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Abstract

We present and empirically implement a dynamic

discrete choice model of life insurance decisions to

assess the importance of various factors in explaining

life insurance lapsation. We estimate a model using

information on life insurance holdings from the Health

and Retirement Study. Counterfactual simulations

using the estimates of our model suggest that a large

fraction of life insurance lapsations are driven by

idiosyncratic shocks, uncorrelated with health, income,

and bequest motives, particularly when policyholders

are relatively young. As the remaining policyholders

get older, however, the role of such independent and

identically distributed (i.i.d.) shocks gets smaller, and

more of their lapsation is driven by income, health, or

bequest motive shocks. As anticipated, income and

health shocks are relatively more important than

bequest motive shocks in explaining lapsation when

policyholders are young, with bequest motive shocks

playing a more important role as we age.
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1 | INTRODUCTION

The life insurance market is large and important. According to Life Insurance Marketing
and Research Association International (LIMRA International), 78% of American families
owned some type of life insurance in 2004. By the end of 2008, the total number of
individual life insurance policies in force in the United States stood at about 156 million;
and the total individual policy face amount in force reached over 10 trillion dollars (see
American Council of Life Insurers, 2009, pp. 63–74).

1.1 | Life insurance market

There are two main types of traditional individual life insurance products, term life in-
surance and whole life insurance.1 A term life insurance policy covers a person for a
specific duration at a fixed or variable premium for each year. If the person dies during the
coverage period, the life insurance company pays the face amount of the policy to his/her
beneficiaries, provided that the premium payment has never lapsed. The most popular type
of term life insurance has a fixed premium during the coverage period and is called level
term life insurance. A whole life insurance policy, on the other hand, covers a person's
entire life, usually at a fixed premium. In the United States at year‐end 2008, 54% of all life
insurance policies in force were Term Life insurance. Of the new individual life insurance
policies purchased in 2008, 43%, or 4 million policies, were term insurance, totaling $1.3
trillion, or 73%, of the individual life face amount issued (see American Council of Life
Insurers, 2009, pp. 63–74). Besides the difference in the period of coverage, term and whole
life insurance policies also differ in the amount of cash surrender value (CSV) received if
the policyholder surrenders the policy to the insurance company before the end of the
coverage period. For term life insurance, the CSV is zero; for whole life insurance, the CSV
is typically positive and prespecified to depend on the length of time that the policyholder
has owned the policy. One important feature of the CSV on whole life policies relevant to
our discussions below is that by government regulation, CSVs do not depend on the health
status of the policyholder when surrendering the policy.2

1.2 | Lapsation

Lapsation is an important phenomenon in life insurance markets. Both LIMRA and the Society
of Actuaries consider a policy to lapse if its premium is not paid by the end of a specified time
(often called the grace period).3 According to LIMRA (2009, p. 11), the life insurance industry
calculates the annualized lapsation rate as follows:

1The whole life insurance has several variations such as universal life (UL), variable life (VL), and variable‐universal
life (VUL). Universal life allows flexible premiums subject to certain minimums and maximums. For variable life, the
death benefit varies with the performance of a portfolio of investments chosen by the policyholder. Variable‐universal
life combines the flexible premium options of UL with the varied investment option of VL (see Gilbert & Schultz, 1994).
2The life insurance industry typically thinks of the CSV from the whole life insurance as a form of tax‐advantaged
investment instrument (see Gilbert & Schultz, 1994).
3This implies that if a policyholder surrenders his/her policy for cash surrender value, it is also considered as a
lapsation.
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Annualized policy lapse rate = 100 ×
Number of policies lapsed during the year

Number of policies exposed to lapse during the year
.

The number of policies exposed to lapse is based on the length of time the policy is exposed to
the risk of lapsation during the year. Termination of policies due to death, maturity, or con-
version is not included in the number of policies lapsing and contributes to the exposure for
only the fraction of the policy year they were in force. Table 1 provides the lapsation rates of
individual life insurance policies, calculated according to the above formula, both according to
face amount and the number of policies for the period of 1998–2008. Of course, the lapsation
rates also differ significantly by the age of the policies. For example, LIMRA (2009, p. 18)
showed that the lapsation rates are about 2%–4% per year for policies that have been in force for
more than 11 years in 2004–2005.

1.3 | Reasons for lapsation have important welfare implications

Our interest in the empirical question of why life insurance policyholders lapse their policies is
motivated by recent research on the effects of lapsation in life insurance and life settlements
markets. It is well known that life insurance pricing is supported by lapsation but recent work
has highlighted the fact that the reasons for lapsation have important welfare consequences.
For example, Gottlieb and Smetters (2020) note that the efficiency implications of lapsation
depend on whether policyholders lapse due to forgetfulness or income shocks, and also on
whether these shocks are anticipated or unanticipated. Daily et al. (2008) and Fang and Kung
(2010b, 2020) also showed that the efficiency implications of the growing secondary market for
life insurance depends crucially on whether lapses are driven by loss in bequest motive or other
factors. They showed that if policyholders' lapsation is driven only by the loss of bequest
motives, then consumer welfare is unambiguously lower with a secondary market than
without, but if lapsation is driven by income or liquidity shocks, then a life settlement market
may potentially improve consumer welfare.4

To understand why the reasons for lapsation matters, it is important to remember that life
insurance premiums are front‐loaded, meaning in the early part of the policy period, the pre-
mium payments exceed the actuarially fair value of the risk insured, but in the later part of the
policy period, the premium payments are lower than the actuarially fair value. As a result,
policyholders who lapse after holding the policy for some time give up value, which the life
insurance company pockets as a profit. Due to competition, these so‐called lapsation profits are
factored into the pricing of the life insurance policy to start with (Gilbert & Schultz, 1994), and so
policyholders who lapse end up cross‐subsidizing policyholders who do not. The welfare im-
plications of this cross‐subsidization depend on the marginal utility of income of lapsers relative
to entire pool (since everyone benefits from lower pricing), and it therefore depends on the
reasons for lapsation. If lapsation happens mainly for idiosyncratic reasons, such as a loss in

4Related, Fang and Wu (2020) showed that when policyholders are overconfident about the strength of their bequest
motive at the time of purchasing their life insurance policy, they will underestimate their probability of lapsation, and
end up being exploited by the life insurance by purchasing “too much” risk reclassification insurance. A life settlements
market can potentially improve consumer welfare by imposing a limit on the extent to which primary insurers can
exploit overconfident consumers.
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bequest motive, and if lapsers have relatively high income relative to the pool (including, e.g.,
young parents buying life insurance) then the cross‐subsidization is welfare‐improving and a
reduction in the ability of life insurance companies to benefit from lapsation profits, such as due
to competition from secondary markets, reducing the welfare benefits of the cross‐subsidization.
On the other hand, if lapsation primarily happens due to income and health shocks which raise
the marginal utility of income of lapsers (e.g., if someone lapses to pay for health costs), then a
secondary market may be welfare improving, especially if the shocks are unanticipated.

Our paper complements recent work on the determinants of lapsation by Fier and Lie-
benberg (2013), Cole and Fier (2020), and Gottlieb and Smetters (2020). A common finding is
that lapsation is related to income shocks. In a survey of the universe of TIAA customers,
Gottlieb and Smetters (2020) found that two theories account for the majority of lapses: pol-
icyholders often forget to pay their premiums and many policyholders underestimate their
future need for money. Our paper contributes to this literature a methodology to use ob-
servational data and account for serially correlated unobservables to quantify the importance of
the different factors driving lapsation patterns over the tenure of the life insurance policy.

1.4 | What do we do in this paper?

For this purpose, we present and empirically implement a dynamic discrete choice model of life
insurance decisions. The model is “semistructural” and is designed to bypass data limitations
where researchers only observe whether an individual has made a new life insurance decision
(i.e., purchased a new policy, or added to/changed an existing policy) but do not observe what
the actual policy choice is nor the choice set from which the new policy is selected. We
empirically implement the model using the limited life insurance holding information from
the Health and Retirement Study (HRS) data. An important feature of our model is the
incorporation of serially correlated unobservable state variables. In our empirical analysis, we
provide ample evidence that such serially correlated unobservable state variables are necessary
to explain some key features in the data.

Methodologically, we deal with serially correlated unobserved state variables using pos-
terior distributions of the unobservables simulated using Sequential Monte Carlo (SMC)
methods.5 Relative to the few existing papers in the economics literature that have used similar

TABLE 1 Lapstion rates of individual life insurance policies, calculated by face amount and by number of
policies: 1998–2008

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

By face amount 8.3 8.2 9.4 7.7 8.6 7.6 7.0 6.6 6.3 6.4 7.6

By number of
policies

6.7 7.1 7.1 7.6 9.6 6.9 7.0 6.9 6.9 6.6 7.9

Source: American Council of Life Insurers (2009).

5See also Norets (2009) which develops a Bayesian Markov Chain Monte Carlo procedure for inference in dynamic
discrete choice models with serially correlated unobserved state variables. Kasahara and Shimotsu (2009) and Hu and
Shum (2012) present the identification results for dynamic discrete choice models with serially correlated unobservable
state variables.
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SMC methods, our paper is, to the best of our knowledge, the first to incorporate multi-
dimensional serially correlated unobserved state variables. To give the three unobservable state
variables in our empirical model their desired interpretations as unobserved income, health,
and bequest motive shocks respectively, we propose two channels through which we can
anchor these unobservables to their related observable counterparts. We also discuss how the
additional unobservable state variables significantly improve our model fit.

Our estimates for the model with serially correlated unobservable state variables are sen-
sible and yield implications about individuals' life insurance decisions consistent with the both
intuition and existing empirical results. In a series of counterfactual simulations reported in
Table 10, we find that a large fraction of life insurance lapsations are driven by idiosyncratic
shocks which are uncorrelated with health, income, and bequest motives, particularly when
policyholders are relatively young. But as the remaining policyholders get older, the role of
such independent and identically distributed (i.i.d.) shocks gets smaller, and more of their
lapsations are driven either by income, health or bequest motive shocks. Income and health
shocks are relatively more important than bequest motive shocks in explaining lapsation when
policyholders are young, but as they age, the bequest motive shocks play a more important role.
We discuss the implications of these findings on the effects of life settlement markets on
consumer welfare.

The remainder of the paper is structured as follows. In Section 2 we describe the data set
used in our empirical analysis and describe how we constructed key variables, and we also
provide the descriptive statistics. In Section 3 we present the empirical model of life insurance
decisions. In Section 5 we estimate the dynamic model with serially correlated unobserved state
variables, describe the SMC method to account for them in estimation, and provide the esti-
mation results.6 In Section 6 we report our counterfactual experiments using the model with
unobservables. In Section 8 we conclude.

2 | DATA

We use data from the HRS. The HRS is a nationally representative longitudinal survey of older
Americans which began in 1992 and has been conducted every 2 years thereafter.7 The HRS is
particularly well suited for our study for two reasons. First, the HRS contains rich information
about income, health, family structure, and life insurance ownership. If family structure can be
interpreted as a measure of bequest motive, then we have all the key factors motivating our
analysis. Second, the HRS respondents are generally quite old: between 50 and 70 years of age
in their first interview. As we described in the introduction, the life settlements industry
typically targets policyholders in this age range or older, so it is precisely the lapsation behavior
of this group that we are most interested in.

