ml}
sk (0x) = { BEEDT _ack (k4 1) (k +2) if 0 =mm . 2)
(k + 1) [%} if 0y, € {Ih, hi}
[4(k+1) - £] (& +1)° if 0, = hh

2.8 Interim Expected Payoffs from Participation in the Groves Mechanism

For k = 2, 3... we assume that the probability distribution over @};. be given by

T r i_m r i: _ k(k+2) 1 1
(Pr{o"=1] Pr{o" =m], Pr[o" = h]) <(k+1)2’2(k+1)2’2(k+1)2>‘ ®)

1There is multiplicity for type profile Il. We could easily get rid of this without affecting the maximized social surplus by
adjusting the costs and preferences slightly. This would add some extra terms for the calculations, and, ultimately, only the
maximized surplus is relevant, so we have opted to go with the simpler primitives.

2Hence, we will start our sequence at k = 2. Obviously, we could replace every k with k + 1 and start the sequence at k = 1,

but the formulas get somewhat less transparent, which is why we stick with the current formulation.



With probability distribution (3), the interim expected value of the maximized issue k surplus is

E [sk, (0&) |1]

Pr [0" =1] sp () + Pr [0" = m] s; (Im) + Pr [0° = h] s (1) (4)
1 1(k+1)° o [4k(E+1)—1
4 2(k+1) {(kﬂ) [ 4k H

2(k+1)° [4 k&
1 1(k+1)? 4k(k+1)—1”

2(k+1)* [4 kK 4k

171 £ Ak (k+1) —1

2L1/€+(k+1)+ 4k }

1]1 € 1 1 € k+1 €
2[zuﬁucm”’””‘%]:z[ufm*(“”}: RISy

+e(k+1)| +

+a(k+1)+(k+1)2{

for 8; = I. For 6, = m we have that

E [s (0k) |m]

Pr [Qi:l] sk (ml) + Pr [Gizm] sk (mm) + Pr [Gizh] s, (mh) (5)
k(k+2) [1(k+1)° 1 k(k+1)
(k+1)72 [4 &k 2 (k+ 1) 2
k+2 ek(k+2) k 2ek(k+2) k41 ck(k+2)
4 (k+1) 4 E+1 2 (k+1)
k+1 elk(k+1)+k k+1 ek

ek —
2 k+1) 2 Tkt

+e(k+1)

+

— dek (k +1) (k +2)

Finally, for 8; = h, we have that

E [s) (0k) |P]

Pr [0° = 1] si (hl) + Pr [0" = m] si (hm) + Pr [0" = h] i (hh) (6)

]Z/it)zz) [(“ o [4k(k lekl) - 1” ’ 2(/;1)2 [4 - ﬂ (k1)

k(k+2) {M(kzkl)l] + [Q(kJrl)ﬂ

k(k+1)(k+2)+2(k+1)fw—ﬁzk(k+l)(k+2)+2(k+1)—%

4 4
E+1 k+1 (k+1)
- 2

(k+1) [k2+2k+1+1]—T:(k+1)3+(k+1)—T (k+1)°+

The ex ante expected surplus is thus

E [s (0k)]

k(k+2)[k+1 € ]+ 1 {k+1_ak(/~c+2)}
k+1)> 1 2  2(k+D] 20k+1)° L 2 (k+1)
(k+1)]
2

1 |ek(k+2)|  k+1 1

4(k+1) 2(k+1)° 2 A(k+1)

1 k+1 K2+2k+1  k+1  (k+1)°  k+1

= = =k+1
T kr) T 2 2+l 2 2kt 2 +



2.9 Summary of the Expected Surplus Calculations

We have shown that

E+1 €
R = (9)
Bla@oln = (s EED (10)
Elsy (0r)] = k+1 (11)

3 The Probability that a Participation Constraint is Violated Con-
verges to zero as K — oo.

Since R%, (9’) =0 for all 6%, the interim expected payoff from participation in the Groves mechanism under

consideration simplifies to
o K 1 X
U}( (91) = E,Z‘ [SK (9)} — 7E SK kZﬂE i Sk Gk 5 kZﬂE Sk Gk (12)

Consider a type on the form (m,....,m,l, ....;1). Specifically, assume that 92 =mfor k =2,..., K* and
¢ =1for k= K*41,..., K and denote this type by (mg-,1x-_x). Substituting (8), (9) and (11) into (12)

we have that type (mg+,lx«_x) earns an interim expected payoff of

K
) 1
U}((mK*7lK*,K) = ZE Sk Qk |m Z E Sk 9k |l §ZE Sk Gk (13)
— k=K*+1 k=2
K* K K
k+1 ck } k+1 € 1
Sl L s + S
k_Q[ 2 (k+1) k=K*+1 2 2(k+1) 2k:2
K* K
k 1 1
Bl
L_z k+1 2 k=K*+1 k+1
Define
us k 1 &
H<K’K):Z["“‘k+1}+z 2 Frd (14)
k=2 k=K*41

