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Abstract

A wealth of evidence shows that individuals are biased and firms can often exploit

consumers’ behavioral biases in their contract designs. In this paper, we study how

vulnerable biased individuals are to their own behavioral biases in market equilibrium,

and focus on the role of risk aversion and intertemporal elasticity of substitution (IES).

We measure consumer vulnerability by the percentage loss in a consumer’s equilibrium

certainty equivalent from a market with non-biased consumers to that with biased ones.

We examine several important behavioral biases that have been extensively studied in

the literature, including the impact of biased beliefs (either over- or under-confidence)

in an insurance market, the impact of present bias and näıvete about present bias in

a dynamic model of credit contract design, the impact of projection bias about habit

formation, and the impact of expectation-based loss aversion on an investor’s portfolio

choice. We show that consumer vulnerability to all four commonly studied behavioral

biases has a non-monotonic relationship with risk aversion or IES. This is in striking

contrast to the deviations in the equilibrium allocations from the rational benchmark,

which are often monotonic to the risk aversion or IES. We also consider a setting of

biased agents with Epstein-Zin preferences to isolate the effect of risk aversion from

that of IES.
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1 Introduction

Behavioral economics is by now a well-established strand of literature where economists

introduce a number of robust behavioral biases and heuristics first documented by psychol-

ogists into models of economic behavior. Numerous biases have been studied by economists,

including present-biased discounting (Strotz, 1956; Laibson, 1997; O’Donoghue and Ra-

bin, 1999; DellaVigna and Malmendier, 2006; Fang and Wang, 2015), biased-beliefs (Fang

and Moscarini, 2005; Grubb, 2009, 2015), confirmatory bias (Rabin and Schrag, 1999), loss

aversion (Genesove and Mayer, 2001), mental accounting (Barberis and Huang, 2001), and

projection bias (Loewenstein, O’Donoghue, and Rabin, 2003), among others. In the theoret-

ical models in behavioral economics, researchers typically introduce one of the documented

biases and heuristics into stylized models with an aim of understanding how small, but

psychologically relevant, deviations from the standard economic framework can influence

decisions or behavior such as saving and consumption (Harris and Laibson, 2001; Kőszegi

and Rabin, 2009; Pagel, 2017), investment (Barberis and Huang, 2001; Barberis and Xiong,

2009), labor supply (Fang and Silverman, 2004, 2006; Farber, 2008; Crawford and Meng,

2011), wage policies (Santos-Pinto, 2010, 2012); pricing strategies (Eliaz and Spiegler, 2008;

Heidhues and Kőszegi, 2014; Martimort and Stole, 2020), advertising strategies (Karle and

Schumacher, 2017; Karle and Möller, 2020); contracts (DellaVigna and Malmendier, 2004;

Eliaz and Spiegler, 2006; Santos-Pinto, 2008; Grubb, 2009; Herweg, Müller, and Weinschenk,

2010; De la Rosa, 2011), etc. The focus of the analysis is to show that behavioral biases

can lead to a departure from a “rational” benchmark in terms of allocations, whether it is

contracts, consumptions and savings, hours of work, portfolio choices, etc.

The departures from the rational allocations due to behavioral biases typically lead to wel-

fare losses,1 and a burgeoning literature has been devoted to investigating how policy should

respond to market outcomes in order to alleviate market inefficiency (e.g., Sandroni and

Squintani, 2007; Bisin, Lizzeri, and Yariv, 2015; Fang and Wu, 2020; Heidhues and Kőszegi,

2010, 2017; Armstrong and Vickers, 2019). However, to the best of our knowledge, what

determines the size of the welfare loss caused by the deviation from the rational benchmark

allocations in the absence of market intervention remains largely unexplored. Our study

aims to close this gap. Answers to this question can help us better evaluate the effectiveness

of different policies that aim to protect consumers or improve efficiency. For instance, know-

ing that the welfare loss in a marketplace with biased consumers is insignificant without

regulation would render consumer education campaigns or market interventions—which are

often costly—less desirable.

In this paper, we investigate how welfare losses due to consumers’ behavioral biases de-

1In Section 2.2, we provide an example in which a consumer benefits from his underestimation about his
risks in a monopolistic insurance market.

1



pend on their characteristics, or more precisely, on the curvatures of their utility functions.

We demonstrate that a large departure in terms of allocations from the rational benchmark

does not necessarily lead to substantial welfare consequences. A simple example can il-

lustrate the distinction between the magnitude of deviations in allocations and the size of

welfare losses. Consider a potential insuree with a biased belief regarding his probability

of loss. If the insuree is not very risk averse, a small bias in his subjective loss probability

assessment will result in large deviations in his insurance coverage from the rational bench-

mark. However, because he has a low level of risk aversion, such a deviation is not likely to

result in a large welfare loss. If the insuree is instead very risk averse, then a small bias in

his subjective loss probability assessment will only result in a small deviation in his coverage

from the rational benchmark. Again, the welfare loss from such a small deviation is likely to

be small. Indeed, we will formally show in Section 2 that consumers with a moderate level of

risk aversion are mostly likely to suffer the largest welfare loss from biased beliefs regarding

their loss probabilities.

We systematically examine consumer vulnerability in models with behavioral biases. We

measure consumer vulnerability by the ratio of the difference in the equilibrium certainty

equivalent (CE) between the biased consumer and the non-biased consumer relative to that

of a non-biased consumer with the same underlying instantaneous utility function. We then

explore how consumer vulnerability is related to the curvatures of their utility functions. In

particular, we focus on the role of risk aversion in static models and the role of intertemporal

elasticity of substitution (IES) in dynamic models.

We examine several important behavioral biases that have been extensively studied in

the literature. In Section 2, we consider a classical insurance market with overconfident or

underconfident consumers. Assuming constant relative risk aversion (CRRA) preferences,

we show that in a perfectly competitive market, consumers’ vulnerability has an inverted-

U relationship with their risk aversion. In contrast, in a monopolistic market, consumers

with overconfidence—i.e., those who underestimate their loss probability—may even benefit

from having biased beliefs, even though their insurance coverage deviates from the rational

benchmark.

In Section 3, we study a dynamic model of competitive lenders’ credit contract design—

similar to that of Heidhues and Kőszegi (2010)—when borrowers with CRRA preferences

have present bias in their intertemporal time preference and are naive about their present

bias. We show that the consumers’ vulnerability to their näıveté about present bias again

has an inverted-U relationship with their IES.

Recognizing that under CRRA utility function, risk aversion and IES are by default

inverse of each other, we consider in Section 4 a two-period model with the Epstein-Zin

preference (Epstein and Zin, 1989, 1991) where risk aversion and IES are separately param-
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eterized. The analysis under this general framework largely confirms the previous results.

We show that when agents are naive about their time preference (or present bias), their

vulnerability indeed has an inverted-U relationship with IES; and when agents have misper-

ception on the second-period risks, their vulnerability has an inverted-U relationship with

risk aversion.

In Section 5, we study another well-documented behavioral bias, the projection bias about

the evolutions of his “habit stock” in a model of habit formation, as proposed by Loewenstein,

O’Donoghue, and Rabin (2003). In contrast to the results obtained in the previous sections,

we show that the consumer vulnerability in this case has a U-shaped relationship with respect

to the IES. Thus, consumers with an intermediate degree of IES are less vulnerable than

those with extreme values of IES. In Section 6, we consider the portfolio choice problem of

investors who exhibit expectation-based reference-dependent preferences á la Kőszegi and

Rabin (2006, 2007). We again show that consumers’ vulnerability to their loss aversion has

an inverted-U relationship with risk aversion.

Our systematic analysis shows that consumer vulnerability to the commonly studied be-

havioral biases in the literature in general has non-monotonic relationship with risk aversion

or IES. This is in striking contrast to the deviations in the allocations from the rational

benchmark, which are often monotonic to the risk aversion or the IES. Our paper comple-

ments the existing literature in behavioral economics that focused almost exclusively on how

behavioral bias leads to the deviations in allocations from the rational benchmark, summa-

rized in Spiegler (2011), Kőszegi (2014), Grubb (2015), and Heidhues and Kőszegi (2018).

As previously mentioned, most of these studies search for policy remedies that mitigate the

welfare losses due to market participants’ behavioral biases under different economic contexts

and identify conditions for such policies to be welfare-enhancing.

The remainder of the paper is structured as follows. In Section 2, we analyze a simple

insurance model with over- or under-confident consumers, and show that consumer vulnera-

bility is non-monotonic in their risk aversion; in Section 3, we consider a dynamic contracting

model with present-biased consumers; in Section 4, we provide a unified framework that in-

corporates both risk aversion and IES to show how they interact to affect consumer’s vulner-

ability to biases; in Section 5, we analyze a model of habit formation with projection bias; in

Section 6, we study a model of portfolio choice with investors that exhibit expectation-based

reference-dependent preferences; and finally, in Section 7 we conclude. We collect all the

proofs in the Appendix.
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2 An Insurance Model with Over- or Under-confident

Consumers

Consider a parsimonious model of insurance market with risk averse agents and two

possible states. For simplicity, the agent’s risk aversion is represented by a constant relative

risk aversion (CRRA) utility function with risk aversion parameter γ ≡ 1/ρ > 0 :

u(c) =

 c
1− 1

ρ−1
1− 1

ρ

if ρ > 0 and ρ 6= 1,

ln(c) if ρ = 1.
(1)

In dynamic models, which we will analyze in Section 3, the parameter ρ also represents

the intertemporal elasticity of substitution (IES).2 The agent has initial wealth y > 0 and is

subject to a possible loss ω ∈ (0, y) with objective probability µ ∈ (0, 1). The agent, however,

subjectively believes that the loss probability is µ̂ ∈ (0, 1). When µ̂ = µ, the agent is rational.

When µ̂ < µ (µ̂ > µ), the agent underestimates (overestimates) his loss probability and is

said to exhibit overconfidence (underconfidence).

In what follows, we analyze the equilibrium of the insurance market under perfect com-

petition and that under monopoly, respectively.

2.1 Competitive Insurance Market

The consumer can purchase an insurance contract from a competitive insurance market

at premium p to cover a fraction x of the loss if the loss occurs. We interpret x as the degree

of coverage. Alternatively, the ratio p/x can be interpreted as the unit price of an insurance

policy that covers the potential loss of ω, and x is the quantity of insurance that a consumer

purchases from the market.

The equilibrium contract, which we denote by (x∗, p∗), maximizes consumer’s perceived

utility

max
{x,p}

µ̂u
(
y − (1− x)ω − p

)
+ (1− µ̂)u(y − p), (2)

subject to the zero-profit constraint

p = µxω. (3)

Two remarks are in order. First, the objective function (2) in the above maximization

problem is the agents’ expected perceived utility using the subjective belief µ̂ about the

loss probability, instead of the utility based on the objective probability µ of incurring a

loss. Thus, the perceived expected utility in (2) is the decision utility in the terminology

2In Section 4 we will analyze the case of Epstein-Zin preference which separates risk aversion and IES.
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of Kahneman, Wakker, and Sarin (1997). As we will explain later, agents’ expected utility

according to the correct, or objective, probability of incurring a loss µ, is used when we eval-

uate the consumer welfare, corresponding to the notion of experienced utility in Kahneman

et al. (1997).

Second, we impose no restrictions on the contract space in the subsequent analysis, i.e.,

price can be either positive or negative in the equilibrium contract. When p > 0, the risk-

averse agent is the consumer, and the risk-neutral agent is the insurance firm: the consumer

pays the insurance firm and transfers his risk to the insurance firm. When p < 0, the risk-

averse agent becomes a seller instead: he earns money through receiving more risks from the

market. When p = 0, there is no trade on the market and the economy degenerates to an

autarky.

The following first-order condition must hold in equilibrium:

u′
[
y − (1− x∗)ω − µx∗ω

]
u′(y − µx∗ω)

=
1− µ̂
µ̂
× µ

1− µ
.

Exploiting the CRRA form of u(·) as described in (1), we obtain:

y − (1− x∗)ω − µx∗ω
y − µx∗ω

=

(
1− µ̂
µ̂
× µ

1− µ

)−ρ
=: A(ρ), (4)

where A(ρ) is the ratio between the equilibrium consumption level when a loss occurs and

that when no loss occurs and depends on µ̂, µ, and ρ.

Solving for (x∗, p∗) yields that:3

x∗(ρ;µ, µ̂) =

[
A(ρ)− 1

]
y + ω[

A(ρ)µ+ (1− µ)
]
ω

, and p∗(ρ;µ, µ̂) = µωx∗(ρ;µ, µ̂). (5)

The term A(ρ) captures the distortion caused by consumer’s misperception regarding

the loss probability. To see this, note that when consumers have unbiased beliefs, i.e., when

µ̂ = µ, we have A(ρ) = 1 and x∗(ρ;µ, µ̂) = 1 for all ρ > 0. In other words, the market

provides full insurance independent of ρ. This reaffirms the classical result in the insurance

theory. However, when µ̂ < µ, we have A (ρ) < 1 and x∗(ρ;µ, µ̂) < 1; and when µ̂ > µ, we

have A (ρ) > 1 and x∗(ρ;µ, µ̂) > 1. That is, an overconfident consumer will purchase less

than full insurance; and an underconfident consumer is over insured in equilibrium.

Following the literature, we use the consumer’s experienced utility with the objective loss

3Interestingly, the formula for the insurance coverage choice in equilibrium (5) also clarifies that there is
an identification problem between biased belief µ̂ and the preference parameter ρ from just observing the
insurance coverage choice of the consumer.
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probability µ to evaluate the consumer welfare.4 Specifically, consumer’s welfare measured

by the equilibrium certainty equivalent, which we denote by CE∗(ρ;µ, µ̂), is the solution to

u
[
CE∗(ρ;µ, µ̂)

]
= µu

[
y −

[
1− x∗(ρ;µ, µ̂)

]
ω − p∗(ρ;µ, µ̂)

]
+(1−µ)u

[
y − p∗(ρ;µ, µ̂)

]
. (6)

Solving for CE∗(ρ;µ, µ̂) yields that

CE∗(ρ;µ, µ̂) =


(
µ
[
y − (1− x∗)ω − p∗

]1− 1
ρ + (1− µ)(y − p∗)1− 1

ρ

) ρ
ρ−1

if ρ > 0 and ρ 6= 1,[
y − (1− x∗)ω − p∗

]µ · (y − p∗)1−µ if ρ = 1.

(7)

A close look at (5) and (7) leads to the following.

Remark 1 Suppose that µ̂ = µ. Then (x∗, p∗) = (1, µω) and CE∗(ρ;µ, µ̂) = y − µω.

