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We describe a Constraint-Based Lexicalist model of human sentence
processing. Highlighting a convergence of developments in multiple fields
toward lexicalist and statistical processing perspectives, we argue that much
of the syntactic ambiguity of language can be understood as lexical ambi-
guity, which is resolved during word recognition. The model is a connec-
tionist system, which acquires wide coverage grammatical knowledge from
supervised training on highly variable, naturally occurring text. The model
learns to map each of the words in a sentence to an elementary tree from
Lexicalized Tree Adjoining Grammar (Joshi & Schabes, 1996). These
elementary trees are rich in grammatical information, encoding, among
other things, the number and type of complements taken by a verb. The
syntactic richness of these lexical representations results in substantial
lexico-syntactic ambiguity. At the same time, statistical mechanisms for
lexical ambiguity resolution are shown to effectively resolve this ambiguity.
Simulations show that the model accounts for previously reported patterns in
human sentence processing, including frequency-shaped processing of verb
subcategory (e.g., Juliano & Tanenhaus, 1994) and effects of subtle contextual
cues in lexical category ambiguity resolution (e.g., MacDonald, 1993).

In the last fifteen years, there has been a striking convergence of perspectives
in the fields of linguistics, computational linguistics, and psycholinguistics re-
garding the representation and processing of grammatical information. First,
the lexicon has played an increasingly important role in the representation of -
the syntactic aspects of language. This is exemplified by the rise of grammatical
formalisms that assign a central role to the lexicon for characterizing syntac-
tic forms, e.g., LFG (Bresnan & Kaplan, 1982), HPSG (Pollard & Sag, 1994),
CCG (Steedman, 1996), Lexicon-Grammars (Gross, 1984), LTAG (Joshi &
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Schabes, 1996), Link Grammars (Sleator & Temperley, 1991) and the Minimal-
ist Program within GB (Chomsky, 1995). Second, theories of language process-
ing have seen a shift away from “rule-governéd” approaches for grammatical
decision-making toward statistical and constraint-based approaches. In psy-
cholinguistics, this has been characterized by a strong interest in connection-
ist and activation-based models (e.g., Lewis, 1993; McRae, Spivey-Knowlton &
Tanenhaus, 1998; Stevenson, 1994; Tabor, Juliano & Tanenhaus, 1996). In com-
putational linguistics, this is found in the explosion of work with stochastic ap-
proaches to structural processing (cf. Church & Mercer, 1993). In linguistics,
this interest is most apparent in the development of Optimality Theory (Prince
& Smolensky, 1997).

In this chapter, we highlight how the shift to lexical and statistical ap-
proaches has affected theories of sentence parsing in both psycholinguistics and
computational linguistics. We present an integration of ideas developed across
these two disciplines, which builds upon a specific proposal from each. Within
psycholinguistics, we discuss the development of the Constraint-Based Lexical-
ist (CBL) theory of sentence processing (MacDonald, Pearlmutter & Seiden-
berg, 1994; Trueswell & Tanenhaus, 1994). Within computational linguistics,
we discuss the development of statistical approaches to processing Lexicalized
Tree-Adjoining Grammar (LTAG, Joshi & Schabes, 1996). Finally, we provide a
description of the CBL theory, which is based on LTAG.

A constraint-based theory of sentence processing

Psycholinguistic thinking about the syntactic aspects of language comprehen-
sion has been deeply influenced by theories that assign a privileged role to
supra-lexical syntactic representations and processes. This view has been most
extensively developed in the theory of Frazier (1979, 1989), which proposed
that syntactic processing is controlled by a two-stage system. In the first stage,
a single syntactic representation of the input is computed using a limited set
of phrase structure rules and basic grammatical category information about
words. When syntactic knowledge ambiguously allows multiple analyses of the
input, a single analysis is selected using a small set of structure-based process-
ing strategies. In a second stage of processing, the output of this structure-
building stage is integrated with and checked against lexically specific knowl-
edge and contextual information, and initial analyses are revised if necessary.
The basic proposal of this theory — that syntactic processing is, at least in the
earliest stages, independent from lexically specific and contextual influences —
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has been one of the dominant ideas of sentence processing theory (e.g., Fer-
reira & Clifton, 1986; Perfetti, 1990; Mitchell, 1987, 1989; Rayner, Carlson &
Frazier, 1983).

