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High-Speed Rail and China’s Electric Vehicle Adoption Miracle

Abstract

Using China’s expansion of the high-speed rail system (HSR) as a quasi-natural

experiment, we analyze the comprehensive vehicle registration data from 2010 to 2023

to estimate the causal impact of HSR connectivity on the adoption of electric vehicles

(EVs). Implementing several identification strategies, including staggered difference-in-

differences (DID), Callaway and Sant’Anna (CS) DID, and two instrumental-variable

approaches, we consistently find that, by alleviating range anxiety, the expansion of

HSR can account for up to one third of the increase in EV market share and EV sales in

China during our sample period, with effects particularly pronounced in cities served by

faster HSR lines. The results remain robust when controlling for local industrial poli-

cies, charging infrastructure growth, supply-side factors, and economic development.

We also find that HSR connectivity amplifies the effectiveness of charging infrastructure

and consumer purchase subsidies in promoting EV adoption.
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1 Introduction

During the past decade, countries around the world have elevated the development and

adoption of electric vehicles (EVs) to a central position in their strategies to reduce green-

house gas emissions and advance energy transition goals (Michalek et al., 2011; Holland

et al., 2016, 2019; Gillingham and Stock, 2018; Gillingham, Ovaere, and Weber, 2025).1 Sur-

prisingly, China emerged as the global leader, miraculously achieving a market share of up

to 45% for EVs among new vehicle purchases in 2024, compared to 25% in Europe and 11%

in the United States.

Although subsidies and industrial policies are widely credited for China’s EV success,

the critical role of complementary transportation infrastructure investments is often under-

explored. More specifically, range anxiety, a key factor influencing consumer decisions on

EV adoption, can be mitigated either directly through improvements in battery capacity

and the expansion of charging facilities, or indirectly by offering seamless alternative trans-

portation options for long-distance travel. While most countries focus on the advancement

of battery technology and the expansion of charging networks, the potential of alternative

transportation infrastructure to accelerate the EV adoption remains largely overlooked.

In this paper, we empirically examine the hypothesis that the rapid expansion of China’s

high-speed rail (HSR) system since 2008 serve as a complement to EVs, providing an efficient

solution for medium- to long-distance travel and addressing the range anxiety of EVs, thus

accelerating the EV adoption. Reflecting this strategic complementarity, China’s EV market

share expanded from near zero in 2010 to around 25% (excluding hybrid vehicles) in 2023,

alongside the rapid expansion of its HSR network, which exceeded 45,000 km in the same

year, as shown in Panel A of Figure 1. In this study, we examine the causal relationship

between China’s HSR expansion and EV adoption to understand the role of transportation

infrastructure in the advancement of sustainable mobility.

[Figure 1 About Here]

Recent tariffs by the United States and the European Union targeting China’s EV in-

dustry reflect the intensification of competition in the global EV market.2 Many coun-

tries criticize China’s subsidies and industrial policies, but attributing her dominance in

1According to the International Energy Agency (2024), governments in major markets have escalated
their commitments by raising EV adoption targets and investing heavily in supply chains for vehicles, bat-
teries, and critical minerals, with combined global spending on EVs surpassing USD 400 billion in 2022.

2On September 13, 2024, the United States announced a 100% tariff increase on Chinese EV imports,
citing the need to protect strategic domestic industries from what it perceives as unfair competition. Sim-
ilarly, on October 30, 2024, the European Commission imposed a five-year anti-subsidy duty on Chinese
EV imports, claiming that government support has provided Chinese manufacturers with a competitive
advantage.
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the EV market solely to these factors oversimplifies a complex situation. In fact, mone-

tary incentives—such as tax credits (Beresteanu and Li, 2011; Sallee, 2011; Li et al., 2017;

Jenn, Springel, and Gopal, 2018), rebates (DeShazo, Sheldon, and Carson, 2017), and price

subsidies (Springel, 2021)—alongside nonmonetary drivers such as technological innovation

(Forsythe et al., 2023), rising gasoline prices (Beresteanu and Li, 2011), and expanded charg-

ing infrastructure (Levinson and West, 2018), can significantly enhance the EV adoption.

However, these factors are neither unique to China nor sufficient to explain its rapid rise

as the world leader in the production and sales of electric vehicles. For example, despite

implementing comparable subsidy programs, the United States and Europe continue to lag

far behind China in EV adoption rates. This raises several questions: What unique factors

distinguish China’s EV market? How do these factors interact with industrial policies to

shape market dynamics and consumer behavior? Examining these interactions is the key to

understanding the rapid expansion of the Chinese EV industry.

China’s HSR network has several unique features that offer a valuable opportunity to

address these questions. First, as the largest and one of the world’s fastest HSR systems,

it offers unparalleled connectivity, enabling people to travel conveniently to nearly any city

in the country. This extensive and well-integrated network serves as a reliable complement

to EVs, alleviating range anxiety by offering an efficient option for medium to long-distance

travel. Second, the gradual expansion of HSR across cities allows a staggered Difference-

in-Difference (DID) approach to evaluate its causal impact on EV adoption. Third, the

significant variation in HSR characteristics across cities, including network length, number

of lines, and train speeds, provides a valuable opportunity to examine the heterogeneity in

the impacts of HSR connectivity. Together, these features make China’s HSR network an

ideal setting for investigating the causal relationship between infrastructure development

and EV adoption.

Our analysis is based on a city-month panel dataset comprising new and pre-owned ve-

hicle registrations and insurance records from 328 prefectural cities in China, covering the

period from 2010 to 2023. Our primary identification strategy employs a staggered DID

approach, leveraging the variation in the timing of HSR introduction across cities as a quasi-

natural experiment. Specifically, we compare changes in EV market share and sales before

and after HSR implementation in treatment cities (those newly connected to HSR) with

those in control cities (those not yet connected). We also account for time-varying fac-

tors and city-specific characteristics that may confound the results. Our results show that

HSR connectivity significantly increases EV market share and sales (volume), with aver-

age increases of 1.22 percentage points and 91.39%, respectively. Using the Callaway and

Sant’Anna DID (CSDID) estimator (Callaway and Sant’Anna, 2021), which addresses con-

cerns about treatment effects varying over time and/or across cohorts, we continue to observe
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robust and consistent results. Our dynamic analysis further validates the parallel pre-trends

assumption, showing no significant differences in EV market share between treatment and

control cities before HSR introduction; moreover, following HSR connectivity, a significant

treatment effect emerges, with EV market share increasing by 1 percentage point initially

and growing to 3.7 percentage points over time, reflecting sustained and intensifying growth.

To further address potential endogeneity concerns in estimating the impact of HSR con-

nectivity on EV adoption, we complement the DID framework with an instrumental variable

(IV) approach. The IV approach employs two plausible instruments for a city’s HSR con-

nectivity: first, the historical railway network from 1962, reflecting centralized planning

objectives unrelated to modern transportation needs; and second, the least-cost straight-line

network, which captures geographic and cost-driven variations in HSR connectivity. These

instruments are strongly correlated with the timing of a city’s HSR development, but are

plausibly unrelated to unobserved factors that may affect EV adoption, satisfying the rel-

evance and exclusion restriction criteria for valid IVs. By isolating exogenous variation in

HSR expansion, the IV approach also reveals a significant and positive causal relationship

between HSR connectivity and EV adoption. We also implement an alternative IV estimate

using the Borusyak and Hull (2023) approach, where we replace the binary HSR treatment

indicator by the associated growth in “market access” from HSR expansion; and we also find

consistent results.

We then explore the possible competing and/or complementary mechanisms underlying

the relationship between HSR connectivity and EV adoption, focusing on local industrial

policies, charging infrastructure growth, supply-side factor and regional economic develop-

ment. We find that consumer purchase subsidies are particularly effective in cities with HSR

connectivity, highlighting the complementary role of HSR connectivity and policy support

in driving the adoption of EVs. We also find that HSR remains an important driver of EV

adoption after controlling for improvements in regional infrastructure, such as EV charging

stations and road upgrades, as well as the entry of EV manufacturers and car dealerships.

In addition, we find a positive interaction effect between HSR connectivity and charging in-

frastructure, which suggests that HSR connectivity amplifies the impact of charging stations

on EV adoption.

This paper directly contributes to two main strands of literature. First, it adds to the

growing literature on the EV market. Monetary incentives, such as purchase subsidies, tax

exemptions, and rebates, have been extensively analyzed for their effectiveness in promoting

EV adoption (Sallee, 2011; Gallagher and Muehlegger, 2011; Huse and Lucinda, 2014; Li

et al., 2017; Gulati, McAusland, and Sallee, 2017; Jenn, Springel, and Gopal, 2018; Springel,

2021; Xing, Leard, and Li, 2021; Armitage and Pinter, 2021; Muehlegger and Rapson, 2022;

Remmy, 2024; Barwick et al., 2023; He et al., 2023; Guo and Xiao, 2023). Non-monetary
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incentives, which reduce the marginal cost of EV usage, have also been shown to play a sig-

nificant role (Li et al., 2022; Liu et al., 2023). Examples of non-monetary incentives include

benefits such as free parking, toll reductions, exemptions from green license plate fees, access

to bus and high-occupancy vehicle (HOV) lanes, exemptions from driving and purchasing

restrictions (which is particularly relevant in China), and improvements to charging infras-

tructure (Bakker and Trip, 2013; Hackbarth and Madlener, 2013; Ajanovic and Haas, 2016;

Wang, Pan, and Zheng, 2017; Ma, Fan, and Feng, 2017; Li et al., 2017; Jenn, Springel, and

Gopal, 2018; Li, 2023; Springel, 2021; Dorsey, Langer, and McRae, 2022; Fournel, 2023; Li,

Walls, and Zheng, 2023; Tian, 2024). Beyond these incentives, other studies have examined

the effects of gasoline prices and regulatory bans on gasoline vehicles, which are increasingly

shaping the EV market (Beresteanu and Li, 2011; Allcott and Wozny, 2014; Forsythe et al.,

2023). Davis (2023) documents that EVs overwhelmingly tend to be in multi-vehicle house-

holds in the United States, presumably because many households perceive EVs to suffer

from range limitations and the ability to substitute them with gasoline-powered vehicles for

longer trips alleviates such concerns. Thus, the gasoline-powered vehicle serves as a com-

plement to EVs to alleviate concerns about range limitations. Our paper is unique in that

it examines the impact of China’s high-speed rail system, which was planned before the EV

take-off, thus not specifically designed as a policy to accelerate the adoption of EVs. Our

findings underscore the potential complementarity between the high-speed rail system and

EV adoption by addressing critical barriers such as range anxiety. In addition, Davis (2019)

find that in multi-vehicle households, electric vehicles are driven considerably fewer miles

per year on average than gasoline- powered vehicles, which undermines the environmental

benefits of EVs. The wide availability of HSR in China provides a cleaner antidote to range

anxiety associated with EVs than gasoline-powered vehicles. Our findings thus offer valu-

able lessons for the design of integrated strategies to accelerate EV adoption and foster more

environmentally sustainable transportation systems around the world.