Recall that the shape of the concave utility function has no impact on the equilibrium

contract when consumers are rational (i.e., µ̂ = µ): They always receive full insurance in

equilibrium independent of ρ (i.e., x∗(ρ;µ, µ) = 1). Because full insurance is obtained and

the insurance firms earn zero profits under the pressure of market competition, rational con-

sumers’ welfare is maximized and the corresponding certainty equivalent is y− µω, which is

again independent of the utility function u(·). This desired independence property, however,

does not hold when consumers misperceive the loss probability.

Given consumers’ certainty equivalent described in (7), we can define a loss function

L(ρ;µ, µ̂) as follows:

L(ρ;µ, µ̂) :=
CE∗(ρ;µ, µ)− CE∗(ρ;µ, µ̂)

CE∗(ρ;µ, µ)
.

In words, L(ρ;µ, µ̂) is the percentage loss in consumers’ certainty equivalent relative to the

rational benchmark. We use it as the measure of the vulnerability of a biased consumer. The

following observation follows immediately.

Proposition 1 (Competitive insurance market with biased consumers) Suppose

that consumers have CRRA utility function (1) and µ̂ ≶ µ. Then the following statements

hold:

(i) The equilibrium coverage x∗(ρ;µ, µ̂) ≶ 1, and the deviation from full insurance cover-

age, i.e.,
∣∣x∗(ρ;µ, µ̂)− 1

∣∣, is strictly decreasing in the risk aversion parameter γ ≡ 1/ρ

for γ ∈ (0,∞).

(ii) The loss function L(ρ;µ, µ̂) is an inverted U-shaped curve in γ ≡ 1/ρ for γ ∈ (0,∞).

4See Brunnermeier, Simsek, and Xiong (2014) for a welfare criterion for models with distorted beliefs.
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The first part of Proposition 1 is intuitive: Consumers’ misperception messes up con-

sumption smoothing across states. When consumers underestimate their loss probability

(i.e., µ̂ < µ), they put more weight on the no-loss state than they should, and thus under-

estimate their demand for insurance. The competitive insurers then respond by providing

partial insurance. Similarly, when they overestimate their loss probability, they overestimate

their insurance demand, and thus will be over insured in equilibrium.

Note that the deviation in insurance coverage from the unbiased belief benchmark is

decreasing in the agent’s risk aversion parameter γ. As we will show in the next sections, this

observation holds in general in different behavioral models. Intuitively, when a consumer’s

risk aversion parameter is low, he has a weak propensity towards consumption smoothing.

As a result, he is more easily exploited by the insurance firms than a consumer with a higher

level of risk aversion. Define τ :=
(

1−µ̂
µ̂
× µ

1−µ

)−1

> 0, and let ρ1 := ln(y−w)−ln(y)
ln(τ)

> 0.

When the consumer exhibits overconfidence and ρ > ρ1, he is even willing to increase his

consumption volatility across the loss and no loss states by absorbing more risks from the

market and become a seller.5

One may then draw the conclusion that a consumer with a lower risk aversion is more

vulnerable because his equilibrium contract deviates from the first-best contract to a larger

extent. However, this intuition is not accurate. In fact, part (ii) of Proposition 1 indicates

that a consumer with a moderate IES is the most vulnerable. To explain the intuition most

cleanly, it is useful to consider a small risk and employ Taylor expansion. More formally,

we assume that the size of potential loss ω is sufficiently small. The consumer’s equilibrium

certainty equivalent can then be approximated by:6

CE∗(ρ;µ, µ̂) ≈ y − µω − µ(1− µ)ω2

2(y − µω)
×
[
1− x∗(ρ;µ, µ̂)

]2
ρ

= y − µω − 1

2
µ(1− µ)(y − µω)× 1

ρ
[
µ+ 1

A(ρ)−1

]2 .

Therefore, the loss function can be approximated by

L(ρ;µ, µ̂) ≈ 1

2
µ(1− µ)

[
ω

y − µω

]2

× 1

ρ︸︷︷︸
curvature effect

×
[
1− x∗(ρ;µ, µ̂)

]2︸ ︷︷ ︸
volatility effect

. (8)

Two important driving forces for the welfare analysis can be identified from the above ex-

5It is useful to point out that this observation continues to hold even if both sides are risk-averse.
6Suppose that a random variable X has finite mean E(X) and a small variance Var(X). The certainty

equivalent of this gamble under utility function u(·) can be approximated by E(X)+ 1
2
u′′(E(X))
u′(E(X)) Var(X), which

can be further simplified as E(X)− Var(X)
2ρE(X) .
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(a) Equilibrium Coverage x(ρ;µ, µ̂) (b) Loss Function L(ρ;µ, µ̂)

Figure 1: Competitive Insurance Market with Biased Consumers: (y, ω, µ) = (1, 0.5, 0.5).

pression. By Equation (8), the size of the equilibrium welfare loss depends on (i) the shape

of consumer’s utility function, i.e., ρ; and (ii) the degree of deviation from the equilibrium

coverage level under the rational benchmark, i.e.,
[
1− x∗(ρ;µ, µ̂)

]2
. On the one hand, the

shape of the utility function affects consumer welfare, which we refer to as the curvature

effect. Note that the utility function becomes less concave as ρ increases. This in turn

implies that fixing a degree of deviation, the welfare loss is reduced with a utility function

of a higher ρ (or equivalently, a lower γ). On the other hand, when consumers are biased

(either over- or under-confident), the magnitude of deviation from the equilibrium insurance

coverage endogenously depends on the risk aversion of the utility function [see Equation (5)

and Figure 1(a)]. As ρ increases, the equilibrium coverage deviates more from the unbiased

benchmark, which increases the volatility of consumption across the two states, and thus

contributes to welfare loss (the volatility effect). Because the welfare loss is decreasing in ρ

by the curvature effect, and is increasing in ρ by the volatility effect, the welfare loss caused

by the consumer’s misperception (either overconfidence or underconfidence) is non-monotone

in ρ as Figure 1(b) depicts.

2.2 Monopolistic Insurance Market

Next, we consider the monopolistic insurance market. Clearly, firms’ market power would

further distort the market outcome and thus result in inefficiency. A monopolistic insurance

firm solves the following profit maximization problem:

max
{x,p}

p− µxω,
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subject to the following individual rationality (IR) constraint:

µ̂u(y − (1− x)ω − p) + (1− µ̂)u(y − p) ≥ µ̂u(y − ω) + (1− µ̂)u(y). (9)

It is evident that the IR constraint always binds in the optimal contract. Otherwise, the

monopolistic insurance firm can increase premium without violating condition (9) and further

increase the expected profits. Note that the value of a consumer’s outside option depends

on his utility function u(·) as well as his subjective belief µ̂.

Denote the profit-maximizing contract by (xm, pm), where we use the superscript m to

indicate “monopoly.” The first-order condition yields that

y − (1− xm)ω − pm

y − pm
=

(
1− µ̂
µ̂
× µ

1− µ

)−ρ
≡ A(ρ).

As in the case of perfect competition, A(ρ) appears and again measures the distortion of

consumption across the two states caused by consumers’ misperception. It is noteworthy

that the ratio between consumption in the two states under the profit-maximizing contract

(xm, pm) coincides with that under the competitive equilibrium contract (x∗, p∗).

Solving for (xm, pm), we obtain

xm = 1− 1− A
ω

 µ̂(y − ω)
ρ−1
ρ + (1− µ̂)y

ρ−1
ρ

µ̂A
ρ−1
ρ + (1− µ̂)


ρ
ρ−1

,

and

pm = y −

 µ̂(y − ω)
ρ−1
ρ + (1− µ̂)y

ρ−1
ρ

µ̂A
ρ−1
ρ + (1− µ̂)


ρ
ρ−1

.

A close look at the above equations lead to the following.

Remark 2 Suppose that µ̂ = µ. Then xm = 1, pm = y − u−1
(
µu(y − ω) + (1− µ)u(y)

)
.

When consumers are unbiased, they will be offered full insurance in a monopolistic market

as in a competitive market; and the price will be higher than that under perfect competi-

tion and now depends on the utility function. The monopolistic insurance firm charges

the premium such that consumers are indifferent between buying insurance and remaining

uninsured. Note that when the risk aversion of u(·) becomes sufficiently small, the profit-

maximizing premium pm is approaching the competitive premium p∗. In other words, a lower

risk aversion limits the monopolistic insurance firm’s market power.

Similar to the analysis under perfect competition, we can denote consumer’s equilibrium

certainty equivalent by CEm(ρ;µ, µ̂) and the monopolist’s maximum profit by πm(ρ;µ, µ̂),
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respectively.7 Recall that ρ1 is defines as ρ1 ≡ ln(y−w)−ln(y)
ln(τ)

> 0, where τ ≡
(

1−µ̂
µ̂
× µ

1−µ

)−1

.

The following results can then be obtained.

Proposition 2 (Monopolistic insurance market with biased consumers) The fol-

lowing statements hold under monopoly:

(i) Suppose that consumers exhibit underconfidence, i.e., µ̂ > µ. Then CEm(ρ;µ, µ̂) <

CEm(ρ;µ, µ) and πm(ρ;µ, µ̂) > πm(ρ;µ, µ) for all ρ > 0.

(ii) Suppose that consumers exhibit overconfidence, i.e., µ̂ < µ. Then CEm(ρ;µ, µ̂) ≷

CEm(ρ;µ, µ) if ρ ≶ ρ1. Moreover, there exists a threshold ρ2 ∈ (ρ1,∞) such that

πm(ρ;µ, µ̂) ≶ πm(ρ;µ, µ) if ρ ≶ ρ2.

Proposition 2 provides a stark contrast to Proposition 1, which states that consumer

welfare is always reduced relative to the rational benchmark in a perfectly competitive market

regardless of the type of consumer bias. By Proposition 2, a biased consumer is always worse

off than an unbiased consumer if he exhibits underconfidence [see Figure 2(c)]. However, an

overconfident consumer with a high risk aversion, i.e., γ ≡ 1/ρ > 1/ρ1, is better off than if

he were unbiased.

The intuition is as follows. Consumer’s biased belief has two effects under monopoly.

On the one hand, it creates a wedge between the marginal utility across the two states, and

leads the monopolistic insurance firm to design a contract that deviates from full insurance,

which we refer to as the distortion effect [see Figure 2(a)]. This effect is the same as in

the case of perfect competition, and reduces consumer welfare. On the other hand, it influ-

ences a consumer’ demand for insurance—an effect that is not present in the case of perfect

competition—as his expected utility without insurance depends on his subjective belief µ̂.

If a consumer exhibits underconfidence, he overestimates his demand for insurance, which

implies that fixing a coverage, the monopolist is able to extract more rents by charging the

consumer a higher premium than the unbiased counterpart. This effect again tends to lower

consumer welfare. Therefore, an underconfident consumer will always be worse off than a

rational consumer.

In contrast, if a consumer exhibits overconfidence, on the one hand his incorrect belief

results in him losing full insurance, which we refer to as the distortion effect; on the other

hand, his incorrect belief also leads him to underestimate his demand for insurance. This

effect decreases an overconfident consumer’s perceived value from insurance, which in turn

disciplines the monopolist in its pricing, and may thus protect the consumer. In particular,

7We do not define the loss function under monopoly because a biased consumer’s welfare can indeed be
higher than that of a rational consumer under monopoly as Proposition 2 points out.
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(a) Equilibrium Coverage (b) Equilibrium Premium

(c) Equilibrium Certainty Equivalent (d) Equilibrium Profit

Figure 2: Monopolistic Insurance Market with Biased Consumers: (y, ω, µ) = (1, 0.5, 0.5).

if the latter disciplinary effect outweighs the former distortion effect—which is the case for

ρ < ρ1—then a consumer’s welfare increases with the presence of the misperception.

Next, we consider the firm’s profit in the optimal contract. When consumers are unbi-

ased (i.e., µ̂ = µ), firm’s profit strictly decreases with the IES ρ [see the middle curve in

Figure 2(d)]. A monopolistic insurance firm provides full insurance and earns profits equal

to consumers’ risk premium. As ρ increases, consumers become less risk averse, and thus

firm’s profit decreases.8 In contrast, when consumers exhibit overconfidence or underconfi-

dence, it can be shown that the firm’s profit curve follows a U-shaped curve, as the upper

and the lower curves in Figure 2(d) depict.9 In addition to the aforementioned effect of ρ

8See Pratt (1964, Theorem 1(b)) for a formal proof.
9A formal proof is provided for the case µ̂ < µ in Lemma 3; the proof for the case µ̂ > µ is similar.
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on consumers’ risk premiums, ρ now also influences the equilibrium coverage in the optimal

contract when consumers have biased beliefs. Intuitively, a consumer with a higher IES ρ

(or equivalently, a lower risk aversion γ ≡ 1/ρ) can be exploited by the firm more easily.

This effect tends to increase firm’s profit as ρ increases, and thus reshapes the monotonically

decreasing profit curve under the rational benchmark.

Proposition 2 also sheds some useful insight on market participants’ incentive to edu-

cate consumers. As Kőszegi (2014) points out: “...unshrouding [education] is often unprof-

itable because it turns profitable naive consumers into unprofitable sophisticated consumers.

Hence, deceptive products or contracts can often survive in market.”10 Proposition 2 con-

firms Köszegi’s argument for underconfident consumers: A monopolistic insurance firm has

no incentive to debias underconfident consumers [see Figure 2(d)]. However, it can be prof-

itable for the monopolistic firm to educate overconfident consumers when their IES ρ falls

below the threshold ρ2 in our model.

It is also worth noting that government intervention may not be necessary when con-

sumers are overconfident. To see this more clearly, suppose that ρ ∈ (ρ1, ρ2). In this case,

the insurance firm becomes a buyer and the agents are sellers. It follows immediately from

part (ii) of Proposition 2 that the monopolistic insurance firm has an incentive to educate

consumers to correct their biased belief. Furthermore, such a move leads to Pareto improve-

ments for both parties on the market [see Figures 2(c) and 2(d)].

3 Credit Market with Present-biased Borrowers

In Section 2, we studied the effects of biased beliefs in a static insurance market. In this

section, we consider the effect of another common behavioral bias, namely, time-inconsistent

present-biased preference, in a dynamic model of a competitive credit market proposed by

Heidhues and Kőszegi (2010).

