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Outline

€ Marginal structural models (MSMs): What and why?

€ When would you apply them?

o Examples
&€ Limitations and some remedies

€ New developments — different ways to construct weights

o Covariate balancing propensity scores (CBPS) (Imai and Ratkovic 2014,
2015)

o Residual balancing weights (Zhou and Wodtke 2020; Baum and Zhou
Forthcoming)

€ How do you execute? (example codes)
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What are marginal structural models?

Multi-step estimation process:

o Separates confounder control from model estimation for effect of interest

Estimation process involves:
o Calculating weights

° Running a model (or other estimation procedure) using the weights

Mostly commonly applied for:
o Casual inference on observational data

o Causal mediation

o Controlling time-varying confounding
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What are marginal structural models?

Why these names?

o “Marginal” in a sense that this class of models usually do not

condition on other variables, but rely on the marginal distribution of

the exposure while balancing confounders over the level of exposure.

o “Structural” is the econometric term for “causal”

o |Inverse-probability-of-treatment weighting (IPTW) vs. Propensity

scores

o History about the models (Xi might introduce it)
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The intuition behind IPTW

Treated Control
X=1 ? 0000000 ’
One out of|every 10 pe(Y)pIe with X=2 is treated
X=0 000 O

Suppose that P(A=1|X=1)=0.1.

+ Among people with X=1, only 10% will receive the treatment.

+ |.e., the value of the propensity score for people with X=1is 0.1.
Suppose that P(A=1|X=0)=0.8.

+ Among people with X=0, 80% will receive treatment.

+ |.e., the value of the propensity score for people with X=0is 0.8



The intuition behind IPTW

Treated

X=1

?

Control

........’

One out of
Propensity score

matching:

1 person in the

treated group

every 10 pecY)pIe with X=2 is treated

Counts the same as 9
people from the
control group



The intuition behind IPTW

Treated Control

X=1 il L N N i ® ’0 o0 0
This one than any one of these.
should have 9
times more
weight

Weighting: Rather than match, we could use all of the data, but down weight
some and up weight others. This is accomplished by weighting by the inverse
of the probability of treatment received.

For treated subjects weight by the inverse of P(A=1]|X). For control subjects
weight by the inverse of P(A=0]X), thus different from the propensity score.
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The intuition behind IPTW

Treated
X=1 ®
Weight: ! = =10

P(A=1|X=1) 0.1

1 person in the
treated group

Control

L 1 _1_1
Weight: P(A=0|X=1) 09 9

Counts the same as 9 people
from the control group

Weighting: Rather than match, we could use all of the data, but down weight
some and up weight others. This is accomplished by weighting by the inverse

of the probability of treatment received.

MARGINAL STRUCTURE MODELS 8



The intuition behind IPTW: survey sampling

In surveys it is common to oversample some groups relative to the
population.

e Oversample a minority group

e Oversample older adults

e Oversample obese individuals

To estimate the population mean, can weight the data to account for the
oversample.
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The intuition behind IPTW: Pseudo-

population
+ Suppose P(A=1|X)=0.9

Treated Control
Original Population 00 00O ®
/ o0 00 N
L Apply weight == 10
Applyweightﬁ = ?tc- each -
Treated Control
Pseudo-population 00 00O N NN N
o0 00 O o0 00 0

@ In the original population, some people were more likely to get treated than others,

based on their X’s.
€ In the pseudo-population, everyone is equally likely to be treated, regardless of their X values
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Assuming A is randomized, S is the mediating variable, potential outcomes
can be defined as Y%®, U are the unmeasured confounders.

Si— #U

A >Y
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Quick recap on the DAGs and the ignorability
assumptions in causal inference

Three Sources of Association Between Two Variables A & B

A— C —B

(1) Direct and indirect causation
AH B and A1l BIC

A
c / (2) Common cause confounding
\ AH Band ALl B|C

B
2 A (3) Conditioning on a common
\. C effect (“collider™): Selection
/ ALIBand AHB[C
‘B
S » . non-causal (spurious) association. . conditioning.
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Quick recap on the DAGs and the ignorability
assumptions in causal inference

Three Sources of Association Between Two Variables A & B

\
v

Good Iooks

Acting Skl||

\
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Quick recap on the DAGs and the ignorability
assumptions in causal inference

Three Sources of Association Between Two Variables A & B
Overcontrol: intercepting

A—|C |—B
the causal pathway
Confounding bias: failure to
C condition on a common
B cause
S A

\ Endogenous selection bias:
/ C mistaken conditioning on

a common effect.

Elwert@wisc.edu. Version 5/2013

All three constitute analytic mistakes (Elwert 2013).