Second, this study contributes to the large body of literature on the economic impacts

of HSR. Extensive research has highlighted the social and economic benefits of transporta-

tion infrastructure, such as roads and railways, examining their effects on urban growth,

spatial structure, congestion reduction, and trade costs (Baum-Snow, 2007; Duranton and

Turner, 2011, 2012; Zheng and Kahn, 2013; Faber, 2014; Baum-Snow et al., 2017; Donaldson

and Hornbeck, 2016; Donaldson, 2018). Within this body of research, HSR stands out as a

transformative mode of transportation with wide-ranging effects. Studies have documented

its role in improving intercity mobility (Chen, 2012; Tierney, 2012), promoting market inte-

gration (Zheng and Kahn, 2013), reducing greenhouse gas emissions (Guo et al., 2020; Lin

et al., 2021; Barwick et al., 2024), fostering economic development through increased popula-

tion density, employment opportunities, and improved access to the labor market (Levinson,
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2012; Lin, 2017; Ahlfeldt and Feddersen, 2018), and improving competition and quality of

service in the airline industry (Fang, Wang, and Yang, 2024). Research also suggests that

HSR disproportionately benefits larger cities, strengthening their economic ties while offer-

ing limited benefits to smaller or less developed regions (Qin, 2017). This study expands our

understanding of the broader economic and environmental impacts of HSR by examining its

underexplored role in facilitating EV adoption. The findings highlight the potential of HSR

to accelerate sustainable mobility transitions, offering key policy insights on optimizing HSR

investments to maximize both economic and environmental benefits.

The remainder of the paper is organized as follows. Section 2 provides an overview of

the EV industry and the HSR network in China; Section 3 details the datasets and presents

summary statistics; Section 4 describes the empirical strategies and reports the main findings;

Section 5 explores the potential competing and/or complementary mechanisms driving the

results; Section 6 conducts robustness checks and heterogeneity analysis; Section 7 concludes.

2 Background

2.1 China’s EV Market and Policy Evolution

During the past decade, China’s EV industry has undergone several stages of devel-

opment, driven by a combination of technological progress, market forces, and supportive

initiatives. Early R&D initiatives and pilot programs, such as the “Ten Cities, Thousand

Vehicles” launched in 2009, provided the early momentum for consumer awareness and adop-

tion. Between 2013 and 2015, purchase subsidies and tax incentives, which mainly targeted

public institutions and buses, began to increase the visibility of EVs among private con-

sumers in first-tier cities. Tesla’s entry into the Chinese market in 2014 further sparked

public interest and strengthened the development of the domestic supply chain for EV pro-

duction. Although overall sales remained relatively modest during this period, these factors

helped generate consumer interest, promote competition, and lay the foundation for the

development of the industry.

Between 2016 and 2018, a strategic reduction in government fiscal support marked a

shift toward fostering market competition and technological innovation, redirecting the fo-

cus from subsidies to a more sustainable, market-driven growth model. In 2018, China’s

EV sales exceeded one million units. We show that during this period, China’s continued

expansion of its HSR network had an unintended impact on consumers’ EV adoption. The

availability of convenient HSR routes for medium- to long-distance travel redefined the role

of personal vehicles, with many consumers focusing on their EV use for daily commuting

and short-distance trips. This shift in travel patterns fostered a supportive environment for
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the adoption of EVs, particularly models with moderate battery range, in areas where both

HSR and urban charging infrastructure were well established.

From 2019 to 2021, improvements in vehicle range and technology contributed to the

growing appeal of EVs. Combined with improving affordability and the continued rollout

of public charging stations, these advancements helped push China’s annual EV sales to

three million units in 2021. At the same time, HSR continued its nationwide expansion,

reinforcing the idea that many medium- and long-distance trips could be handled by trains,

thereby making EVs an increasingly practical choice for everyday mobility. By 2022, China’s

EV market had begun to mature, with production reaching 7.06 million units and sales 6.89

million units, and EVs accounted for almost a third of new vehicle sales. In 2024, EVs

accounted for 45% of all new car sales in China. As subsidies were phased out, infrastruc-

ture development, such as charging networks and battery-swapping facilities, supported the

growth of the EV sector. The shift from subsidy-driven to market-driven dynamics, driven

by competition, technology, and HSR-influenced consumer preferences, transformed the in-

dustry into a competitive and technologically advanced global leader in EV production and

adoption.

2.2 HSR Network in China

Over the past two decades, China’s HSR network has emerged as the largest and most

extensively utilized HSR system in the world, accounting for more than 70% of the global

HSR mileage. Operating at speeds of 250 to 350 kilometers per hour, the network has

expanded significantly in both geographic reach and service capacity. By the end of 2023, the

HSR network spanned 45,000 kilometers, connecting 96% of the cities that have populations

exceeding 500,000. Our dataset covers comprehensive details on network coverage, line

lengths, and connectivity attributes. In addition to this, the conventional railway system

extends 160,000 km, ensuring connectivity to 99% of all cities with populations greater than

200,000.3 China now leads the world in operational mileage, ongoing construction scale, the

number of high-speed trainsets in service, and commercial operating speeds.

The rapid expansion of China’s HSR network has been a cornerstone of the country’s

broader strategy to modernize transportation infrastructure, improve regional accessibility,

and promote economic integration. Structured under the “Eight Vertical and Eight Hori-

zontal” framework, the network consists of eight north-south and eight east-west corridors

designed to connect major cities and facilitate the flow of people and goods across key eco-

nomic regions. This framework is part of the Long-Term Railway Network Plan, initiated

in the early 2000s and updated every five years to align with evolving economic and de-

3Source: https://www.gov.cn/yaowen/liebiao/202401/content 6925054.htm
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mographic priorities. By 2023, 80% of the planned “Eight Vertical and Eight Horizontal”

HSR corridors were operational, reflecting substantial progress in achieving the network’s

strategic development goals. Figure 2 presents the geographic expansion of the HSR network

between 2003 and 2023.

[Figure 2 About Here]

3 Data and Summary Statistics

3.1 Vehicle Sales Data

Our analysis utilizes a city-month-level panel dataset of vehicle sales, including both new

and pre-owned, spanning January 2010 to December 2023 in 328 prefectural cities. The data

from 2010 to 2015 are derived from official vehicle registration records, while data from 2016

to 2023 are sourced from Compulsory Traffic Accident Liability Insurance records. This

panel dataset provides comprehensive information on sales volumes and market shares by

powertrain type, capturing spatial and temporal dynamics in market trends.

In this paper, we classify vehicles into three categories: pure battery-powered EVs, fuel-

powered vehicles (referred to as fuel vehicles or FVs), and hybrid vehicles. Our primary focus

is on how HSR alleviates range anxiety for potential EV buyers; hybrid vehicles’s dual-fuel

capability significantly reduces range anxiety, making HSR less relevant as a complementary

transportation option for these vehicles. As such, only pure battery-powered vehicles are

classified as EVs in the baseline analysis.4

We use two primary measures to evaluate the adoption of a specific type of vehicle: sales

volume and market share. Sales volume is defined as the total number of units sold for the

vehicle type within each city-month cell, while market share is calculated as the percentage

of the vehicle type’s sales relative to the total vehicle sales in the same city-month cell.

Panels A and B of Table 1 present the summary statistics for the adoption measures at the

city-month level, both for the full sample of 328 cities and for a subsample that excludes

cities connected by HSR before 2015. Figure 1 presents trends in the EV market share

and its relationship with HSR connectivity. Panel A shows the national trajectory of EV

adoption along with the expansion of HSR from 2010 to 2023, with EV data derived from

the China Stock Market & Accounting Research (CSMAR) database.5 The EV market share

remained negligible until 2015, followed by a gradual increase through the late 2010s and a

sharp acceleration after 2020. Meanwhile, the HSR network expanded steadily over the entire

4To ensure the robustness of our findings, we include hybrid vehicles as a placebo test in Section 6 to
provide further validation and consistency of the results.

5https://data.csmar.com/.
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period, showing consistent linear growth. Panel B examines the market share of EVs in cities

according to the timing of their HSR connections, based on the vehicle sales data used in

our analysis. Cities with earlier HSR connections saw earlier and more sustained adoption,

while those connected later exhibited a delayed but comparable rise. Cities without HSR

connectivity experienced slower growth, with a noticeable increase only after 2020. These

patterns suggest that HSR connectivity plays a role in accelerating EV adoption, with the

timing of connection influencing the pace of growth.

[Table 1 About Here]

3.2 Supplementary Data Sets

To investigate several competing and/or complementary mechanisms, we collect addi-

tional data sets that capture both demand and supply side factors. Specifically, we examine

whether the registrations of EV-related firms and the improvements in regional infrastruc-

ture, such as enhanced road networks and expanded EV charging stations, contributed to

the increase in EV market share. The data set for EV charging facilities contains the geo-

graphic locations of charging stations across China and is constructed using historical map

data from Gaode Maps, covering the period from 2010 to 2023.6 From the Gaode Maps plat-

form, we systematically extract the geographic coordinates of key points of interest (POIs)

associated with EV charging stations in each city using geographic information system (GIS)

techniques. This allows us to further construct a detailed city-year panel dataset that cap-

tures the temporal and spatial evolution of EV charging infrastructure in China’s major

urban areas. Figure 3 illustrates the expansion of China’s EV charging infrastructure and

road network from 2010 to 2023. The expansion of charging stations has been steady but

accelerated markedly after 2018, with the most significant growth observed in 2018, when

the number increased by over 300%, rising from 5,952 in 2017 to 23,869 in 2018. The number

of charging stations in the 328 sample cities grew significantly from 3,277 in 2015 to 74,469

in 2023, suggesting the possible role of the rapid expansion of charging infrastructure in

support of the adoption of EVs.7

[Figure 3 About Here]

To account for regional variations in road infrastructure investments over time, we compile

a comprehensive city-year level dataset of road network information for the period 2010–2023.

6Gaode Maps (https://www.amap.com/) is a leading electronic mapping service provided by Gaode Soft-
ware Co., Ltd., widely recognized as one of the most prominent map services in mainland China.

7Each charging station typically consists of multiple charging piles and functions as a designated facility
for recharging EVs. By 2023, China had more than 8 million charging piles nationwide.
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Covering 328 cities at the prefecture level, this dataset is sourced from the China Statisti-

cal Yearbook, the China City Statistical Yearbook, and various provincial and municipal

statistical yearbooks. It includes granular information on road types, lengths, and network

connectivity, classified into highways, national roads, local roads, and graded versus un-

graded roads. Figure 3 also illustrates that the length of China’s road network increased

steadily and consistently throughout the period.

In addition, to analyze supply-side responses, we use firm registration data from the Chi-

nese State Administration for Industry and Commerce (SAIC). The firm registration data

includes almost the universe of registered firms in China from the founding of the People’s

Republic of China.8 This dataset provides detailed firm-level information, including geo-

graphic location, years of establishment and exit (if applicable), registered capital, etc. We

construct city-month level (cumulative) counts of the EV manufacturers and car dealerships

to control for the supply-side effects. Lastly, to capture regional economic and demographic

dynamics that may shape the EV adoption, we collect city-year data on GDP, population

growth, and local fiscal expenditure for the period 2010–2023 from the China City Statistical

Yearbook. The summary statistics for these variables are presented in Panel C of Table 1

and Appendix Table A1.

3.3 Industrial Policy Data

It is important to consider the role of various government policies that may have played

an important role in both the development of the EV industry and the adoption of EVs. We

use systematic coding of industrial policies using large language models (LLMs) based on

government documents from Fang, Li, and Lu (2024), from which we extract 15,513 indus-

trial policies targeting the EV industry for the period from 2010 to 2022. For each policy

document, the dataset includes detailed information on the issuing government (including

central, provincial, or city), policy tone (supportive, regulatory, or discouraging), classifica-

tion of policy tools (see below for details), and other relevant attributes. Among the 15,513

industrial policy documents related to EVs, 2,045 were issued by the central government,

5640 by provincial governments, 7,413 by city-level governments, and 389 by county- or

township-level governments. Since we focus on city-level variations in EV adoption rates in

this paper, it is natural to incorporate only the 7,413 industrial policy documents issued by

city-level governments; in particular, we focus on 6,476 of the 7,413 policy documents issued

8The firm registration data has been used in many studies. See, e.g., Fang et al. (2024) for a detailed
description of the dataset.
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by city-level governments that have a supportive tone.9, 10

To investigate the mechanisms through which the HSR network interacts with indus-

trial policies, we separately analyze demand- and supply-side policy tools. Demand-side

policies are classified into three types: consumer incentives, such as purchase subsidies and

sales tax reductions; public procurement by government agencies or public institutions; and

government-sponsored trade fairs and promotional events. On the supply side, we identify

four policy tools: R&D policies (which promote technology development through subsidies,

tax benefits, and public-private partnerships); investment policies (which aim to attract

foreign and regional investment); industrial cluster policies (which promote supply chain

integrations through special economic zones); and entry promotion policies (which include

market regulations, entrepreneurship incentives, and other measures to improve the busi-

ness environment). In our empirical analysis below, we will examine the effects of these

city-level industrial policies on EV adoption, particularly their interaction effects with HSR

connectivity.