In order to explore the impact of consumer’s IES on the equilibrium contract, we slightly

modify Heidhues and Kőszegi (2010) and assume that borrower’s utility function takes the

CRRA form as described by (1) in all periods.11 Consider a perfectly competitive credit

market with three periods, t = 0, 1, 2. The consumer does not have any income in period 0,

but receives an income of y in periods 1 and 2. The consumer’s intertemporal preference is

subject to present-bias in the form of (β, δ)-hyperbolic discounting (Strotz, 1956; Laibson,

1997; O’Donoghue and Rabin, 1999), where β ∈ (0, 1) is the present-bias factor and δ ∈ (0, 1]

is the standard exponential discounting factor. Without loss of generality, we assume that

10See Gabaix and Laibson (2006), Spiegler (2006), and Heidhues, Kőszegi, and Murooka (2017) for more
details.

11Heidhues and Kőszegi (2010) postulate a preference in which the agent derives utility c from consumption
c, and suffers a cost of k(q) from repayment of q.
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δ = 1, and focus on the role of the present-bias factor β.

Period-0 self’s utility is u(c) + u(y − r1) + u(y − r2), where c ≥ 0 is the amount the

consumer borrows in period 0, and r1 ≥ 0 and r2 ≥ 0 are the amounts he repays in period

1 and 2, respectively.12 However, period-1 self maximizes u(y − r1) + βu(y − r2), where β

captures a borrower’s time inconsistency and taste for immediate gratification. To capture

borrower’s näıvete, we assume that period-0 self believes that period-1 self will maximize

u(y − r1) + β̂u(y − r2), where β̂ ≥ β is a measure of sophistication. In particular, β̂ = β

implies that a borrower is perfectly sophisticated, while β̂ = 1 indicates that a borrower is

completely naive.

Sophisticated borrowers We first consider the case of a perfectly sophisticated borrower

(i.e., β̂ = β). Because the borrower correctly foresees his time inconsistency, it is without

loss of generality to suppose that the menu of contracts consists of only one installment plan

〈cs, (r1s, r2s)〉, where an amount cs is lent to the borrower in period 0, and repayments of r1s

and r2s are required in period 1 and 2 respectively.

A competitive lender’s optimization problem is then given by

max
{cs,(r1s,r2s)}

r1s + r2s − cs,

s.t. u(cs) + u(y − r1s) + u(y − r2s) ≥ u,

where u specifies the value of a borrower’s outside option from alternative competitive firms

and is endogenously determined by the zero-profit condition. The equilibrium contract,

which we denote by 〈c∗s, (r∗1s, r∗2s)〉, is determined by the following first-order condition

u′(y − r∗1s) = u′(y − r∗2s) = u′(c∗s),

and the zero-profit condition

c∗s = r∗1s + r∗2s.

We can show with simple algebra that the equilibrium contract is given by〈
c∗s, (r

∗
1s, r

∗
2s)
〉

=
〈2

3
y,
(1

3
y,

1

3
y
)〉
. (10)

To evaluate the welfare of the equilibrium contract 〈c∗s, (r∗1s, r∗2s)〉, we follow the literature

(e.g., DellaVigna and Malmendier, 2004; O’Donoghue and Rabin, 1999, 2001; Gottlieb and

Zhang, 2020) and use the long-run self’s utility as the welfare measure. Due to the timing

12We follow Heidhues and Kőszegi (2010) and assume that a borrower signs the contract before period 0
starts. Therefore, from self 0’s perspective, c, r1, r2 all occur in the future, and thus his expected utility is
β
[
u(c) + u(y − r1) + u(y − r2)

]
. It is evident that dropping the multiplier β will not influence our analysis.

13



assumption we adopted in this paper, the long-run self’s utility is equivalent to period-0 self’s

utility. From the above analysis, the time-inconsistency problem is solved by the competitive

credit market: Consumer welfare is maximized and consumption across all three periods is

perfectly smoothed; the per period certainty equivalent is 2
3
y, which is independent of the

curvature of the utility function u(·).

Naive borrowers Next, we consider the case of naive borrower (i.e., β̂ > β). By Heidhues

and Kőszegi (2010), the equilibrium contract is characterized by 〈cn, (r1n, r2n), (r̂1n, r̂2n)〉,
where cn is borrower’s consumption in period 0, (r̂1n, r̂2n) is the installment plan that period-0

self thinks he will choose, and (r1n, r2n) is the installment plan that period-1 self will actually

follow. The competitive lender’s maximization problem is given by

max
{cn,(r1n,r2n),(r̂1n,r̂2n)}

r1n + r2n − cn,

s.t. u(cn) + u(y − r̂1n) + u(y − r̂2n) ≥ u, (11)

u(y − r̂1n) + β̂u(y − r̂2n) ≥ u(y − r1n) + β̂u(y − r2n), (12)

u(y − r1n) + βu(y − r2n) ≥ u(y − r̂1n) + βu(y − r̂2n), (13)

where (11) is period-0 self’s participation constraint when he signs the contracts in period

0; (12) is the perceived incentive constraint that period-0 self thinks his period-1 self will

be facing; and (13) is the period-1 self’s actual incentive constraint in period 1. Note that

in condition (11), period-0 self, due to his näıvete about his own present bias, believes

that (r̂1n, r̂2n) are the relevant repayment schedules when he signs the contract in period

0; he believes, according to his perceived present bias factor β̂, that his period-1 self will

choose repayment plan (r̂1n, r̂2n) over (r1n, r2n) as guaranteed by (12). However, his period-1

self, using the actual present bias β, will choose repayment plan (r1n, r2n) over (r̂1n, r̂2n) ,

according to (13).

Following the arguments in Heidhues and Kőszegi (2010), we can show that (11) and

(13) must bind in the equilibrium contract. To see this, if (11) were not binding, then the

firm can reduce cn to increase the objective function; if (13) were not binding, then the firm

can increase r1n to increase the objective. In addition, since (13) must bind in the optimal

contract, then the fact that β̂ > β implies that (12) will be satisfied as long as r̂2n < r2n.

In what follows, we assume that (12) does not bind in the maximization problem. We will

confirm that it will indeed result in a solution that satisfies r̂2n < r2n.
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With the above reasoning, we consider the following relaxed problem:

max
{cn,(r1n,r2n),(r̂1n,r̂2n)}

r1n + r2n − cn,

s.t. u(cn) + u(y − r̂1n) + u(y − r̂2n) = u, (14)

u(y − r1n) + βu(y − r2n) = u(y − r̂1n) + βu(y − r̂2n). (15)

Denote the optimal contract by 〈c∗n, (r∗1n, r∗2n), (r̂∗1n, r̂
∗
2n)〉. We can argue that r̂∗2n = 0 in the

solution to the above problem. To see this, if r̂2n > 0, then the firm can decrease r̂2n to 0

and increase r̂1n appropriately to leave (14) unaffected. This will create slackness in (15),

which will allow the firm to increase profit through raising r1n. Therefore, the equilibrium

contract is governed by the following first-order condition

u′(cn) = u′(y − r1n) = βu′(y − r2n), (16)

and the zero-profit condition

cn = r1n + r2n.

It follows immediately from Equation (16) that borrower’s time inconsistency distorts the

trade-off of resource allocation between period 2 (the last period) and the other periods,

and thus generates inefficiency. When a borrower has time-inconsistent taste for immediate

gratification and is naive about his present bias, the competitive firms will exploit his näıvete

by designing a deceptive contract to induce excessive borrowing by including a high period-2

repayment (penalty), r2n, which he thinks will never be triggered.

Exploiting the constant IES functional form of u(·) as described in (1) and solving for

the actual installment plan 〈c∗n, (r∗1n, r∗2n)〉 yields that:13

〈
c∗n, (r

∗
1n, r

∗
2n)
〉

=
〈 2

2 + βρ
y,
( βρ

2 + βρ
y,

2− βρ

2 + βρ
y
)〉
. (17)

Comparing (10) with (17), we can obtain

c∗n
c∗s

=
3

2 + βρ
> 1,

where the inequality follows from β ∈ (0, 1) and ρ > 0. In words, a naive consumer borrows

more than a sophisticated consumer would and over-consumes in period 0 relative to the first-

best benchmark. Furthermore, the ratio c∗n/c
∗
s increases with ρ, indicating that a consumer

13(r̂∗1n, r̂
∗
2n), the installment plan offered by the firm that period-0 self thinks he will choose, is not conse-

quential for the subsequent analysis, but it can be characterized as follows: r̂∗2n = 0 as we already argued in
the text; then r̂∗1n simply follows from (15) by substituting the solution (r∗1n, r

∗
2n) as characterized by (17).
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with a higher IES is more vulnerable from his näıvete in terms of period-0 consumption.

Again, using the long-run self’s utility from the contract 〈c∗n, (r∗1n, r∗2n)〉 as the welfare

criterion, the average certainty equivalent of the naive borrower, denoted by CE∗n(ρ), solves

3u
(
CE∗n(ρ)

)
= 2u

(
2

2 + βρ
y

)
+ u

(
y − 2− βρ

2 + βρ
y

)
.

Simple algebra using the assumed CRRA utility function form (1) shows that:

CE∗n(ρ) =

 2
2+βρ

×
(

2+βρ−1

3

) ρ
ρ−1 × y if ρ > 0 and ρ 6= 1,

2
2+β
× β 1

3 × y if ρ = 1.

A loss function relative to the perfectly sophisticated benchmark, denoted by L(ρ) with slight

abuse of notation—which we use to measure the consumer vulnerability from näıvete—can

thus be defined as

L(ρ) :=
2
3
y − CE∗n(ρ)

2
3
y

.

A proposition under the context of the credit market and present-biased consumers, which

is similar to Proposition 1, can then be established as follows.

Proposition 3 (Credit market with present-biased borrowers with näıvete) The

ratio of the first-period consumption between a naive borrower and a sophisticated borrower

(i.e., c∗n/c
∗
s) is greater than one, and is strictly increasing in ρ for ρ ∈ (0,∞). However, the

loss function L(ρ) is an inverted U-shaped curve in ρ.

4 Epstein-Zin Preferences: IES vs. Risk Aversion

Thus far, we have discussed static/dynamic models of different behavioral biases and

market structures. The main insight is that the curvature of consumers’ utility function is

important to predict the deviation of their equilibrium behavior from the rational benchmark,

and thus is a key determinant of welfare analysis. Note that consumer’s utility is separable

and additive for the first two examples, and CRRA utility functional form is employed. This

implies instantly that the IES is the inverse of relative risk aversion, and thus it is impossible

to isolate the effect of IES from that of risk aversion. Indeed, it is more appropriate to

interpret our result using risk aversion in the first example (i.e., insurance market with biased

consumers) due to its static nature, while it is more appropriate to use the interpretation

of IES in the second example (i.e., credit market with present-biased borrowers) due to its

dynamic nature.
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In this section, we employ the recursive preferences proposed by Epstein and Zin (1989,

1991) and introduce behavioral biases into the model. This class of preferences has been

applied broadly in asset pricing, portfolio choice, as well as macroeconomics, and allows us

to break the link between risk aversion and IES.

Epstein-Zin preferences Consider a simple setting with two periods, in which an agent

consumes c1 in the first period, and consumes ci2 in state i ∈ {1, 2} in the second period,

with Pr(c2 = ci2) = pi ∈ [0, 1]. We follow most of the literature on Epstein-Zin preferences

and assume that the agent’s utility is given by:

F
(
c1, z(c

1
2, c

2
2; p1, p2); β, η, λ

)
:=
(

(1− β)c1−η
1 + β

[
z(c1

2, c
2
2; p1, p2)

]1−η) 1
1−η

, (18)

where c1 is agent’s period-1 consumption and z(c1
2, c

2
2; p1, p2) is the period-2 certainty equiv-

alent using the following function:

G(c) = c1−λ, (19)

that is,

z(c1
2, c

2
2; p1, p2) = G−1

(
EG

(
(c2)
))

=
[
p1(c1

2)1−λ + p2(c2
2)1−λ

] 1
1−λ

. (20)

In the above recursive formulation, β ∈ (0, 1] is agent’s time preference or discount factor,

η > 0 is the inverse of the IES for deterministic variations, and λ > 0 represents the relative

risk aversion coefficient for static gambles.

Two important observations follow immediately. First, when consumption is determin-

istic, the preference degenerates to the usual standard time-separable expected discounted

utility with discount factor β, IES ρ = 1/η, and risk aversion λ = η. Second, when agent

consumes c > 0 in all states and periods, we have that F
(
c, z(c, c; p1, p2); β, η, λ

)
= c. This

implies instantly that F (·) is the average certainty equivalent of the agent.

Income and contracts The agent has income y1 in the first period, and income yi2 in

state i ∈ {1, 2} in the second period. For notational convenience, let us denote Pr(y2 = y1
2)

by µ and agent’s average income (1 − β)y1 + β
[
µy1

2 + (1− µ)y2
2

]
by y. Agent can go to a

perfectly competitive financial market to smooth his consumption across different periods

and states. A contract specifies the agent’s consumption level in each period and state, and

is in the form of (c1, c
1
2, c

2
2).

Before we proceed to the analysis, it is useful to point out that this simple model can be

easily reinterpreted under different contexts. For instance, the model degenerates to our first

static insurance example if β = 1. Similarly, the model shares exactly the same insight as

our second example of credit market if µ ∈ {0, 1} and agent holds incorrect belief regarding

his time preference β.
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Rational Benchmark We first consider the consumption allocation of a rational agent.

Clearly, the equilibrium contract will result in a consumption bundle, denoted by (c∗1, c
1∗
2 , c

2∗
2 ),

that solves the following maximization problem:

max
{c1,c12,c22}

F
(
c1, z(c

1
2, c

2
2; p1, p2); β, η, λ

)
,

s.t. (1− β)c1 + β
[
µc1

2 + (1− µ)c2
2

]
= y, (21)

where Equation (21) is the zero-profit condition. Simple algebra would verify that

c∗1 = c1∗
2 = c2∗

2 = y, and thus F
(
c∗1, z(c

1∗
2 , c

2∗
2 ;µ, 1− µ); β, η, λ

)
= y.

Remark 3 A rational agent with Epstein-Zin preferences receives a contract that perfectly

smooths his consumption across all periods and states. In the competitive equilibrium, agent’s

average certainty equivalent is equal to his average income y.

Next, we introduce behavioral biases into the model by assuming that agent may mis-

perceive either the time preferences β or the probability µ.

4.1 Misperception on Time Preferences

Suppose the agent believes that his time preference parameter is β̃ 6= β. The equilibrium

competitive contract thus maximizes the agent’s perceived utility

max
{c1,c12,c22}

F
(
c1, z(c

1
2, c

2
2;µ, 1− µ); β̃, η, λ

)
,

subject to the zero-profit condition (21). Note that β̃ only enters into agent’s perceived

utility function and has no impact on the zero-profit constraint.