Quick recap on the DAGs and the ignorability
assumptions in causal inference

Three blocking criteria (key!!)

1. Conditioning on a non-collider blocks a path

2. Conditioning on a collider, or a descendent of a collider,
unblocks a path

3. Not conditioning on a collider leaves a path “naturally” blocked.

The adjustment criterion reveals which variables give (conditional)
ignorability.

Probabilistic Implications

Two nodes, A and B, are d-separated by a set of nodes C iff it blocks
every path from A to B.

+ Then: Al B|C
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Quick recap on the DAGs and the ignorability
assumptions in causal inference

€ “Eliminate backdoor paths between treatment (A) to Y” in the DAG
= d-separate/block every path between A and Y that contain an arrow
into A while not conditioning on descendant of A (Pearl 1988)
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Quick recap on the DAGs and the ignorability
assumptions in causal inference

€ “Conditional exchangeability is often referred as ‘weak ignorability’ or
‘ignorable treatment assignment’ in statistics (Rosenbaum and Rubin, 1983),
‘selection on observables’ in the social sciences (Barnow et al., 1980), and
‘no omitted variable bias’ or ‘exogeneity’ in econometrics (Imbens, 2004).”

-- Hernan MA, Robins JM (2020). Causal Inference: What If.
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Assuming A is randomized, S is the mediating variable, potential outcomes
can be defined as Y%®, U are the unmeasured confounders.

Si— #U

A >Y
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Assuming A is randomized, S is the mediating variable, potential outcomes
can be defined as Y%®, U are the unmeasured confounders.

Fit a model of Y on A adjusting for S, i.e.,, E(Y |A,S) = By + B1 A+ 5 S,
[ is biased due to the collider S.

Si— #U

A >Y
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Assuming A is randomized, S is the mediating variable, potential outcomes
can be defined as Y%®, U are the unmeasured confounders.

Fit a model of Y on A adjusting for S, i.e., E(Y |A,S) = By + B1 A+ 5 S,
[ is biased due to the collider S. This opens up backdoor path between A
and A -> U -> Y, which means

that the ignobility assumption B

Is violated. S < _ > U

MARGINAL STRUCTURE MODELS 20




When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Assuming L represents all the
confounding between S and Y. E

Fit a model of Y on A adjusting for S and
L remove the bias, E(Y [4,5) =
Po+BiA+L,S+[BsL. U

A >Y
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

all the confounding between Sand Y

Fit a model of Y on A adjusting for S and
L remove the bias, E(Y [4,5) =
Bo+B1A+B2S+BsL. U

[1 is unbiased. S

In this example, assuming L represents E

A >Y
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

In this example, assuming L represents Care arrangements
all the confounding between S and Y

Fit a model of Y on A adjusting for S and
L remove the bias, E(Y |A,S) =
Bo+B1A+ B, S+B3L.

Spend more

on edu Parental
educational
values
>Y

Parental out-migration Child education
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

In this example, assuming L represents Care arrangements

all the confounding between S and Y /

Spend more

0” edu Parental
educational
values

Parental out-migration Ch”d education

Fit a model of Y on A adjusting for S and
L remove the bias, E(Y |A4,S) =
Bot+B1A+ PSS+ 5L
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

In this example, assuming L represents are arrangements
all the confounding between S and Y L

Fit a model of Y on A adjusting for S and
L remove the bias, E(Y |A4,S) =
Bot+B1A+ PSS+ 5L

Spend more

0” edu Parental
educational
values

Parental out-migration Ch”d education

[ is biased if L is affected by
the treatment, which is
often the case in
longitudinal settings.

L’
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Robins (1999) proposed to weight the data by

1
f(SIA, L)

Care arra ngements Care arra ngements
Paren Parent
edugational educdtional
vafues \ valdes
Pare tal out-migration Child educa tlon Paren aI out-migration Child educatlon
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When would we use MSMs with IPTW? — First,
consider a cross-sectional mediation example

Robins (1999) proposed to weight the data by

Treated

/....

. 1 _ 10
Applyweughtﬁ_ 5 to each

riginal Population

Treated

e g et — e

seudo-population

1
f(SIA, L)

Care arra ngements

Control

Apply we|ght —= 10

Parent
educdtional
valdes
Control
N NN N ]

Paren aI out-migration Child educatlon
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When would we use MSMs with IPTW?
— Let’s extend the cross-sectional example

Care arra ngements

Paren
edugational
valles

Pare tal out-migration Child educa tion
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When would we use MSMs with IPTW?
— Let’s extend the cross-sectional example

Care arrangements

—-A>

Paren
edu tlonal
vaflues

Pare‘tar;ﬁliut migration Child ed uca

Subscripts denote wave or occasions
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When would we use MSMs with IPTW?
— Let’s extend the cross-sectional example

Looks horrible; let’s tidy it up!