Our original sample consists of 4512 male respondents who were successfully interviewed
in both the 1994 and 1996 HRS waves, and who were between the ages of 50 and 70 in 1996.
We chose 1996 as the period to begin decision modeling because the 1996 wave is the first time
the HRS began to ask questions about whether or not the respondent lapsed any life insurance

6In the online appendix, we also present the estimates from a dynamic model without serially correlated unobservable
state variables, and show via simulations that the dynamic model without serially correlated unobservable state
variables fails to replicate some important features of the data.
7See http://hrsonline.isr.umich.edu/concord, for the survey instruments used in all the waves of HRS.
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policies and whether or not the respondent obtained any new life insurance policies since
the last interview. As we will explain below, these questions are used prominently in the
construction of the key decision variable used in our structural model. We use only respondents
who were also interviewed in 1994 so we can know whether or not they owned life insurance
in 1994.

We follow these respondents until 2006. Any respondent who missed an interview for any
reason other than death between 1996 and 2006 was dropped from the sample. Any respondent
with a missing value on life insurance ownership any time during this period was also dropped.
This leaves us a sample of 3567 males. We also dropped 243 individuals who never reported
owning life insurance in any wave of HRS data. Our final analysis sample thus consists of 3324
in wave 1996 and the survivors among them in subsequent waves, 3195 in wave 1998, 3022 in
wave 2000, 2854 in wave 2002, 2717 in wave 2004 and 2558 in wave 2006. Table 2 describes how
we come to our final estimation sample.

2.1 | Construction of variables related to life insurance decisions

Here we describe the questions in HRS we use to construct the life‐insurance related variables.

• For whether or not an individual owned life insurance in the current wave, we use the
individual's response to the following HRS survey question, which is asked in all waves: [Q1]
“Do you currently have any life insurance?”

• For whether or not an individual obtained a policy since the previous wave, we use the
individual's response to the following HRS question, which is asked all waves starting in 1996:
[Q2] “Since (previous wave interview month‐year) have you obtained any new life insurance
policies?” If the respondent answers “yes,” we consider him to have obtained a new policy.

• For whether or not an individual lapsed a policy since last wave, we use the individual's
response to the following HRS question, which is asked all waves starting in 1996: [Q3]
“Since (previous wave interview month‐year) have you allowed any life insurance policies to
lapse or have any been cancelled?” We also use the response to another survey question,
which is also asked all waves starting in 1996: [Q4] “Was this lapse or cancellation something
you chose to do, or was it done by the provider, your employer, or someone else?” If the
respondent answers “yes” to the first question and answers “my decision” to the second
question, we consider him to have lapsed a policy.

TABLE 2 Sample selection criterion and sample size

Selection criterion Sample size

All individuals who responded to both 1994 and 1996 HRS interviews 17,354

Males who were aged between 50 and 70 in 1996 (wave 3) 4512

Did not having any missing interviews from 1994 to 2006 3696

Did not have any missing values for reported life insurance ownership status
from 1994 to 2006

3567

Reported owning life insurance at least once from 1996 to 2006 3324

Note: The selection criteria are cumulative.
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In the notation of the model we will present in the Section 3, we construct an individual's
period‐t (or wave‐t) decisions as follows:

• For the individual who reported not having life insurance in the previous wave d( = 0)t−1 , we
let d = 0t if the individual reports not having life insurance this wave; and d = 1t if the
individual reports having life insurance this wave (“yes” to Q1). Because the individual does
not own life insurance in period t − 1 but does in period t , we interpret that he chose the
optimal policy in period t given his state variables at t .

• For the individual who reported having life insurance in the previous wave ≥d( 1)t−1 , we let
d = 0t if the individual reports not having life insurance this wave (“no” to Q1); and we let
d = 1t (i.e., the individual re‐optimizes his life insurance) if the individual reports having life
insurance this wave (“yes” to Q1) and he obtained new life insurance policy (“yes” to Q2),
OR if the individual answered “yes” to Q1, reported lapsing (i.e., answered “yes” to Q3) and
reported that lapse was his own decision (answered “my own decision” to Q4). Note that
under this construction, we have interpreted the “lapsing or obtaining” of any policies as an
indication that the respondent reoptimized his life insurance coverage. Finally, we let d = 2t

(i.e., he kept his previous life insurance policy unchanged) if the individual reports having
life insurance this wave (“yes” to Q1) AND the individual reported no to obtaining new
policy (“no” to Q2) AND the individual did not lapse any existing policy (either reported
“no” to Q3 or reported “yes” to Q3 but did not report “my decision” to Q4).

2.2 | Information about the details of life insurance holdings in the
HRS data

HRS also has questions regarding the face amount and premium payments for life insurance
policies. However, there are several problems with incorporating these variables into our em-
pirical analysis. First, the questions differ across waves. In the 1994 wave, questions were asked
regarding the total face amount and premiums for term life policies; but for whole life policies
only total face amount was collected.8 In the 1996 and 1998 waves, information about lapsation
and face amounts are available, but not premiums. From 2000 on, the HRS asked about the
combined face value for all policies, combined face value for whole life policies, and the combined
premium payments for whole life policies. Note that information about the premiums for term
life policies were not collected from 2000 on. Second, there is a very high incidence of missing
data regarding life insurance premiums and face amounts. In our selected sample, 40.3% of the
respondents have at least one instance of missing face amount in waves when they reported
owning life insurance. The incidence of missing values in premium payments is even higher.
Third, even for those who reported face amount and premium payments for their life insurance
policies, we do not know the choice set they faced when purchasing their policies.

For these reasons, we decide to only model the individuals' life insurance decisions
regarding whether to reoptimize, lapse or maintain an existing policy, and only use the
observed information about the above decisions in estimating the model.

8The questions in 1994 wave related to premium and face amount are: [W6768]. About how much do you pay for (this
term insurance/these term insurance policies) each month or year? [W6769]. Was that per month, year, or what?
[W6770]. What is the current face value of all the term insurance policies that you have? [W6773]. What is the current
face value of (this [whole life] policy/these [whole life] policies?)
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2.3 | Descriptive statistics

2.3.1 | Patterns of life insurance coverage and its transitions

Table 3 provides the life insurance coverage and patterns of transition between coverage and no
coverage in the HRS data. Panel A shows that among the 3324 live respondents in 1996, 88.1%
are covered by life insurance; among the 3195 who survived to the 1998 wave, 85.7% owned life
insurance, and so forth. Over the waves, the life insurance coverage rates among the live
respondents seem to exhibit a declining trend, with the coverage rate among the 2558 who
survived to the 2006 wave being about 78.6%.

TABLE 3 Life insurance coverage and transition patterns in HRS: 1996–2006

Wave

1996 1998 2000 2002 2004 2006

Panel A: Life insurance coverage status

Currently covered by life
insurance

2927 2739 2524 2313 2187 2011

88.1% 85.7% 83.5% 81.0% 80.5% 78.6%

No life insurance coverage 397 456 498 541 530 547

11.9% 14.3% 16.5% 19.0% 19.5% 21.4%

Total live respondents 3324 3195 3022 2854 2717 2558

Panel B: Life insurance coverage status conditional on no coverage in previous wave

Life insurance coverage
this wave

243 125 130 150 163 123

47.5% 33.4% 31.9% 33.7% 32.7% 25.6%

No life insurance coverage
this wave

269 249 277 295 336 357

52.5% 66.6% 68.1% 66.3% 67.3% 74.4%

Total live respondents with
no coverage last wave

512 374 407 445 499 480

Panel C: Life insurance coverage status conditional on coverage in previous wave

Life insurance coverage
this wave

2684 2614 2394 2163 2024 1888

95.4% 92.7% 91.5% 89.8% 91.3% 90.9%

No life insurance coverage
this wave

128 207 221 246 194 190

4.6% 7.3% 8.5% 10.2% 8.7% 9.1%

Total respondents with
coverage last wave

2812 2821 2615 2409 2218 2078

Panel D: Whether changed terms of coverage conditional on coverage in both current and previous waves

Did not change terms of
coverage

2430 2395 2233 2034 1881 1769

90.5% 91.6% 93.3% 94.0% 92.9% 93.7%

Changed terms of coverage 254 219 161 129 143 119

9.5% 8.4% 6.7% 6.0% 7.1% 6.3%

Total live respondents with
coverage in both waves

2684 2614 2394 2163 2024 1888

Note: Panel A shows life insurance coverage status for live respondents in each wave. Panel B shows life insurance coverage
status for respondents who reported no coverage in previous wave. Panel C shows life insurance coverage status for
respondents who reported coverage in previous wave. Panel D shows the fraction of respondents who reported changing the
terms of their life insurance coverage, conditional on being covered in both the current and previous waves.
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Panels B and C show, however, that there is substantial transition between coverage and no
coverage. Panel B shows that among the 512 individuals who did not have life insurance
coverage in 1994, almost a half (47.5%) obtained coverage in 1996; in later waves between 25.6%
and 33.7% of individuals without life insurance in the previous wave ended up with coverage in
the next wave. Panel C shows that there is also substantial lapsation among life insurance
policyholders. In our data, between‐wave lapsation rates range from 4.6% to 10.2%. Considering
that our sample is relatively old and the tenures of holding life insurance policies in the HRS
sample are also typically longer, these lapsation rates are in line with the industry lapsation
rates reported in the introduction (see Table 1).

Panel D shows that even among those individuals who own life insurance in both the
previous wave and the current wave, a substantial fraction has changed the terms of their
coverage, or in the words of our model, reoptimized. Between 6.0% and 9.5% of the sample
who have insurance coverage in adjacent waves reported changing the terms of their
coverages.

2.4 | Summary statistics of state variables

Table 4 summarizes the key state variables for the sample used in our empirical analysis. It
shows that the average age of the live respondents in our sample is 61.1. The means of
household income in our sample are quite stable around $62,000 to $66,000; and similarly the
means of log household incomes are stable around 10.58 to 10.73. The next eight rows report
the mean of the incidence of health conditions, including high blood pressure, diabetes, cancer,
lung disease, heart disease, stroke, psychological problems, and arthritis. It shows clear signs of
health deterioration for the surviving samples over the years. The sum of the above eight health
conditions steadily increases from 1.37 in 1996 to 2.34 in 2006. Finally, the marital status of the
surviving sample seems to be quite stable, with the fraction married being in the range
of 83%–85%.

Tables A1 and A2 in the appendix summarize the mean and SD of the state variables by the
life insurance coverage status. There does not seem to be much of a difference in ages between
those with and without life insurance coverage, but the mean log household income is sig-
nificantly higher for those with life insurance than those without and life insurance policy-
holders are much more likely to be married than those without. We also find that those with
life insurance tend to be healthier than those without life insurance.

2.5 | Reduced‐form determinants of the life insurance decisions

Table 5 presents the coefficient estimates of a Logit regression on the probability of pur-
chasing life insurance among those who did not have coverage in the previous wave. It
shows that the richer, younger, healthier, and married individuals are more likely to
purchase life insurance coverage than the poorer, older, unhealthier, and widowed or
unmarried individuals. Table 6 presents the estimates of a multinomial Logit regression for
the probability of lapsing, changing coverage, or maintaining the previous coverage. The
omitted category is lapsing all coverage. The estimates show that richer individuals are
more likely to either maintain the current coverage or change existing coverage than to
lapse all coverage; individuals who experienced negative income shocks are more likely to
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lapse all coverage; individuals who are either divorced or widowed are more likely to lapse
all coverage; finally, individuals who have experienced an increase in the number of health
conditions are somewhat more likely to lapse all coverage, though the effect is not statis-
tically significant.