Solving for the equilibrium consumption bundle, which we denote by (c1β, c
1
2β, c

2
2β), yields

that

c1β =
y

(1− β) + βT (η)
, and c1

2β = c2
2β =

T (η)y

(1− β) + βT (η)
, (22)

where T (η) is a function of the IES parameter 1/η and is given by

T (η) :=

(
β

1− β
× 1− β̃

β̃

)− 1
η

.

Two remarks are in order. First, the equilibrium consumption profile within the second

period is not distorted by the agent’s misperception of time preferences: The agent still
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obtains full insurance in the second period because his belief regarding the period-2 risks

is correct. Second and importantly, the equilibrium consumption bundle (c1β, c
1
2β, c

2
2β) is

independent of the risk aversion parameter λ; the ratio between the period-1 and the period-

2 consumption depends only on the IES parameter 1/η.

Given the equilibrium consumption bundle specified in (22), we can calculate the equi-

librium certainty equivalent of the agent using the true time preferences β, which we denote

by Fβ(λ, η), as the following:

Fβ(λ, η) := F
(
c1β, z(c

1
2β, c

2
2β;µ, 1− µ); β, η, λ

)
=

y

(1− β) + βT (η)

{
(1− β) + β

[
T (η)

]1−η} 1
1−η

. (23)

Recall that a rational agent’s equilibrium certainty equivalent in a competitive equilibrium

is y. A loss function relative to the rational benchmark, denoted by Lβ(λ, η), can be defined

as

Lβ(λ, η) :=
y − Fβ(λ, η)

y
.

The following result can then be obtained:

Proposition 4 (Epstein-Zin preferences and misperception on time preferences)

Suppose that agent has Epstein-Zin preferences as described in (18), and holds incorrect belief

regarding his time preferences (i.e., β̃ 6= β). Then the following statements hold:

(i) The loss function Lβ(λ, η) is independent of the agent’s risk aversion λ;

(ii) The loss function Lβ(λ, η) follows an inverted U-shaped curve in the agent’s IES 1/η.

For part (i) of Proposition 4, recall that agent receives full insurance in the second

period. This implies instantly that the period-2 consumption across states remain efficient.

Therefore, agent’s period-2 certainty equivalent will not be influenced by his risk aversion

coefficient λ, and thus his average certainty equivalent Fβ remains constant over λ.

The intuition for part (ii) of Proposition 4 is exactly the same as that for Proposition 3.

Agent’s biased belief about his time preference coefficient β distorts the dynamic trade-off

between the period-1 consumption and period-2 consumption, which in turn leads to welfare

inefficiency. In such a scenario, it is the IES 1/η, rather than the risk aversion λ, that

determines the agent’s equilibrium certainty equivalent and the size of welfare losses.
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4.2 Misperception on Second-period Risks

Next, suppose the agent believes that the probability that state-y1
2 occurs in the second

period is µ̃ 6= µ. The equilibrium competitive contract maximizes agent’s perceived utility

max
{c1,c12,c22}

F
(
c1, z(c

1
2, c

2
2; µ̃, 1− µ̃); β, η, λ

)
,

subject to the zero-profit condition (21). Similar to the previous analysis, agent’s belief

µ̃ only enters into his perceived objective function and has no impact on the zero-profit

constraint.

Denote the equilibrium consumption profile by (c1µ, c
1
2µ, c

2
2µ), where we use the subscript

µ to indicate that agent holds incorrect belief about distribution of the period-2 risks. The

first-order condition implies that

c1
2µ

c2
2µ

=

[
µ

1− µ
× 1− µ̃

µ̃

]− 1
λ

=: R(λ), (24)

and

µc1
2µ + (1− µ)c2

2µ

c1µ

=


(

1− µ̃+ µ̃
[
R(λ)

]1−λ) 1
1−λ

1− µ+ µR(λ)


1−η
η

=: Q(λ, η). (25)

Equations (24) and (25) unveil two important sources of inefficiency. The term R(λ)

defined in Equation (24) measures the impact of the agent’s misperception of µ on the

period-2 consumption profile, and hence captures the period-2 distortion. Without loss of

generality, suppose that µ̃ > µ, i.e., agent assigns more weights on state-y1
2. This implies

instantly that R(λ) > 1, and thus the agent ends up with more consumption in state-y1
2 in

the competitive equilibrium and results in welfare loss.

Equation (25) indicates that agent’s biased belief regarding the period-2 risks also varies

the intertemporal tradeoff between the period-1 consumption (i.e., c1µ) and the average

period-2 consumption (i.e., µc1
2µ + (1 − µ)c2

2µ). This dynamic distortion is captured by the

term Q(λ, η), which clearly depends on both λ and η. Therefore, agent’s welfare depends on

both the risk aversion coefficient λ and the IES parameter 1/η when he incorrectly estimates

his period-2 risks.
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Solving for the equilibrium consumption profile (c1µ, c
1
2µ, c

2
2µ) yields that

c1µ =
1

1− β + βQ(λ, η)
y,

c1
2µ =

Q(λ, η)

1− β + βQ(λ, η)
× R(λ)

1− µ+ µR(λ)
y,

c2
2µ =

Q(λ, η)

1− β + βQ(λ, η)
× 1

1− µ+ µR(λ)
y.

Given the equilibrium consumption profile specified above, we can derive agent’s experi-

enced welfare, which we denote by Fη(η, λ), as the following:

Fη(λ, η):=F
(
c1µ, z(c

1
2µ, c

2
2µ;µ, 1− µ); β, η, λ

)
:=

y[
1− β + βQ(η, λ)

]
×
[
1− µ+ µR(λ)

]
×

[
(1− β)

[
1− µ+ µR(λ)

]1−η
+ β

[
Q(λ, η)

]1−η (
1− µ+ µ

[
R(λ)

]1−λ) 1−η
1−λ

] 1
1−η

.

Similar to the previous analysis, we can define a loss function, which we denote by Lη(λ, η),

as the following:

Lη(λ, η) :=
y − Fη(λ, η)

y
.

The following result can then be obtained:

Proposition 5 (Epstein-Zin preferences and misperception on period-2 risks)

Suppose that agent has Epstein-Zin preferences as described in (18), and holds incorrect

belief regarding the period-2 risks (i.e., µ̃ 6= µ). Then the following statements hold:

(i) limλ↘0 Lη(λ, η) > limλ↗∞ Lη(λ, η) = 0. As a result, ∂Lη(λ,η)

∂λ
is negative as λ becomes

sufficiently large. Moreover, there exists a threshold β ∈ [0, 1) such that for β > β,
∂Lη(λ,η)

∂λ
is positive as λ becomes sufficiently small.14

(ii) limη↗∞ Lη(λ, η) > limη↘0 Lη(λ, η) > limη→1 Lη(λ, 1) > 0. Moreover, ∂Lη(λ,η)

∂η
is positive

as η becomes sufficiently small or sufficiently large.

Part (i) of Proposition 5 indicates that the loss function Lη(λ, η) follows an inverted

U-shaped curve in agent’s relative risk aversion coefficient λ as Figure 3(a) illustrates. The

intuition is similar to that in part (ii) of Proposition 4. Fixing the IES parameter η, although

a change in the risk aversion coefficient λ distorts agent’s intertemporal tradeoff Q(λ, η) and

14It can be verified from the proof of Proposition 5 that β = 0 if
(

max
{

1−µ̃
1−µ ,

µ̃
µ

})1−η ≥ 1− η.
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(a) Loss Function Lη(λ, η): η = 2 (b) Loss Function Lη(λ, η): λ = 2

Figure 3: Epstein-Zin Preferences with Biased Belief on Period-2 Risks: (y, µ, µ̃, β) =
(1, 0.5, 0.25, 0.5).

thus the welfare analysis is substantially complicated, the main insight as established in

Proposition 1 remains qualitatively unchanged.

In contrast, by part (ii) of Proposition 5, the welfare analysis with respect to agent’s

IES 1/η is less than explicit. It is somewhat surprising that Proposition 5 indicates that

agent’s average certainty equivalent needs to change the its monotonicity at least twice as

Figure 3(b) depicts; and more importantly, that agents with extreme values of IES are now

more vulnerable. The reason why agents with a moderate degree of IES are less vulnerable

stems from the observation that a moderate IES limits the dynamic distortion caused by

the misperception on period-2 risks. To see this more clearly, it is useful to consider the

extreme case where 1/η approaches one. It is straightforward to verify that Equation (25)

degenerates to [µc1
2µ + (1− µ)c2

2µ]/c1µ = 1, which in turn implies that c1µ = y = c∗1. In other

words, the equilibrium period-1 consumption is equal to the average period-2 consumption,

and coincides with the first-best period-1 consumption level despite the fact that agent

is biased. In such a scenario, inefficiency is solely triggered by the unbalanced period-2

consumptions across state-y1
2 and state-y2

2, and the dynamic distortion caused by the biased

belief about µ vanishes in the limit. As a result, the agent with a moderate level of IES 1/η

has the maximum welfare.

5 Projection Bias and Habit Formation

Next, we consider projection bias and investigate the impact of IES on consumer vul-

nerability in a simple decision-theoretic model. In particular, we consider a habit formation
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model with projection biased consumers proposed by Loewenstein, O’Donoghue, and Rabin

(2003).

A consumer has total income of y and allocate consumption c1 and c2 between two periods.

Consumer’s instantaneous utility in period t = 1, 2 is v(ct, st) := u(ct − st), where ct and st

are respectively his consumption and the habit stock in period t. We follow Loewenstein et

al. (2003) and assume that habit stock evolves according to

st = (1− φ)st−1 + φct−1, φ ∈ (0, 1],

with an initial habit stock normalized to zero (i.e., s1 = 0). For simplicity, we assume that

there is no discounting across periods.

Now we introduce projection bias into the model. When a consumer exhibits simple

projection bias as in Loewenstein et al. (2003), his perceived utility is

u(c1 − s1) + (1− α)u(c2 − s2) + αu(c2 − s1),

where α ∈ [0, 1] captures the degree of projection bias in an intuitive way. Note that α = 0

corresponds to case of “rational habits” wherein a consumer fully takes into consideration

the impact of his current assumption on his future well-being. Similarly, α = 1 corresponds

to the case of “myopic habits” wherein a consumer does not account at all for how his current

consumption influences his future habit stock.

A consumer’s decision on the first-period consumption, which we denote by c∗1(ρ, α), is

the solution to the following first-order condition:

u′
(
c∗1(ρ, α)

)
− (1− α)(1 + φ)u′

(
y − (1 + φ)c∗1(ρ, α)

)
− αu′

(
y − c∗1(ρ, α)

)
= 0. (26)

It can be shown that c∗1(ρ, α) > c∗1(ρ, 0) for all α ∈ (0, 1], implying that a consumer with

projection bias plans a consumption profile that consumes his income more quickly relative

to a rational consumer. This result is intuitive: projection bias leads a consumer to under-

appreciate how his current consumption will reduce his utility from future consumption, and

thus leads one to consume too much.

Given the derived consumption profile
(
c∗1(ρ, α), c∗2(ρ, α)

)
, we use the utility function u(·)

to calculate the average certainty equivalent, which we denote by CE∗(ρ, α), as follows:

2u
[
CE∗(ρ, α)

]
= u

[
c∗1(ρ, α)− s1

]
+ u

[
c∗2(ρ, α)− s2

]
. (27)
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A loss function, which is similar to that in Section 2.1, can be defined as

L(ρ, α) :=
CE∗(ρ, 0)− CE∗(ρ, α)

CE∗(ρ, 0)
. (28)

Note that a closed-form solution to Equation (26) cannot be obtained in general even

with the CRRA utility functional form. For ease of presentation, we consider the two afore-

mentioned polar cases α = 0 and α = 1. A discussion for the case of intermediate degree of

projection bias (i.e., 0 < α < 1) will be presented after Proposition 6.

Rational habits: α = 0. A rational consumer correctly anticipates his changes in habit

stock, and chooses a consumption profile (c1, c2) to maximize his total utility across the two

periods

u(c1 − s1) + u(c2 − s2), (29)

subject to s2 = (1− φ)s1 + φc1, s1 = 0, and c1 + c2 = y. The first-order condition (26) can

be simplified as

u′(c1 − s1)

u′(c2 − s2)
= 1 + φ. (30)

When φ = 0, the model degenerates to the one without habit formation and u′(c1) = u′(c2),

in which case the consumer perfectly smooths his consumption across the two periods. When

φ > 0, an increase in the period-1 consumption influences the period-2 habit stock and thus

decreases the period-2 utility, holding fixed the period-2 consumption level, a fact that a

rational consumer would take into consideration when deciding his consumption.

Solving for the optimal consumption profile yields that

(
c∗1(ρ, 0), c∗2(ρ, 0)

)
=

(
1

(1 + φ) + (1 + φ)ρ
y,

φ+ (1 + φ)ρ

(1 + φ) + (1 + φ)ρ
y

)
.

It follows immediately from above expression that c∗1 < c∗2. This confirms the increasing con-

sumption pattern typically emphasized in the literature on habit formation. As ρ increases,

or equivalent, as a consumer becomes more risk neutral, he cares more about his total net

consumption level [i.e., (c1 − s1) + (c2 − s2)] and incurs less disutility from an unbalanced

consumption path. As a result, he optimally postpones his consumption to the second period

so as to avoid the welfare loss caused by the period-1 habit stock. In the extreme case that

ρ approaches infinity, his optimal plan is to consume nothing in the first period and all his

income in the second period.

It is noteworthy that the rational benchmark now depends on the shape of the utility

function due to the presence of habit formation, and the per period certainty equivalent
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evaluated using the utility function u(·) is given by

CE∗(ρ, 0) =
y

(1 + φ) + (1 + φ)ρ

[
1

2
+

1

2
(1 + φ)ρ−1

] ρ
ρ−1

,

which is a function of the IES coefficient ρ.

Myopic habits: α = 1. Next, we consider the consumption behavior of a completely

myopic consumer. Plugging α = 1 into the first-order condition (26) yields that

u′(c1 − s1)

u′(c2 − s1)
= 1; (31)

together with c1 + c2 = y, the optimal consumption profile can be solved as

c∗1(ρ, 1) = c∗2(ρ, 1) =
y

2
.

When a consumer is fully myopic, he perfectly smooths his consumption across the two

periods. Although the consumption path achieve the first-best under the standard expected

utility theory in the absence of habit formation (i.e., φ = 0), it is suboptimal in a model

of a habit formation because a consumer’s period-1 consumption lowers his period-2 utility.