Care arrangements

—-A>

Paren
edu tlonal
vaflues

Pare‘tar;ﬁliut migration Child ed uca

Subscripts denote wave or occasions
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When would we use MSMs with IPTW?
— Let’s extend the cross-sectional example




When would we use MSMs with IPTW?
— Causal Effects of Time-Varying Treatment

P Consider joint effects of multiple treatments A, - - -, An

» Consider what would happen if received treatment levels as, - - -, an

» L, denotes covariate levels at time k

» L ={L, L, -, L, }denotes covariate history through k

Compare potential outcomes under different regimes Y9,Y9', 9,9’ €G

(Regime: a plan, analogous to protocol in clinical trial, which specifies what
treatment a subject is to receive at any point in time)
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What levels of treatment are
appropriate choices of comparison?

» What levels of treatment are appropriate choices of
comparison?
» Local comparison: Y?a:92:7»3m tgo Yal,a2, ,am o Ya1,3, ,am

» Treatments received differ only in 1 element; at 1 point in time
» e.g., effect of 1 day of AZT

- o / / .
» Global comparison: Y9132 :dm tg Y32 dm

» Treatments received differ in many elements; at many points
in time
» e.g., effect of several days of AZT
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How do MSMs help address time-varying
confounding?

» They do not fix confounders as a method of adjustment (like in
regression)

» Weighting produces the 'pseudo-population' in which all confounders
(including those that vary with time) are balanced.

1. Not conditioning on Lg confounding

GRAPHS FROM WODTKE, HARDING, AND ELWERT, 2011 34




How do MSMs help address time-varying
confounding?

2. Conditioning on L,_< over- 3. Conditioning on Lhincurs
controls indirect pathways collider-stratification bias
U U
L; A; Ls 4} Y L o 2

GRAPHS FROM WODTKE, HARDING, AND ELWERT, 2011 35



How do MSMs help address time-varying
confounding?

4. the Effect of Weighting by the Inverse Probability of Treatment (IPT)

Observed data Weighted pseudo-population

Measured confounders are no longer confounders because there is no longer a
relationship from L, ( time-varying confounder) to A, (exposure), enabling an
unbiased exposure estimate. It imitates sequentially randomized experiment.

GRAPHS FROM WODTKE, HARDING, AND ELWERT, 2011 36




IPTW Assumptions

Conditional ignorability/exchangability (for scalar treatment) or Sequential
exchangeability (for time-varying treatment)

@ Absence of unmeasured confounding

@ Not directly testable; use theory and causal graphs/logic

@ Sensitivity analyses can be used to quantify the impact of unmeasured confounding
Consistency (Sequential version for time-varying treatment)

€ No misclassification of exposure

@ Sensitivity analyses
Positivity -i.e. a non-zero (or 1) probability of receiving treatment

@ Can‘t have perfect confounder combination to determine treatment or non-treatment

Correctly specified IPTW (from the model)

@ Assumptions of the statistical model used to generate the IPTW are met
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IPTW for time-varying treatment

T
=1

1
f(A: = ajt|Acc1 = 311, Lt = 7:’,1‘),

> Vi=

t

covariate history L:and treatment history A« at all
timet t=1,---,T

» “stabilized” weight:

T — —
f(A; = a; +|As_q1 = a; +—
SWizl_[ ( t I,tl t—1 It 1)

t=1 f(At — 3:’,tlzt—1 — Ei,t—hzt — 7i,t)
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IPTW for time-varying treatment
P “stabilized” weight (cont.):

T - —_
f(A; = aj A1 = aj 421, X = X
SWf:l_l ( t :,tl t—1 I, t—1 )

t=1 f(At — 3i,t|zt—1 — Ei,t—bzt — 7:’,1‘9 X = X)

covariate history Lrand treatment history Ae1at all time ¢, t =
1, ---,T.

X is a set of baseline or time-invariant confounders.

Notes: In such cases, these variables need to be included in
the MSM to properly adjust for confounding, which is
unproblematic because they cannot be affected by treatment.
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Limitations of IPTW estimation

€ IPTW estimation is relatively inefficient.

* Remedy could be augmenting the IPTW estimator by additionally adjusting
for confounders directly in the outcome regression also improves its
efficiency (Robins et al. 1994).

@ It is susceptible to finite-sample bias.

@ IPTW estimation can be difficult to implement with continuous
treatments (Zhou and Wodtke 2020; Wodtke 2018).