TABLE 4 Summary statistics of state variables

Wave

Variable description 1996 1998 2000 2002 2004 2006

Age of respondent 61.102 63.035 64.925 66.852 68.789 70.676

(4.3535) (4.3441) (4.3070) (4.2861) (4.2858) (4.2512)

Household income
($1000s)

62.632 61.978 65.187 63.246 66.278 66.549

(73.846) (73.512) (87.389) (76.716) (87.937) (80.344)

Log household income 10.582 10.587 10.623 10.611 10.688 10.727

(1.3013) (1.2086) (1.2051) (1.2045) (1.0377) (0.9150)

Whether ever diagnosed
with high blood pressure

0.4025 0.4372 0.4765 0.5172 0.5683 0.6197

(0.4905) (0.4961) (0.4995) (0.4998) (0.4954) (0.4856)

Whether ever diagnosed
with diabetes

0.1439 0.1594 0.1755 0.2062 0.2273 0.2523

(0.3510) (0.3661) (0.3805) (0.4046) (0.4191) (0.4344)

Whether ever diagnosed
with cancer

0.0599 0.0811 0.1007 0.1287 0.1591 0.1874

(0.2373) (0.2731) (0.3009) (0.3349) (0.3659) (0.3903)

Whether ever diagnosed
with lung disease

0.0710 0.0777 0.0791 0.0880 0.1083 0.1170

(0.2569) (0.2677) (0.2700) (0.2834) (0.3108) (0.3215)

Whether ever diagnosed
with heart disease

0.1902 0.2145 0.2351 0.2672 0.3050 0.3435

(0.3926) (0.4106) (0.4241) (0.4426) (0.4605) (0.4750)

Whether ever diagnosed
with stroke

0.0494 0.0579 0.0652 0.0712 0.0829 0.0986

(0.2167) (0.2337) (0.2470) (0.2572) (0.2757) (0.2982)

Whether ever diagnosed
with psychological
problem

0.0599 0.0714 0.0788 0.0873 0.0932 0.1002

(0.2373) (0.2575) (0.2695) (0.2823) (0.2907) (0.3003)

Whether ever diagnosed
with arthritis

0.3904 0.4460 0.4831 0.5312 0.5790 0.6205

(0.4879) (0.4972) (0.4998) (0.4991) (0.4938) (0.4854)

Sum of above conditions 1.3672 1.5453 1.6940 1.8969 2.1230 2.3392

(1.2409) (1.2912) (1.3103) (1.3372) (1.3941) (1.4204)

Whether married 0.8504 0.8431 0.8444 0.8447 0.8438 0.8326

(0.3567) (0.3638) (0.3626) (0.3623) (0.3631) (0.3734)

Whether has children 0.9419 0.9402 0.9394 0.9386 0.9366 0.9335

(0.2340) (0.2372) (0.2386) (0.2400) (0.2436) (0.2492)

Age of youngest child 24.832 26.813 28.764 30.892 32.933 34.894

(10.059) (10.020) (9.959) (9.839) (9.779) (9.718)

# of live respondents 3324 3195 3022 2854 2717 2558

Note: SDs are in parenthesis.
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TABLE 5 Reduced‐form logit regression on the probability of buying life insurance, conditional on having
no life insurance in the previous wave

Variable Coefficient SE

Constant 0.9224 0.6039

Age −0.0407*** 0.0084

Logincome 0.0929*** 0.0315

Number of health conditions −0.0810*** 0.0297

Married 0.0831 0.1007

Has children 0.2704 0.1713

Age of youngest child 0.0006 0.0043

Observations 2707

Log‐likelihood −1713.4

Note: *, **, and *** respectively represent significance at 10%, 5%, and 1% levels.

TABLE 6 Reduced‐form multinomial logit regression on the probability of lapsing, changing coverage, or
maintaining coverage, conditional on owning life insurance in the previous wave

Change existing coverage Maintain existing coverage

Variable Coefficient SE Coefficient SE

Constant −0.1119 0.9182 1.6361*** 0.6333

Age −0.0789*** 0.0099 −0.0480*** 0.0069

Logincome 0.4542*** 0.0578 0.2522*** 0.0396

Number of health conditions −0.0493 0.0391 −0.0411 0.0267

Married 0.3358** 0.1372 0.3092*** 0.0908

Has children −0.0912 0.2027 0.0464 0.1366

Age of youngest child 0.0097* 0.0051 0.0075** 0.0034

ΔAge −0.0956 0.0623 0.2067*** 0.0439

(ΔAge)2 0.0090* 0.0048 −0.0082** 0.0034

ΔLogincome −0.1406*** 0.0457 −0.0386 0.0305

(ΔLogincome)2 0.0174*** 0.0053 0.0102*** 0.0037

ΔConditions 0.1268 0.1362 0.0159 0.0877

(ΔConditions)2 −0.0843 0.0514 −0.0178 0.0285

ΔMarried 0.3218 0.1998 −0.0954 0.1391

Observations 14,951

Log‐likelihood −7565.6

Note: Conditional on owning life insurance, the three choices are: (a). to lapse all coverage; (b). to change the existing coverage;
and (c). to maintain the existing coverage. The base outcome is set to choice (a). For any variable x, Δx is the difference between
the current value of x and the value of x which occurred during the last period in which the respondent changed his coverage.

*, **, and *** represent significance at 10%, 5%, and 1% levels, respectively.
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3 | AN EMPIRICAL MODEL OF LIFE INSURANCE
DECISIONS

In this section, we present a dynamic discrete choice model of how individuals make life
insurance decisions, which we will later empirically implement. Our model is simple, yet rich
enough to capture the dynamic intuition behind the life insurance models of Hendel and
Lizzeri (2003) and Fang and Kung (2010a).

Time is discrete and indexed by t = 1, 2, … In the beginning of each period t , an individual i
either has or does not have an existing life insurance policy. If the individual enters period t
without an existing policy, then he chooses between not owning life insurance (d = 0it ) or
optimally purchasing a new policy (d = 1it ). If the individual enters period t with an existing
policy, then, besides the above two choices, he can additionally choose to keep his existing
policies (d = 2it ). If an individual who has life insurance in period t − 1 decides not to own life
insurance in period t , we interpret it as lapsation of coverage. As we describe in Section 2, the
choice d = 1it for an individual who previously owns at least one policy is interpreted more
broadly: an individual is considered to have reoptimized his existing policy if he reported
purchasing a new policy or choosing to lapse one of the existing policies (while he continues to
hold at least one other policy). The key interpretation for choice d = 1it is that the individual re‐
optimized his life insurance holdings.

3.1 | Flow payoffs from choices

Now we describe an individual's payoffs from each of these choices. First, let ∈xit  denote
the vector of observable state variables of individual i in period t , and let ∈zit  denote
the vector of unobservable state variables.9 These characteristics include variables that affect
the individual's preference for or cost of owning life insurance, such as income, health and
bequest motives. We normalize the utility from not owning life insurance (i.e., d = 0it ) to 0;
that is,

∈u x z x z( , ) = 0 for all ( , ) × .it it it it0   (1)

The utility from optimally purchasing a new policy in state x z( , )it it , that is, d = 1it , regardless of
whether he previously owned a life insurance policy, is assumed to be:

u x z ε( , ) + ,it it it1 1 (2)

where ε it1 is an idiosyncratic choice specific shock, drawn from a Type‐I extreme value distribution.
In our empirical analysis, we will specify u x z( , )it it1 as a flexible polynomial of xit and zit.

Now we consider the flow utility for an individual i entering period t with an existing policy
which was last re‐optimized at period t̂ . That is, let ∣t s s t dˆ = sup{ < , = 1}is . Let

( )x z x z( ˆ , ˆ ) = ,it it it itˆ ˆ denote the state vector that i was in when he last reoptimized his life

9We present the model here assuming the presence of both the observed and unobserved state variables. In the Online
Appendix, we also present estimates of a model with only observed state variables; in that case, we simply ignore the
unobserved state vector zit .
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insurance. We assume that the flow utility individual i obtains from continuing the existing
policies purchased when his state vector was x z( ˆ , ˆ )it it is given by

u x z x z ε u x z c x z x z ε( , , ˆ , ˆ , ) = ( , ) − (( , ), ( ˆ , ˆ )) + ,it it it it it it it it it it it it2 2 1 2 (3)

where ⋅ ⋅c ( , ) can be considered as a suboptimality penalty function, which may also include
adjustment costs (see discussion below in Section 4), that depends on the “distance” between
the current state x z( , )it it and the state in which the existing policy was purchased x z( ˆ , ˆ )it it . The
adjustment cost can be positive or negative, depending on the factors that have changed. For
example, if the individual was married when he purchased the existing policy but is not
married now, then, all other things equal, the adjustment cost is likely to be negative; he would
have less incentive to keep the existing policy. On the other hand, if the individual's health has
deteriorated substantially, then obtaining a new policy could be prohibitively costly, in which
case the adjustment cost is likely to be positive; he would have more incentive to keep the
existing policy which was purchased during a healthier state.

To summarize, we model the life insurance choice as the decision to either: (1). hold no life
insurance; (2). purchase a new insurance policy that is optimal for the current state; or (3).
continue with an existing policy. By decomposing the ownership decision into continuation
versus reoptimization, our model is able to capture the intuition that an individual who has
suffered a negative shock to a factor that positively affects life insurance ownership (such as
income or bequest motive) may still be likely to keep his insurance if the policy was initially
purchased a long time ago during a better health state.

Moreover, the decomposition of the ownership decision allows us to examine two separate
motives for lapsation: lapsation because the individual no longer needs any life insurance, and
lapsation because the policyholder's personal situation, that is, x z( , )it it , has changed such that
new coverage terms are required.

3.2 | Parametric assumptions on u1 and c functions

In our empirical implementation of the model, we let the observed state vector xit include age,
log household income, sum of the number of health conditions, marital status, an indicator for
whether the individual has children, and the age of the youngest child. We let the unobserved
state vector zit include z z,it it1 2 , and z it3 which respectively represent the unobserved compo-
nents of income, health, and bequest motives. In Section 5 below, we will describe how we
anchor these unobservables to their intended interpretations and how we use sequential Monte
Carlo methods to simulate their posterior distributions.

The primitives of our model are thus given by the utility function of optimally purchasing
life insurance u1, and the suboptimality adjustment function c. In our empirical analysis we
adopt the following parametric specifications for u x z( , )it it1 and c x z x z(( , ), ( ˆ , ˆ ))it it it it :

u x z θ θ θ z θ z

θ z θ θ z

θ z θ z θ

θ

( , ) = + AGE + (LOGINCOME + ) + (CONDITIONS + )

+ (MARRIED + ) + AGE + (LOGINCOME + )

+ (CONDITIONS + ) + (MARRIED + ) + HAS CHILDREN

+ HAS CHILDREN × AGE OF YOUNGEST CHILD ;

it it it it it it it

it it it it it

it it it it i

i it

1 0 1 2 1 3 1

4 1 5
2

6 1
2

7 2
2

8 3
2

9

10

(4)
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c x z x z θ θ θ

θ z z

θ z z

θ z z

θ z z

θ z z θ

z z

(( , ), ( ˆ , ˆ )) = + (AGE − AGE ) + (AGE − AGE )

+ (LOGINCOME + − LOGINCOME − ˆ )

+ (LOGINCOME + − LOGINCOME − ˆ )

+ (CONDITIONS + − CONDITIONS − ˆ )

+ (CONDITIONS + − CONDITIONS − ˆ )

+ (MARRIED + − MARRIED − ˆ ) +

(MARRIED + − MARRIED − ˆ ) .

it it it it it it it it

it it it it

it it it it

it it it it

it it it it

it it it it

it it it it

11 12 13
2

14 1 1

15 1 1
2

16 2 2

17 2 2
2

18 3 3 19

3 3
2

 













(5)

In Section 4 below, we will provide an interpretation of the above‐specified ⋅ ⋅c ( , ) function as
a suboptimality penalty function.