Given the above consumption profile and Equation (27), we can derive the consumer’s average

certainty equivalent as follows:

CE∗(ρ, 1) =
y

2

[
1

2
+

1

2
(1− φ)

ρ−1
ρ

] ρ
ρ−1

.

Comparing the first-order conditions (30) and (31), we can see that, similar to the previ-

ous examples in Sections 2 to 4, projection bias creates a wedge between the marginal utility

of consumption across the two periods and generates inefficiency. The following result can

be obtained:

Proposition 6 (Implications of projection bias over habit formation) Consider a

model of habit formation with projection bias. The following statements hold:

(i) The ratio of the period-1 consumption between a myopic consumer and a rational

consumer, i.e., c∗1(ρ, 1)/c∗1(ρ, 0), is greater than one, and strictly increases with ρ for

ρ ∈ (0,∞).

(ii) The loss function L(ρ, 1), as defined by (28), of a consumer with myopic habits strictly

decreases (increases, respectively) with ρ as ρ becomes sufficiently small (large, respec-

tively).
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(a) Period-1 Consumption (b) Average Certainty Equivalent

(c) Loss Function L(ρ, α): α = 0.7 (d) Loss Function L(ρ, α): α = 1

Figure 4: Habit Formation with Project Bias: (y, φ) = (1, 0.7).

The first part of Proposition 6 confirms the intuition obtained in the previous two exam-

ples: When the consumer exhibits extreme projection bias (i.e., α = 1), the curvature of the

utility function is closely related to the deviation of their consumption behavior from that of

a consumer with rational habits. Again, a utility function with a higher degree of IES leads

to more deviations from the first-best consumption path, as Figure 4(a) depicts.

Interestingly, although the loss function L(ρ, 1) is non-monotone in the IES coefficient ρ,

Proposition 6 indicates that it follows a U-shaped curve rather than an inverted U-shaped

curve [see Figure 4(d)]. This in turn implies that consumers with an intermediate degree

of IES are less vulnerable than those with extreme values of IES, and thus contrasts to the

welfare results stated in Propositions 1 and 3. To understand the result, recall that under

the context of habit formation, period-1 consumption causes a loss in total income of size
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s2 = φc∗1 from Equation (29), and decreases consumer welfare, which we refer to as the

income loss effect. The size of this income loss effect depends evidently on the period-1

consumption level c∗1(ρ, α), and looms large when consumers’ degree of projection bias (i.e.,

α) increases [see Figure 4(a)]. In the extreme case that a consumer completely ignores the

evolution of his habit stock (i.e., α = 1) and ρ approaches infinity, he consumes y/2 in the

first period, whereas a rational consumer consumes zero. This causes a huge welfare loss to

a myopic consumer, and thus the loss function exhibits an opposite pattern from those in

Propositions 1 and 3 due to such income loss effect.

Intermediate projection bias: α ∈ (0,1). Next, we provide some numerical results

for intermediate degree of consumer projection bias. As Figure 4(a) illustrates, period-1

consumption level of a moderately biased consumer (the middle curve) approximates the

benchmark case of rational habits (the bottom curve) for extremes values of ρ. Furthermore,

it can be verified that the ratio c∗1(ρ, α)/c∗1(ρ, 0) is strictly increasing in ρ for all α ∈ (0, 1),

indicating that the first part of Proposition 6 is robust to intermediate projection bias.

However, the welfare analysis is different. Because c1(ρ, α) approaches c1(ρ, 0) as ρ↗∞
and ρ ↘ 0, the income loss effect vanishes in the limit; this indicates that the average

certainty equivalent of a biased consumer coincides with that of a rational consumer [see

Figure 4(b)]. By Figure 4(c), the loss function instead follows an inverted U-shaped curve.

Under such a scenario, consumers with a moderate level of IES are the most vulnerable.

6 Reference-Dependent Preferences and Portfolio Choice

Since the seminal contribution by Kahneman and Tversky (1979), prospect theory is

perhaps one of the most influential and well-cited framework in behavioral economics. A

central component of prospect theory is that outcomes are not evaluated on an absolute

scale, but rather are evaluated relative to some point of reference. In other words, agents’

preferences are reference-dependent. Moreover, economic agents are loss averse in the sense

that a loss relative to the reference point outweighs a gain of equal size.15

A robust literature has applied prospect theory to different subfields of economics such

as finance, industrial organization, and public economics. For instance, Barberis and Xiong

(2009) develop a dynamic model with loss-averse investors to investigate whether prospect

theory preferences can predict a disposition effect, the tendency of retail investors to be

more prone to sell their winners than their losers.16 In this section, we present a simple

15The other two components are diminishing sensitivity and probability weighting.
16In Barberis and Xiong (2009), the reference point is exogenously given. Meng and Weng (2018) revisit

the question and assume that the reference point is endogenously determined.
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static portfolio choice setting with expectation-based loss-averse investors. Because our fo-

cus is to analyze the welfare consequences of reference-dependent preferences rather than to

predict the disposition effect, we abstract from the dynamic structure and consider a simple

static setting. Although there exists a plethora of studies that take a positive approach

and focus on whether reference-dependent preferences can explain observed behavior, some-

what surprisingly, the welfare implications of reference-dependent preferences remain largely

unexplored (O’Donoghue and Sprenger, 2018).

Consider a static model of asset allocation between a risk-free asset and a stock. There are

two assets: a risk-free asset, which earns a gross return of Rf = 1,17 and a risky asset/stock.

Specifically, the gross return of the asset is Ru > Rf with probability κ ∈ (0, 1), and is

Rd < Rf with probability 1−κ. To create a tradeoff between the risk-free asset and the stock,

we assume that the expected stock return exceeds the risk-free rate, i.e., κRu+(1−κ)Rd > Rf .

The price for each share of the stock is set to be unity.

The investor has initial wealth y and must decide how to split his wealth between the risk-

free and risky assets. Denote the number of shares of the risky asset an investor purchases

by θ. For simplicity, we assume that that short-selling is forbidden (i.e., θ ≥ 0), and the

investor can borrow to invest in the risky asset (i.e., θ may exceed y). In addition, we assume

that a investor’s realized wealth in any state must be nonnegative.18

Investor preferences Investors have reference-dependent preferences and are expectation-

based loss averse á la Kőszegi and Rabin (2006, 2007). To put it formally, when an investor’s

consumption is c and his reference point is r, her perceived utility is given by

ũ(c | r) =

{
u(c) + η

[
u(c)− u(r)

]
if c ≥ r,

u(c) + ηλ
[
u(c)− u(r)

]
if c < r,

where u(c) is an investor’s intrinsic utilities from consumption; η ≥ 0 is the weight on gain-

loss psychological utility; and λ ≥ 1 captures the idea that a loss looms larger than a gain

of equal size and thus represents the degree of the agent’s loss aversion.

We follow Kőszegi and Rabin (2006, 2007) and assume that investor’s reference point is

set to equal to his rational expectations as defined by his full probabilistic beliefs. Further-

more, at the time the investor decides on his asset composition, the investor anticipates that

the lottery he faces regarding the terminal income depends on his investment decision. This

assumption is incorporated into the solution concept “choice-acclimating personal equilib-

rium” (CPE) (Kőszegi and Rabin, 2007). More formally, fixing θ ≥ 0, investor’s reference

point is the following lottery: With probability κ, his wealth becomes y − θ + θRu, with

17Normalizing Rf to one is without loss of generality.
18With CRRA specification, this constraint never binds due to Inada condition (i.e., limc↘0 u

′(c) =∞).
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probability 1 − κ, he ends up with a wealth level of y − θ + θRd. Therefore, the expected

perceived utility of an expectation-based loss-averse investor is given by

Ũ(θ) :=
[
κu(y − θ + θRu) + (1− κ)u(y − θ + θRd)

]
+ η

{
κ
[
κ · 0 + (1− κ)[u(y − θ + θRu)− u(y − θ + θRd)]

]
+(1− κ)

[
κ · λ[u(y − θ + θRd)− u(y − θ + θRu)] + (1− κ) · 0

] } .
The above expression can be further simplified as

Ũ(θ) =
[
κu(y − θ + θRu) + (1− κ)u(y − θ + θRd)

]︸ ︷︷ ︸
intrinsic material utility

−Λκ(1− κ)
[
u(y − θ + θRu)− u(y − θ + θRd)

]︸ ︷︷ ︸
gain-loss utility

,

(32)

where Λ := η(λ − 1). Our setup degenerates to a model with standard preferences if the

second term vanishes, i.e., if Λ = 1.

Two remarks are in order. First, our model can be interpreted more broadly to incorpo-

rate alternative behavioral biases. To see this, note that the utility function Ũ(θ) coincides

with that of disappointment aversion of Bell (1985) and Loomes and Sugden (1986) in this

simple binary-lottery environment. Second, it follows from Equation (32) that the gain-loss

utility is always negative for risky outcomes, and its size depends on the spread of the re-

alized intrinsic utility. To maximize the psychological gain-loss utility, the investor would

minimize dispersion in his realized outcome, which can be done by choosing θ = 0.

Optimal share holdings of risky assets The optimal investment level, which we denote

by θ∗(Λ), solves the following first-order condition:

dŨ(θ)

dθ
= 0⇔ u′(y − θ + θRd)

u′(y − θ + θRu)
=

κ(Ru − 1)

(1− κ)(1−Rd)
× 1− (1− κ)Λ

1 + κΛ
.

The term [1− (1− κ)Λ]/(1 + κΛ), which is less than one, captures the influence of an in-

vestor’s loss aversion. Analogous to analyses for other behavioral biases in previous sections,

loss aversion again creates a wedge between the marginal utility of consumption across the

two states, which varies the investor’s incentive.

Exploiting the constant IES functional form of u(·) as described in (1), we obtain:

y − θ + θRd

y − θ + θRu

=

[
κ(Ru − 1)

(1− κ)(1−Rd)
× 1− (1− κ)Λ

1 + κΛ

]−ρ
=: T (ρ),
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from which the optimal investment level, denoted by θ∗(ρ; Λ), can be solved as

θ∗(ρ; Λ) =
1− T (ρ; Λ)

(Ru − 1)T (ρ; Λ) + (1−Rd)
y.

Welfare with reference-dependent utility Next, we define investor’s welfare. Wel-

fare implications of reference-dependent preferences is an open question in the literature. A

central issue to the question is that whether reference dependence and loss aversion are a

manifestation of real experienced utility, or are more of a mistake. Unfortunately, no con-

sensus has been reached on this question thus far. In the former scenario, gain-loss utility

represents true feeling of “pleasure” and “pain,” and it seems natural that the psychological

gain-loss component should be given a normative weight when we calculate welfare. How-

ever, experimental evidence suggests that gains and losses can be recoded through relatively

innocuous changes in experimental procedures. In this case, incorporating gain-loss utility

into welfare analysis seems inappropriate.19

In what follows, we take the second viewpoint and interpret the investors’ tendency to

avoid losses as a “mistake.” Consequently, consumer’s welfare is measured by the certainty

equivalent of his intrinsic material utility in expression (32) under the optimal portfolio

choices. Given the optimal investment decision θ∗(ρ; Λ), an investor’s certainty equivalent

of the intrinsic material utility, which we denote by CE∗(ρ; Λ), can be derived as

CE∗(ρ; Λ) =


(
κ
[
y + (Ru − 1)θ∗

] ρ−1
ρ + (1− κ)

[
y − (1−Rd)θ

∗] ρ−1
ρ

) ρ
ρ−1

if ρ > 0 and ρ 6= 1,[
y + (Ru − 1)θ∗

]κ · [y − (1−Rd)θ
∗]1−κ if ρ = 1.

(33)

A loss function can then be defined as

L(ρ; Λ) :=
CE∗(ρ; 0)− CE∗(ρ; Λ)

CE∗(ρ; 0)
.

Main Results We are now ready to present our main result. For notational convenience,

let us define

Λ :=
κRu + (1− κ)Rd − 1

κ(1− κ)(Ru −Rd)
.

The following proposition can be established:

Proposition 7 (Impact of expectation-based loss aversion on investors’ port-

folio choice and welfare) Suppose that investors are expectation-based loss averse and

Λ < Λ.20 Then the following statements hold:

19See O’Donoghue and Sprenger (2018, p.69) for more discussions.
20When Λ exceeds Λ, short-selling arises as the optimal trading strategy. Similar condition is commonly
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(a) Optimal Share Holdings of the Risky Assets (b) Loss Function L(ρ; Λ): Λ = 0.5

Figure 5: Portfolio Choice with Reference-dependent Preferences: (y, κ,Ru, Rd, Rf ) =
(1, 0.5, 2, 0.5, 1).

(i) Fix Λ > 0, then θ∗(ρ; Λ) < θ∗(ρ; 0). Moreover, limρ↘0 θ
∗(ρ; Λ) = limρ↘0 θ

∗(ρ; 0) = 0

and limρ↗∞ θ
∗(ρ; Λ) = limρ↗∞ θ

∗(ρ; 0) = y/(1−Rd).

(ii) limρ↘0 L(ρ; Λ) = limρ↗∞ L(ρ; Λ) = 0, and hence the loss function L(ρ; Λ) is strictly

increasing (decreasing, respectively) in ρ for sufficiently small (large, respectively) ρ.

Part (i) of Proposition 7 states that an expectation-based loss-averse investor will buy

fewer shares than an investor with standard preferences. Recall from expression (32) that

the investor strongly dislikes uncertainty in the sense that dispersion in realized outcome

generates psychological disutility. As a result, in addition to the traditional consumption-

smoothing motive caused by the concave intrinsic utility material function u(·), an expectation-

based loss-averse investor has further incentive to reduce the spread in intrinsic material util-

ities through a more conservative investment strategy compared to an investor with standard

preferences.

The strength of the aforementioned uncertainty-reducing effect vanishes as investors be-

come sufficiently risk averse (i.e., ρ↘ 0), in which case the investor with standard preferences

would purchase no risky assets in the limit. Meanwhile, as investor becomes sufficiently risk

neutral (i.e., ρ ↗ ∞), he greatly values the additional expected payoff from holding the

risky assets compared to risk-free assets; and thus both the consumption-smoothing and the

uncertainty-reducing incentives become negligible.21 Therefore, the investor would purchase

assumed in the literature (e.g., Herweg, Müller, and Weinschenk, 2010) to avoid violations of first-order
stochastic dominance.

