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Outline

Demographic Methods: Why Do I Care?

▶ Basic motivation and missing data

▶ Model populations: Stationary populations
▶ Live Literatures in Nonstable Population Relations:

▶ Chinese fertility (Cai 2008)
▶ Centenarians in a developing country (Nepomuceno and Turra

2020)

Derivation of Basic Relations

▶ Some math

▶ Visualization

Using “variable-r” Relations for Demographic Estimation
Applications: Family Demography, Health & Mortality, Aging
& Gerontology, Immigration, Labor
Live Demo
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Demographic Methods (Why? And Their

Limitations...)
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Demographic Methods

▶ Demographic methods relate:
▶ Population-level processes to individual outcomes - mortality,

e.g. individual’s “exit” from region A given population-level
mortality and emigration rates (no returning)

▶ Individual level-risks to population level, e.g. if each individual
i faces mortality risk mi and the initial population size is P0,
how many people will survive to T > 0,PT ?

▶ These computations are of obvious interest to sociologists:
▶ Population-level mortality inequality? How long do marriages

last? How long do jobs last? How does segregation happen
(turnover, changes to entry by a particular race, changes to
exit by a particular race)? How have these processes changed
over time?

▶ Population projection: What will happen in T years if
everything stays as it is?

▶ What do deviations from this trajectory tell us?
▶ Ans: The rates have changed
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Demographic estimation problems: Missing Data

▶ Sometimes missing key data

▶ Example 1: need to keep track of age at death to construct
px survival curve (Preston et al. 2001: 49).

▶ What if its missing?

▶ Solution: make some assumptions about population, fill in the
gaps.

▶ We call the population generated by these assumptions a
model population
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Model populations

▶ Model population structures give us a set of useful relations
(read: formulas, graphics) with a simplicity-realism tradeoff.

▶ Almost all demographers study the stationary population
because it is the simplest model population structure

▶ Some study stable populations

▶ Few study nonstable populations
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Stationary Populations

▶ The simplest model population structure, size P

▶ B births every year, CBR = B/P = b

▶ D deaths every year, CDR = D/P = d

▶ No migration

▶ Fixed survival probability from birth to age x : px
▶ ⇒ B = D ⇒ CBR = CDR

▶ Overall population growth rate r , what is it?

▶ Overall population growth rate r = 0 ⇐ B = D

▶ Thought to be a good model for islands in contemporary
period, historical populations, with approximately 0 long-run
growth rate

▶ Used in policy analyses over 100 years ago (Ayres 1909).

▶ Now of theoretical interest in its own right, e.g. Wrigley-Field
and Feehan (2022) in Demography
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Stationary Population Implications

▶ Let nNx be number of people alive between ages x and x + n
today. For a stationary population, the number of people alive
in that age category T years from now nN

T
x will be...

▶ Let nNx be number of people alive between ages x and x + n
today. For a stationary population, the number of people alive
in that age category T years from now nN

T
x will be nNx .

▶ For the population not to grow: B ↑⇒ D ↑
▶ Let the e0 =

∑
x px · x be the life expectancy of the population

▶ We have: b · e0 = P

▶ Less intuitive: the life expectancy of a person in a stationary
population e0 = 1/b = 1/d

▶ B ↑⇒ D ↑⇒ e0 ↓, Malthusian implications
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Stationary Population Applications

▶ Stationary population relations naturally suggest estimation
strategies

▶ Suppose we want to estimate px
▶ px ≈ nNx

B

▶ Let ndx be the number dying between ages x and x + n

▶ Suppose we want to estimate the probability that a newborn
in a stationary population dies between ages x and x + n, nqx ,
x could be 0

▶ For a stationary population, nqx = ndx/B

▶ These estimation strategies are often used by
paleodemographers, archaeologists, anthropologists to study
of small, closed, approximately zero-growth populations
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Stationary Population Problems: Assumption Violation

▶ Problem: every assumption violated for a typical contemporary
human population, e.g. migration, birth rate changes, px
changes and birth rates and mortality do not have the inverse
relationship predicted by the stationary population model

▶ Assumption of B(t) = B almost always false. In general,
population growth rates clearly not 0.

▶ Partial solution: stable population, let birth rates grow at rate
r ;B(t) = Bert , fix px

▶ Historical context: Stable population models developed by
Lotka (1939) under restrictive conditions

▶ Estimation strategies based on stable populations developed
until around Coale, Demeny, and Vaughn (1983)

Michael Lachanski
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Nonstable Population Theory

▶ Little improvement on stable population methods since 1980s

▶ Why? Stable population theory essentially complete and fixed
growth rate for B(t) is objectionable.