* Residual balancing weights (Zhou and Wodtke 2020; Baum and Zhou
Forthcoming)

€ Cannot estimate effect modification beyond the baseline, time-
invariant covariates.

 Structural Nested Models (Wodtke, Elwert, and Harding 2016)

MARGINAL STRUCTURE MODELS 40




Example 1: Neighborhood effect (Wodtke
2013; Wodtke, Harding, and Elwert, 2011)

Research question: How do the duration and timing of exposure to
neighborhood poverty impact the risk of adolescent parenthood?

@ Data: PSID
€ Outcome (Y): adolescent parenthood
€ Time-varying exposure (A, .....A,): Level of neighborhood poverty
In sum, a num f time-varying family characteristics—parental employment,

income, and family structure, in particular—affect future neighborhood selection and
are themselves affeftéd by past neighborhood contexts. Because these factors also

Percheski 2008), they are simultaneously confounders for the effect of future exposures
and mediators for the effect of past exposures to neighborhood poverty. Time-varying
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Example 1: Neighborhood effect (Wodtke
2013; Wodtke, Harding, and Elwert, 2011)

k—1 N
logit (P(Y¢(@) = 1k > 7, Tx1(@) = 0)) = Bo(k) +Bl< ’—lklfai_2)>

k—1
o =3 ‘ '
\ J

Y
the proportion of time that subjects live in moderate- and high-poverty neighborhoods,

respectively, from one wave post-baseline (i.e., age 5) through wave k — 1.
The author also looked at timing of exposure:
>, l(ar = 2)}

10git(P(Yk(a)_1‘k>7,)7k1(5)—0))—90(k)+81[ 7
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Example 1: Neighborhood effect (Wodtke
2013; Wodtke, Harding, and Elwert, 2011)

Table 4 Effects of neighborhood poverty on the risk of adolescent parenthood, Panel Study of Income

Dynamics®

Blacks (person-years = 15,420) Nonblacks (person-years = 21,548)

Regression- Regression-

Adjusted [PT-Weighted  Adjusted IPT-Weighted
Model LOR SE LOR SE LOR SE LOR SE
Model 1

Cumulative exposure
Low-poverty neighborhood Ref.  Ref. Ref.  Ref. Ref.  Ref. Ref.  Ref.
Moderate-poverty neighborhood ~ 0.467 0.300 0.569 0.320" 0383 0269 0460 0265
High-poverty neighborhood 0.455 02617 0601 0266* 0571 0306" 0829 0297%*

Model 2

Cumulative exposure, childhood
Low-poverty neighborhood Ref.  Ref. Ref.  Ref. Ref.  Ref. Ref.  Ref.
Moderate-poverty neighborhood  0.167 0.329 0.103 0355 0.129 0345 0249 0364
High-poverty neighborhood 0.152 0319 0212 0339 —0.258 0449 -0.138 0478

Cumulative exposure, adolescence
Low-poverty neighborhood Ref.  Ref. Ref. Ref. Ref.  Ref. Ref.  Ref.
Moderate-poverty neighborhood 0.279 0.260 0.422 0283 0.224 0263 0.189 0.266
High-poverty neighborhood 0.284 0269 0365 0293 0.670 0337* 0.790 0.341*

Model 3
Point exposure (age 11)
Low-poverty neighborhood Ref.  Ref. — — Ref.  Ref. — —
Moderate-poverty neighborhood 0.213 0.186 — — 0.167 0.193 — —
High-poverty neighborhood 0.191 0178 — — 0.549 0.218% — —

“Log odds ratios (LOR) and standard errors (SE) are combined estimates from five multiple imputation data
sets.
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Example 2: Parental Incarceration and
Children's Academic Achievement (Fox, Moore,
and Song 2022)

€ Data: PSID, PSID Child Development Supplement (CDS), and Fragile
Families and Child Wellbeing Study

€ Outcome (Y): Children's Academic Achievement
@ Time-varying exposure (A, .....Ak): parental incarceration
€ Time-varying confounders (La .....Lk)

@ Baseline characteristics (C)
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Example 2: Parental Incarceration and
Children's Academic Achievement (Fox, Moore,
and Song 2022)

Pre-childbirth incarceration variable, AO, and all Am into a post-childbirth
measure of parental; incarceration between age 0 and 18 (or the age when the
last CDS measure is observed), Al

E(Y; | Ap, A1) = ago + BooAo + A (.310 + .511At}) (1)

More generally, we estimate models with £ = 1 (childhood) and ¢ = 2 (early adulthood). The model
relies on the regression framework based on a weighted pseudopopulation in which the time-varying

covariates have been properly balanced across treatment and control groups at each time point.