We note that;
1. H(K*, K) is strictly decreasing in K*
e K 1

K )
3. H(K,K)=—-eYK, [k+ﬁ} <0



These three properties imply that for every K > 2 there exists a unique integer K* (K) € {1,..., K'} such
that

H(K*(K),K) > 0 (15)
H(K*(K)+1,K) < 0

Moreover, K* (K) is monotonically increasing and goes (slowly) to infinity as K goes to infinity. To see this,

we first observe that, for K* fixed, the positive term in (14) is divergent. That is,

I i R T
— = dz| > / —dz (16)
k=K*+1 k+1 k=K*+1 [JR+1 k+1 kek 41 [JRH1 F
K42
= / —dz=In(K+2)—-In(K*+2).
K*42 #

For contradiction, assume that there exists some K such that K* (K) < K — 1 for all K. Then, for any K

we have that

H(K*(K)+1,K) > H(K,K):—Z[lwk]Jr; > 1} (17)
k=2 k=K+1

% _
/ using (16)/ > kZQ [—kz— k—]’q_l] +ln(K+2);ln(K+2).
Since In (K + 2) — oo as K — oo and the other two terms are finite we conclude that H (K* (K)+1,K) >0
for K sufficiently large, which contradicts the definition of K* (K).

Next, consider a type on form (9%,..., %*(K)J,....,l), where the signals for problems 2, ..., K* (K)
are arbitrary, and 92 =] for k = K*(K)+1,.., K. We denote such a type (0’}(*(K),1K*,K(K)). Since
E s (0x)| m] < E [s) (61)] 02] for all 0} € {I,m,h} and every k it follows that

. ‘ K*(K) ) K 1 K
Ui, (0%*(K),1K*,K(K)) = Y E[s@)l0i] — > Else(@u)|l] - §ZE sk (0x)]  (18)
k=2 k=K(K)*+1 k=2
K*(K) K K
1
> Z E[Sk (Gk)\m} — Z E[Sk Gk ‘l §ZE Sk Gk
k=2 k=K(K)*+1 k=2

= eH(K*(K),K) > 0.

We conclude that the participation constraint holds for any such type. Since,

; i\ O k42 (KT(K)+1) (K +2)
Pr [(aK*(K)H,...,eK) - (l,....,l)] - H{g{)ﬂ G T A (KD 1 (19)

as K — oo it follows that the probability that 6 is on the form (HK* s (K)) tends to unity as K

goes out of bounds. We conclude;
Claim 3 The probability that all participation constraints hold converges to 1 as K tends to infinity.

Hence, the Groves mechanism is almost incentive feasible in this example.

10



4 Unraveling when the Veto Game is Introduced

Note that for type 1 = (I,....,1)

K K K K
Uk =Y Bl 01~ 5 3 Bl 00 =3 |55+ 5ot - |~ s g @
k=2 k=2 k=2 k=2
where
K 1 _K k+1 4 K k+1 1 B K+1 4 B K+1
kzﬂ/’m_kzﬂl/k k+1dz <§[/k Zdz]—/Z Zdz-ln() (21)
Hence,
4 € K+1
Ui (1) < 3 In <2> . (22)

However, consider type 6" where all coordinates are [ except for 92 = m. Denote this type 0° = 1|0};* =m

and note that

K K

- 1

U(lwz* = m) = Z [Sk (919)”] +E[Sk* 9k* |m §ZE Sk Qk (23)
kAk* k=2
K 1 K
= Y E[s (0x)]1] - ZE [sk (0x)] + E [sg+ ()| m] — E [si- (01+)| 1]
k=2 2=
=Ui(1)
. K+1 k*+1 N ek* k*+1 €
Jusing (22)/ < 2ln< 5 )+ 2 ek "+ D { > +2(k*+1)]

- <[ (7)) < () -+

Define k (K) as the integer part of 1In (5 + 1. Since L1In (£3L) — k* is negative for k* > k (K) this
implies that type 1|6;. = m is worse off from participating in the Groves mechanism than from the status
quo outcome d° = (dg, ooy dﬁ) for every k* > k (K) . For brevity, denote this subset of types with a strict

incentive to veto the Groves mechanism by ©%,. That is
= {9i|9i* = m for some k* > k* (K) and 0}, = [ for all k # k*} (24)

We note that, for any k* > k* (K)

K
; ;i k(k+2)
Pr(0" € ©y(0}. =m] = [[ Pr[op=1]>Pr[6 Hpr = =[] -"~5% @)
k#k* k=2 (k+1)
2 x4 3x5 (K— (K+1) K(K+2)
= —_— X —_— X ... X X
32 42 K? (K+1)2
_ 2[K 42 .2
T3 |K+1 3

In words, conditional on 92* = m, the probability that all other coordinates are Is is obviously (slightly)

larger than the unconditional probability that the type 1is realized. For k& > k (K) we can therefore calculate

11



an upper bound on the expected surplus conditional on 9}; = [ and conditional on that agent ¢ is aware that

any agent 0° € O}, will veto the mechanism.