▶ Solution: allow arbitrary birth rate changes bt , fix px
▶ It turns out that you can still derive useful “nonstable

population relations”

▶ In a stable population r(a) = r .

▶ In a nonstable population, we have: age-specific growth rates
that may vary over time r(a, t), “variable-r”s

▶ Nonstable population relations use these quantities to derive
fertility proxies, px , and thus e0

▶ Also turn out to tell us useful things about immigration.
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Nonstable Population Relations 11 /

64



Model Populations in Perspective

Nonstable:
r(t), but varies “smoothly”

Stable:
r is constant

Stationary: 
r=0

Michael Lachanski
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Recent Controversies: Chinese fertility I
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Recent Controversies: Chinese fertility II
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Recent Controversies: Chinese Fertility III, Cai (2008)

Michael Lachanski
Nonstable Population Relations 15 /

64



Recent Controversies: Centenarians I, S.J. Newman (2020)
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Recent Controversies: Centenarians II, Nepomuceno and
Turra (2020)
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The Variable-r Equations and Derivations
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The Fundamental Nonstable Population Equation

▶ Denote N(x , t) as the population reaching age x at time t

▶ ℓx be the proportion of the population that survives to x , born
at 0

▶ r(a, t) is the age-a to a+ da-specific growth rate at time t to
t + dt.

▶ ℓx/ℓy = probability of surviving from age y to age x during
the interval t to t + dt

N(x , t) =
Bennett and Horiuchi 1981

N(y , t) · ℓx
ℓy︸︷︷︸

Probability of
surviving from y to x

· e−
∫ x
y r(a,t)da︸ ︷︷ ︸

age-a-specific
growth from y to x

▶ Preston and Coale (1982) discovered variable-r relations

Michael Lachanski
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Unstable vs. Stable Population Equations I

▶ Let c(x) be the proportion of the population aged x to x + dx

▶ Unstable:

c(x) = b · ℓx/ℓ0︸ ︷︷ ︸
Probability of

surviving from 0 to x
= px

· e−
∫ x
0 r(a)da︸ ︷︷ ︸

age-a-specific
growth from 0 to x

▶ Stable:

c(x) = b · px︸︷︷︸
Probability of

surviving from 0 to x

· e−rx︸︷︷︸
age-a-specific

growth from 0 to x
constant r

Michael Lachanski
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Unstable vs. Stable Population Equations II

▶ Computing birthrates

▶ Unstable:

b =
1∫∞

0 e−
∫ x
0 r(a)dap(x)dx

▶ Stable:

b =
1∫∞

0 e−rxp(x)dx

Michael Lachanski
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Unstable vs. Stable Population Equations III

▶ Let m(x) be the age-specific maternity rate (female births for
mothers aged x to x + dx). Let the fertile ages range from
age α to age β

▶ Unstable:

1 =

∫ β

α
e−

∫ x
0 r(a)dap(x)m(x)dx

▶ Stable:

1 =

∫ β

α
e−rxp(x)m(x)dx

Michael Lachanski
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Two Important Lessons

▶ The nonstable population equations I have presented hold for
any population in which r(a) varies smoothly

▶ Essentially every social phenomena

▶ Implementing these for actual estimation requires non-trivial
discretization

▶ Q: How can all contemporary demographic functions be
related to one another in such a simple way?

▶ Lesson 1: Age distributions are the products of historical
patterns. All necessary history is contained in the r(a, t)
function

▶ Lesson 2: To reestablish the many useful relations in a
stationary populations, one can simply apply a “growth
correction”. (But migration rates may also be needed.)
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Why Are Age-Specific Growth Rates Powerful?
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Variable-r for Demographic Estimation
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Application of variable-r relations for indirect estimation

▶ How to estimate a survival curve p(x) when missing nDx

▶ Preston and Bennett (1983): estimation of intercensal life
table using age distributions

N(x)e
∫ x
0 r(a)da = Bp(x)

N(x)

B
e
∫ x
0 r(a)da = p(x)

▶ Notice that this is essentially the stationary population
approximation with the growth correction mentioned earlier
px ≈ nNx

B

Michael Lachanski
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Preston and Bennett (1983)
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Formulas for Certain Functions in Model Populations
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Applications: Family Demography
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Basic Idea for Applications: X as a Population

The tools used for thinking about human populations can be
applied to the population of marital relations.