21In the extreme case that Λ = Λ, the incentive to reduce the spread of intrinsic utility is sufficiently high
such that the investor would not buy any stock in the optimum and his consumption is perfectly smoothed.
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the maximum amount of assets in the limit.22 To summarize, the optimal portfolio choice of

investors with reference-dependent preferences are the same as that of investors with stan-

dard preferences in these two extreme scenarios [see Figure 5(a)], and thus no welfare losses

will be triggered in the limit. This confirms the prediction in part (ii) of Proposition 7, which

in turn indicates that the most vulnerable investors are those with a moderate level of ρ, as

depicted in Figure 5(b).

7 Concluding Remarks

In this paper, we systematically examine consumer vulnerability in models with behav-

ioral biases. We measure consumer vulnerability by the percentage loss in a consumer’s

equilibrium certainty equivalent from a market with non-biased consumers to that with bi-

ased ones with the same underlying instantaneous utility function. We consider several

important behavioral biases that have been extensively studied in the literature—including

the impact of biased beliefs (either over- or under-confidence) in an insurance market, the

impact of present bias and näıveté about present bias in a dynamic model of credit con-

tract design, the impact of projection bias about habit formation, and reference-dependent

preferences with loss aversion—and investigate how consumer vulnerability is related to the

curvatures of their utility functions.

We focus on the role of risk aversion in static models and the role of intertemporal

elasticity of substitution (IES) in dynamic models. Although insight or effect specific to

certain behavioral biases is identified, a robust pattern on welfare is observed: Consumer

vulnerability to the commonly studied behavioral biases in the literature, as measured by the

welfare loss relative to a rational benchmark, has in general a non-monotonic relationship

with risk aversion or IES. This is in stark contrast to the deviations in the allocations from

the rational benchmark, which are often monotonic to the risk aversion or IES. Our paper

complements the existing literature in behavioral economics that focused almost exclusively

on how behavioral bias leads to the deviations in allocations from the rational benchmark

and the potential solutions to the associated market inefficiency.

Our study leaves large room for future extension. This paper assumes homogeneous

agents. In practice, consumers often possess valuable private information (e.g., risks, income,

risk preferences) to firms. It would be promising to introduce consumer heterogeneity and

private information into the stylized modeling frameworks we considered in this paper, and

investigate how the magnitude of externality rational consumers exert on biased consumers,

or vice versa, depends on risk aversion or IES. Another possible avenue for future research

22Recall that the nonnegativity of wealth constraint requires that y − θ + θRd ≥ 0, implying that θ ≤
y/(1−Rd).
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is to extend our analysis to allow for regulations and/or policies, and examine how their

effectiveness depends on risk aversion or IES under different economic contexts. We leave

the exploration of these possibilities to future research.
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Appendix: Proof of Propositions

Proof of Proposition 1

Proof. Note that CE∗(ρ;µ, µ) is a constant. Therefore, it suffices to show that CE∗(ρ;µ, µ̂)

is U-shaped with respect to ρ ∈ (0,∞) for µ̂ 6= µ. Recall that τ ≡
(

1−µ̂
µ̂
× µ

1−µ

)−1

> 0. It

follows from Equation (7) that

CE∗(ρ;µ, µ̂) =

(
µ
[
y − (1− x∗)ω − p∗

] ρ−1
ρ + (1− µ)(y − p∗)

ρ−1
ρ

) ρ
ρ−1

= (y − p∗)×

1− µ+ µ

[
y − (1− x∗)ω − p∗

y − p∗

] ρ−1
ρ


ρ
ρ−1

=
y − µω

1− µ+ µτ ρ
×
(
1− µ+ µτ ρ−1

) ρ
ρ−1 ,

where the last equality follows from (4) and (5). It is useful to prove the following interme-

diate result.

Lemma 1 Suppose that µ ∈ (0, 1), τ > 0, and τ 6= 1. Then

f(ρ;µ, τ) =
1

1− µ+ µτ ρ
(1− µ+ µτ ρ−1)

ρ
ρ−1

is U-shaped in ρ for ρ > 0.

Proof. Note that

f (ρ;µ, τ) = f

(
ρ; 1− µ, 1

τ

)
.

Therefore, it suffices to show that f(ρ;µ, τ) is U-shaped only for the case τ > 1. Let

U(ρ) := ln
(
f(ρ;µ, τ)

)
=

ρ

ρ− 1
ln
(
1− µ+ µτ ρ−1

)
− ln (1− µ+ µτ ρ) .

It follows immediately that

∂f(ρ;µ, τ)

∂ρ
= f(ρ;µ, τ)× U ′(ρ),

and

U ′(ρ) =
µρτ ρ−1 ln(τ)

(ρ− 1) (µτ ρ−1 − µ+ 1)
+

ln
(
µτ ρ−1 − µ+ 1

)
ρ− 1

−
ρ ln

(
µτ ρ−1 − µ+ 1

)
(ρ− 1)2

− µτ ρ ln(τ)

µτ ρ − µ+ 1
.
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It is straightforward to verify that

lim
ρ↘0

U ′(ρ) = −

[
ln

(
1− µ+

µ

τ

)
+ µ ln(τ)

]
< 0;

together with the fact that f(ρ) > 0 for all ρ ∈ (0,∞), we must have that f ′(ρ) < 0 when

ρ is sufficiently small. Therefore, to prove the lemma, it suffices to show that there exists a

unique solution to U ′(ρ) = 0 for ρ ∈ (0,∞).

Let z := τ ρ−1 > 1
τ
. Then ρ = ln(z)

ln(τ)
+ 1. Moreover, U ′(ρ) > 0 is equivalent to

∆(z) :=
(1− µ+ µz)(1− µ+ µτz) ln2(z)

ln(τ)
U ′
(

ln(z)

ln(τ)
+ 1

)
=− µ(1− µ)(τ − 1)z

[
ln(z)

]2
+ µ(1− µ+ µτz) ln(τ)z ln(z)

− ln(τ)(1− µ+ µz)(1− µ+ µτz) ln(1− µ+ µz) > 0. (A1)

Clearly, z = 1 is one solution to ∆(z) = 0. In order to prove that there exists a unique

solution to U ′(ρ) = 0 for ρ ∈ (0,∞), it suffices to show that (i) there exists exactly one

more solution to ∆(z) = 0 for z ∈ ( 1
τ
,∞), and limρ→1 U

′(ρ) 6= 0; or (ii) z = 1 is the unique

solution to ∆(z) = 0 and limρ→1 U
′(ρ) = 0.

Carrying out the algebra, we have that

∆′(z) = µ
{
− (1− µ)(τ − 1) ln2(z) +

[
−2(1− µ)(τ − 1) + ln(τ) + µ ln(τ)(2τz − 1)

]
ln(z)

+
[
−τ + µ(τ − 2τz + 1)− 1

]
ln(τ) ln(1− µ+ µz)

}
,

∆′′ (z) = 2µ2τ ln(τ)
[
ln(z)− ln(1− µ+ µz)

]
− 2µ(1− µ)(τ − 1)

ln(z) + 1

z

+ µ ln(τ)

(
1

z
− µ

1− µ+ µz

)
(1− µ+ µτz),

∆′′′(z) = µ(1− µ)

{
2(τ − 1) ln(z)

z2
+

ln(τ)
[
3µτz(1− µ+ µz)− (1− µ+ 2µz)(1− µ+ µτz)

]
z2(1− µ+ µz)2

}
.

We first start from the third derivative of ∆(z). It is straightforward to verify that ∆′′′(z) > 0

is equivalent to

G(z) :=
2(τ − 1) ln(z)

ln(τ)
− (1− µ+ 2µz)(1− µ+ µτz)− 3µτz(1− µ+ µz)

(1− µ+ µz)2
> 0.

Note that

G ′(z) =
2(τ − 1)

z ln(τ)
+

2µ(1− µ)
[
(1− µ)τ + µz

]
(1− µ+ µz)3

> 0.
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Therefore, G(z) is strictly increasing in z, which in turn implies that there exists at most

one solution to ∆′′′(z) = 0 for z > 1
τ
. Note that limz↗∞ G(z) = ∞. Therefore, ∆′′′(z) must

fall into one of the following two possibilities:

(i) ∆′′′(z) > 0 for all z > 1
τ
.

(ii) There exists z∗ ∈ ( 1
τ
,∞) such that ∆′′′(z∗) = 0; moreover, ∆′′′(z) ≷ 0 for z ≷ z∗.

The above observation, together with the fact that limz↗∞∆′′(z) = −2µ2τ ln(µ) ln(τ) >

0, indicates that ∆′′(z) must fall into one of the following three possibilities:

(a) ∆′′(z) > 0 for all z > 1
τ
.

(b) There exists z∗∗ > 1
τ

such that ∆′′(z∗∗) = 0; moreover, ∆′′(z) ≷ 0 for z ≷ z∗∗.

(c) There exist z1 and z2, with z2 > z1 >
1
τ
, such that ∆′′(z1) = ∆′′(z2) = 0; moreover,

∆′′(z) < 0 for z ∈ (z1, z2) and ∆′′(z) > 0 for z ∈ ( 1
τ
, z1) ∪ (z2,∞).

The above observation implies instantly that there are three possibilities regarding the

convexity/concavity of ∆(z).

Case (a) We show that this case is impossible. Recall that ∆(1) = 0. It is straightforward

to verify that ∆′(1) = 0. Moreover,

lim
z↘ 1

τ

∆(z) =

(
1− µ+

µ

τ

)
ln(τ)U ′(0) < 0,

and

lim
z↗∞

∆(z) =∞.

Therefore, z = 1 is the unique solution to ∆(z) = 0 and ∆′(1) > 0 from the convexity

of ∆(·), which is a contradiction against ∆′(1) = 0.

Case (b) First, it can be verified that

∆′′(1) = 0⇔ lim
ρ→1

U ′(ρ) = 0.

We consider the following three subcases:

1. z∗∗ < 1. Recall that ∆(1) = 0, ∆′(1) = 0, limz↘ 1
τ

∆(z) < 0, and limz↗∞∆(z) >

0. Therefore, in additional to z = 1, there exists exactly one more solution to

∆(z) = 0, which we denote by z∗. Moreover, we must have that z∗ ∈ ( 1
τ
, z∗∗) and

thus ∆′′(z∗) < 0, which in turn implies that limρ→1 U
′(ρ) 6= 0.
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2. z∗∗ = 1. In this case, z = 1 is the unique solution to ∆(z) = 0. Moreover, we

have that ∆′′(1) = 0.

3. z∗∗ > 1. Similar to subcase 1, there exists exactly one more solution to ∆(z) = 0,

which we denote by ẑ∗. Moreover, we must have that ẑ∗ > z∗∗ and thus ∆′′(ẑ∗) >

0, which in turn implies that limρ→1 U
′(ρ) 6= 0.

Case (c) In this case, ∆(z) is convex in z for z ∈ ( 1
τ
, z1), concave for z ∈ (z1, z2), and then

convex again for z ∈ (z2,∞). The analysis is similar to Case b and is omitted for

brevity.

To summarize, ∆(z) = 0 has one or two two solutions on the interval ( 1
τ
,∞). When

there exists a unique solution, it must be z = 1 and limρ→1 U
′(ρ) = 0. When there exists

another solution in addition to z = 1, we must have limρ→1 U
′(ρ) 6= 0. This in turn implies

that there exists a unique solution to U ′(ρ) = 0 for ρ > 0, and thus f(ρ;µ, τ) is U-shaped in

ρ.

Proposition 1 follows directly from Lemma 1. This completes the proof.

Proof of Proposition 2

Proof. We first consider consumer’s certainty equivalent, which can be written as

CEm(ρ;µ, µ̂) =
[
B(ρ)

] ρ
ρ−1 ×

[
(1− µ) + µ

[
A(ρ)

] ρ−1
ρ

] ρ
ρ−1

,

where

A(ρ) = τ ρ, andB(ρ) :=
µ̂(y − ω)

ρ−1
ρ + (1− µ̂)y

ρ−1
ρ

µ̂A
ρ−1
ρ + (1− µ̂)

.

Case I: ρ < 1. Carrying out the algebra, CEm(ρ;µ, µ̂) < CEm(ρ;µ, µ) is equivalent to

(1− µ)B(ρ) + µB(ρ)τ ρ−1 > µ(y − ω)
ρ−1
ρ + (1− µ)y

ρ−1
ρ ,

which can be further simplified as

[µ̂− µ]×

(1− ω

y

) ρ−1
ρ

− τ ρ−1

 > 0. (A2)

For µ̂ > µ, condition (A2) always holds. For µ̂ < µ, condition (A2) holds for ρ >
ln(y−w)−ln(y)

ln(τ)
.
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Case II: ρ > 1. It can be verified that CEm(ρ;µ, µ̂) < CEm(ρ;µ, µ) is equivalent to

(1− µ)B(ρ) + µB(ρ)τ ρ−1 < µ(y − ω)
ρ−1
ρ + (1− µ)y

ρ−1
ρ ,

which can be further simplified as

[µ̂− µ]×

(1− ω

y

) ρ−1
ρ

− τ ρ−1

 < 0. (A3)

For µ̂ > µ, condition (A3) always holds. For µ̂ < µ, condition (A3) holds for ρ >
ln(y−w)−ln(y)

ln(τ)
. This completes the proof for certainty equivalent.

Next, we consider firm’s profit. Carrying out the algebra, the monopolistic firm’s profit

can be written as

πm(ρ;µ, µ̂) = y − µω +
[
µ(1− τ ρ)− 1

]
×
[
B(ρ)

] ρ
ρ−1 .

For µ̂ > µ, it is straightforward to see that the optimal contract to rational consumers is

also a feasible contract to biased consumers without violating the IR constraint. Therefore,

we must have πm(ρ;µ, µ̂) > πm(ρ;µ, µ) for all ρ > 0 in this case; and it remains to prove the

result for the case µ̂ < µ.

It is useful to prove several intermediate results.

Lemma 2 Suppose that µ̂ < µ. Then πm(ρ;µ, µ̂) < πm(ρ;µ, µ) for all ρ ≤ ρ1.