E [sk (0k) [, veto by 0 € ©1,] = Pr[0, =m| [1—Pr [0 € O,10;, = m]] s (Ilm) + Pr [0}, = h] sp (1h)  (26)
= E[s; (0)[]] - Pr| t = m] Pr [Gi €00 = m] si, (Im)
k+1 € 1 1(k+1)°
= — 0" € ©L10) = - k+1
2 T2+ 2t 1) Pr] vl =m] | g e (b 1)
———
=E[sx(0x)]]] by (8) =Pr[0}, =m| —sx(Im) by (2)
kE+1 £ 1 1(k+1)°
25)/ < + — s +e(k+1
/(25)/ 2 2(k+1) 2(k+1)%3 k e )
k+1 € 1 € _k+1 € 1

> T3ktl) 12k 3(k+D) 2 6(kil) 12
The interim expected payoff of type 1 = (I, ...,1) conditional on vetoes from types in ©% is thus

Tk(K)—1

K K
_ . . , 1
Ui (veto by 6" € ©},) = Elsp (011 + > E[sk(0k) |1, veto by 0" € O] ) > Elsk (@RN)
k=2 k::E(K) k=2
Tk(K)—1 K K
€ 1 € 1 1 1
T2 k+1+6~2k+1*EZE
k=2 k=k(K) k=k(K)
where,
I%(K)_l 1 Ik(K)_l k+1 1 IE(K)_]* k+1 1 IE(K) 1 Ik (K)
_ = dz| < Z —dz| = —dz=1n 5
P k + 1 s k k + 1 2 k z 2 z
K K k+1 K k+1 IK+1
1 1 IK+1
ry Lo [/ < 3 V dz]:/ dz—1n<~ )
k+1 k+1 7
k=k(K) + k=k(K) k + k(K) k : k(K) k (K)
K K k+1 K k+1
1 1 1 IK+1
- = —dz| > / —dz| =1 28
Z k Z l/’“ k Z [ R ] (k([() ) (28)
k=k(K) k=k(K) k=k(K)
Hence,
B e S T T
7 I 7 - = - < - - )
Ul (Uveto by 6" € ©%) 5 > it 2 . Z - (29)
k=2 k=k(K) k=k(K)
e (I(K)\ 1-2 [IK+1
< =In — In| =
2 2 6 k(K)
~ 1 1-2
- lnk:(K)[ ZE}—zan—ln(K—&—l){ 65] (30)

In (K 41) > 2k (K)+1n2—2

12



Since limg oo 2% = 0 and since limg .o k (K) = oo it follows that the term with In (K + 1) eventually dom-
inates in expression (29). Consequently, whenever € < % there exists K such that U* (l|vet0 by 0° € @ﬁ,v) <0
for any K > K.% In (25) we calculated the probability that " =1 to be

Pr[e":lpg

_2[K+2
K+1|°

We conclude that;

Claim 4 Suppose that type 1 =(1,....l) expects that all types in O% will veto play of the Groves mechanism.
Then, there exists some K such that type 1 = (I, ....1) will have a strict incentive to veto the Groves mechanism
given any economy K > K. Hence, the mechanism is vetoed by each agent with a probability of at least % for

every K > K.

The only difference between the Groves mechanism amended with a veto game and the mechanism
actually considered in the proof of Proposition 2 is that the latter mechanism has a slightly (on a per
problem basis) larger lump sum payment than the underlying budget balancing Groves mechanism. It
follows that the conclusion immediately extends to the mechanism under consideration.

The reader may note that any type such that 92 € {l,m} for all k will have an incentive to cast a veto.
The probability that there is one k such that 0} € {m,h} is less than %, and, conditional on this event
occuring, the probability that the first such draw is m is % Moreover, conditional on the first draw different
from [ being m, the probability that the rest of the sequence is all [ is %, so we can immediately add %%% = %
to the lower bound on the probability for a veto.

Obviously we can do even better by taking into consideration that the larger k is for the first draw of
m, the larger is the probability that the remaining sequence contain only Is. However, qualitatiely, the
point with the example is that an outcome that is highly inefficient occurs when the possibility of a veto is

introduced, and for that it is sufficient to observe that the (high probability) type 1 will cast a veto.

3We already have the restriction ¢ < i in order for the surplus in (2) to be valid for every k > 2.
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