▶ Target: first transition from married state

▶ “birth” → marriage; “death” → separation, death;

▶ “Life expectancy” → expected years married

▶ “Birth cohort” → year of marriage

▶ “Causes of death” → reason for separation: divorce, death

▶ Demographic methods yield information about synthetic
cohorts: what would happen to marriages if all sources of
decrement were held constant.

▶ Demographic decomposition can be used to study geographic,
race, and class inequalities in the “life” of a marriage.
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U.S. Marriage Survival in the 1970s
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Probability of a Marriage Ending in Divorce
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Preston’s Handwritten Notes on Using Variable-r to
Compute Age-specific Risk of Marriage I
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Preston’s Handwritten Notes on Using Variable-r to
Compute Age-specific Risk of Marriage II
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Expected Single Years by Age 50
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Applications: Health and Mortality
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Variable-r Relations in Epidemiology: I
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Variable-r Relations in Epidemiology: II
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Suggestion

▶ These relations relating expected survival time to initial
diagnosis could not be tested when first proposed by Preston
(1987) American Journal of Epidemiology

▶ But now the National Health Interview Survey records
years since diagnosis and cause of death

▶ National Cancer Database Records growth of cancer
population, type of cancer, and years until death.
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Applications: Aging and Gerontology
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Methods for Studying Sources of Change in Age Structure

▶ Stable population analysis: comparative statics. Comparing
populations “at least”, in equilibrium, with different levels of
fertility, mortality [migration]

▶ Counter-factual projection. What would happen over some
defined period if mortality or fertility [migration] pursued one
path or another (e.g., what if fertility hadn’t changed?)

▶ Variable-r analysis. Why is the population aging NOW?
Decomposes aging into the history of births, mortality, and
migration?
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Murphy (2017): Demographic Determinants of European
Aging Since 1850 I
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Murphy (2017): Demographic Determinants of European
Aging Since 1850 II
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Murphy (2017): Demographic Determinants of European
Aging Since 1850 III
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Preston and Stokes (2014): Variable-r Aging Equation

rx+(τ) = bx+(τ)︸ ︷︷ ︸
“Births” above age x

− dx+(τ)︸ ︷︷ ︸
deaths above age x

+ mx+(τ)︸ ︷︷ ︸
migration above age x

bx+(τ) = b0(τ − x)xp
τ−x
0 x f

τ−x
0

▶ b0(τ − x) is the number of births in the population over the
interval τ − x divided by person-years lived above age x
during period τ

▶ xp
τ−x
0 is the probability of survival between ages 0 and x for a

member of the birth cohort born during the interval τ − x

▶ x f
τ−x
0 is the factor by which the birth cohort’s size is modified

through migration between ages 0 and x
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Applications: NRR & Immigration
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Variable-r Relations Give an Alternative Expression for a
Common Fertility Measure
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Cai (2008)
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Preston & Wang (2007) I: Immigration & Pop. Growth
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Preston & Wang (2007) II: Immigration & Pop. Growth
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Preston & Wang (2007) III: Immigration & Pop. Growth
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Applications: Labor Demography
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Basic Idea: Jobs as a Population

The tools use for thinking about human populations can be applied
to the population of employer-employee relations.

▶ Target: first transition from current job.

▶ “birth” → hire; “death” → separation;

▶ “Life expectancy” → job tenure expectancy

▶ “Birth cohort” → job vintage/hiring year

▶ “Causes of death” → reason for separation: layoff, firing,
quitting, mortality

▶ “Age-specific mortality rate” → tenure-specific separation rate

▶ Demographic methods yield information about synthetic
cohorts: what would happen to jobs if all sources of
decrement were held constant.

▶ Demographic standardization and decomposition can be used
to study sex, race, and other labor market inequalities in the
“life” of a job.

Michael Lachanski
Nonstable Population Relations 53 /

64



Basic Idea: Jobs as a Population

The tools use for thinking about human populations can be applied
to the population of employer-employee relations.

▶ Target: first transition from current job.

▶ “birth” → hire; “death” → separation;

▶ “Life expectancy” → job tenure expectancy

▶ “Birth cohort” → job vintage/hiring year

▶ “Causes of death” → reason for separation: layoff, firing,
quitting, mortality

▶ “Age-specific mortality rate” → tenure-specific separation rate

▶ Demographic methods yield information about synthetic
cohorts: what would happen to jobs if all sources of
decrement were held constant.

▶ Demographic standardization and decomposition can be used
to study sex, race, and other labor market inequalities in the
“life” of a job.