3.3 | Transitions of the state variables

The state variables that an individual must keep track of depend on whether the individual is
currently a policyholder. If he currently does not own a policy, his state variable is simply his current
state vector x z( , )it it ; if he currently owns a policy, then his state variables include both his current
state vector x z( , )it it and the state vector x z( ˆ , ˆ )it it at which he purchased the policy he currently owns.

In our empirical analysis, we assume that the current state vectors x z( , )it it evolve exogenously
(i.e., not affected by the individual's decision) according to a joint distribution given by

∣x z f x z x z( , ) ~ ( , , ).it it it it it it+1 +1 +1 +1

In particular, for the observed state vector xit, that includes age, log household income, sum of
the number of health conditions, and their respective squares, marital status, whether the
individual has children, and the age of the youngest child, we estimate their evolutions directly
from the data. For the unobserved state vector zit, we will use sequential Monte Carlo methods
to simulate its evolution (see Section 5.2 below for details).

The evolution of the state vector x z( ˆ , ˆ )it it is endogenous, and it is given as follows.
If the individual does not own life insurance at period t , which we denote by setting

∅x z( ˆ , ˆ ) =it it , then

⎧⎨⎩
⎞
⎠⎟∅

∅
x z x z

x z d

d
[(( ˆ , ˆ ) ( ˆ , ˆ ) = ] =

( , ) if = 1,

if = 0,
it it it it

it it it

it
+1 +1 (6)

where ∅ denotes that the individual remains with no life insurance. If the individual owns life
insurance at period t purchased at state x z( ˆ , ˆ )it it , then

⎧
⎨⎪
⎩⎪

⎞

⎠
⎟⎟⎟≠ ∅

∅

x z x z

d

x z d

x z d

[(( ˆ , ˆ ) ( ˆ , ˆ ) ] =

if = 0,

( , ) if = 1,

( ˆ , ˆ ) if = 2.
it it it it

it

it it it

it it it

+1 +1 (7)
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4 | DISCUSSION

4.1 | Dynamic discrete choice model without the knowledge of the
choice and choice set

As we mentioned in Section 2, we do not have complete information about the exact life
insurance policies owned by the individuals, and for those whose life insurance policies we do
know about, we do not know their choice sets. However, we do know whether an individual
has reoptimized his life insurance policy holdings (i.e., purchased a new policy or lapsed an
existing one), or has dropped all coverage.

In fact the data restrictions we face are fairly typical for many applications.10 For example,
in the study of housing the market, it is possible that all we observe is whether a family moved
to a new house, remained in the same house, or decided to rent; but we may not observe the
characteristics (including the purchase price) of the new house the family moved into, or the
characteristics of the house/apartment the family rented; and most likely, we are not able to
observe the set of houses or apartments the family has considered purchasing or renting (see,
e.g., Kung, 2012).

Our formulation provides an indirect utility approach to deal with such data limitations.
Suppose that when individual i′s state vector is x z( , )it it , he has a choice set x zℒ( , )it it which
includes all the possible life insurance policies that he could choose from. Note that x zℒ( , )it it

depends on i's state vector x z( , )it it , which captures the notion that life insurance premium and
face amount typically depend on at least some of the characteristics of the insured. Let
∈ x zℓ ℒ( , )it it denote one such available policy. Let u x z*(ℓ; , )it it denote individual i s′ primitive

flow utility from purchasing policy ℓ. If he were to choose to own a life insurance policy, his
choice of the life insurance contract from his available choice set will be determined by the
solution to the following problem:

∣
∈

V x z u x z ε β V x z x z( , ) = max { *(ℓ; , ) + + E[ ( , ) ℓ, , ]}.it it
x z

it it it it it it it
ℓ ℒ( , )

ℓ +1 +1
it it

(8)

Let x zℓ*( , )it it denote the solution. Then the flow utility u x z( , )it it1 we specified in (2) can be
interpreted as the indirect flow utility, that is,

u x z u x z x z( , ) = *(ℓ*( , ); , ).it it it it it it1 (9)

It should be pointed out that, under the above indirect flow utility interpretation of
u x z( , )it it1 , in order for the error term ε it1 in (2) to be distributed as i.i.d. extreme value as
assumed, we make the assumption that ε itℓ in (8) does not vary across ∈ x zℓ ℒ( , )it it . We
therefore interpret ε it1 as a shock to the cost of reoptimizing rather than a shock that varies
across contracts.

10McFadden (1978) and Fox (2007) studied problems where the researcher only observes the choices of decision‐
makers from a subset of choices. McFadden (1978) showed that in a class of discrete‐choice models where choice
specific error terms have a block additive generalized extreme value (GEV) distributions, the standard maximum‐
likelihood estimator remains consistent. Fox (2007) proposed using semiparametric multinomial maximum‐score
estimator when estimation uses data on a subset of the choices available to agents in the data‐generating process, thus
relaxing the distributional assumptions on the error term required for McFadden (1978).
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4.2 | Interpretations of the sub‐optimality penalty function ⋅c ( )

The suboptimality penalty function ⋅c ( ) we introduced in (3) permits the interpretation that
changing an existing life insurance policy may incur adjustment costs. To see this, consider an
individual whose current state vector is x z( , )it it and owns a life insurance policy he purchased
at t̂ when his state vector was ( )x z,it itˆ ˆ . Suppose that he decides to change (lapse or modify) his
current policy and reoptimize, but there is an adjustment cost of κ > 0 for changing. Thus, the
flow utility from lapsing into no coverage for this individual will be

u x z( , ) = 0.it it0

The flow utility from reoptimizing, using the notation from (9), will be

u x z u x z x z κ( , ) = *(ℓ*( , ); , ) − .it it it it it it1

And the flow utility from keeping the existing policy is

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

u x z x z u x z x z u x z x z κ

u x z x z u x z x z κ

u x z c x z x z

( , , ˆ , ˆ ) = *(ℓ*( ˆ , ˆ ); , ) = *(ℓ*( , ); , ) −

− *(ℓ*( , ); , ) − *(ℓ*( ˆ , ˆ ); , ) −

= ( , ) − (( , ), ( ˆ , ˆ ))

it it it it it it it it it it it it

u x z

it it it it it it it it

it it it it it it

2

( , )

sub‐optimality penalty

1

it it1  

   (10)

where

≡c x z x z u x z x z u x z x z κ(( , ), ( ˆ , ˆ )) [ *(ℓ*( , ); , ) − *(ℓ*( ˆ , ˆ ); , )] − .it it it it it it it it it it it it

Note that in the above expression for c x z x z(( , ), ( ˆ , ˆ ))it it it it , the term in the square bracket is the
difference between the flow utility the individual could have received by purchasing the op-
timal policy for his current state (i.e., x zℓ*( , )it it ), and the flow utility he receives from his
existing policy, x zℓ*( ˆ , ˆ )it it , that he purchased when his state was x z( ˆ , ˆ )it it . The suboptimality
penalty therefore measures the utility loss from holding a policy x zℓ*( ˆ , ˆ )it it that was optimal in
state x z( ˆ , ˆ )it it , but suboptimal when state vector is x z( , )it it . But by not reoptimizing, the in-
dividual saves the adjustment cost κ. Given the presence of adjustment cost κ, we would expect
that an existing policyholder will hold on to his policy until the sub‐optimality penalty
[ ( ( ) ) ]u x z x z u x z x z* ℓ* , ; , − *(ℓ*( , ); , )it it it it it it it itˆ ˆ exceeds the adjustment cost κ, if we ignore
decisions driven by i.i.d. preference shocks ε it1 and ε it2 .

It is clear from the above discussion that, in this formulation, we can also allow the
adjustmentt cost κ to be made a function of x z( , )it it , though we will not be able to separate the
sub‐optimality penalty [ ( ( ) ) ]u x z x z u x z x z* ℓ* , ; , − *(ℓ*( , ); , )it it it it it it it itˆ ˆ from κ x z( , )it it .

11

11If the adjustment cost κ is incurred both when the individual lapses into no coverage, and when he reoptimizes, that
is, if u x z κ( , ) = −it it0 , and u x z u x z x z κ( , ) = *(ℓ*( , ); , ) −it it it it it it1 , then we can allow κ to depend on both x z( , )it it

and ( )x z,it itˆ ˆ .
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It is also worth pointing out that our parametric specifications of u x z( , )it it1 and
c x z x z(( , ), ( ˆ , ˆ ))it it it it , as given in (4) and (5), respectively, are consistent with the above inter-
pretations of the suboptimality penalty function.12

4.3 | Limitations of the “indirect flow utility” approach

In this paper, we adopt the “indirect flow utility” approach to deal with the lack of in-
formation regarding individuals' actual choices of life insurance policies and their relevant
choice set. This is useful for our purpose of understanding why policyholders lapse their
coverage (as we will demonstrate later), but it comes with a limitation. The indirect flow
utilities u x z( , )it it1 and u x z x z( , , ˆ , ˆ )it it it it2 , defined in (9) and (10), respectively, are derived only
under the existing life insurance market structure. As a result, the estimated indirect flow
utility functions are not primitives that are invariant to counterfactual policy changes that
may affect the equilibrium of the life insurance market. Of course, this limitation is also
present in other dynamic discrete choice models where the flow utility functions can have
the interpretation as a reduced‐form, indirect utility function of a more detailed choice
problem.13

Another limitation is that this approach allows for decisions that are possibly inconsistent
with traditional state‐dependent preferences over money. For example, it is possible that not all
combinations of premiums and face amounts can be rationalized in a fully rational model, and
violations of stochastic dominance are not ruled out. While this “black box” approach suits our
purpose of predicting and fitting the basic life insurance ownership patterns we observe in our
data, it is not designed to fit data with more detailed life insurance contract information if such
data were available.14

Finally, our approach makes no assumptions about the nature of the suboptimality penalty
function. These costs could be “real” (e.g., due to transaction costs or real changes to cir-
cumstance) or “psychological” (e.g., inertia, confusion). While the nature of the penalty
function matters little for predicting choices, it may matter for the welfare implications. In our
discussion of welfare implications, we assume that the suboptimality costs are due to real
changes in circumstances and that policyholders behave rationally, but it is worth keeping in
mind that the welfare implications may be different if these costs are psychological.