4 Empirical Methods and Results

4.1 Identification Challenges and Strategies

One of the main objectives of this paper is to estimate the effect of HSR connectivity

on EV adoption. However, establishing causality is challenging due to the omitted variable

bias and reverse causality. The omitted variable bias arises when unobserved factors, such

as local consumers’ preferences for clean environment, can simultaneously lead to greater

HSR investment and higher EV adoption. For example, cities experiencing rapid economic

growth and launching new infrastructure projects may simultaneously build HSR lines and

witness rising EV usage due to higher incomes and greater environmental awareness. Reverse

causality further complicates identification, as regions with higher EV penetration may indi-

rectly drive demand for HSR development, reflecting preexisting preferences for sustainable

transportation or economic characteristics.

For simplicity, we first employ a staggered DID approach as our baseline model. We

start with a simple Two-Way Fixed Effect (TWFE) regression, which facilitates a flexible

analysis of the impact of control variables on EV adoption and, more importantly, the

interaction effects between HSR and key factors such as charging infrastructure expansion

9While high-level national initiatives are prevalent during the sample period, we emphasize local actions
because market dynamics and consumer behavior are primarily shaped by local policy implementations. Note
that national-level policies related to EVs, including consumer purchase subsidies, are effectively captured
in our empirical models through time fixed effects.

10Figure A1 presents the word cloud generated from the identified EV policy documents, where the size
of each word represents its relative frequency within the text.
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and industrial policies. However, it is important to note that TWFE estimators can be

subject to potential biases in the presence of variation in treatment timing and dynamic

treatment effects (Callaway and Sant’Anna, 2021). The issue arises in part because TWFE

estimates incorporate already-treated units as part of the control group. To the extent that

already-treated units exhibit systematically higher growth in outcomes of interest relative to

the yet untreated units, incorporating them as controls can bias point estimates toward zero.

This concern is particularly relevant in our setting, as HSR expansion has spanned a long

time horizon from 2003 to the present. However, the EV market was virtually nonexisting

until 2015, with a market share of just 0.06% in 2014 and less than 0.2% in 2015. By the

time the EV market began to develop in 2015, 155 cities were already connected to the

HSR network.11 As illustrated in Figure 1, these cities were the earliest participants in

the EV market. Benefiting from more advanced transportation networks, higher consumer

awareness, and better infrastructure, they have experienced faster growth in the EV market

share over time. If we employ a simple TWFE estimator to implement the staggered DID

approach, these early connected cities would be classified as the treated group for the entire

market growth period, thus serving as the control group for the later connected cities in the

staggered DID design, which can bias the true treatment effect.12

To mitigate potential biases inherent in the TWFE estimator and strengthen the ro-

bustness of our findings, we employ a comprehensive set of empirical strategies. First, in

the baseline analysis, we exclude cities with HSR stations established before 2015, which

improves comparability between the treatment and control groups and mitigates the poten-

tial bias arising from the inclusion of the always-treated cities as part of the control group.

Second, we use the heterogeneity-robust semi-parametric CSDID estimator for staggered

treatment timing, as proposed by Callaway and Sant’Anna (2021), to account for variations

in treatment effects across city groups and over time. By aggregating treatment effects by

event year, the CSDID estimator also allows us to estimate the dynamic treatment effect.

Because the CSDID estimator effectively mitigates biases from the dynamic treatment effect,

only the always-treated group, i.e. cities connected to HSR before 2010, are excluded from

the estimation sample.

In addition, we adopt two alternative empirical strategies to address concerns about the

potential endogenous timing of the HSR expansion and to demonstrate the robustness of

our results. First, we employ an IV approach that isolates exogenous variation in HSR

connectivity, drawing on two well-established instruments in the literature: the historical

11Appendix Table A1 provides detailed statistics for three subsamples: 155 cities connected to HSR before
2015; 107 cities connected in and after 2015; and 66 cities not yet connected to HSR. These early connected
cities differ considerably from their later connected and unconnected counterparts in terms of local economic
conditions, industrial composition, and geographic characteristics (Fang, Wang, and Yang, 2024).

12In Appendix A, we follow Goodman-Bacon (2021) and decompose the traditional TWFE estimator into
a set of 2-by-2 DID estimators over the entire sample period to illustrate the source of bias.
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railway network from 1962 (Baum-Snow, 2007; Duranton and Turner, 2011, 2012; Baum-

Snow et al., 2017; Agrawal, Galasso, and Oettl, 2017) and a least-cost straight-line network

connecting major target cities (Banerjee, Duflo, and Qian, 2020; Faber, 2014; Hornung,

2015). Using these two IVs to instrument for the HSR expansion over the sample period,

we are able to causally identify the cumulative effect of the HSR expansion on EV adoption.

Second, we employ an alternative treatment measure by calculating the “market access”

(MA) growth induced by HSR expansion. MA is a continuous measure of the connectivity

of the transportation network, incorporating information on the geographical distribution of

economic activities and the reduction in travel time facilitated by HSR; as such, it captures

a richer effect than the binary treatment measure of whether the city has been connected to

the HSR. Endogeneity concerns may arise due to the non-random selection of HSR stations

and the non-random exposure to shocks due to omitted geographic characteristics. As such,

we follow Borusyak and Hull (2023) to construct an IV for this measure by recentering the

measure around its expectation under a random counterfactual shock assignment process.

The recentered treatment measure isolates the variation in HSR-induced MA growth that

is not related to unobserved confounders, allowing us to causally identify the impact of

HSR-induced MA growth on EV adoption.

4.2 Baseline Results: Staggered DID

We first use a staggered DID approach that takes advantage of the rapid and phased

expansion of the HSR network across Chinese cities. This rollout is treated as a plausibly

exogenous source of variation in complementary transportation infrastructure. By compar-

ing changes in EV adoption before and after HSR implementation in cities receiving HSR

connections to those in cities not yet connected during the study period, we aim to estimate

the causal impact of HSR connectivity on EV adoption.

For illustration, consider cities that initially lacked HSR connections, where consumers

were concerned about range anxiety due to the limitations of EV battery distance for long

trips. Before the introduction of HSR, long travel times and the inability to cover long

distances could easily discourage EV adoption in favor of FVs. With the introduction of

HSR, travel times are significantly reduced, making long-distance travel more convenient and

alleviating range anxiety. In this context, cities with newly established HSR connections can

serve as the treatment group, while cities without HSR connections act as the control group.

The availability of HSR enables consumers to use EVs for daily short-distance travel while

relying on HSR for longer trips. This combination enhances the practicality of EVs, alleviates

concerns about limited battery range, and encourages greater EV adoption. HSR acts as a

complement to EVs and a substitute for FVs for medium- and long-distance intercity travel.

By comparing changes in EV adoption before and after the introduction of HSR in both
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treatment and control cities, we can estimate the causal impact of HSR on EV adoption.

4.2.1 TWFE Estimation Results

For simplicity, we start with the conventional TWFE model. The regression model is

specified as follows:

Yi,ym = α + βTreatmenti,ym + θi + δym + ϵi,ym, (1)

where Yi,ym represents the share of sales of a specific type of vehicle (i.e., EV or FV) among

all vehicles, or the logarithmic sales of that vehicle type, in city i during the year-month

period ym; Treatmenti,ym is a dummy variable that takes the value 1 if city i has established

an HSR connection by year-month ym; θi represents city fixed effects, which account for time-

invariant unobserved characteristics of each city that could affect EV sales (such as consumer

preferences or regional differences in market structure); δym represents year-month fixed

effects, which control for common shocks or trends that affect all cities during a given period,

such as macroeconomic conditions, seasonal effects, or nationwide policies that impact all

cities; and ϵi,ym is the error term.13 Standard errors are clustered at the city level to account

for potential autocorrelation or heteroskedasticity in the residuals. The main coefficient of

interest is β, which captures the differential effect of the introduction of HSR on EV adoption

measures in treatment cities compared to control cities.

[Table 2 About Here]

Column (1) of Table 2 presents the results. The coefficient estimate of Treatment is

positive and statistically significant at the 1% level, indicating that HSR connectivity is

associated with a 1.22 percentage point increase in EV market share, providing initial evi-

dence of the impact of HSR connectivity on the adoption of EVs. A 1.22 percentage point

increase is significant, as the average EV market share during the sample period was only

4% (as shown in Table 1). Notably, this estimate likely represents a lower bound, as the

initial increase in EV adoption facilitated by HSR connections may create a multiplier effect.

We will show later in Table 7, that increased EV adoption spurs the development of more

charging infrastructure, further accelerating EV adoption in a self-reinforcing cycle.14

13We do not include province by year-month fixed effects because the connection of HSR often impacts
multiple cities in the same province at the same time. Including province by year-month fixed effects would
absorb some of the effects of HSR connectivity on EV adoption, leading to a downward bias.

14Columns (2)-(6) of Table 2 report the regression results that include various control variables, such as lo-
cal infrastructure (charging stations and road lengths), the number of EV manufacturers and car dealerships,
etc. to further account for possible confounders, which we will discuss in detail in Section 5.
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HSR and EV Sales. Column (1) of Appendix Table A2 analyze the impact of HSR

connectivity on the natural logarithm of (1+EV sales) (Panel A) and (1+FV sales) (Panel

B), respectively. In both cases, the coefficients on Treatment are positive and statistically

significant at the 1% level, indicating that HSR connectivity significantly boosts vehicle sales.

The effect on EV sales is significantly greater, indicating the critical role of HSR connectivity

in accelerating EV adoption. Although smaller in magnitude, the positive and significant

effect on FV sales indicates that HSR connectivity also drives a general increase in vehicle

demand, including both EVs and conventional FVs.

4.2.2 Callaway and Sant’Anna (2021) DID Results

As discussed in Section 4.1, the traditional TWFE estimator may be biased in the pres-

ence of heterogeneous or dynamic treatment effects in a staggered rollout design such as

ours. To address these issues, we follow Callaway and Sant’Anna (2021) and use the CSDID

estimator that allows us to estimate and flexibly aggregate group-time average treatment ef-

fects on the treated (ATTs) across multiple treatment groups and time periods. The CSDID

procedure is computationally intractable for long panels, so we take the time period t to be

a year.

CSDID estimates group-time ATTs separately for each treated cohort and then aggre-

gates them appropriately to obtain an overall treatment effect. Specifically, each city i

belongs to a group g that first introduces HSR in year Tg. For each group–time pair (g, t)

with t ≥ Tg, the method estimates a group–time average treatment effect, ÂTT(g, t), by

comparing the EV market share of cities in group g at time t with that of an appropriate

comparison group of cities that have not yet introduced HSR or never did. City and year

fixed effects are controlled for. After estimating the group-time ATTs, the overall ATT is

obtained by aggregating across treatment cohorts and time periods. This approach avoids

the potential bias of standard TWFE regressions, which may fail to account for treatment

effect heterogeneity across groups and/or over time.