Michael Lachanski
Nonstable Population Relations 53 /

64



Live Demo - Go to R
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U.S. Marriage Survival in the 1970s - Again
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Space for Theory

▶ Preston et al. (2001: 253) variable-r not the most accurate
algorithm for constructing life tables from two enumerations

▶ More accurate “intercensal intracohort interpolation” methods
discovered by Coale (1984) and refined in Stupp (1988)

▶ Turns out to yield MLE for the life table
▶ Stupp (1988) only used around three times in thirty years

according to Google Scholar, why?
▶ Complicated, computational methods with no convergence

guarantee (Stupp 1988: 220; 1995: 234)
▶ Same weakness as variable-r: errors in variables, e.g. age

heaping, often yield incoherent life tables or no convergence
(Coale 1984: 203; Stupp 1995: 234)

▶ Working with Tim Riffe and Iván Williams to add methods to
DemoTools by January

▶ Hopefully will stimulate theoretical work on indirect estimation,
especially connections with formal statistical approaches
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Extra Slides
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Part I: Current Births & the Population Reaching Age X

N(x , t) = N(0, t) · ℓx
ℓ0︸︷︷︸

Probability of
surviving from 0 to x

· e−
∫ x
0 r(a,t)da︸ ︷︷ ︸

age-a-specific
growth from 0 to x

N(x , t) = B(t) · ℓx
ℓ0︸︷︷︸

Probability of
surviving from 0 to x

· e−
∫ x
0 r(a,t)da︸ ︷︷ ︸

age-a-specific
growth from 0 to x

N(x , t) = B(t) · p(x)︸︷︷︸
Probability of

surviving from 0 to x

· e−
∫ x
0 r(a,t)da︸ ︷︷ ︸

age-a-specific
growth from 0 to x
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Part II: Constructing Midpoint Pseudo-Population

N(x , t1) = N(y , t1)e
−

∫ x
y r(a,t1)da

x−ypy (t1)

N(x , t2) = N(y , t1)e
−

∫ x
y r(a,t2)da

x−ypy (t2)

Take geometric mean:√
N(x , t2) · N(x , t1) = N∗(x)

N∗(x) = N∗(y)e−
∫ x
y

r(a,t1)+r(a,t2)
2

da
x−yp

∗
y (t2)
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Part III: Making Discretization Assumptions

Assumption 1: growth rate changes linearly during the time interval

r(a, t1) + r(a, t2)

2
=

ln
(
N(a,t2)
N(a,t1)

)
t2 − t1

= r(a)

Return to the birth equation and combine it with the midpoint

population:

N(x , t) = B(t) · p(x) · e−
∫ x
0 r(a,t)da

N∗(x) = B∗︸︷︷︸
Average of

Births from 0 to x

e−
∫ x
0 r(a)da · p∗(x)

Michael Lachanski
Nonstable Population Relations 60 /

64



Part III: Making Discretization Assumptions

Assumption 1: growth rate changes linearly during the time interval

r(a, t1) + r(a, t2)

2
=

ln
(
N(a,t2)
N(a,t1)

)
t2 − t1

= r(a)

Return to the birth equation and combine it with the midpoint

population:

N(x , t) = B(t) · p(x) · e−
∫ x
0 r(a,t)da

N∗(x) = B∗︸︷︷︸
Average of

Births from 0 to x

e−
∫ x
0 r(a)da · p∗(x)

Michael Lachanski
Nonstable Population Relations 60 /

64



Part III: Making Discretization Assumptions

Assumption 2: Approximate midpoint quantities by summing
across intervals and dividing by the length of the interval. For the
halfway point, sum to the halfway point.

5N
∗
x = B∗ exp

2.55rx + 5 ·
x−5∑
a=0,5

5ra


︸ ︷︷ ︸

CumulationFunction
Sx

5L
∗
x

5N
∗
x = B∗ · Sx · 5L∗x
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Part III: Making Discretization Assumptions

Assumption 3: Assuming that lx is linear in the interval
surrounding x .

ℓ∗x =

(
5L

∗
x + 5L

∗
x−5

)
10

Preston et al. (2001) also uses this to characterize the last interval.
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Part IV: Algorithm

The basic idea is to estimate:

p∗(x) =
N∗(x) exp [Sx ]

N∗(0)

▶ Estimate 5L
∗
x Assumptions 1 and 2

▶ Estimate ℓ∗ Assumption 3

▶ If B(t) (“hires” for each group) sequence is available, all
quantities estimable.

▶ Otherwise, we must start N∗(0) at first calculable average,
and construct “conditional” life (“job tenure” expectancies)

▶ Cook up some solution for dealing with the open-ended
interval.
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