Proof. Carrying out algebra, πm(ρ;µ, µ̂) < πm(ρ;µ, µ) is equivalent to

1− µ
1− µ̂

×
(
1− µ̂+ µ̂τ ρ−1

)− 1
ρ−1 >

µ
(

1− ω
y

) ρ−1
ρ

+ 1− µ

µ̂
(

1− ω
y

) ρ−1
ρ

+ 1− µ̂


ρ
ρ−1

. (A4)

It suffices to show that the above inequality holds for all ρ ≤ ρ1 ≡ ln(y−w)−ln(y)
ln(τ)

. Note that the

left-hand side of the above inequality is independent of ω. For notational convenience, let us

denote the left-hand side and the right-hand side of (A4) by ΨL(ρ;µ, µ̂) and ΨR(ρ, ω;µ, µ̂)

respectively. Simple algebra yields that

∂ ln ΨR(ρ, ω;µ, µ̂)

∂ω
= −

(
1− ω

y

)− 1
ρ

y
×

 1

1−µ
µ

+
(

1− ω
y

) ρ−1
ρ

− 1

1−µ̂
µ̂

+
(

1− ω
y

) ρ−1
ρ

 < 0,
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where the strict inequality follows from µ̂ < µ. Therefore, ΨR(ρ, ω;µ, µ̂) is strictly decreasing

in ω for ω ∈ (0, y). Recall that τ is defined as τ ≡
(

1−µ̂
µ̂
× µ

1−µ

)−1

; together with the

assumption µ̂ < µ, we have τ < 1 and

ρ ≤ ρ1 ⇔ 1− τ ρ ≤ 1− τ ρ1 ≡ ω

y
⇔ w ≥ (1− τ ρ)y.

This in turn implies that

ΨR (ρ, ω;µ, µ̂) ≤ ΨR

(
ρ, (1− τ ρ)y;µ, µ̂

)
=

(
µτ ρ−1 + 1− µ
µ̂τ ρ−1 + 1− µ̂

) ρ
ρ−1

. (A5)

Next, we show that(
µτ ρ−1 + 1− µ
µ̂τ ρ−1 + 1− µ̂

) ρ
ρ−1

<
1− µ
1− µ̂

×
(
1− µ̂+ µ̂τ ρ−1

)− 1
ρ−1 . (A6)

Exploiting the fact that τ ≡
(

1−µ̂
µ̂
× µ

1−µ

)−1

, the above inequality can be simplified as

(
µτ ρ−1 + 1− µ

) 1
ρ−1 < (µτ ρ + 1− µ)

1
ρ ,

which holds due to the well-known result that the general mean (power mean) function

M(ρ) =
(∑n

i=1 fix
ρ
i

) 1
ρ is strictly increasing in ρ for ρ ∈ (−∞,∞), holding fixed x ≡

(x1, . . . , xn) > (0, . . . , 0) and f ≡ (f1, . . . , fn) > (0, . . . , 0). Therefore, the strict inequal-

ity (A6) holds.

Combining (A5) and (A6), we can obtain that

ΨR (ρ, ω;µ, µ̂) ≤ ΨR

(
ρ, (1− τ ρ)y;µ, µ̂

)
<

1− µ
1− µ̂

×
(
1− µ̂+ µ̂τ ρ−1

)− 1
ρ−1 ≡ ΨL(ρ;µ, µ̂).

This completes the proof.

Lemma 3 Suppose that µ̂ < µ. Then πm(ρ;µ, µ̂) is strictly decreasing in ρ for ρ < ρ1, and

is strictly increasing in ρ for ρ > ρ1.

Proof. Note that

ln
(
y − µω − πm(ρ;µ, µ̂)

)
= ln

(
1− µ
1− µ̂

y

)
+

ρ

ρ− 1
ln

1− µ̂+ µ̂

(
1− ω

y

) ρ−1
ρ

− 1

ρ− 1
ln
(
1− µ̂+ µ̂τ ρ−1

)
,
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and thus

∂ ln
(
y − µω − πm(ρ;µ, µ̂)

)
∂ρ

= G

(1− ω

y

) 1
ρ

−G(τ),

where G(x) is defined as

G(x) := − 1

(ρ− 1)2
ln
(
1− µ̂+ µ̂xρ−1

)
+

1

ρ− 1
× µ̂xρ−1 lnx

1− µ̂+ µ̂xρ−1
.

Therefore, we have that

∂πm (ρ;µ, µ̂)

∂ρ
≷ 0⇔ G

(1− ω

y

) 1
ρ

 ≶ G(τ).

Note that ρ ≷ ρ1 is equivalent to τ ≶
(

1− ω
y

) 1
ρ
. Therefore, to prove the lemma, it suffices

to show that G(x) is strictly decreasing in x for x ∈ (0, 1). Carrying out the algebra, we can

obtain that

G′(x) =
µ̂(1− µ̂)xρ−2 lnx

(1− µ̂+ µ̂xρ−1)2 ,

which is clearly strictly negative. This concludes the proof.

We are now ready to prove the proposition. Lemma 2 states that πm(ρ;µ, µ̂) < πm(ρ;µ, µ)

for all ρ ∈ (0, ρ1]. Lemma 3 states that πm(ρ;µ, µ̂) is strictly increasing in ρ. Moreover, it

can be verified that πm(ρ;µ, µ) is strictly decreasing in ρ for all ρ ∈ (0,+∞).

Next, note that limρ↗∞ τ
ρ = 0 and limρ↗∞B(ρ) = y−µ̂ω

1−µ̂ . Therefore,

lim
ρ↗∞

πm(ρ;µ, µ) = y − µω − lim
ρ↗∞

[
µ(y − ω)

ρ−1
ρ + (1− µ)y

ρ−1
ρ

] ρ
ρ−1

= 0,

and

lim
ρ↗∞

πm(ρ;µ, µ̂) = (y − µω)− 1− µ
1− µ̂

(y − µ̂ω) > 0.

It follows immediately from the above equations that limρ↗∞ π
m(ρ;µ, µ̂) > limρ↗∞ π

m(ρ;µ, µ).

Moreover, we have that πm(ρ1;µ, µ̂) < πm(ρ1;µ, µ) by Lemma 3. These facts, together with

the monotonicity of πm(ρ;µ, µ̂) and πm(ρ;µ, µ), imply instantly the existence of a unique

threshold ρ2 ∈ (ρ1,∞) such that πm(ρ;µ, µ̂) < πm(ρ;µ, µ) for ρ < ρ2 and πm(ρ;µ, µ̂) >

πm(ρ;µ, µ) for ρ > ρ2. This completes the proof.
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Proof of Proposition 3

Proof. It is straightforward to see that cn/cs = 3/(2 + βρ) > 1 is strictly increasing in ρ.

Note that

L(ρ) = 1− f
(
ρ;

1

3
, β

)
,

where the function f(·) is defined in Lemma 1. Recall that f
(
ρ; 1

3
, β
)

follows an U-shaped

curve in ρ from Lemma 1. Therefore, L(ρ) follows an inverted U-shaped curve in ρ. This

completes the proof.

Proof of Proposition 4

Proof. The first part of Proposition 4 is obvious, and the second part follows immediately

from Lemma 1. This completes the proof.

Proof of Proposition 5

Proof. We first prove part (i) of the proposition. By the expression of the loss function

Lη(λ, η), it suffices to show that limλ↘0 Fη(λ, η) < limλ↗∞ Fη(λ, η) = y and ∂Fη(λ,η)

∂λ
is

negative (positive, respectively) as λ becomes sufficiently small (large, respectively).

For notational convenience, let us define Q0(η) as

Q0(η) :=

(
max

{
1− µ̃
1− µ

,
µ̃

µ

}) 1−η
η

.

Carrying out the algebra, it can be verified that

lim
λ↘0

[
R(λ)

]1−λ
= lim

λ↘0
R(λ) =

{
0 if µ̃ < µ,

∞ if µ̃ > µ,

which in turn implies that

lim
λ↘0

Q(λ, η) = lim
λ↘0


[
1− µ̃+ µ̃

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)


1−η
η

=

(
max

{
1− µ̃
1− µ

,
µ̃

µ

}) 1−η
η

≡ Q0(η),

and

lim
λ↘0

[
1− µ+ µ

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)
= 1.
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Therefore, we have that

lim
λ↘0

Fη(λ, η) =
y

1− β + β limλ↘0Q(λ, η)

×

(1− β) + β lim
λ↘0

[
Q(λ, η)

]1−η
lim
λ↘0

[
1− µ+ µ

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)


1−η


1
1−η

=
y

1− β + βQ0(η)
×
[
(1− β) + β

[
Q0(η)

]1−η] 1
1−η

< y.

Next, note that

lim
λ↗∞

R(λ) = lim
λ↗∞

[
µ

1− µ
× 1− µ̃

µ̃

]− 1
λ

= 1.

It follows immediately that

lim
λ↗∞

Q(η, λ) = lim
λ↗∞


[
1− µ̃+ µ̃

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)


1−η
η

= 1.

Therefore, we have that

lim
λ↗∞

Fη(λ, η) =
y

1− β + β limλ↗∞Q(η, λ)

×

(1− β) + β lim
λ↗∞

[
Q(η, λ)

]1−η × lim
λ↗∞


[
1− µ+ µ

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)


1−η


1
1−η

=
y

1− β + β
×
[
(1− β) + β

] 1
1−η = y.

Note that F (λ, η) < y for all λ > 0 when µ̃ 6= µ, we must have that ∂Fη(λ,η)

∂λ
is positive

as λ becomes sufficiently large. Therefore, it remains to show that ∂Fη(λ,η)

∂λ
is negative as

λ becomes sufficiently small; it suffices to show that ∂ lnFη(λ,η)

∂λ
is negative as λ becomes

sufficiently small.

With slight abuse of notation, we follow the notation in Section 2.1 and denote 1−µ
µ
× µ̃

1−µ̃
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by τ . Define q(λ) and `(λ) as follows:

q(λ) :=

[
1− µ̃+ µ̃

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)
=

(
1− µ̃+ µ̃τ

1−λ
λ

) 1
1−λ

1− µ+ µτ
1
λ

, (A7)

`(λ) :=

[
1− µ+ µ

[
R(λ)

]1−λ] 1
1−λ

1− µ+ µR(λ)
=

(
1− µ+ µτ

1−λ
λ

) 1
1−λ

1− µ+ µτ
1
λ

. (A8)

It follows immediately from the previous analysis that

lim
λ↘0

q(λ) = max

{
1− µ̃
1− µ

,
µ̃

µ

}
=: q0, and lim

λ↘0
`(λ) = 1,

which in turn implies that

lim
λ↘0

∂q(λ)

∂λ
= lim

λ↘0
q(λ)× lim

λ↘0

∂ ln q(λ)

∂λ

=q0 lim
λ↘0

[
1

(1− λ)2
ln
(

1− µ̃+ µ̃τ
1
λ
−1
)
− 1

λ2(1− λ)

µ̃τ
1
λ
−1 ln τ

1− µ̃+ µ̃τ
1
λ
−1

+
1

λ2

µτ
1
λ ln τ

1− µ+ µτ
1
λ

]
,

(A9)

and

lim
λ↘0

∂`(λ)

∂λ
= lim

λ↘0
`(λ)× lim

λ↘0

∂ ln `(λ)

∂λ

= lim
λ↘0

[
1

(1− λ)2
ln
(

1− µ+ µτ
1
λ
−1
)
− 1

λ2(1− λ)

µτ
1
λ
−1 ln τ

1− µ+ µτ
1
λ
−1

+
1

λ2

µτ
1
λ ln τ

1− µ+ µτ
1
λ

]
.

(A10)

The partial derivative of lnFη(λ, η) with respect to λ can be rewritten as

∂ lnFη(λ, η)

∂λ

=
1

1− η
β(1− η)

[
`(λ)

]−η [
q(λ)

] (1−η)2
η ∂`(λ)

∂λ
+ β

[
`(λ)

]1−η (1−η)2

η

[
q(λ)

] (1−η)2
η
−1 ∂q(λ)

∂λ

1− β + β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

−
β 1−η

η

[
q(λ)

] 1
η
−2 ∂q(λ)

∂λ

1− β + β
[
q(λ)

] 1−η
η

.

We consider the following two cases depending on τ relative to one.
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Case I: τ < 1. Note that
τ

1
λ

λ2
= o(1), for λ↘ 0.

The above equation, together with (A9) and (A10), implies that

lim
λ↘0

∂q(λ)

∂λ
= q0 ln(1− µ̃),

and

lim
λ↘0

∂`(λ)

∂λ
= ln(1− µ).

Further, note that τ < 1 is equivalent to µ̃ < µ, which implies that q0 = max{1−µ̃
1−µ ,

µ̃
µ
} =

1−µ̃
1−µ . Therefore, we have that

lim
λ↘0

∂ lnFη(λ, η)

∂λ

=
1

1− η
lim
λ↘0

β(1− η)
[
`(λ)

]−η [
q(λ)

] (1−η)2
η ∂`(λ)

∂λ
+ β

[
`(λ)

]1−η (1−η)2

η

[
q(λ)

] (1−η)2
η
−1 ∂q(λ)

∂λ

1− β + β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η


− lim

λ↘0

β 1−η
η

[
q(λ)

] 1
η
−2 ∂q(λ)

∂λ

1− β + β
[
q(λ)

] 1−η
η


=

1

1− η
β(1− η)q

(1−η)2
η

0 ln(1− µ) + β (1−η)2

η
q

(1−η)2
η

0 ln(1− µ̃)

1− β + βq
(1−η)2
η

0

−
β 1−η

η
q

1−η
η

0 ln(1− µ̃)

1− β + βq
1−η
η

0

=
βq

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

ln(1− µ) +
1− η
η
×

 βq
(1−η)2
η

0

1− β + βq
(1−η)2
η

0

− βq
1−η
η

0

1− β + βq
1−η
η

0

 ln(1− µ̃)

=
βq

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

ln(1− µ) +
1− η
η
×

 βq
(1−η)2
η

0

1− β + βq
(1−η)2
η

0

− βq
1−η
η

0

1− β + βq
1−η
η

0

 [ln(1− µ) + ln q0

]

=
1

η︸︷︷︸
>0

×

[
q

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

× 1− β + βq
1−η
η

0

q
1−η
η

0︸ ︷︷ ︸
M(β)

−(1− η)

]
× βq

1−η
η

0

1− β + βq
1−η
η

0︸ ︷︷ ︸
>0

× ln(1− µ)︸ ︷︷ ︸
<0

+
1− η
η︸ ︷︷ ︸

≶ 0 if η ≷ 1

×

[
βq

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

− βq
1−η
η

0

1− β + βq
1−η
η

0

]
︸ ︷︷ ︸

≷ 0 if η ≷ 1

× ln q0︸︷︷︸
>0

.
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Evidently, M(β) > 1− η for η ≥ 1. For η < 1, it is straightforward to verify that

d log
(
M(β)

)
dβ

=
q

1−η
η

0 − 1

1− β + βq
1−η
η

0

− q
(1−η)2
η

0 − 1

1− β + βq
(1−η)2
η

0

=
q

1−η
η

0 − q
(1−η)2
η

0(
1− β + βq

1−η
η

0

)(
1− β + βq

(1−η)2
η

0

) > 0.