We report the results in Table 3, with Panel A using the never-treated cities as the control

group and Panel B using the not-yet treated cities as the control group. The results in both

panels confirm the robustness of our findings. Specifically, Column (1) shows that HSR

connectivity increases EV market share by 2.74 to 2.98 percentage points. Columns (2) and

(3) confirm that HSR connectivity has positive impacts on both EV and FV sales, but the

effect on EV sales is much larger in magnitude. The CSDID method yields larger estimates,

consistent with the literature that contrasts it with the conventional TWFE model. In

particular, two key factors contribute to these larger estimates: First, the CSDID estimator

rectifies the negative weight issue by avoiding the use of already-treated groups as controls,

thus reducing the downward bias from this inappropriate control group specification. Second,
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leveraging the entire sample in the CSDID method allows us to capture the substantial

growth in the EV market share among earlier connected cities, which contributes to the

larger magnitude of the estimates.

[Table 3 About Here]

4.2.3 Dynamic Effects

We now examine the dynamic response of EV adoption to HSR entry and validate the

parallel pre-trend assumption required for the DID estimation. By aggregating the aforemen-

tioned group-time-specific ATTs by event year, the CSDID estimator allows us to estimate

the dynamic treatment effect. In particular, we define event time as s = t − Tg, where

s = 0 denotes the year of HSR introduction, s < 0 refers to the pre-treatment (lead) years,

and s > 0 corresponds to the post-treatment (lag) years. After estimating ÂTT(g, t) for

each group g and corresponding times t ≥ Tg, we aggregate these estimates by event time,

s = t − Tg, to construct a dynamic event-study representation of the effect of HSR on EV

adoption. Formally, the dynamic average treatment effect is defined as:

ÂTTs =
G∑

g=1

wg,s ÂTT
(
g, Tg + s

)
, (2)

where wg,s is a weight representing the probability of being first treated in year Tg conditional

on being observed at each relative year s. The term ÂTTs measures the effect of HSR

introduction on EV adoption s years relative to the year in which HSR service becomes

operational. Specifically, it captures any anticipatory effects when s < 0 and the dynamic

effect of HSR connectivity on EV adoption in the years following HSR introduction when

s > 0. Similarly, we can also aggregate the group-time-specific ATTs by calendar year to

estimate the dynamic effect of HSR connectivity on EV adoption over time.

Figure 4 presents the dynamic effects of HSR connectivity on EV market share by event

year (Panel A) and calendar year (Panel B), along with 95% confidence intervals. Panel A

shows that the pre-treatment coefficients are close to zero and statistically insignificant, sug-

gesting that treated and untreated cities exhibited similar trends in EV market share before

HSR introduction. This finding supports the parallel pre-trends assumption, indicating that

the timing of HSR adoption is plausibly exogenous conditional on the included fixed effects.

Examining the dynamic treatment effect, Panel A indicates that, following the introduction

of HSR, the estimated coefficients increase in magnitude and become statistically significant

starting in the second year, indicating a sustained impact of HSR connectivity on EV market

share. The coefficients continue to increase through the eighth year, suggesting that the ef-

fect of HSR on EV adoption intensifies over time. The results indicate a strong and growing
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treatment effect in the post-treatment period, with minimal evidence of anticipatory effects

in the pre-treatment period. Panel B aggregates the treatment effects by calendar year and

confirms the growing impact of HSR connectivity over time. The magnitude of the treatment

effect is consistent with the baseline TWFE estimates. For example, in 2018, the treatment

effect of HSR on EV market share is approximately 1 percentage point, compared to a na-

tional EV market share of 3.2%. By 2022, the treatment effect rises to about 5 percentage

points, while the national average EV market share reaches 19.3%. Overall, the treatment

effect accounts for about 30% of the annual national average market share.

[Figure 4 About Here]

4.3 Instrumental Variable Approach

So far, we have obtained causal estimates using a staggered DID framework, which treats

HSR connections as exogenous shocks to EV adoption. We have also demonstrated that the

parallel pre-trends assumption for the identification strategy holds. However, a potential

concern is that the timing of when cities receive their HSR connections may not be entirely

random, as HSR expansion might be prioritized for cities with certain predetermined char-

acteristics, such as geographic centrality, economic importance, or urban planning efforts.

Although the DID approach accounts for the time-invariant differences between cities and

common time-varying shocks, it may not fully address unobserved factors that jointly influ-

ence HSR connection and EV adoption, thus introducing concerns of reverse causality and

omitted variable bias.

To address potential endogeneity concerns and improve the robustness of our results, we

employ an IV approach that isolates exogenous variation in HSR connectivity, drawing on

two well-established instruments from the literature: the historical railway network from

1962; and a least-cost straight-line network connecting major target cities. Specifically, the

historical railway network reflects the centralized planning objectives of the 1960s, designed

to transport raw materials and goods between major cities and provincial capitals under

China’s five-year plans. These historical functions differ from the market-driven transporta-

tion needs of modern China. While the historical railroad network influenced the spatial

distribution of infrastructure, it is unlikely to directly affect EV adoption and instead pro-

vides exogenous variation through its role in shaping the modern HSR network. Similarly,

the least-cost straight-line network, based on geographic constraints and cost-minimization

principles, provides an exogenous measure of HSR connectivity. Cities along direct lines

connecting major megacities are more likely to gain HSR access by chance, independent of

modern travel demand or economic conditions. This makes the network a valid instrument,

capturing variation in HSR connectivity unrelated to unobserved factors influencing EV
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adoption. These instruments satisfy the key requirements of relevance and exclusion restric-

tion, being strongly correlated with the timing and spatial distribution of HSR development

while uncorrelated with unobserved factors directly affecting EV adoption.

We estimate the following equations at the city level:

∆Treatmenti = α1 + δ IVi + Γ′
1Xi + ηi (First Stage), (3)

∆Yi = α2 + β ̂∆Treatmenti + Γ′
2Xi + ϵi (Second Stage). (4)

where ∆Treatmenti = HSRi,2010−2023 denotes the change in HSR connectivity over the same

period (e.g., moving from no HSR to having HSR by 2023); ∆Yi = Yi,2023−Yi,2010 is the long

difference in EV share for city i between 2010 and 2023; IVi represents the instrumental vari-

ables, including historical railway networks and least-cost paths, which predict ∆Treatmenti,

but do not directly affect ∆Yi; Xi is a vector of additional city-level controls (e.g., number

of charging stations, road mileage, and economic indicators) measured in the end year 2023

that capture observable differences across cities; ηi and ϵi are error terms in the first and

second stages, respectively. δ, β are the key coefficients of interest, measuring the effect of

the instrument on treatment (first stage) and the effect of the predicted treatment on ∆Yi

(second stage). This long-difference approach exploits the net change in EV share and HSR

connectivity over a substantial horizon, mitigating concerns about time-invariant unobserved

heterogeneity and short-term fluctuations.

[Table 4 About Here]

Table 4 reports the results of the long-difference IV specification estimating the impact

of HSR connectivity on changes in EV market share from 2010 to 2023. Panel A presents

the first-stage estimates, which strongly support the validity of the instruments. The 1962

railway network is consistently and significantly associated with HSR connectivity in all

specifications, confirming its strength as an instrument. The least-cost path IV also exhibits

a positive relationship with HSR connectivity, although its significance varies across models.

The Cragg-Donald F -statistics, ranging from 17.4 to 47.4, exceed conventional thresholds

against weak instruments.

Panel B presents the second-stage estimates, which capture the cumulative effect of HSR

connectivity on EV adoption. The IV estimates indicate that cities where HSR expansion

was exogenously driven by the instruments experienced a substantially greater long-term

increase in EV adoption compared to those without HSR. Column (1) in Panel B suggests

that HSR connectivity leads to a cumulative increase in EV market share by 13 percentage

points, and the positive impact of HSR connectivity on EV adoption remains robust with

various control variables. It should be noted that the long-difference IV estimates yield
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larger effect sizes than the staggered DID estimates. This discrepancy arises because the

IV approach captures the cumulative effect of HSR connectivity over the sample period,

whereas the staggered DID approach identifies the average effect on an annual or monthly

basis. As documented in Section 3.3, the treatment effect exhibits an increasing dynamic

pattern over time. Therefore, a larger cumulative effect compared to the average annual or

monthly effect is expected.

4.4 Market Access as Exposure to HSR Shock: Borusyak and Hull

(2023) Approach

Our baseline analysis considers HSR connectivity as a binary indicator, which only varies

at the first time when a city is connected to the HSR network. This binary treatment

indicator fails to capture the “quality” of the connectivity, which can be affected by further

expansion and upgrade of the HSR network. In this subsection, we employ an alternative

continuous treatment measure by calculating the “market access” (MA) growth induced by

the HSR expansion. In particular, following Borusyak and Hull (2023), MA is calculated as:

MAit =
∑
j ̸=i

exp(−0.02τijt) · Popj,2010, (5)

where Popj,2010 represents the 2010 population of city j, and τijt denotes the predicted travel

time between regions i and j in year t (measured in minutes). Travel time predictions are

derived from the operational speed of each HSR line and the geographic distance between

the city pair (i, j). We then calculate the growth of MA in city i from 2009 to 2020 as

(logMAi,2020 − logMAi,2009). The year 2009 serves as the pre-sample baseline, while 2020 is

chosen as the endpoint to exclude disruptions caused by the COVID-19 pandemic. During

this period, a total of 107 HSR lines became operational, and an additional 26 lines were

completed between 2021 and 2023. Compared to a binary treatment indicator for HSR

connection, the MA growth measure provides a richer representation of the impact of HSR

expansion. It accounts for (i) the number of connected cities, (ii) the economic significance of

those connections (proxied by population size), and (iii) the speed of travel enabled by HSR.

By incorporating these factors, this alternative treatment measure allows us to estimate how

the intensity of integration into the HSR network affects EV adoption, rather than just the

binary presence of an HSR connection.

As with our baseline treatment measures, the MA growth measure may also be subject

to endogeneity concerns due to the nonrandomness of the HSR connectivity. In addition,

even when HSR connections are randomly assigned to different cities, MA growth may still

be affected by unobserved confounders. To address the endogeneity concern and ensure the
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robustness of our estimates, we adopt the approach proposed in Borusyak and Hull (2023).

To instrument for actual MA growth, we recenter the actual growth around an expected

MA growth. In particular, we perform a permutation of the 2020 completion status of built

and unbuilt (but planned) HSR lines, and this procedure generates a counterfactual HSR

network. We repeat the permutations 2,000 times, and the expected MA growth takes the

average of these permutations. By recentering the MA growth around its expectation, it

isolates variation in HSR-induced MA growth unrelated to unobserved confounders, miti-

gating omitted variable bias arising from unobserved determinants that could simultaneously

influence both HSR expansion and EV adoption. Thus, this recentered MA growth is used

as the instrument for the actual MA growth.

[Table 5 About Here]

Table 5 presents regression results on the relationship between the share of EV sales and

MA growth. Columns (1) and (2) report OLS estimates using unadjusted MA growth as

the treatment variable, showing a positive and significant relationship between HSR-induced

market access expansion and EV sales share. Columns (3) and (4) report the IV results

in which this treatment is instrumented by MA growth recentered by expected MA growth

from the permutation practice. Columns (5) and (6) report results from OLS regressions in

which recentered MA growth is used as the treatment variable, controlling for expected MA

growth based on the same HSR counterfactuals. The results are consistent with our baseline

estimates and the magnitudes of the effects remain robust across all specifications, indicating

that the observed relationship is not driven by spurious correlations or unaccounted-for

factors. In particular, based on the IV estimation results with full set of covariates—our

preferred model—in Column (4), with an average MA growth of 0.58 log points over the

period, it implies 1.18 (= 0.58 * 2.04) percentage points of EV sales share growth attributable

to HSR, accounting for more than 42% of the 2.8 percentage points average EV sales share

growth observed during the period.