5 | ESTIMATES FROM A DYNAMIC DISCRETE CHOICE
MODEL WITH UNOBSERVABLE STATE VARIABLES

In this section, we present our estimation and simulation results for the dynamic structural
model of life insurance decisions presented in Section 3. As described in Section 3 the flow
utilities are given by Equations (1)–(3). We start by describing how to estimate the dynamic

12Due to the ages of the individuals in our estimation sample, we have practically no changes in the number of
children. Thust the difference between AGE OF YOUNGEST CHILDit and AGE OF YOUNGEST CHILDit̂ is essentially
the same as the difference between AGEit and AGEit̂ .
13For example, in many I.O. papers a reduced‐form flow profit function is assumed. Presumably, the profit function is
not invariant to changes in the market structure.
14We thank an anonymous referee for pointing out this detail to us.
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discrete choice problem arising from these utilities. To simplify notation, let w x z= ( , )it it it

denote the full vector of state variables, both observed and unobserved, and let w x zˆ = ( ˆ , ˆ )it it it be
the state variables when i last reoptimized. Let ∣P w w( )it it−1 be the transition distribution
function of the state variables. As mentioned in Section 3, we assume that the evolution of the
state variables wit does not depend on the life insurance choices, though the evolution of the
“hatted” variables, ŵit , does depend on the choices.

At period t , let V w( )t it0 be the present value from choosing d = 0it (no life insurance); let
V w( )t it1 be the present value from choosing d = 1it (reoptimize); and letV w w( , ˆ )t it it2 be the present
value of choosing d = 2it (keep existing policy), for those who owned policies previously purchased
at state ŵit. To derive the choice‐specific value functions, it is useful to first derive the inclusive
continuation values from being in a given state vector. LetV w w( , ˆ )t it it denote the period‐t inclusive
value for being in state wit and having an existing policy purchased when the state was ŵit. Let
W w( )t it denote the period‐t inclusive value for being in state wit and not having any existing life
insurance. Under the assumption of additively separable choice specific shocks drawn from i.i.d.
Type‐1 extreme value distributions, and using ⋅G ( ) to denote the joint distribution of the random
vector ε ε ε= ( , )t t t1 2 , V w w( , ˆ )t it it andW w( )t it can be, following Rust (1994), expressed as follows:

∫V w w V w V w ε V w w ε dG ε

V w V w V w w

( , ˆ ) = max { ( ), ( ) + , ( , ˆ ) + } ( )

= log {exp[ ( )] + exp[ ( )] + exp[ ( , ˆ )]} + 0.57722,

t it it t it t it t t it it t t

t it t it t it it

0 1 1 2 2

0 1 2

(11)

∫W w V w V w ε dG ε

V w V w

( ) = max { ( ), ( ) + } ( )

= log {exp[ ( )] + exp[ ( )]} + 0.57722,

t it t it t it t t

t it t it

0 1 1

0 1

(12)

where 0.57722 is Euler's constant. Then, the choice‐specific value functions can be written as follows:

∫ ∣V w β W w dP w w( ) = ( ) ( ),t it t it it it0 +1 +1 +1 (13)

∫ ∣V w u w β V w w dP w w( ) = ( ) + ( , ) ( ),t it it t it it it it1 1 +1 +1 +1 (14)

∫ ∣V w w u w w β V w w dP w w( , ˆ ) = ( , ˆ ) + ( , ˆ ) ( ).t it it it it t it it it it2 2 +1 +1 +1 (15)

In estimation, we assume that β = 0.81 (for an implied annual discount factor of 0.9) and we
assume that age 80 is the final decision period, so that V w( ) = 0it0,80 , V w u w( ) = ( )it it1,80 1 , and
V w w u w w( , ˆ ) = ( , ˆ )it it it it2,80 2 . Under these assumptions, we can solve for the choice‐specific value
functions at each age using backward recursion.

The choice probabilities at each period t are then given as follows. For individuals without
life insurance in the beginning of period t , their choice probabilities for ∈d {0, 1}it are given by:

∣ ∅

∣ ∅

d w w
V w

V w V w

d w w
V w

V w V w

Pr{ = 0 , ˆ = } =
exp[ ( )]

exp[ ( )] + exp[ ( )]
,

Pr{ = 1 , ˆ = } =
exp[ ( )]

exp[ ( )] + exp[ ( )]
.

it it it
t it

t it t it

it it it
t it

t it t it

0

0 1

1

0 1
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For individuals who own life insurance in the beginning of period t , which are purchased in
previous waves when state vector is ŵit, their choice probabilities for ∈d {0, 1, 2}it are given by:

∣ ≠ ∅

∣ ≠ ∅

∣ ≠ ∅

d w w
V w

V w V w V w w

d w w
V w

V w V w V w w

d w w
V w w

V w V w V w w

Pr{ = 0 , ˆ } =
exp[ ( )]

exp[ ( )] + exp[ ( )] + exp[ ( , ˆ )]
,

Pr{ = 1 , ˆ } =
exp[ ( )]

exp[ ( )] + exp[ ( )] + exp[ ( , ˆ )]
,

Pr{ = 2 , ˆ } =
exp[ ( , ˆ )]

exp[ ( )] + exp[ ( )] + exp[ ( , ˆ )]
.

it it it
t it

t it t it t it it

it it it
t it

t it t it t it it

it it it
t it it

t it t it t it it

0

0 1 2

1

0 1 2

2

0 1 2

If all the state variables are observed, then the model is easily estimated by maximum‐
likelihood. The transition distribution function ∣P w w( )it it−1 can be estimated directly from the
data, the value functions can be computed by backward recursion, and the conditional choice
probabilities can be calculated at any value of the parameters. The parameters that maximize
the likelihood of the data can then be estimated.

The difficulty comes when there are unobserved state variables, zit. We now turn to describing
how we add three unobserved state variables: z1, z2, and z3 that are meant to represent the serially
correlated unobservable components of income, health, and bequest motive. Below we first describe
how we anchor the interpretations of these unobserved state variables, then we describe how we use
sequential Monte Carlo methods to simulate their conditional distributions.

5.1 | Anchoring the unobserved state variables

In this specification, we would like to give the unobserved state variable z1 the interpretation of
an unobserved liquidity (or income) shock, and normalize its unit to the same as log income, z2

the interpretation of an unobserved health shock that is normalized to the units of health
conditions, and finally z3 the interpretation as an unobserved component of bequest motive that
is normalized to the units of marital status.

We assume that the initial distribution in 1994 (which we set to be t = 0) for each of these
unobserved variables is degenerate and given by:15

z θ h= ,i i1 0 20 0 (16)

z θ h= ,i i2 0 21 0 (17)

z θ h= ,i i3 0 22 0 (18)

where hi0 is an indicator dummy for whether the individual reported owning life insurance in 1994.
To anchor z z,1 2, and z3 to have the desired interpretation given above, we expect, but do not restrict,
that the coefficients θ θ,20 21 and θ22 to be of certain signs. For example, because income is a positive

15The assumption that the initial distribution of the unobservable state variables z0 is degenerate is for computational
simplicity.
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factor for life insurance ownership, we expect that the sign of θ20 to be positive, so that individuals
who owned life insurance in the initial period also have higher z1. This anchors the interpretation of
z1 as an unobserved component of income. Similarly, because being married is also a positive factor
for life insurance ownership, we also expect the sign of θ22 to be positive, so that individuals who
owned life insurance in the initial period also have higher values of unobserved bequest motive z3.

The second channel that anchors the unobserved state variables to having the desired inter-
pretation is incorporated in our specifications for ⋅u ( )1 and ⋅c ( ), as formulated in (4) and (5).
Note that we restricted z i1 to entering both ⋅u ( )1 and ⋅c ( ) in the same way as LOGINCOME, z i2 the
same way as CONDITIONS, and z i3 the same way as MARRIED. These restrictions, together with
the sequential Monte Carlo method (described in the next section below) we use to simulate the
distributions of ≡ z z zz ( , , )t t t t1 2 3 , ensures that the unobserved variables zt have the desired
interpretations.

If we know the distributions of the unobservable state vectors z z( , ˆ )t t , solving this model
would be straightforward. Given a vector of parameters θ θθ = ( , …, )0 19 , we can compute the
value functions at each age through backward recursion. The difficulty of handling unobserved
state variables comes during estimation, because we have to integrate over the unobservables
when computing the likelihood. We now turn our attention to this problem.

5.2 | Using sequential Monte Carlo (SMC) method to simulate the
distributions of the unobserved state variables

We use a SMC method to simulate the distributions of the unobservable state vectors.16 SMC is
a set of simulation‐based methods which provides a convenient and attractive approach to
computing the posterior distributions of non‐Gaussian, nonlinear, and high dimensional ran-
dom variables.17 A thorough discussion of the method, from both the theoretical and the
practical perspectives, is available in Doucet et al. (2001). The SMC method has been widely
used in fields such as speech recognition, biology, physics, and so forth. Despite the obvious
potential importance of serially correlated unobservable state variables, there are few appli-
cations of SMC in the economics literature. Fernandez‐Villaverde and Rubio‐Ramirez (2007)
used SMC for estimating macroeconomic dynamic stochastic general equilibrium models with
serially correlated unobservable state variables using a likelihood approach. Blevins (2016)
proposed the use of SMC to allow for serially correlated unobservable state variables in esti-
mating dynamic single agent models and dynamic games. Hong et al. (2018) also discusses the
method in an application to the pharmaceuticals industry. All of the papers allow for a single
serially correlated unobservable state variable. In our application, we believe that there might
be important serially correlated unobservable components for each of the three potential
sources of lapsation, shocks to income, health, and bequest motives.

Now we provide a detailed discussion about the SMC algorithm. For a given individual, we
observe the sequence of choices d{ }t t

T
=0, observed state variables x x{ , ˆ }t t t

T
=0, and whether the

individual had life insurance in 1994 h0. The data set is thus d x x h{ , , ˆ , }t t t t
T

0 =0 (we have dropped
the i subscript for convenience). Let ∣p d x x h( , ˆ , )T T T0: 0: 0: 0 denote the conditional likelihood of
the observed data. We can write:

16SMC algorithms are also called bootstrap filters, particle filters, and sequential importance samplers with resampling.
17SMC for nonlinear, non‐Gaussian models is the analog of Kalman filter for linear, Gaussian models. Gordon et al.
(1993) is the seminal paper that proposed this algorithm, which they refer to as the bootstrap filter.
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∏∣ ∣ ∣p d x x h p d x x h p d d x x( , ˆ , ) = ( , ˆ , ) ( , , ˆ )T T T

t

T

t t t t0: 0: 0: 0 0 0 0 0

=1

−1 (19)

Because the initial distribution of z0 is degenerate and depends only on h0, we can write:

∣ ∣p d x x h p d x x z( , ˆ , ) = ( , ˆ , ).0 0 0 0 0 0 0 0

Assuming we have solved for the value functions in a first stage, we should be able to com-
pute ∣p d x x z( , ˆ , )0 0 0 0 .

Now, for each t > 0 we can write:

∫∣ ∣ ∣p d d x x p d d x x p d d dz z z z z z( , , ˆ ) = ( , , ˆ , , ˆ ) ( , ˆ ) ˆ .t t t t t t t t t t t t t t t−1 −1 −1 (20)

We know how to compute ∣p d d x x z z( , , ˆ , , ˆ )t t t t t t−1 for a given set of parameter values θ. What we
need is a method to draw from ∣p dz z( , ˆ )t t t−1 ; and we use the SMC method for this purpose.

SMC is a recursive algorithm that begins by drawing a swarm of particles approximating the
initial distribution of the hidden state. The initial swarm is then used to draw a swarm for the
next period, and this swarm is then filtered according to sequential importance weights.