A diverse group of recent theories has challenged this two-stage structure-
building paradigm by implicating some combination of lexical and contextual
constraints and probabilistic processing mechanisms in the earliest stages of
syntactic processing (Crocker, 1994; Corley & Crocker, 1996; Ford, Bresnan &
Kaplan, 1982; Gibson, 1998; Jurafsky, 1996; MacDonald et al., 1994; Pritch-
ett, 1992; Stevenson, 1994; Trueswell & Tanenhaus, 1994). We focus-in this
chapter on the body of work known as the Constraint-Based Lexicalist the-
ory (MacDonald et al., 1994; Trueswell & Tanenhaus, 1994), which proposes
that all aspects of language comprehension, including the syntactic aspects,
are better described as the result of pattern recognition processes than the ap-
plication of structure building rules. Word recognition is proposed to include
the activation of rich grammatical structures {(e.g., verb argument structures),
which play a critical role in supporting the semantic interpretation of the sen-
tence. These structures are activated in a pattern shaped by frequency, with
grammatically ambiguous words causing the temporary activation of multiple
structures. The selection of the appropriate structure for each word, given the
context, accomplishes much of the work of syntactic analysis. That is, much
of the syntactic ambiguity in language is proposed to stem directly from lexi-
cal ambiguity and to be resolved during word recognition.! The theory predicts
that initial parsing preferences are guided by these grammatical aspects of word
recognition. '

The CBL framework can be illustrated by considering the role of verb
argument structure in the processing of syntactic ambiguities like the Noun
Phrase/Sentence Complement (NP/S) ambiguity in sentences like (1a) and (1b).

(1) a. The chef forgot the recipe was in the back of the book.
b.  The chef claimed the recipe was in the back of the book.

In (la), a temporary ambiguity arises in the relationship between the noun
phrase the recipe and the verb forgot. Due to the argument structure possi-
bilities for forgot, the noun phrase could be a direct object or the subject of
a sentence complement. In sentences like this, readers show an initial prefer-
ence for the direct object interpretation of the ambiguous noun phrase, re-
sulting in increased reading times at the disambiguating region was in... (e.g.,
Holmes, Stowe & Cupples, 1989; Ferreira & Henderson, 1990; Rayner & Fra-
zier, 1987). On the CBL theory, the direct object preference in 1a is due to the
lexical representation of the verb forgot, which has a strong tendency to take
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a direct object rather than a sentence complement. The CBL theory proposes
that word recognition includes the activation of not only semantic and phono-
logical representations of a word, but also detailed syntactic representations.
These lexico-syntactic representations, and the processes by which they are ac-
tivated, are proposed to play critical roles in the combinatory commitments
of language comprehension. The direct object preference should therefore be
eliminated when the verb forgot is replaced with a verb like claimed, which has
a strong tendency to take a sentence complement rather than a direct object.
These predictions have been confirmed experimentally (Trueswell, Tanenhaus
& Kello, 1993; Garnsey, Pearlmutter, Myers & Lotocky, 1997), and connection-
ist models have captured these preferences (Juliano & Tanenhaus, 1994; Tabor
et al., 1996).

Experimental work has also indicated that the pattern of processing
commitments is not determined solely by individual lexical preferences, but
involves an interaction between argument structure preference and lexical
frequency. NP-biased verbs result in strong direct object commitments re-
gardless of the lexical frequency of the verb. S-bias verbs, on the other hand,
show an effect of frequency, with high frequency items resulting in strong S-
complement commitments and low frequency items resulting in much weaker
S-complement commitments (Juliano & Tanenhaus, 1993; though see Garnsey
et al.,, 1997). This interaction between frequency and structural preference is
explained by Juliano & Tanenhaus (1993) as occurring because the argument
structure preferences of S-bias verbs must compete for activation with the reg-
ular pattern of the language ~ that an NP after a verb is a direct object. The
ability of the S-bias verbs to overcome this competing cue depends upon fre-
quency. Juliano & Tanenhaus (1994) present a connectionist model that shows
that such interactions emerge naturally from constraint-based lexicalist mod-
els, since the models learn to represent more accurately the preferences of high
frequency items. In later sections, we return to the issue of interactions be-
tween lexical frequency and “regularity” and discuss its implications for the
architecture of computational models of language processing.