5 Competing and/or Complementary Mechanisms

In this section, we discuss the possible competing and/or complementary mechanisms to

ensure that the observed relationship between HSR and EV adoption is not spurious.

5.1 Industrial Policies for the New Energy Vehicle Sector

A potential concern with our baseline results is the possibility that industrial policies,

both demand- and supply-side, such as purchase subsidies or tax incentives, and other sup-
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port schemes targeting EV manufacturers and consumers, could confound the observed re-

lationship between HSR connectivity and EV adoption. These policies, implemented by

central, provincial, and city governments, differ significantly in scope and timing across

regions. For example, local consumer purchase subsidies could drive EV adoption indepen-

dently of HSR connectivity, introducing a confounder if HSR connections positively correlate

with broader expansions of industrial policies.

In this section, we account for the impact of industrial policies in our empirical analysis.

As detailed in Section 3.3, we categorize 6,476 supportive policy documents issued by the

city-level government with seven distinct target-oriented policy tools, and each document can

contain several tools. These tools include consumer purchase subsidies (PurchaseSubsidy),

government procurement (Procurement), trade fairs and promotion events (TradeFair), R&D

subsidies and other policies (R&D), investment policies (Investment), industrial cluster poli-

cies (Cluster), and entry incentives (Entry). We construct city-year-level indicators to cap-

ture whether a city i has issued EV supporting policy documents with each of the above

policy tools. We include these policy indicators and their interactions with HSR connec-

tivity (Treatment) in our baseline regression Eq. (1) to assess whether industrial policies

independently influence the adoption of EVs and whether their effects are amplified by the

presence of HSR connectivity.

[Table 6 About Here]

Table 6 presents the regression results. In Column (1), we add in the baseline regres-

sion (1) an indicator for whether city i had a consumer purchase subsidy policy in place

in year y and its interaction with Treatment; and then in Colums (2) to (7) we addition-

ally incorporate other policy controls. Table 6 offers several insights. First, in all except

the last specification, the coefficient on Treatment remains positive and statistically sig-

nificant, underscoring the critical role of HSR infrastructure in driving EV adoption and

reinforcing the robustness of our baseline results. Second, and most notably, the interaction

term Treatment*PurchaseSubsidy consistently yields a positive and statistically significant

coefficient, highlighting a strong complementarity between HSR infrastructure and targeted

consumer incentives for EV purchases. These results suggest that consumer EV purchase

subsidies are particularly effective in fostering EV adoption when combined with comple-

mentary HSR connectivity. By providing a convenient long-distance travel alternative, HSR

reduces the perceived limitations of EVs (particularly range anxiety), thereby amplifying the

effect of consumer subsidies on EV adoption.

Third, other demand-side policies, such as government procurement and trade fair promo-

tions, demonstrate limited effectiveness. Although these policies are intended to expand mar-

kets, their primary beneficiaries are suppliers rather than consumers. As shown in Columns
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(2) and (3), their coefficients are generally insignificant or negative, and their interactions

with HSR connectivity do not produce meaningful effects. These findings indicate that pro-

curement and regulatory initiatives do not have a direct impact on EV adoption, nor do they

exhibit complementarity with HSR infrastructure.

Fourth, supply-side policies, including R&D, investment, industrial clusters, and entry

incentives (Columns (4) to (7)), show no significant effect on EV adoption. These policies,

which aim to enhance technological innovation, production capacity, or market entry, do

not appear to significantly influence consumer decisions. In addition, the interaction terms

with HSR connectivity are consistently insignificant or negative, suggesting that supply-side

instruments are less sensitive to the presence of HSR infrastructure.

Overall, these findings highlight the critical role of demand-side interventions, particu-

larly consumer subsidies, in driving EV adoption when complemented by HSR connectivity.

While supply-side policies remain essential for long-term technological and industrial de-

velopment, they do not exhibit immediate synergies with HSR infrastructure in promoting

EV adoption. By reducing range anxiety, HSR connectivity enhances the effectiveness of

consumer subsidies, enabling a shift toward greater EV adoption for daily commutes and

routine travel. These results provide broader policy implications that combining comple-

mentary infrastructure with targeted demand-side incentives is a highly effective strategy

for accelerating EV adoption.

5.2 Regional Infrastructure Improvements

Another potential mechanism behind the observed increase in EV adoption is the broader

regional infrastructure development that often accompanies HSR expansion. These improve-

ments include road upgrades and EV charging station deployment, which reduce barriers to

EV adoption by enhancing accessibility, convenience, and range confidence. For instance,

better road networks improve connectivity, while charging infrastructure mitigates range

anxiety, making EVs more practical for both medium- and long-distance travel. However,

if unaccounted for, these infrastructure investments may introduce upward bias in the es-

timated effects of HSR, as HSR-connected cities tend to attract greater public and private

investment in complementary infrastructure.

To address this potential confounder, we incorporate two supplementary datasets: one

capturing the geographic locations and temporal expansion of EV charging stations across

328 Chinese cities from 2010 to 2023, constructed using GIS techniques and historical data

from Gaode Maps, and another covering China’s road networks through 2023, including road

types, spatial coverage, and connectivity.

In Columns (2) and (3) of Table 2, we introduce the number of EV charging stations

ln(1+#Charging Stations) and total road mileage ln(Road Length) as additional control
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variables to investigate whether the observed effect of HSR connectivity on EV market share

operates partially through the development of charging infrastructure and road networks.

Specifically, including ln(1+#Charging Stations) reduces the coefficient on Treatment from

0.0122 in Column (1) to 0.0082 in Column (2), a decrease of approximately one-third. This re-

duction suggests that the expansion of EV charging stations explains part of the relationship

between HSR connectivity and EV market share growth, though not entirely. Importantly,

the coefficient on Treatment remains positive and statistically significant, indicating that

while charging station expansion contributes to EV adoption, HSR connectivity remains a

significant and robust driver of the observed increase in EV market share. In Column (3),

the inclusion of ln(Road Length) barely changes the HSR effect, indicating that traditional

road infrastructure plays a limited role in influencing vehicle adoption patterns. The results

in Columns (2) and (3) demonstrate that the positive and significant effect of HSR connec-

tivity on EV market share remains robust even after accounting for variations in charging

infrastructure and road development.

[Table 7 About Here]

Table 7 further examines the interacting effects of HSR connectivity and charging infras-

tructure. Columns (1) and (2) show that HSR connectivity is positively associated with

the development of EV charging stations, as evidenced by the significant coefficients on

Treatment (0.5244 and 0.4313, respectively), indicating that cities connected to HSR are

more likely to expand charging infrastructure. Columns (3) to (5) examine EV share as

the dependent variable and provide evidence of a positive interaction effect between HSR

connectivity and charging infrastructure. Specifically, the positive and highly significant

interaction term between Treatment and ln(Charging Stations) indicates that HSR connec-

tivity amplifies the effect of charging stations on EV adoption, pointing to the synergistic

relationship between HSR and charging infrastructure.

5.3 Entry of EV Manufacturers and Car Dealerships

A related supply-side concern is the potential impact of HSR connectivity on the en-

try and operations of EV manufacturers. While primarily designed for passenger mobility,

HSR indirectly enhances logistics by reducing freight traffic on parallel highways and freeing

up capacity on conventional railways through its substitution effect on passenger rail (Lin

et al., 2021; Cheng and Chen, 2021). These improvements lower transportation costs and

increase the efficiency of distributing goods, including EVs, making HSR-connected cities

more attractive for manufacturers (Baek and Park, 2022).

To explore this potential mechanism, we compute the cumulative number of active EV

manufacturers and car dealerships in city i in year-month (y,m) based on firm registrations

22



data from SAIC, as described in Section 3. We examine whether the observed increase in

EV sales is influenced by supply-side changes by estimating a regression model that includes

HSR connectivity and ln(1+#EV Manufacturers) and ln(1+#Car Dealerships). In Column

(4) of Table 2, the coefficient on Treatment remains positive and statistically significant,

though the magnitude of the effect is somewhat smaller.

5.4 Socio-economic Factors

One potential concern is that the observed relationship between HSR connectivity and

EV adoption may be confounded by endogenous factors such as economic development and

population dynamics. Cities with HSR connections may experience significant economic

growth, reflected in higher regional GDP and increased disposable income (Lin, 2017; Diao,

2018; Donaldson, 2018). This economic development can influence EV adoption, as wealthier

residents are more likely to purchase environmentally friendly technologies due to greater

purchasing power, heightened environmental awareness, and exposure to technological ad-

vancements. Similarly, HSR connectivity can stimulate migration to connected cities by

improving accessibility, reducing commuting costs, and enhancing economic opportunities,

leading to population growth. The resulting influx of residents can increase overall vehicle

demand, including EVs. If economic growth and population changes are correlated with

both HSR connectivity and EV adoption but are not considered in the analysis, they can

introduce omitted variable bias, leading to an upward bias in the estimated causal impact

of HSR on EV adoption.

To address these potential confounding factors, we incorporate data on GDP, population

growth, and fiscal expenditure at the city-year level into our empirical analysis. In Column

(5) of Table 2, the coefficient on Treatment decreases to 0.0082 but remains positive and sta-

tistically significant at the 1% level, suggesting that the impact of HSR on EV market share

persists even after controlling for these variables. Among the additional controls, ln(GDP)

exhibits positive and statistically significant coefficient, indicating that higher income levels

indeed promote EV adoption. However, population growth and local fiscal expenditures ex-

hibit negligible magnitudes or lack statistical significance, indicating minimal direct impact

on the EV market share.

Column 6 of Table 2 provides evidence that HSR connectivity increases EV market share

even after controlling for all key economic and policy factors. Although the magnitude is

smaller than in other columns, the coefficient estimate of Treatment remains positive and

statistically significant, suggesting that HSR connectivity has a significant impact on EV

adoption and reinforces the robustness of its effect on EV adoption patterns.
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6 Robustness Checks and Heterogeneity Tests

6.1 Robustness Checks

Potential Arbitrariness in Year Selection. To ensure the robustness of our findings,

we address the potential concerns arising from the COVID-19 pandemic in 2020, which

significantly disrupted economic conditions and policy environments in the post-COVID

period. Notable changes during this period include supply chain disruptions, government

stimulus packages, expanded subsidies for EV purchases to boost economic recovery, and

possible shifts in consumer preferences toward private vehicles due to health and safety

concerns. Given these unique factors, there is a concern that including the post-2020 period

could bias our results. One may also question the arbitrariness in the cutoff year when we

choose to exclude cities with HSR connections before 2015 in our baseline analysis. To test

the robustness of our estimates, we report the results in the Appendix Table A3 where we

use conduct the same analyses but excluding cities with HSR connections before 2014, 2013,

and 2012, respectively.

Column (1) of Appendix Table A3 uses the full sample and it shows a small and sta-

tistically insignificant coefficient, suggesting that early connected cities and sample hetero-

geneities may obscure the effect of HSR on EV adoption.15 Columns (2) through (4), which

exclude cities connected before 2014, 2013, and 2012 respectively, yield positive and statis-

tically significant coefficients (ranging from 0.007 to 0.101), demonstrating that removing

earlier connected cities reveals a robust association between HSR connectivity and increased

EV share. Column (5), excluding observations after 2020, produces a smaller but statisti-

cally significant coefficient, indicating that the observed impact of HSR connectivity on EV

adoption is not fully driven by the special circumstances surrounding the COVID-19 period.