The unobservables transition according to the following equations:

z θ z θ= + ϵ ,it it z t1 23 1 −1 24 1
(21)

z θ z θ= + ϵ ,it it z t2 25 2 −1 26 2
(22)

z θ z θ= + ϵ ,it it z t3 27 3 −1 28 3
(23)

where ϵ , ϵz t z t1 2
, and ϵz t3

are i.i.d. random variables with standard normal distributions (0, 1).
The transition distribution of the observed state variables, ∣P x x( )it it−1 is estimated directly from
the data in a first step.18

The filtered particles are then used to draw another swarm for the next period, and so on. In
the following notation, we will absorb ẑ into z and use z to denote any unobserved variable,
including the “hatted” z's.

The method proceeds as follows:

0. Set t = 0, draw a swarm of particles z{ }
r

r

R
0
( )

=1
from the initial distribution p z( )0 . This dis-

tribution must be parametrically assumed, with potentially unknown parameters. In our
case it is assumed to be degenerate as described by (16)–(18). Set t = 1.

1. For t > 0, use z{ }t
r

r

R
−1
( )

=1
to draw a new swarm z{˜ }t

r
r

R( )
=1 from the distribution ∣p dz z( , )t t t−1 −1 .

This distribution is known because we have imposed a parametric specification on it. The
previous period's choice, dt−1, is required because that determines how the “hatted” z's
evolve. The swarm of particles z{˜ }t r r

R
, =0 now approximates the distribution ∣p dz( )t t−1 .

18Thus, we do not allow the transitions of the observed state variables to depend on the realization of the unobserved
state variables. This is only for simplicity and is not a limitation of the SMC algorithm.
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2. For each r R= 1, … , compute ∣w p d d x x z= ( , , ˆ , ˜ )t
r

t t t t t r
( )

−1 , . The vector w{ }t
r

r

R( )
=1

is known as
the vector of importance weights. We can now approximate the integral in (20)
by ∑ w

R r

R
t
r1

=1
( ).

3. Draw a new swarm of particles z{ }t
r

r

R( )
=1

by drawing with replacement from z{˜ }t
r

r

R( )
=1
. Use the

normalized importance weights as sampling probabilities.
4. Set t t= + 1 and go to step 1.

Figure 1 presents a graphical representation of the SMC algorithm. The SMC starts at
time t − 1 with an unweighted measure Rz{˜ , }t

r
−1

( ) −1 , which provides an approximation of
∣p dz( )t t−1 1: −2 . For each particle, the importance weight is computed using the information

about the observed choice dt−1. The importance weight is given by the model's prediction of
the likelihood ∣p d z( ˜ )t t

r
−1 −1

( ) of observing dt−1 when the particle is z̃t
r
−1

( ) , properly renormalized.
This results in the weighted measure wz{˜ , ˜ }t

r
t
r

−1
( )

−1
( ) , which yields an approximation of

∣p dz( )t t−1 1: −1 . Subsequently, the resampling with replacement (or the selection) step selects
only the fittest particles to obtain the unweighted measure Rz{ , }t

r
−1

( ) −1 , which is still an
approximation of ∣p dz( )t t−1 1: −1 . Finally, the prediction step draws new varieties of particles
from the parametric process ∣p z z( )t t−1 , resulting in the measure Rz{˜ , }t

r( ) −1 , which is an
approximation of ∣p dz( )t t1: −1 . The measures Rz{˜ , }t

r
−1

( ) −1 and Rz{˜ , }t
r( ) −1 are the posterior

distributions of the unobservables we use in the numerical integration of the choice
probabilities (20).

At each iteration, we compute the per period probability of observing the data given by
Equation (20). Because this is done iteratively, starting from t = 0, we can eventually work our
way up to t T= and compute the entire likelihood given by (19). Repeating this process for
each individual for the data gives us the entire likelihood of the data. We can then estimate the
parameters via maximum‐likelihood.19

We use simulated maximum‐likelihood to estimate the parameters of ⋅ ⋅u c( ), ( )1 , the initial
values of z z,1 2, and z3, namely θ20–θ22 as described in (16)–(18), as well as their AR(1) auto‐
correlation coefficients and variance terms θ23–θ28 as described in (21)–(23). We compute the
standard errors using a bootstrap procedure. In each iteration of the procedure, a new random
seed is used to create a bootstrapped sample of individuals from the original roster. The
structural parameters are then re‐estimated using this bootstrapped sample. A total of 50
bootstrapped samples were used. For each structural parameter, the standard error is calculated
as the SD of the estimates from the 50 bootstrapped samples.20

5.3 | Estimation results

Table 7a,b present the estimation results. Panel A shows the estimated coefficients for u x z( , )it it1

as specified in (4). The estimates suggests that younger, higher income, healthier, and married

19We employed 64 particles in each swarm to integrate out the z's when computing the conditional choice probabilities.
We use 40 particles when computing the expected future value term. One evaluation of the likelihood takes about 2min
on an 8‐core, 2.5 GHz, 64 bit AMD computer while using all eight CPUs, and the entire estimation routine took about
4 days when starting from an initial guess of all zeros.
20See Olsson and Rydén (2008) for a discussion about the asymptotic performance of approximate maximum‐likelihood
estimators for state space models obtained via sequential Monte Carlo methods. It provides criteria for how to increase
the number of particles and the resolution of the grid to produce estimates that are consistent and asymptotically
normal.
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individuals and individuals with children have higher utility from purchasing new life in-
surance (and correspondingly, the opposite are more likely to lapse).21

Panel B in Table 7a presents the estimated coefficients for c x z x z(( , ), ( ˆ , ˆ ))it it it it as speci-
fied in (5). The estimates suggest that as ΔAge increases, the suboptimality cost increases,
meaning policyholders are more likely to reoptimize as age increases. As income increases,
the suboptimality also increases, meaning policyholders are more likely to reoptimize when
their incomes increase, but less likely when their incomes go down. The estimates also
suggest that individuals who experience negative health shocks have a lower suboptimality
penalty—meaning they are more likely to keep their existing policy. This result is consistent
with the empirical findings in He (2011) and the theoretical predictions of Hendel and
Lizzeri (2003). Finally, the estimates suggest that policyholders who get married are more
likely to reoptimize.

Panel C in Table 7b presents the estimated relationship, as specified in (16)–(18), between the
initial distributions of the three unobservables z z,10 20, and z30 and the indicator of whether the
individuals owned life insurance in 1994. The positive estimates for coefficients θ20 in (16) and θ22 in
(18) indicate that those who owned life insurance policies in 1994 tend to have higher values of
unobservable income and bequest motives; on the other hand, the negative estimate of coefficient θ21

in (17) indicates that the policyholders in 1994 tends to be healthier. This result is consistent with the
findings in Cawley and Philipson (1999), and most likely reflects survivorship bias as explained in He
(2009) and He (2011).

Panel D in Table 7b presents the estimates of the coefficients of the autoregressive processes
described in (21)–(23). The estimates for coefficients θ θ,23 25, and θ27 are all positive and significant
(both economically and statistically), suggesting that the unobservable income, health and bequest

FIGURE 1 A graphical representation of the sequential Monte Carlo algorithm. Source: Adapted from
Doucet et al. (2001, Chapter 1, p. 12) [Color figure can be viewed at wileyonlinelibrary.com]

21Although the coefficient on z(MARRIED + )3 and z(MARRIED + )3
2 nearly cancel each other out, the marginal effect

of MARRIED is still positive because z3 is positive on average.

FANG AND KUNG | 23

http://wileyonlinelibrary.com


motives shocks are rather persistent, though there are sizeable variations in the unobservables,
particularly the unobserved income.

5.4 | Model fit

Table 8 presents an assessment of the performance of the dynamic model with serially cor-
related unobservable state variables. We report in Panel A of Table 8 the comparisons between
the simulated model predictions regarding aggregate choice probabilities by wave and those in
the data. Our simulation is able to replicate the increase in the fraction of individuals without
life insurance coverage from 12.12% in 1996 to 22.86% in 2006, an increase that almost matches
what is in the actual data (from 11.92% in 1996 to 21.36% in 2006).22

TABLE 7a Estimation results from dynamic model with serially correlated unobservables

Estimate SE

Panel A: Coefficients for u x z( , )it it1

Constant θ( )0 −2.4438*** 0.0071

Age θ( )1 −0.0134*** 0.0001

Logincome +z1 θ( )2 0.0139*** 0.0007

Conditions +z2 θ( )3 −0.0358*** 0.0018

Married +z3 θ( )4 −1.1704*** 0.0105

Age2 θ( )5 0.0001*** 0.0000

z(Logincome+ )1
2 θ( )6 0.0070*** 0.0001

z(Conditions+ )2
2 θ( )7 0.0014*** 0.0001

z(Married+ )3
2 θ( )8 1.1663*** 0.0092

Has children θ( )9 0.0374*** 0.0022

Has children× Age of youngest child θ( )10 0.0046*** 0.0002

Panel B: Coefficients for c x z x z(( , ), ( ˆ , ˆ ))it it it it

Constant θ( )11 1.3024*** 0.0077

ΔAge θ( )12 0.1865*** 0.0007

(ΔAge)2 θ( )13 −0.0074*** 0.0000

zΔ(Logincome+ )1 θ( )14 0.0103*** 0.0006

z(Δ(Logincome+ ))1
2 θ( )15 −0.0003*** 0.0000

zΔ(Conditions+ )2 θ( )16 −0.0443*** 0.0014

z(Δ(Conditions+ ))2
2 θ( )17 0.0060*** 0.0002

zΔ(Married+ )3 θ( )18 0.0136*** 0.0010

z(Δ(Married+ ))3
2 θ( )19 0.0284*** 0.0025

Note: The specifications for u x z( , )it it1 and c x z x z(( , ), ( ˆ , ˆ ))it it it it are given in (4) and (5) respectively. For any variable x , xΔ is the
difference between the current value of x and x̂ , which is the value of x at the time when the respondent changed his
coverage. The annual discount factor β is set at 0.9.

*, **, and *** represent significance at 10%, 5%, and 1% levels, respectively.

22This is a significant improvement in model fit over an estimated alternative model without serially correlated
unobservables, which we report in the online appendix.

24 | FANG AND KUNG



TABLE 7b Estimation results from dynamic model with serially correlated unobservables

Estimate SE

Panel C: Initial distribution of unoversvables

z1: whether covered in 1994 θ( )20 2.7331** 0.1482

z2: whether covered in 1994 θ( )21 −10.3789*** 0.2273

z3: whether covered in 1994 θ( )22 0.4779*** 0.0358

Panel D: Transition distribution of unobservables

z1: autocorrelation θ( )23 0.6957*** 0.0158

z2: autocorrelation θ( )25 0.8765*** 0.0143

z3: autocorrelation θ( )27 0.4997*** 0.0655

z1: SD θ( )24 0.2623*** 0.0101

z2: SD θ( )26 0.0012*** 0.0001

z3: SD θ( )28 0.0793*** 0.0050

Log‐likelihood −9,164.13

Note: The specifications for u x z( , )it it1 and c x z x z(( , ), ( ˆ , ˆ ))it it it it are given in (4) and (5), respectively. For any variable x , xΔ is the
difference between the current value of x and x̂ , which is the value of x at the time when the respondent changed his
coverage. The annual discount factor β is set at 0.9.

*, **, and *** represent significance at 10%, 5% and 1% levels, respectively.