E(Yz | A) = ago + BooAo + Ay (ﬁm + .311140)4- (2)

+ A (Bro+ Budo + -+ + BuAi1 )
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Example 2: Parental Incarceration and
Children's Academic Achievement (Fox, Moore,
and Song 2022

Table 3. MSM Estimated Effects of Parental Incarceration on Academic Achievement, Age 0-18

Black White
LW PC AP LW PC AP

Parental incarceration before birth 1.993 -2.709 -2.318 -20.174* -18.8601  -14.990**

(2.904)  (2.513)  (2.126)  (8.974)  (10.147)  (5.369)
Parental incarceration during childhood -0.465 -1.472 1.051 -8.242%** -4.130 -5.299

(1.830)  (1.476)  (2.343)  (2.132) (2.933)  (3.679)
Intercept 97.610%** 96.740%** 95.833*** 107.071*** 105.349*** 107.934***

(0.299)  (0.300)  (0.275 (0.272)  (0.267)  (0.257
Observations 3,322 2,809 3,309 4,281 3,689 4,268

Table 4. MSM Estimated Effects of Incarceration Timing (Pre-natal vs. Childhood) on Academic Achievement, Age 0-18

White Black Hispanic
(1a) (1b) (1c) (2a) (2b) (2¢) (3a) (3b) (3¢)
PC AP LW PC AP LW PC AP LW
Par. Inc. 0-3 years before birth -6.982%* -3.657 -4.310 -14.268 -3.390 -3.311 0.790 -2.460 3.077
(2.466) (3.291) (3.861)  (11.716)  (2.601) (5.060)  (2.598)  (4.681)  (5.697)
Par. Inc. 0-9 years after birth -10.447**%  -8.802* -5.506* -4.415* -4.9401 -6.533 0.419 -0.483 9.593
(3.327) (4.008)  (2.540)  (2.227)  (2.563)  (4.958)  (4.327)  (4.046) (7.702)
Timing. 0-3 years before birth 2.716 0.257 -8.0831 3.200 0.810 7.070 0.641 1.031 -7.0841
(2.526) (2.977) (4.395)  (4.783)  (1.465) (4.796)  (1.066)  (2.436)  (4.274)
Timing: 0-9 years after birth -0.540 -1.1311 -0.821 0.823* 0.479 0.173 0.204 1.494* -0.877
(0.668) (0.630) (1.078)  (0.355)  (0.615) (0.481)  (0.574)  (0.629)  (1.119)
Intercept 102.900%** 108.790*** 105.860*** 93.541*** 100.080%** 106.230%** 92.235%** 99.187*** 06.828***
(1.249) (1.199) (1.765) (1.673) (1.794) (4.765) (1.735)  (2.087)  (2.388)
Observations 401 402 259 630 633 457 389 395 254

Source: Fragile Families and Child Wellbeing Study 1998-2017.

Note: Parental incarceration before and after birth refer to dummy variables that show the effect of average change in scores associated with a parental incarceration spell
during the specified age-based time interval. Incarceration timing before and after birth refer to continuous variables that show whether the timing within the interval (early
vs. later) influences the effect significantly. Estimates show the effect associated with having an incarceration spell one year later in the interval. Standard errors are included
in parentheses. Other covariates in the model are illustrated in Table 2. The OLS results are presented in Appendix Tables F, G, and H.

tp <.1; *p < .05; **p < .01; ***p < .001 (two-sided tests).




Example 3: Censoring weight

#CD4 count has an effect both on dropout and mortality, which causes informative
censoring.

#Use inverse probability of censoring weighting to correct for effect of CD4 on dropout.
#Use Cox proportional hazards model for dropout.
censorm <- ipwtm(

exposure = dropout, family = "survival",

numerator = ~ sex + age,

denominator =~ sex + age + cd4.sqrt,

id = patient, tstart = tstart, timevar = fuptime, type = "first", data = haartdat)
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R Codes and data

R codes:

https://www.dropbox.com/s/w7046d4dtvwi8v4/ipw demo Nov18.Rmd?dI=0
Data:

https://www.dropbox.com/s/adw9i7n7alb5g0w/mydata example.csv?dI=0
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https://www.dropbox.com/s/w7o46d4dtvwf8y4/ipw_demo_Nov18.Rmd?dl=0
https://www.dropbox.com/s/w7o46d4dtvwf8y4/ipw_demo_Nov18.Rmd?dl=0
https://www.dropbox.com/s/adw9i7n7a1b5q0w/mydata_example.csv?dl=0