Therefore, M(β) is strictly increasing in β. Note that M(0) = q
−(1−η)
0 and M(1) =

1 > 1− η. Define β as

β :=

{
0, if q

−(1−η)
0 ≥ 1− η,

the unique solution to M(β) = 1− η, otherwise.

It follows immediately thatM(β)−(1−η) > 0 for β > β, and thus limλ↘0
∂ lnFη(λ,η)

∂λ
< 0.

Case II: τ > 1. Note that

µ̃τ
1
λ
−1

1− µ̃+ µ̃τ
1
λ
−1

,
µτ

1
λ
−1

1− µ+ µτ
1
λ
−1

,
µτ

1
λ

1− µ+ µτ
1
λ

= 1 + o(λ2), for λ↘ 0,

where the equality follows from τ−
1
λ = o(λ2) for λ↘ 0.

Moreover,

lim
λ↘0

1

(1− λ)2
ln
(

1− µ̃+ µ̃τ
1
λ
−1
)

=
ln τ

λ(1− λ)
+ ln µ̃+ o(1).

The above equation, together with (A9) and (A10), implies that

lim
λ↘0

∂q(λ)

∂λ
= q0 ln µ̃,

and

lim
λ↘0

∂`(λ)

∂λ
= lnµ.

Further, note that τ > 1 is equivalent to µ̃ > µ, which implies that q0 = max{1−µ̃
1−µ ,

µ̃
µ
} =
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µ̃
µ
. Therefore, we have that

lim
λ↘0

∂ lnFη(λ, η)

∂λ

=
1

1− η
lim
λ↘0

β(1− η)
[
`(λ)

]−η [
q(λ)

] (1−η)2
η ∂`(λ)

∂λ
+ β

[
`(λ)

]1−η (1−η)2

η

[
q(λ)

] (1−η)2
η
−1 ∂q(λ)

∂λ

1− β + β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η


− lim

λ↘0

β 1−η
η

[
q(λ)

] 1
η
−2 ∂q(λ)

∂λ

1− β + β
[
q(λ)

] 1−η
η


=

1

1− η
β(1− η)q

(1−η)2
η

0 lnµ+ β (1−η)2

η
q

(1−η)2
η

0 ln µ̃

1− β + βq
(1−η)2
η

0

−
β 1−η

η
q

1−η
η

0 ln µ̃

1− β + βq
1−η
η

0

=
βq

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

lnµ+
1− η
η
×

 βq
(1−η)2
η

0

1− β + βq
(1−η)2
η

0

− βq
1−η
η

0

1− β + βq
1−η
η

0

 ln µ̃

=
βq

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

lnµ+
1− η
η
×

 βq
(1−η)2
η

0

1− β + βq
(1−η)2
η

0

− βq
1−η
η

0

1− β + βq
1−η
η

0

× ( lnµ+ ln q0

)

=
1

η︸︷︷︸
>0

×

[
q

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

× 1− β + βq
1−η
η

0

q
1−η
η

0︸ ︷︷ ︸
M(β)

−(1− η)

]
× βq

1−η
η

0

1− β + βq
1−η
η

0︸ ︷︷ ︸
>0

× lnµ︸︷︷︸
<0

+
1− η
η︸ ︷︷ ︸

≶ 0 if η ≷ 1

×

[
βq

(1−η)2
η

0

1− β + βq
(1−η)2
η

0

− βq
1−η
η

0

1− β + βq
1−η
η

0

]
︸ ︷︷ ︸

≷ 0 if η ≷ 1

× ln q0︸︷︷︸
>0

.

By the same argument as in Case I, we can show that limλ↘0
∂ lnFη(λ,η)

∂λ
< 0 for β > β.

This concludes the proof of part (i) of the proposition.

Next, we prove part (ii). Again, by the expression of Lη(λ, η), it suffices to show that

limη↗∞ Fη(λ, η) < limη↘0 Fη(λ, η) < limη→1 Fη(λ, 1) < y and ∂Fη(λ,η)

∂η
is negative as η becomes

sufficiently small or sufficiently large. A closer look at the expression of q(λ) and `(λ) in

Equations (A7) and (A8) yields that

q(λ) > 1, and `(λ) < 1.
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Therefore, we have that

lim
η↘0

Fη(λ, η) = lim
η↘0

y

1− β + β
[
q(λ)

] 1−η
η

×

[
(1− β) + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

] 1
1−η

= lim
η↘0

y

β
[
q(λ)

] 1−η
η

×

[
β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

] 1
1−η

=`(λ)y,

and

lim
η↗∞

Fη(λ, η) = lim
η↗∞

y

1− β + β
[
q(λ)

] 1−η
η

×

[
(1− β) + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

] 1
1−η

=
y

1− β + β
[
q(λ)

]−1 ×
`(λ)

q(λ)
.

Because q(λ) > 1 and 0 < β < 1, we have that

1− β + β
[
q(λ)

]−1
>
[
q(λ)

]−1
,

which in turn implies that

lim
η↗∞

Fη(λ, η) < lim
η↘0

Fη(λ, η).

Next, note that

lim
η→1

Fη(λ, η) = lim
η→1

y

1− β + β
[
q(λ)

] 1−η
η

×

[
(1− β) + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

] 1
1−η

= y lim
η→1

[
(1− β) + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

] 1
1−η

=
[
`(λ)

]β
y.

Therefore, we have that

lim
η↗∞

Fη(λ, η) < lim
η↘0

Fη(λ, 1) =
[
`(λ)

]
y <

[
`(λ)

]β
y = lim

η→1
Fη(λ, η) < y.

Next, we show that ∂Fη(λ,η)

∂η
is negative as η becomes sufficiently small or sufficiently large.

It is equivalent to show that lnFη(λ, η) is strictly increasing in η when η is sufficiently small
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or sufficiently large. Carrying out the algebra, we have that

∂ lnFη(λ, η)

∂η
=

1

(1− η)2
ln

(
1− β + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

)

+
1

1− η

β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

[
− ln

[
`(λ)

]
+
(

1− 1
η2

)
ln
[
q(λ)

]]
1− β + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

+
β
[
q(λ)

] 1−η
η 1

η2
ln
[
q(λ)

]
1− β + β

[
q(λ)

] 1−η
η

. (A11)

We consider the following two cases.

Case I: η ↘ 0. In this case, we have that

β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

1− β + β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

= 1 + o(η2), (A12)

and

β
[
q(λ)

] 1−η
η

1− β + β
[
q(λ)

] 1−η
η

= 1 + o(η2). (A13)

Moreover, when η ↘ 0, we have that

ln

(
1− β + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

)
= ln β+(1−η) ln

[
`(λ)

]
+

(1− η)2

η
ln
[
q(λ)

]
+o(1).

(A14)

Combining (A11), (A12), (A13), and (A14), we can obtain that

∂ lnFη(λ, η)

∂η
=

1

(1− η)2

[
ln β + (1− η) ln

[
`(λ)

]
+

(1− η)2

η
ln
[
q(λ)

]
+ o(1)

]

+
1

1− η

[
− ln

[
`(λ)

]
+

(
1− 1

η2

)
ln
[
q(λ)

]
+ o(1)

]
+

1

η2
ln
[
q(λ)

]
+ o(1)

=
1

(1− η)2
ln β + o(1).

Therefore, ∂ lnFη(λ,η)

∂η
< 0 when η is sufficiently small.
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Case II: η ↗ ∞. In this case, we have that

β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

1− β + β
[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

= 1 + o(η−5). (A15)

Because q(λ) > 1 and limη↗∞1−η
η

= −1, we have that

β
[
q(λ)

] 1−η
η

1− β + β
[
q(λ)

] 1−η
η

=
β
[
q(λ)

]−1

1− β + β
[
q(λ)

]−1 + o(1). (A16)

Similarly, we can obtain that

ln

(
1− β + β

[
`(λ)

]1−η [
q(λ)

] (1−η)2
η

)
= ln β+(1−η) ln

[
`(λ)

]
+

(1− η)2

η
ln
[
q(λ)

]
+o(1).

(A17)

Combining (A11), (A15), (A16), and (A17), we have that

∂ lnFη(λ, η)

∂η
=

1

(1− η)2
×

[
ln β + (1− η) ln

[
`(λ)

]
+

(1− η)2

η
ln
[
q(λ)

]
+ o(1)

]

+
1

1− η
×

[
− ln

[
`(λ)

]
+

(
1− 1

η2

)
ln
[
q(λ)

]
+ o

(
η−5
)]

+
ln
[
q(λ)

]
η2

×

 β
[
q(λ)

]−1

1− β + β
[
q(λ)

]−1 + o(1)


=

ln β

η2
−

ln
[
q(λ)

]
η2

× 1− β
1− β + β

[
q(λ)

]−1 + o
(
η−2
)
.

Therefore, ∂ lnFη(λ,η)

∂η
< 0 when η is sufficiently large. This concludes the proof.
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Proof of Proposition 6

Proof. The monotonicity of c∗1(ρ, 1)/c∗1(ρ, 0) is obvious, and it remains to prove the mono-

tonicity of L(ρ, 1) for extreme values of ρ. Define D(ρ) as

D(ρ) : = ln
[
CE∗(ρ, 1)

]
− ln

[
CE∗(ρ, 0)

]
= − ln 2 + ln

[
(1 + φ) + (1 + φ)ρ

]
+

ρ

ρ− 1
×

{
ln

[
1

2
+

1

2
(1− φ)

ρ−1
ρ

]
− ln

[
1

2
+

1

2
(1 + φ)ρ−1

]}
.

It is equivalent to show that D′(ρ) > 0 as ρ becomes sufficiently small, and D′(ρ) < 0 as ρ

becomes sufficiently large. Carrying out the algebra, we have that

D′(ρ) =
(1 + φ)ρ ln(1 + φ)

(1 + φ) + (1 + φ)ρ

− 1

(ρ− 1)2
×

{
ln

[
1

2
+

1

2
(1− φ)

ρ−1
ρ

]
− ln

[
1

2
+

1

2
(1 + φ)ρ−1

]}

+
1

ρ(ρ− 1)

1
2
(1− φ)

ρ−1
ρ ln(1− φ)

1
2

+ 1
2
(1− φ)

ρ−1
ρ

− ρ

ρ− 1

1
2
(1 + φ)ρ−1 ln(1 + φ)

1
2

+ 1
2
(1 + φ)ρ−1

. (A18)

Case I: ρ↘ 0. It can be verified that the following equations hold as ρ↘ 0:

(1 + φ)ρ ln(1 + φ)

(1 + φ) + (1 + φ)ρ
=

ln(1 + φ)

2 + φ
+ o(1), (A19)

ln

[
1

2
+

1

2
(1− φ)

ρ−1
ρ

]
− ln

[
1

2
+

1

2
(1 + φ)ρ−1

]
=
ρ− 1

ρ
ln(1− φ)− ln

(
2 + φ

1 + φ

)
+ o(1),

(A20)
1
2
(1− φ)

ρ−1
ρ ln(1− φ)

1
2

+ 1
2
(1− φ)

ρ−1
ρ

= ln(1− φ) + o(ρ), (A21)

and
1
2
(1 + φ)ρ−1 ln(1 + φ)

1
2

+ 1
2
(1 + φ)ρ−1

=
1

2 + φ
ln(1 + φ) + o(1). (A22)

Combining (A18), (A19), (A20), (A21), and (A22), we obtain that

D′(ρ) =
1

1− ρ
ln(1 + φ)

2 + φ
+

1

(ρ− 1)2
ln

(
2 + φ

1 + φ

)
+ o(1).

Clearly, D′(ρ) > 0 as ρ becomes sufficiently small.
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Case II: ρ↗ ∞. Similarly, we can obtain the following equations as ρ↗∞:

(1 + φ)ρ ln(1 + φ)

(1 + φ) + (1 + φ)ρ
= ln(1 + φ) + o

(
ρ−2
)
, (A23)

ln

[
1

2
+

1

2
(1− φ)

ρ−1
ρ

]
− ln

[
1

2
+

1

2
(1 + φ)ρ−1

]
= ln(2− φ)− (ρ− 1) ln(1 + φ) + o(1),

(A24)
1
2
(1− φ)

ρ−1
ρ ln(1− φ)

1
2

+ 1
2
(1− φ)

ρ−1
ρ

=
1− φ
2− φ

ln(1− φ) + o(1), (A25)

and
1
2
(1 + φ)ρ−1 ln(1 + φ)

1
2

+ 1
2
(1 + φ)ρ−1

= ln(1 + φ) + o
(
ρ−2
)
. (A26)

Combining (A18), (A23), (A24), (A25), and (A26), we obtain that

D′(ρ) = − 1

(ρ− 1)2
ln(2− φ) +

1

ρ(ρ− 1)

1− φ
2− φ

ln(1− φ) + o
(
ρ−2
)
.

Clearly, D′(ρ) < 0 as ρ becomes sufficiently large. This concludes the proof.

Proof of Proposition 7

Proof. The first part of the proposition is obvious: θ∗(ρ; Λ) < θ∗(ρ; 0) follows immediately

from the facts that ∂T /∂Λ > 0 and ∂θ∗/∂T < 0; and the optimal investment decision in the

limit follows from limρ↘0 T (ρ) = 1 and limρ↗∞ T (ρ) = 0.

Now we prove the second part. For notational convenience, define

ψ :=
κ(Ru − 1)

(1− κ)(1−Rd)
× 1− (1− κ)Λ

1 + κΛ
.

Note that Λ < Λ implies instantly that ψ > 1. Moreover, the investor’s certainty equivalent

can be rewritten as:

CE∗(ρ; Λ) =
(Ru −Rd)y

(Ru − 1) + (1−Rd)ψρ
×
[
κψρ−1 + (1− κ)

] ρ
ρ−1 .

Carrying out the algebra, we have that

lim
ρ↘0

CE∗(ρ; Λ) = y × lim
ρ↘0

{[
κψρ−1 + (1− κ)

] 1
ρ−1

}ρ
= y,

A18



and

lim
ρ↗∞

CE∗(ρ; Λ) = (Ru −Rd)y × lim
ρ↗∞

[
κψρ−1 + (1− κ)

] ρ
ρ−1

(Ru − 1) + (1−Rd)ψρ
=
Ru −Rd

1−Rd

κy.

Therefore, limρ↘0 L(ρ; Λ) = limρ↗∞ L(ρ; Λ) = 0. This completes the proof.
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