TABLE 8 Model fit for dynamic model with serially correlated unobservable state variables

Wave

1996 1998 2000 2002 2004 2006

Panel A: Aggregate choice probabilities by wave

Actual data

No life insurance coverage 0.1192 0.1421 0.1642 0.1889 0.1948 0.2136

Covered, but changed or bought new coverage 0.1493 0.1077 0.0963 0.0978 0.1123 0.0942

Covered, and kept existing coverage 0.7314 0.7500 0.7394 0.7131 0.6928 0.6920

Simulation using dynamic model with serially correlated unobservables

No life insurance coverage 0.1212 0.1423 0.1608 0.1789 0.2005 0.2286

Covered, but changed or bought new coverage 0.1698 0.1142 0.1046 0.1029 0.1023 0.1032

Covered, and kept existing coverage 0.7089 0.7434 0.7344 0.7180 0.6971 0.6681

Panel B: Cumulative outcomes for 1994 policyholders

Actual data

Lapsed to no life insurance 0.0455 0.0899 0.1358 0.1792 0.2094 0.2339

Changed coverage amount 0.0903 0.1472 0.1845 0.2080 0.2283 0.2489

Kept 1994 coverage 0.8641 0.7315 0.6137 0.5202 0.4491 0.3812

Policyholder died 0.0000 0.0312 0.0657 0.0924 0.1130 0.1358

Simulation using dynamic model with serially correlated unobservables

Lapsed to no life insurance 0.0459 0.0913 0.1317 0.1674 0.2003 0.2343

Changed coverage amount 0.1165 0.1798 0.2183 0.2445 0.2647 0.2816

Kept 1994 coverage 0.8375 0.6981 0.5876 0.4967 0.4229 0.3522

Policyholder died 0.0000 0.0306 0.0622 0.0913 0.1119 0.1318
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In Panel B of Table 8, we report the comparison between the simulated model predictions and
the data of the cumulative decision outcomes by wave for individuals who owned life insurance in
1994. By incorporating serially correlated unobservable state variables, we are able to capture the
pattern of a steadily increasing cumulative fraction of 1994 policyholders lapsing to no insurance in
the actual data. In the data, this cumulative fraction went from 4.55% in 1996 to 23.39% by 2006; in
our simulation, it goes from 4.59% in 1996 to 23.43% in 2006.

6 | COUNTERFACTUAL SIMULATIONS

In this section, we report the results from a large number of counterfactual simulations to
address two important questions. The first set of counterfactual simulations highlights the
importance of serially correlated unobserved state variables in explaining the patterns of life
insurance decisions observed in the data. The second set of counterfactual simulations attempts
to disentangle the contributions of income, health and bequest motives shocks, both observed
and unobserved, in explaining the observed lapsations.

It is useful to emphasize at the outset the nature of our counterfactual simulations. When we
remove the shocks, we are assuming that the market environment faced by consumers remains
unchanged from when all shocks are present. That is, our counterfactual simulation does not allow
for the market to re‐equilibrate to respond to the fact that there are now fewer shocks. In particular,
we must assume that the choice set of life insurance contracts that each individual faces in a given
state does not change. Thus our counterfactual simulations are a partial equilibrium exercise.

6.1 | The importance of serially correlated unobserved state variables

In this section, we report a series of counterfactual simulations to demonstrate the importance
of including serially correlated unobservable state variables. Panel A of Table 9 is identical to
the bottom subpanel of Panel B in Table 8 and it reports the model's predictions about the
cumulative outcomes for 1994 policyholders.

In Panel B of Table 9, we report the predictions of the model using the coefficient estimates
as reported in Panel A and B of Table 7, but under the counterfactual assumption that the
unobservable state variables did not change over time. It shows that without the shocks to the
unobserved state variables, the model is unable to match the sharply increasing cumulative
fraction of 1994 policyholders that lapse to no life insurance, and the model also over‐predicts
by a large margin the cumulative fraction of 1994 policyholders who kept their 1994 coverage.

In Panel C of Table 9, we report the predictions of the model using the coefficient estimates
as reported in Table 7, but under the counterfactual assumption that the observable state
variables stayed the same as their values in 1994, except for age, while keeping the changes in
the unobserved state variables. Surprisingly, assuming away the changes in the observable state
variables barely changes the model's predictions about the cumulative outcomes for 1994
policyholders.

In Panel D, we report the predictions of the model using the coefficient estimates of the
model as reported in Panel A and B of Table 7, but under the counterfactual assumption that
neither the unobservable state variables nor the observed state variables (except for age)
changes over time. Only i.i.d. choice specific shocks are retained in these simulations. The
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predictions in Panel D are very similar to Panel B where only changes in unobservable state
variables are eliminated.

The counterfactual simulations in Table 9 thus provide very strong evidence for the
importance of serially correlated unobservable state variables in explaining the choice patterns
in the data. Qualitatively, it plays a much more important role than the variations in the
observable state variables in capturing the key features in the data.

6.2 | Disentangling the contribution of income, health and bequest
motive shocks to lapsations

In this section, we present a series of counterfactual simulations aimed at disentangling the
contributions of income, health and bequest shocks, including both observed and unobserved
components, to the lapsation of life insurance policies observed in the data. We present our
results in four panels in Table 10. There are two sub‐panels in Panels A–C. Let us first discuss
Panel A, which illustrates the contribution of income shocks to the lapsation of 1994 policy-
holders. In the shaded subpanel, we use as baseline the model's prediction of the cumulative
lapsation rates of 1994 policyholders when only i.i.d. choice specific shocks are present (the first
row), and examine how the addition of income shocks increases the model's predicted lapsation

TABLE 9 Counterfactual simulations using the estimates of the dynamic model with serially correlated
unobservables: Cumulative outcomes for 1994 policyholders

Wave

Outcome 1996 1998 2000 2002 2004 2006

Panel A: All shocks included

Lapsed to no life insurance 0.0459 0.0913 0.1317 0.1674 0.2003 0.2343

Changed coverage amount 0.1165 0.1798 0.2183 0.2445 0.2647 0.2816

Kept 1994 coverage 0.8375 0.6981 0.5876 0.4967 0.4229 0.3522

Policyholder died 0.0000 0.0306 0.0622 0.0913 0.1119 0.1318

Panel B: No shocks to the unobserved state variables

Lapsed to no life insurance 0.0433 0.0651 0.0788 0.0889 0.0976 0.1071

Changed coverage amount 0.1171 0.1773 0.2150 0.2425 0.2666 0.2899

Kept 1994 coverage 0.8395 0.7267 0.6419 0.5719 0.5150 0.4571

Policyholder died 0.0000 0.0307 0.0641 0.0965 0.1207 0.1456

Panel C: No shocks to the observable state variables except for age

Lapsed to no life insurance 0.0428 0.0832 0.1186 0.1502 0.1809 0.2137

Changed coverage amount 0.1149 0.1768 0.2150 0.2416 0.2632 0.2819

Kept 1994 coverage 0.8421 0.7091 0.6033 0.5153 0.4419 0.3697

Policyholder died 0.0000 0.0307 0.0629 0.0927 0.1138 0.1345

Panel D: Only i.i.d. choice specific shocks

Lapsed to no life insurance 0.0353 0.0520 0.0622 0.0696 0.0761 0.0832

Changed coverage amount 0.1150 0.1728 0.2079 0.2330 0.2554 0.2778

Kept 1994 coverage 0.8496 0.7440 0.6644 0.5985 0.5445 0.4887

Policyholder died 0.0000 0.0310 0.0653 0.0987 0.1238 0.1501
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rates (the second row).23 Notice that the addition of income shocks to the i.i.d. choice specific
shocks leads to more lapsation. The incremental contribution of income shocks accounts for
about 6.75% of the total lapsation predicted by the model when all shocks are included in
1996.24 The incremental contributions of income shocks over time are reported in the third
row. It reveals that the importance of income shocks are increasing over time in explaining
lapsation. By 2006, income shocks alone were able to explain about 12.89% of the predicted
lapsation.

The bottom, unshaded, subpanel in Panel A uses a different baseline. The baseline is
instead the model's prediction of lapsation rates when all but income shocks are included

TABLE 10 Disentangling the contributions of income, health and bequest motive shocks to the lapsations of
1994 policyholders

Wave

1996 1998 2000 2002 2004 2006

Panel A: The Role of Income Shocks

[1] i.i.d. choice specific shocks only 0.0353 0.0520 0.0622 0.0696 0.0761 0.0832

[2] i.i.d. and income shocks only 0.0384 0.0613 0.0772 0.0897 0.1011 0.1134

[3] Incremental contribution of income shocks (%) 6.75 10.19 11.39 12.01 12.48 12.89

[4] All but income shocks 0.0415 0.0740 0.0988 0.1186 0.1365 0.1555

[5] All shocks included 0.0459 0.0913 0.1317 0.1674 0.2003 0.2343

[6] Incremental contribution of income shocks (%) 9.59 18.95 24.98 29.15 31.85 33.63

Panel B: The Role of Health Shocks

[1] i.i.d. choice specific shocks only 0.0353 0.0520 0.0622 0.0696 0.0761 0.0832

[2] i.i.d. and health shocks only 0.0409 0.0642 0.0793 0.0905 0.1002 0.1101

[3] Incremental contribution of health shocks (%) 12.20 13.36 12.98 12.49 12.03 11.48

[4] All but health shocks 0.0386 0.0701 0.0957 0.1178 0.1386 0.1617

[5] All shocks included 0.0459 0.0913 0.1317 0.1674 0.2003 0.2343

[6] Incremental contribution of health shocks (%) 15.90 23.22 27.33 29.63 30.80 30.99

Panel C: The Role of Bequest Motive Shocks

[1] i.i.d. choice specific shocks only 0.0353 0.0520 0.0622 0.0696 0.0761 0.0832

[2] i.i.d. and bequest motive shocks only 0.0352 0.0579 0.0739 0.0866 0.0980 0.1113

[3] Incremental contribution of bequest shocks (%) −0.22 6.46 8.88 10.16 10.93 11.99

[4] All but bequest shocks 0.0444 0.0759 0.0997 0.1187 0.1357 0.1526

[5] All shocks included 0.0459 0.0913 0.1317 0.1674 0.2003 0.2343

[6] Incremental contribution of bequest shocks (%) 3.27 16.87 24.30 29.09 32.25 34.87

Panel D: Contributions of i.i.d. Choice Specific Shocks

[1] Lower bound (%) 71.24 40.96 23.39 12.13 5.09 0.51

[2] Upper bound (%) 81.26 69.99 66.74 65.35 64.55 63.64

23Note that the first row numbers in Panel A of Table 10 are identical to the numbers in the first row of Panel D of
Table 9.
24That is, ∕ ≈(0.0384 − 0.0353) 0.0459 6.75%, where 0.0459 is lapsation rates predicted by the model when all shocks are
included (reported in the fifth row of the table, as well as Panel B of Table 8). The other percentages are calculated
analogously.
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(reported in the fourth row of Panel A). This baseline prediction is compared to the predicted
lapsation rates when all shocks are included (fifth row of Panel A). The difference is attributed
to the incremental contribution of income shocks (sixth row of Panel A). Using this baseline,
we see that the contribution of income shocks to lapsation is also increasing over time, from
9.59% in 1996 to 33.63% in 2006.25

Panel B of Table 10 carries analogous calculations to illustrate the contribution of health
shocks to the lapsations of 1994 life insurance policyholders. The shaded subpanel shows that if
we use the predicted lapsation rates with only i.i.d. choice specific shocks as the baseline, the
incremental contribution from adding health shocks using this baseline is more or less stable
over time, staying at about 12% throughout the years. If we use the predicted lapsation rates
when all but health shocks are included as the baseline, the incremental contribution from
adding health shocks goes from 15.90% in 1996 to 31% in 2006.26

Panel C of Table 10 shows the contribution of bequest motive shocks to life insurance
lapsation. As in Panels A and B, the top shaded subpanel calculates the incremental con-
tribution of bequest motive shocks using the predicted lapsation with only i.i.d. choice specific
shocks as the baseline, and the bottom subpanel uses the predicted lapsation with all shocks
except for bequest shocks as the baseline. We find that the importance of bequest motives in
explaining lapsation increases over time. In 1996 the bequest motive shocks explain between
−0.22% and 3.27% of the lapsation; but by 2006, it explains between 11.99% and 34.87% of the
lapsation.