These results highlight the sensitivity of the treatment effect to sample composition while

consistently confirming that HSR connectivity promotes EV adoption.

Impact of HSR on Hybrid Vehicles. Hybrid vehicles are excluded from the baseline

analysis because their dual-fuel capability alleviates range anxiety, reducing their dependence

on HSR as a complementary transportation option. To further test the robustness of the

results, we use hybrid vehicles as a placebo and examine the effects of HSR connectivity on

their market share using various estimation methods. As shown in Table A4, although the

treatment effect remains positive and statistically significant in Columns (1) and (2), which

15Cities connected to the HSR network in 2010 and 2011, including the 26 cities served by the Beijing-
Shanghai HSR line inaugurated on June 30, 2011, drive the insignificant coefficients in the full sample. As
the first to benefit from medium- to long-distance HSR routes, these early connected cities exhibit distinct
characteristics that differ significantly from later connected cities.
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use the staggered DID approach, it becomes statistically insignificant in the IV estimations

presented in Columns (4), (8), and (10). This suggests that the impact of HSR connectivity

on hybrid vehicles is weaker and non-robust compared to that on the EVs. The positive

impact of HSR connectivity on hybrid vehicles in the staggered DID specification may be

driven by the endogeneity of the HSR expansion, or by the spillover effect of EVs on hybrid

vehicles— as the market for EVs expands, there is heightened consumer awareness and more

charging stations being built, both may benefit hybrid vehicles. However, when we address

these omitted variable concerns with different IV designs, the positive effect disappears. This

placebo test further confirms the role of HSR on relaxing consumers’ range anxiety, thereby

supporting the robustness of the baseline findings.

6.2 Heterogeneity Effects

The impact of HSR connectivity on EV adoption is unlikely to be uniform across regions

or market segments, as differences in HSR design and regional characteristics can lead to

heterogeneous effects. To explore the mechanisms driving these variations, we examine how

specific HSR characteristics and regional factors influence EV adoption. Specifically, we

incorporate interactions between Treatment and various characteristic variables, such as

HSR speed, line lengths, number of lines, number of stations, and geographic regions. The

results are detailed in Appendix Table A5.

We first analyze the role of HSR network characteristics. Cities with more extensive or

faster HSR networks may experience higher EV adoption rates due to enhanced regional

accessibility and improved market connectivity. Column (1) shows that the interaction term

Treatment*SpeedDummy is positive and statistically significant at the 1% level, indicating

that high-speed HSR lines (above 300 km/hour) have a stronger positive impact on EV share.

This finding highlights the importance of faster travel speed and greater regional integration

in driving EV market growth. Conversely, the coefficients for interaction terms in Columns

(2) through (4), which examine the effects of HSR line lengths, number of lines, and number

of stations, are statistically insignificant. This indicates that these characteristics do not

contribute to differential impacts on EV adoption.

Next, we examine regional heterogeneity by categorizing cities into four areas—East,

Middle, West, and Northeast—based on socio-economic development policies outlined by

the Central Committee and the State Council.16 Column (5) uses cities in the Northeast as

16The regions in China are categorized into four major economic zones based on the socio-economic
development framework outlined in key policy documents, including the Opinions of the Central Committee
of the Communist Party of China and the State Council on Promoting the Rise of the Central Region and
the Implementation Opinions on Several Policies and Measures for Western Development issued by the State
Council. The East includes provinces such as Beijing, Shanghai, Jiangsu, and Guangdong, reflecting the
country’s most developed areas. The Middle region comprises Shanxi, Anhui, and similar provinces, while
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the benchmark to assess geographic variation. The interaction terms between Treatment and

geographic dummies (East, Middle, and West) reveal significant regional differences. HSR

connectivity has a stronger impact on EV adoption in eastern and middle regions, reflecting

higher income levels, better infrastructure, and greater consumer readiness in these areas.

In contrast, the impact in western regions is weaker, probably due to lower economic devel-

opment and less developed EV-related infrastructure. In the northeast, colder climates can

pose a challenge to EV adoption due to concerns about battery performance at low temper-

atures, highlighting the role of climatic and regional factors in modulating the effectiveness

of HSR connectivity. These findings highlight the importance of accounting for both the

characteristics of HSR and the regional context to understand the heterogeneous effects of

HSR on the adoption of EVs.

7 Conclusion

This study provides novel insights into the relationship between transportation infrastruc-

ture and EV adoption, using the rapid expansion of China’s HSR network as a quasi-natural

experiment. Our findings reveal that HSR connectivity plays a significant role in increasing

EV market share and sales by alleviating range anxiety, a primary barrier to EV adoption.

HSR offers an efficient and practical solution for long-distance travel, complementing the

use of electric vehicles for short-distance commutes. Dynamic analyses confirm a substantial

treatment effect, with sustained growth in EV adoption following the introduction of HSR

connections. In addition, faster and extensively connected networks show more pronounced

effects, while regional disparities in the effects may stem from differences in income levels, in-

frastructure quality, and climatic conditions. We examine competing and/or complementary

mechanisms such as regional development, industrial policies, infrastructure improvements,

and supply-side factors. The results suggest the critical role of HSR in fostering sustainable

mobility when integrated with supportive industrial policies, particularly consumer subsidies

for EV purchases. We document interesting synergies between the HSR network and the

construction of charging stations. While the HSR connection enhances early EV adoption

by alleviating consumers’ range anxiety, the larger consumer base creates an agglomeration

effect and further fosters the construction of charging stations, and the two jointly bene-

fit future consumers. The synergy between the HSR network and other infrastructure and

policies may explain why the HSR connection has a persistent and growing effect on EV

adoption. We also perform extensive robustness checks to ensure the validity and reliability

the West covers less developed areas such as Sichuan, Tibet, and Xinjiang. Finally, the Northeast includes
Liaoning, Jilin, and Heilongjiang, which represent historically industrial regions. https://www.stats.gov.cn/
zt 18555/zthd/sjtjr/dejtjkfr/tjkp/202302/t20230216 1909741.htm
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of the results.

Our study offers valuable information for policymakers formulating comprehensive poli-

cies to promote the adoption of electric vehicles. First, beyond conventional monetary and

non-monetary incentives, policymakers should recognize the significant role that efficient and

convenient intercity public transportation systems play in supporting EV adoption. Second,

the synergy between transportation infrastructure and policy interventions highlights the

need for cohesive, regionally tailored approaches to maximize the effectiveness of EV adop-

tion initiatives. The rapid expansion of China’s HSR network from 2008 onward contributed

significantly to China’s EV adoption miracle in recent years. Our estimates suggest that

the HSR expansion could account for about one third of the increase in EV market share

during our sample period. Regardless of whether this miracle happened inadvertently or by

design, the lessons for the rest of the world are clear. High-speed rail systems that provide

a reliable and efficient alternative for long-distance travel can help accelerate EV adoption

by alleviating range anxiety, because HSR complements EV use for short trips and enhances

their overall practicality. Investing in high-speed rail systems can therefore align economic

development with environmental sustainability.
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Figure 1: Trends in EV Adoption and HSR Expansion

Panel A: National Trends in EV Market Share and HSR Network Expansion

Panel B: Changes in EV Market Share by City Groups with HSR Connectivity

Notes: This figure illustrates trends in EV adoption and HSR expansion, using EV market share
excluding hybrids for consistency with the baseline analysis. Panel A presents the national trend in
EV market share (solid line) and total HSR network length (dashed line) from 2010 to 2023, with
EV data derived from the CSMAR database and HSR network data from official railway statistics.
Panel B tracks EV market share over time across city groups categorized by HSR connectivity,
based on the sample data used in the analysis: cities connected in 2003–2014 (dashed line), those
connected in 2015–2023 (dash-dotted line), and cities without HSR (solid line).
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Figure 2: High-Speed Rail Network in China (2003–2023)

Notes: This figure illustrates the spatial expansion of China’s HSR network from 2003 to 2023, created using ArcGIS Pro. Cities with
HSR connections are marked with red dots. HSR lines established between 2003 and 2014 are shown by grey dashed lines, while lines
constructed from 2015 to 2023 are shown by black solid lines. The map also includes conventional railway lines in brown and province
boundaries for geographical reference. For illustrative purposes, HSR connections between cities are represented as straight lines, which
may not correspond to the actual routes or alignments of the railways.
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Figure 3: Trends in Charging Stations and Road Length in China (2010–2023)

Notes: The figure shows the cumulative number of charging stations (solid line, left axis) and road
length in thousands of kilometers (dashed line, right axis) in China from 2010 to 2023.
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Figure 4: The Dynamic Response of EV Market Share

Panel A: By Event Year

Panel B: By Calendar Year

Notes: This figure presents the dynamic effects of HSR connectivity on EV market share. The
sample period is 2010-2023. All cities are included in the analysis. The unit of observation is city-
year. Panel A shows the change in EV market share relative to the event year of HSR introduction
(year 0). Panel B depicts the change in EV market share by calendar year (2011–2023), highlighting
a sharp upward trend beginning in 2016 and accelerating after 2020. The vertical axis depicts the
estimated changes in EV market share.
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Table 1: Descriptive Statistics

N Mean S.D Min Max
Panel A. City-Month Variables

EV Sales 55,104 305.05 1,410.29 0 57,536
Fuel Sales 55,104 4,443.78 6,909.99 1 116,453
EV Share 55,104 0.04 0.08 0 0.92
# of Car Dealerships 55,104 24.69 32.18 0 734
# of EV manufacturers 55,104 0.03 0.22 0 8

Panel B. City-Month Variables (Exclude Connected Cities before 2015)
EV Sales 29,064 93.73 348.94 0 7,729.00
Fuel Sales 29,064 2,169.94 2,442.08 1 35,398.00
EV Share 29,064 0.03 0.07 0 0.92
# of Car Dealerships 29,064 19.29 22.87 0 393
# of EV manufacturers 29,064 0.03 0.23 0 8

Panel C. City-Year Variables
# of Charging Stations 4,592 106.81 565.94 0 13750.81
Road Lengths (Km) 4,592 13,709.32 10,599.47 268.40 186,137.00
GDP (Mill. CNY) 4,592 253,103.89 395,808.28 3,186.00 4,721,866.00
Population Growth 4,592 0.01 0.05 -0.33 0.67
Fiscal Expenditure (Mill. CNY) 4,592 42,250.47 65,188.51 727.44 966,192.74

Notes: This table presents descriptive statistics for key variables. Panel A reports city-month-level
data for the full sample (2010–2023), while Panel B focuses on a subsample excluding cities with
HSR connections established before 2015 (baseline analysis, 2015–2023). Panel C provides city-
year-level data on infrastructure and socio-economic characteristics (2010–2023).
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Table 2: Baseline Results: Staggered Difference-in-Difference Estimation

Dep. Variable EV Share
Model (1) (2) (3) (4) (5) (6)
Treatment 0.0122*** 0.0082** 0.0121*** 0.0102*** 0.0113*** 0.0065*

(0.0040) (0.0038) (0.0040) (0.0039) (0.0040) (0.0037)
ln(1+ #Charging Stations) 0.0076*** 0.0067***

(0.0011) (0.0011)
ln(Road Length) 0.0115*** 0.0119***

(0.0038) (0.0034)
ln(1+ #EV Manufacturers) 0.0093* 0.0068***

(0.0049) (0.0023)
ln(1+ #Car Dealerships) 0.0166* 0.0041

(0.0093) (0.0049)
ln(GDP) 0.0171** 0.0113*

(0.0078) (0.0068)
Population Growth -0.0219 -0.0234

(0.0148) (0.0147)
ln(Fiscal Expenditure) 0.0073 0.0036

(0.0065) (0.0059)

Observations 29,064 29,064 29,064 29,064 29,064 29,064
R-squared 0.725 0.733 0.726 0.728 0.728 0.737
City FE Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes

Notes: This table presents the results using the DID estimations. The sample period is 2010-2023.
Cities connected before 2015 are excluded from the estimation sample. The unit of observation is
city-month. Fixed effects for city and year-month are included in all columns. Robust standard
errors, clustered at the city level, are reported in parentheses. Statistical significance is denoted by
*** p < 0.01, ** p < 0.05, and * p < 0.10.

36



Table 3: CSDID Estimation Results

Panel A: Never-Treated Cities as the Control Group

Dep. Variable EV Share ln(1+EV Sales) ln(1+FV Sales)
Model (1) (2) (3)
Treatment 0.0298*** 1.7747*** 0.3224***

(0.0051) (0.1807) (0.0737)

Observations 3,808 3,808 3,808
City FE Yes Yes Yes
Year FE Yes Yes Yes

Panel B: Not-Yet-Treated Cities as the Control Group
Dep. Variable EV Share ln(1+EV Sales) ln(1+FV Sales)
Model (1) (2) (3)
Treatment 0.0274*** 1.5215*** 0.2638***

(0.0051) (0.1680) (0.0642)

Observations 3,808 3,808 3,808
City FE Yes Yes Yes
Year FE Yes Yes Yes

Notes: This table reports the estimation results using CSDID. The sample period is 2010-2023.
Cities connected before 2010 (i.e. the always treated group during the sample period) are excluded
from the estimation sample. The unit of observation is city-year. Panel A uses never-treated
observations as the control group and Panel B uses the not-yet treated observations as the control
group. All models include city fixed effects and year fixed effects. Standard errors, clustered at the
city level, are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%,
and 10% levels, respectively.
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Table 4: Results from Instrumental Variable Approach

Panel A. First Stage
Dep. Variable Treatment
Model (1) (2) (3) (4) (5) (6)
1962 Railways 0.2705*** 0.1946*** 0.2707*** 0.2049*** 0.2436*** 0.1947***

(0.0404) (0.0368) (0.0404) (0.0369) (0.0373) (0.0362)
Least Cost Path 0.2220*** 0.1900*** 0.2228*** 0.1226* 0.1503** 0.1021

(0.0735) (0.0663) (0.0748) (0.0713) (0.0743) (0.0751)
ln(1+ #Charging Stations) 0.0980*** 0.0827***

(0.0127) (0.0294)
ln(Road Length) -0.0025 -0.0193

(0.0345) (0.0324)
ln(1+ #EV Manufacturers) 0.0706*** 0.0404**

(0.0190) (0.0188)
ln(1+ #Car Dealerships) 0.0499 0.0207

(0.0333) (0.0290)
ln(GDP) 0.2153*** 0.1149**

(0.0479) (0.0582)
Population Growth -0.7936*** -0.9712***

(0.2872) (0.2972)
ln(Fiscal Expenditure) -0.1251* -0.1473**

(0.0644) (0.0710)
R-squared 0.226 0.326 0.226 0.341 0.286 0.372
Cragg-Donald Wald F-statistic 47.370 28.838 45.722 21.793 29.269 17.377

Panel B. Second Stage
Dep. Variable Change in EV Share
Model (1) (2) (3) (4) (5) (6)
Treatment 0.1299*** 0.0725** 0.1362*** 0.1027*** 0.1349*** 0.1001***

(0.0260) (0.0296) (0.0258) (0.0346) (0.0303) (0.0366)
ln(1+ #Charging Stations) 0.0255*** 0.0358***

(0.0045) (0.0083)
ln(Road Length) -0.0092 -0.0099

(0.0074) (0.0062)
ln(1+ #EV Manufacturers) 0.0128** 0.0108**

(0.0053) (0.0048)
ln(1+ #Car Dealerships) -0.0115 -0.0121*

(0.0080) (0.0063)
ln(GDP) 0.0109 -0.0207

(0.0170) (0.0160)
Population Growth 0.2412** 0.1428

(0.1007) (0.0986)
ln(Fiscal Expenditure) 0.0062 -0.0014

(0.0173) (0.0177)
Observations 328 328 328 328 328 328
R-squared -0.019 0.241 -0.033 0.107 -0.016 0.228
Hansen J-statistic 2.095 4.683 2.440 5.117 2.150 8.443

Notes: This table presents the results of a long-difference IV specification (Equations 3 and 4).
Changes in EV share and Treatment are measured as the long difference between 2010 and 2023,
and control variables are 2023 values. All cities are included. The unit of observation is city.
Robust standard errors are reported in parentheses. ***, **, and * denote significance at the 1%,
5%, and 10% levels, respectively.
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Table 5: Robustness Tests using the Borusyak and Hull IV

Dep. Variable EV Share
Panel A. Unadjusted OLS Panel B. Recentered IV Panel C. Recentered OLS

Model (1) (2) (3) (4) (5) (6)

Market Access Growth 0.0307*** 0.0150*** 0.0192* 0.0204**
(0.0047) (0.0053) (0.0111) (0.0103)

Recentered Market Access Growth 0.0234*** 0.0186**
(0.0081) (0.0080)

Expected Market Access Growth 0.0323*** 0.0139***
(0.0047) (0.0053)

ln(1+ #Charging Stations) 0.0046*** 0.0044*** 0.0047***
(0.0014) (0.0014) (0.0014)

ln(Road Length) -0.0060** -0.0059** -0.0060**
(0.0027) (0.0027) (0.0027)

ln(1+ #EV Manufacturers) 0.0023 0.0019 0.0025
(0.0026) (0.0027) (0.0027)

ln(1+ #Car Dealerships) -0.0058*** -0.0058*** -0.0058***
(0.0022) (0.0022) (0.0023)

ln(GDP) 0.0039* 0.0032 0.0039*
(0.0023) (0.0026) (0.0023)

Population Growth -0.011 -0.0081 -0.0111
(0.0189) (0.0190) (0.0188)

ln(Fiscal Expenditure) 0.0067 0.0074 0.0066
(0.0044) (0.0045) (0.0044)

Observations 324 324 324 324 324 324
R-squared 0.102 0.294 0.088 0.291 0.104 0.294

Notes: This table reports the results of regressions analyzing the relationship between the share of EV sales growth and market access
(MA) growth across Chinese cities from 2009 to 2020, using the Borusyak and Hull IV approach. Control variables use 2020 values. All
cities are included. The unit of observation is city. Columns (1) and (2) use unadjusted MA growth as the treatment. Columns (3)
and (4) instrument MA growth with expected values based on permutations of built and planned HSR connections. Columns (5) and
(6) estimate OLS regressions with recentered MA growth as the treatment, controlling for expected MA growth from the same HSR
counterfactual. Robust standard errors are reported in parentheses. Statistical significance is denoted by *** p < 0.01, ** p < 0.05, and
* p < 0.10.
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Table 6: Interacting Effects of HSR Connection and EV-Related Industrial Policies

Dep. Variable EV Share
Model (1) (2) (3) (4) (5) (6) (7)
Treatment 0.0095** 0.0097** 0.0100** 0.0099** 0.0095** 0.0085* 0.0078

(0.0042) (0.0043) (0.0044) (0.0048) (0.0046) (0.0048) (0.0052)
Policy Demand -0.0040** -0.0021 -0.0021 -0.0019 -0.0029 -0.0018 -0.0038**

(0.0020) (0.0020) (0.0020) (0.0019) (0.0022) (0.0019) (0.0019)
Treatment*Policy Demand 0.0094** 0.0100** 0.0109** 0.0097** 0.0092* 0.0078 0.0091*

(0.0047) (0.0047) (0.0054) (0.0045) (0.0049) (0.0049) (0.0046)
Policy Procurement -0.0033*

(0.0017)
Treatment*Policy Procurement -0.0014

(0.0044)
Policy TradeFair -0.0040*

(0.0021)
Treatment*Policy TradeFair -0.0026

(0.0047)
Policy R&D -0.0041**

(0.0019)
Treatment*Policy R&D -0.0011

(0.0042)
Policy Investment -0.0024

(0.0020)
Treatment*Policy Investment 0.0004

(0.0047)
Policy Cluster -0.0049**

(0.0020)
Treatment*Policy Cluster 0.0032

(0.0043)
Policy Entry -0.0038**

(0.0018)
Treatment*Policy Entry 0.0035

(0.0040)

Observations 26,988 26,988 26,988 26,988 26,988 26,988 26,988
R-squared 0.725 0.725 0.726 0.726 0.725 0.726 0.726

Notes: This table presents the estimates of EV market share regressed on HSR connectivity, different industrial policy dummies, and
their interaction terms. The sample period is 2010-2022. Cities connected before 2015 are excluded from the estimation sample. The unit
of observation is city-month. Fixed effects for city and year-month are included in all columns. Heteroscedasticity-consistent standard
errors, clustered at the city level, are reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels,
respectively.
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Table 7: Interacting Effects of HSR Connections and Charging Stations on EV Adoption

Dep. Variable ln(1+ #Charging Station) EV Share
Model (1) (2) (3) (4) (5)

Treatment 0.5244*** 0.4313*** 0.0082** -0.0145*** -0.0148***
(0.1092) (0.1049) (0.0038) (0.0042) (0.0042)

ln(1+ #Charging Stations) 0.0076*** 0.0041*** 0.0034***
(0.0011) (0.0013) (0.0013)

Treatment*ln(1+ #Charging Stations) 0.0077*** 0.0073***
(0.0017) (0.0017)

ln(Road Length) -0.0471 0.0111***
(0.0780) (0.0034)

ln(1+ #EV Manufacturers) 0.4068*** 0.0064***
(0.0800) (0.0023)

ln(1+ #Car Dealerships) 0.0285 0.0035
(0.1596) (0.0046)

ln(GDP) 0.4648** 0.0115*
(0.1866) (0.0065)

Population Growth 0.1414 -0.0216
(0.2505) (0.0145)

ln(Fiscal Expenditure) -0.0674 0.0024
(0.1770) (0.0057)

Observations 29,064 29,064 29,064 29,064 29,064
R-squared 0.806 0.815 0.733 0.737 0.741
City FE Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes

Notes: This table presents the results of the staggered DID estimation examining the interacting effects of HSR connectivity and charging
infrastructure on EV adoption. Columns (1) and (2) analyze the impact of HSR connectivity on the natural logarithm of charging stations,
while Columns (3) to (5) focus on EV share as the dependent variable. The sample period is 2010-2023. Cities connected before 2015 are
excluded from the estimation sample. The unit of observation is city-month. Fixed effects for city and year-month are included. Robust
standard errors, clustered at the city level, are reported in parentheses. Statistical significance is denoted by *** p < 0.01, ** p < 0.05,
and * p < 0.10.
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Appendix

A Goodman-Bacon (2021) Decomposition of TWFE

Biases

We follow Goodman-Bacon (2021) and decompose the traditional TWFE estimator into

a set of 2-by-2 DID estimators over the full sample of cities and over the full sample period

(2010-2023) to illustrate the source of bias. Using the terminology from Goodman-Bacon

(2021), we classify all units into three groups: the “always treated group” (units treated

before the first period), the “timing group” (units treated during the sample period), and the

“never-treated” group (units that never received treatment). Then the TWFE-DID estimator

can be expressed as a weighted average of DID estimators derived from all two-group/two-

period comparisons, including comparisons between the timing group and the never-treated

group, the timing group and the always-treated group, and pre- vs. post-treatment within

the timing group. When the assumptions of parallel pre-trend and constant treatment effect

are violated, the latter two types of estimators can be biased, leading to what is commonly

referred to as the “negative weighting problem” (Goodman-Bacon, 2021).