Panel D of Table 10 bounds the contributions of i.i.d. choice specific shocks in explaining
the lapsations. The lower bounds are calculated as the residuals after subtracting the upper
bound contributions from income, health and bequest motive shocks.27 Panel D reveals that
lapsation of life insurance policies are largely driven by i.i.d. choice specific shocks for younger
individuals, but for surviving policyholders an ever larger fraction of lapsations is explained by
either income, or health, or bequest motive shocks.28 By 2006, between more than 1/3 to almost
100% of the lapsations are driven by one of these shocks.

To summarize, the simulations reported in Table 10 indicate that when individuals are
young, most of the life insurance policy lapses are driven by i.i.d. choice specific shocks,
and the rest is explained, in descending order of importance, by health shocks and income
shocks; the bequest motive shocks only account for a very minor fraction of lapsation.
However, as policyholders get older, the importance of the i.i.d. choice specific shocks
declines dramatically, and the three shocks eventually account for about the same fraction

25There are two other possible counterfactual baselines that we do not report. We could have used “i.i.d. choice
specific shock and health shocks” as baseline and contrast it with “i.i.d. choice specific shock, health shocks and
income shocks” (which is the same as “all but bequest motive shocks”). Alternatively, we could have used “i.i.d.
choice specific shock and bequest motive shocks” as the baseline and contrast it with “i.i.d. choice specific shock,
bequeest motive shocks and income shocks” (which is the same as “all but health shocks”). Note that the
information needed to carry out these calculations is presented in other rows in Table 10. For space reasons, we do
not present these calculations separately.
26It is worthwhile pointing out that the discrepancy in the results for different baselines is due to the nonlinearities in
our model.
27For example, we obtain 71.24% lower bound number for year 1996 from 1 − 9.59% − 15.90% − 3.27%, where 9.59%,
15.90%, and 3.27% are respectively the upperbound contributions of income, health, and bequest motive shocks
reported in Panels A to C. The other bounds are calculated analogously.
28The large role for i.i.d. shocks that we find is consistent with Gottlieb and Smetters (2020), who found that forgetting
to pay premiums is a significant driver of lapsation, since forgetfulness can be subsumed into our i.i.d. shocks to
lapsation.
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of lapsation (ranging from about 12% to around 30%). If anything, the bequest motive
shocks are more important in explaining lapsation among older individuals than the in-
come and health shocks.

6.3 | Policy implications

Our findings on the relative contributions of income, health, bequest motive, and i.i.d. choice
shocks to the lapsation rates of 1994 policyholders have implications regarding the possible
consumer welfare effects of emerging life settlement markets. As we mentioned in the In-
troduction, theoretical studies by Daily et al. (2008) and Fang and Kung (2010a, 2010b, 2020)
show that the reasons for lapsation will determine whether life settlement markets can improve
consumer welfare. Specifically, Fang and Kung (2010b) show that a key determinant for
whether consumers may benefit from life settlement markets is whether lapsation is driven by
factors that are positively correlated with the marginal utility of income. Thus, to the extent we
found in Section 5.3 that decreases in log income lead to a higher probability of lapsation, and
decreases in log income certainly lead to higher marginal utility of income, the fraction of
lapsation that can be attributed to changes in income, both observed and unobserved, should be
a potential source of welfare gain for consumers when life settlement markets are introduced.
On the other hand, lapsation driven by i.i.d. choice specific shocks are not positively correlated
to the marginal utility of income, and thus lapsation driven by i.i.d. choice specific shocks can
lead to a reduction in consumer welfare. Analogously, to the extent that health shocks and
bequest motive shocks are orthogonal to income shocks, and are thus not necessarily positively
correlated to the marginal utility of income, we suspect that the fractions of lapsation attri-
butable to these two shocks are likely sources for consumer welfare reduction when life set-
tlement is introduced.

Our finding that i.i.d. choice specific shocks explain the bulk of the policy lapsation when
individuals are relatively young (when they are in their early 60 s) suggests that life settlement is
likely to lead to a welfare loss for relatively young policyholders; but may lead to welfare gains for
older policyholders in their early seventies, as changes in income become a more important source
for lapsation. We should emphasize, however, that these implications from our analysis are only
suggestive; a more definite study of the welfare effect of the life settlement market would require
that we estimate a fully structural model of the behavior of both the consumers who choose life
insurance policies and the life insurance companies who offer such policies.

7 | DISCUSSION

We now discuss two important issues. The first issue is about the identification of the three
components of the serially correlated unobservable state variables intended to capture income,
health and bequest motive shocks. To the best of our knowledge, this is the first paper that allows
for more than one unobservable state variable. So a natural question is whether the distributions
of such unobservable state variables can be separately identified. This is obviously an important
question to be addressed in future research. For now, we would first like to emphasize that in this
paper, we tried to anchor the interpretation of these three shocks by restricting that each has the
same effect on behavior as their respective observable counterparts (see Section 5.1).
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To give further evidence that patterns in the data justify the inclusion of multiple dimensions of
serially correlated unobserved state variables, we also estimated a series of alternative models where
we include only a subset of the three shocks. In the same spirit of Heckman and Singer (1984) for the
case of unobserved types, we ask whether the inclusion of additional unobserved state variables
increases the log‐likelihood of the estimated model. In Table 11, we report the log‐likelihood of the
estimated models with various specifications of the unobservable shocks. In particular, the specifi-
cation labeled “All” corresponds to the model estimated in Section 5 where we include all three
unobservable state variables, and the specification labeled “None” corresponds to a model estimated
without any unobservable state variables. In specifications labeled 1–6, various combinations of the
three unobservable state variables are included in the estimation. From the last column in Table 11,
we can see that the inclusion of the additional unobservable state variables significantly increases the
log‐likelihood of the models. For example, in specifications 4–6, we estimated models with only one
of the unobservable state variables respectively. The log‐likelihoods of these models improve over
specification “None.” Similarly, in specifications 1–3, we estimated models with two of the three
unobservable state variables; and again, the log‐likelihoods of these models improve over specifica-
tions with only one of the unobservables. Finally, the log‐likelihood of the model with all three shocks
is higher than specification 1–3. The results in Table 11 show that the data indeed seems to be more
consistent with a model using all three serially correlated unobserved state variables.29

The second issue is regarding our finding that the importance of the unobserved state variables
in explaining lapsation increases over time. The concern is whether this is a mechanical result due
to the way we simulate the unobservable state variables using SMC. In particular, recall that the
initial distribution of the unobservable state variables is assumed to have smaller support than in
later periods (see Sections 5.1 and 5.2). While this is a possibility, we would like to make two
counter‐arguments. First, even though the unobservable state variables in the earlier periods have
smaller support (in fact, just one point support in the initial period), these points in the support
were chosen to best fit the data; thus there is no a priori reason that the unobservable state
variables in the early periods should have less impact just because they have a small support.

TABLE 11 Log‐likelihoods of various specifications of unobservable state variables

Serially correlated unobservables?

Specification Income? Health? Bequest motive? Log‐likelihood

All Yes Yes Yes −9164.13

1 No Yes Yes −9246.65

2 Yes No Yes −9233.80

3 Yes Yes No −9219.66

4 No No Yes −9274.13

5 No Yes No −9288.69

6 Yes No No −9285.87

None No No No −9338.59

29We also conducted formal likelihood ratio tests of the specifications 1‐6 and “None” against specification “All.” The
tests are all in favor of specification “All.”
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Second, if the simulated unobservable state variables were pure noise that the individuals do not
take into account, then the unobservables' importance in explaining the observed lapsations
should not have changed over time at all, that is, the importance should be about zero in all
periods. Thus the fact that the importance of the unobservable state variables were found to be
increasing over time is an indication that these simulated unobservable state variables are cap-
turing something informative.

8 | CONCLUSION

In this paper, we empirically investigate the contributions of income, health, and bequest motive
shocks to life insurance lapsation. We present a dynamic discrete choice model of life insurance
decisions allowing for serially correlated unobservable state variables. The model is designed to deal
with the data reality where researchers only observe whether an individual has made a new life
insurance decision (i.e., purchased a new policy, or added to/changed an existing policy) but do not
observe the actual policy choice or the choice set from which the new policy is selected. The
semistructural dynamic discrete choice model allows us to bypass these data limitations. We em-
pirically implement the model using the limited life insurance holding information from the
HRS data.

We deal with serially correlated unobserved state variables using posterior distributions of
the unobservables simulated from SMC methods. Relative to the few existing papers in the
economics literature that have used similar SMC methods, our paper is the first to incorporate
multi‐dimensional serially correlated unobserved state variables. To give the three un-
observable state variables in our empirical model their desired interpretations as unobserved
income, health, and bequest motive shocks, this paper proposes two channels through which
we can anchor these unobservables to their related observable variables.

Our estimates for the model with serially correlated unobservable state variables are sensible
and yield implications about individuals' life insurance decisions consistent with the both intuition
and existing empirical results. In a series of counterfactual simulations reported in Table 10, we
find that a large fraction of life insurance lapsation is driven by i.i.d. choice specific shocks,
particularly when policyholders are relatively young. But as the remaining policyholders get older,
the role of such i.i.d. shocks gets less important, and more of their lapsation is driven either by
income, health or bequest motive shocks. Income and health shocks are relatively more important
than bequest motive shocks in explaining lapsation when policyholders are young, but as they age,
the bequest motive shocks play a more important role. We also show that in the model with
unobserved state variables, the contribution of the shocks to unobservables is much larger than
the contribution of the shocks to observed state variables (Table 9).

Our empirical findings have important implications regarding the effect of the life settle-
ment industry on consumer welfare. As shown in theoretical analysis in Daily et al. (2008),
Fang and Kung (2010a, 2010b, 2020) and Fang and Wu (2020), the theoretical predictions about
the effect of life settlement on consumer welfare crucially depend on why life insurance pol-
icyholders lapse their policies. If bequest motive shocks are the reason for lapsation, then the
life settlement industry is shown to reduce consumer welfare in equilibrium; but if income
shocks are the reason for lapsation, then life settlements may increase consumer welfare. To
the extent that we find both income shocks and bequest motive shocks play important roles in
explaining life insurance lapsations, particularly among the elderly population targeted by the
life settlement industry, our research suggests that the effect of life settlement on consumer
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welfare is ambiguous. Unfortunately, our “semistructural,” partial equilibrium model of life
insurance decisions (which is necessitated by data limitations) is not suitable for a quantitative
general equilibrium evaluation of the welfare impacts of introducing a life settlement market.
This is an important, but challenging, area for future research.
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