Figure A2 presents the decomposition result to illustrate the source of bias inherent in

the TWFE estimation. When the never-treated or later-treated group is used as the control

group, the treatment effects are almost always positive, while when the always-treated and

the early-treated ones are used as controls, the treatment effects are constantly negative.

This negative bias arises due to dynamic treatment effects, as early adopters follow a steeper

growth trajectory once connected by the HSR network. This increasingly dynamic treatment

effect is likely a result of the concurrent advancements in infrastructure like charging stations

and the enhanced consumer awareness that arises as the market broadens. Moreover, the

comparisons between the timing group and the always-treated group yield large weights,

indicating that this group of comparisons is a significant contributor to the overall bias in

the TWFE estimates. Panel B of Figure A2 further zooms into the early market development

period before 2020, from which we observe a sharper contrast between the two comparisons

within the timing group— the comparison of the earlier treated group vs. the later treated

group, and that of the later treated group vs. the earlier treated group. We can see that

when the later treated group is used as the control group, the treatment effect is constantly

positive and the negative effect mainly comes from the comparison when the earlier treated

group is used as the control group.
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Figure A1: Word Cloud of EV Policy Documents

Notes: This figure illustrates a word cloud generated from the text of EV policy documents identified in the dataset. The size of each word reflects
its relative frequency in the documents, highlighting the key themes and priorities emphasized in EV-related policies during the sample period.
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Figure A2: Goodman-Bacon Decomposition for TWFE-DID Estimation

Panel A: 2010-2023

Panel B: 2010-2019

Notes: This figure illustrates the Goodman-Bacon decomposition of the TWFE-DID estimation,
decomposing the overall treatment effect into its constituent 2x2 DID estimates. Panel A covers
the full sample period (2010–2023), while Panel B restricts the analysis to the pre-2020 period
(2010–2019). All cities are included. The unit of observation is city-month. The x-axis represents
the weight assigned to each comparison group, and the y-axis shows the corresponding 2x2 DID
estimate. The decomposition includes four types of comparisons, and the red line indicates the
overall TWFE-DID estimate. A3



Table A1: Cities Connected before 2015 v.s. Cities Connected after 2015 vs. Cities Never Connected

Sample Cities Connected before 2015 Cities Connected after 2015 Cities Never Connected
(155 Cities) (107 Cities) (66 Cities)

Mean S.D Mean S.D Mean S.D
EV Sales 540.9 1,991.87 131.6 426.5 32.35 134.81
Fuel Sales 6,981.68 9,065.01 2,840.96 2,792.37 1,082.06 1,038.23
EV Share 0.05 0.09 0.03 0.07 0.02 0.06
# Car Dealerships 29.05 37.20 25.23 27.01 12.02 15.26
# EV manufacturers 0.029 0.199 0.050 0.331 0.005 0.072
# of Charging Stations 185.37 716.01 44.60 117.24 12.95 38.41
Road Lengths (Km) 13,311.96 13,133.55 15,233.96 7,710.91 12,170.73 7,108.61
GDP (Mill. CNY) 387,903.48 527,981.38 164,863.75 139,503.67 79,585.07 84,282.65
Population Growth 0.01 0.05 0.00 0.05 0.00 0.05
Fiscal Expenditure (Mill. CNY) 58,383.63 90,370.88 31,618.56 18,014.94 21,598.56 14,026.38

Notes: This table provides descriptive statistics for three groups of cities: those connected to HSR before 2015, those connected after
2015, and those never connected to HSR.
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Table A2: Baseline TWFE DID Analysis using ln(1+Sales) as the Dependent Variables

Dep. Variable Panel A. ln(1+EV Sales)
Model (1) (2) (3) (4) (5) (6)
Treatment 0.9139*** 0.7073*** 0.9159*** 0.7686*** 0.8766*** 0.6064***

(0.1361) (0.1105) (0.1361) (0.1230) (0.1328) (0.1000)
ln(1+ #Charging Stations) 0.3941*** 0.3311***

(0.0290) (0.0272)
ln(Road Lengths) -0.1478 -0.0706

(0.1138) (0.0872)
ln(1+ #EV Manufacturers) 0.7899*** 0.6177***

(0.0925) (0.0757)
ln(1+ #Car Dealerships) 0.0568 -0.0118

(0.2287) (0.1821)
ln(GDP) 0.8507*** 0.5220**

(0.2935) (0.2273)
Population Growth -0.1532 -0.2302

(0.1961) (0.1739)
ln(Fiscal Expenditure) -0.1482 -0.2738*

(0.2302) (0.1569)

Observations 29,064 29,064 29,064 29,064 29,064 29,064
R-squared 0.841 0.862 0.841 0.856 0.846 0.873

Dep. Variable Panel B. ln(1+FV Sales)
Model (1) (2) (3) (4) (5) (6)
Treatment 0.2104*** 0.1835*** 0.2103*** 0.1790*** 0.1913*** 0.1568***

(0.0528) (0.0493) (0.0530) (0.0497) (0.0505) (0.0451)
ln(1+ #Charging Stations) 0.0513*** 0.0300**

(0.0122) (0.0124)
ln(Road Lengths) 0.009 -0.0029

(0.0397) (0.0344)
ln(1+#EV Manufacturers) 0.1621*** 0.1149***

(0.0415) (0.0380)
ln(1+#Car Dealerships) 0.0699 -0.0039

(0.0968) (0.0841)
ln(GDP) 0.3906*** 0.3474***

(0.1045) (0.0988)
Population Growth -0.0699 -0.0794

(0.0832) (0.0821)
ln(Fiscal Expenditure) 0.2527** 0.2287**

(0.0993) (0.0933)

Observations 29,064 29,064 29,064 29,064 29,064 29,064
R-squared 0.88 0.881 0.88 0.882 0.886 0.888

Notes: This table repeats the baseline DID analysis using the natural logarithm of EV sales volume
(Panel A) and FV sales volume (Panel B) as the dependent variables. The sample period is
2010-2023. Cities connected before 2015 are excluded from the estimation sample. The unit
of observation is city-month. All models include city fixed effects and year-month fixed effects.
Standard errors, clustered at the city level, are reported in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A3: Robustness Tests using Different Samples

Dep. Variable EV Share

Sample
Full

Sample
Exclude Connected
Cities before 2014

Exclude Connected
Cities before 2013

Exclude Connected
Cities before 2012

Exclude Sample
after 2020

Model (1) (2) (3) (4) (5)
Treatment -0.0038 0.0101*** 0.0081*** 0.0068** 0.0051***

(0.0032) (0.0029) (0.0031) (0.0031) (0.0008)

Observations 55,104 36,456 39,480 43,008 26,040
R-squared 0.758 0.743 0.740 0.746 0.232
City FE Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes

Notes: This table presents the results of TWFE DID, namely, Eq. (1), various subsamples to examine the effect of HSR connectivity on
EV market share. The sample period is 2010-2023. The unit of observation is city-month. Column (1) includes the full sample without
excluding any cities. Columns (2) through (4) exclude cities connected to HSR before 2014, 2013, and 2012, respectively. Column (5)
excludes observations after 2020 to address potential distortions caused by COVID-19-related economic disruptions. All models include
city and year-month fixed effects. Robust standard errors, clustered at the city level, are reported in parentheses. Statistical significance
is denoted by *** p < 0.01, ** p < 0.05, and * p < 0.10.

A
6



Table A4: Robustness Tests for the Effects of HSR Connectivity on Hybrid Vehicle Share

Dep. Var Hybrid Vehicle Share
DID Long-difference IV Unadjusted OLS Recentered IV Recentered OLS

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Treatment 0.0054*** 0.0047*** 0.0351** -0.0092

(0.0014) (0.0013) (0.0149) (0.0240)
MA Growth 0.0064*** -0.0043** 0.0054 0.0013

(0.0022) (0.0017) (0.0051) (0.0039)
Recentered MA Growth 0.0058 -0.0006

(0.0035) (0.0029)
Expected MA Growth 0.0066*** -0.0054***

(0.0024) (0.0020)
ln(1+ #Charging Stations) 0.0016*** 0.0022 0.0006 0.0004 0.0007

(0.0004) (0.0035) (0.0005) (0.0005) (0.0005)
ln(Road Length) -0.0016* -0.0198*** -0.0104*** -0.0103*** -0.0105***

(0.0010) (0.0026) (0.0011) (0.0011) (0.0011)
ln(1+ #EV Manufacturers) 0.001 -0.0025 -0.0017*** -0.0022*** -0.0015**

(0.0007) (0.0016) (0.0006) (0.0007) (0.0006)
ln(1+ #Car Dealerships) -0.0015 -0.0007 -0.0007 -0.0007 -0.0008

(0.0017) (0.0028) (0.0012) (0.0012) (0.0012)
ln(GDP) -0.0051** 0.0217*** 0.0045*** 0.0039*** 0.0045***

(0.0023) (0.0058) (0.0011) (0.0013) (0.0011)
Population Growth 0.0065 0.0459 -0.0147 -0.0117 -0.0148

(0.0043) (0.0344) (0.0100) (0.0107) (0.0100)
ln(Fiscal Expenditure) 0.0014 0.012 0.0127*** 0.0134*** 0.0125***

(0.0020) (0.0079) (0.0022) (0.0023) (0.0022)

Observations 26,988 26,988 328 328 324 324 324 324 324 324
R-squared 0.807 0.810 0.100 0.573 0.018 0.633 0.018 0.622 0.018 0.635
City FE Yes Yes No No No No No No No No
Year-Month FE Yes Yes No No No No No No No No

Notes: This table presents the results of placebo test using various estimation methods to examine the effects of HSR connectivity on the
hybrid vehicle share. Columns (1) and (2) use the staggered DID approach and include city fixed effects and year-month fixed effects.
Cities connected before 2015 are excluded from the estimation sample. The unit of observation is city-month. Columns (3) and (4)
implement long-difference IV estimations. Columns (5) to (10) apply the Borusyak and Hull IV approach for additional validation. All
cities are included for Columns (3)-(10). The unit of observation is city. Robust standard errors, clustered at the city level, are reported
in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A5: Heterogeneity by HSR Characteristics and Cities

Dep. Variable EV Share
Heterogeneity Speed Length # of Lines # of Stations Cities
Model (1) (2) (3) (4) (5)

Treatment 0.0041 0.0122** 0.0128*** 0.0129*** -0.0413***
(0.0053) (0.0054) (0.0041) (0.0035) (0.0071)

Treatment*SpeedDummy 0.0209***
(0.0069)

Treatment*LengthDummy -0.0012
(0.0071)

Treatment*LinesDummy -0.0060
(0.0091)

Treatment*StationDummy -0.0032
(0.0079)

Treatment*East 0.0762***
(0.0092)

Treatment*Middle 0.0719***
(0.0082)

Treatment*West 0.0410***
(0.0070)

Observations 29,064 29,064 29,064 29,064 29,064
R-squared 0.728 0.725 0.725 0.725 0.742
City FE Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes

Notes: This table examines the heterogeneity in the impact of HSR connectivity on EV market share by incorporating interactions
between Treatment and various HSR characteristics, including SpeedDummy (=1 for HSR speed above 300km/h), LengthDummy (=1
for connected HSR length above 1500km), LinesDummy (=1 for connected HSR lines above 5), and StationDummy (=1 for connected
HSR stations above 10). Column (5) explores regional heterogeneity using geographic categories (East, Middle, West, and Northeast),
with the Northeast serving as the benchmark. The sample period is 2010-2023. Cities connected before 2015 are excluded from the
estimation sample. The unit of observation is city-month. All specifications include city fixed effects and year-month fixed effects.
Standard errors are clustered at the city level and reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%,
and 10% levels, respectively.
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