The CBL theory has provided an account for experimental results involv-
ing a wide range of syntactic ambiguities (e.g., Boland, Tanenhaus, Garnsey
& Carlson, 1995; Garnsey et al., 1997; Juliano & Tanenhaus, 1993; Trueswell
& Kim, 1998; MacDonald, 1993, 1994; Spivey-Knowlton & Sedivy, 1995;
Trueswell et al., 1993; Trueswell, Tanenhaus & Garnsey, 1994; cf. MacDonald
et al., 1994). As this body of ‘experirnental results has grown, there has been a
need to expand the grammatical coverage of computational modeling work to
match that of the most comprehensive descriptions of the CBL theory, which
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have been wide in scope, but have not been computationally explicit (MacDon-
ald et al., 1994; Trueswell & Tanenhaus, 1994). Existing computational models
have focused on providing detailed constraint-based accounts of the pattern
of processing preferences for particular sets of experimental results (McRae
et al., 1998; Tabor et al., 1996; Spivey-Knowlton, 1996; Juliano & Tanenhaus,
1994). These models have tended to be limited syntactic processors, with each
model addressing the data surrounding a small range of syntactic ambiguities
(e.g., the NP/S ambiguity). This targeted approach has left open some ques-
tions about how CBL-based models “scale up” to more complicated grammat-
ical tasks and more comprehensive samples of the language. For instance, the
Juliano & Tanenhaus model learns to assign seven different verb complement
types based on co-occurrence information about a set of less than 200 words.
The full language involves a much greater number of syntactic possibilities and
more complicated co-occurrence relationships. It is possible that the complex-
ities of computing the fine-grained statistical relationships of the full language
may be qualitatively greater than in these simple domains, or even intractable
(Mitchell, Cuetos, Corley & Brysbaert, 1995). It is also possible that these tar-
geted models are so tightly focused on specific sets of experimental data that
they have acquired parameter settings that are inconsistent with other data (see
Frazier, 1995). Thus, there is a need to examine whether the principles of the
theory support a model that provides comprehensive syntactic coverage of the
language but which still predicts fine-grained paiterns of argument structure
availability.

Lexicalized grammars and supertagging

In developing a broader and more formal account of psycholinguistic find-
ings, we have drawn insights from work on statistical techniques for process-
ing over LTAG (Srinivas & Joshi, 1999). This section introduces LTAG and
representational and processing issues within it.

The idea behind LTAG is to localize the computation of linguistic struc-
ture by associating lexical items with rich descriptions that impose complex
combinatory constraints in a local context. Each lexical item is associated with
at least one “elementary tree” structure, which encodes the “minimal syntac-
tic environment” of a lexical item. This includes such information as head-
complement requirements, filler-gap information, tense, and voice. Figure 1
shows some of the elementary trees associated with the words of the sentence
The police officer believed the victim was lying.” The trees involved in the correct
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parse of the sentence are highlighted by boxes. Note that the highlighted tree
for believed specifies each of the word’s arguments, a sentential complement
and a noun phrase subject.

Encoding combinatory information in the lexicon rather than in supra-
lexical rules has interesting effects on the nature of structural analysis. One
effect is that the number of different descriptions for each lexical item becomes
much larger than when the descriptions are less complex. For instance, the av-
erage elementary tree ambiguity for a word in Wall Street Journal text is about
47 trees (Srinivas & Joshi, 1999). In contrast, part-of-speech tags, which pro-
vide a much less complex description of words, have an ambiguity of about 1.2
tags per word in Wall Street Journal text. Thus, lexicalization increases the local
ambiguity for the parser, complicating the problem of lexical ambiguity reso-
lution. The increased lexical ambiguity is partially illustrated in Figure 1, where
six out of eight words have multiple elementary tree possibilities. The flip-side
to this increased lexical ambiguity, however, is that resolution of lexical am-
biguity yields a representation that is effectively a parse, drastically reducing
the amount of work to be done after lexical ambiguity is resolved (Srinivas &
Joshi, 1999). This is because the elementary trees impose such complex com-
binatory constraints in their own local contexts that there are very few ways
for the trees to combine once they have been correctly chosen. The elemen-
tary trees can be understood as having “compiled out” what would be rule
applications in a context-free grammar system, so that once they have been
correctly assigned, most syntactic ambiguity has been resolved. Thus, the lex-
icalization of grammar causes much of the computational work of structural
analysis to shift from grammatical rule application to lexical ambiguity resolu-
tion. We refer to the elementary trees of the grammar as “supertags”, treating
them as complex analogs to part-of-speech tags. We refer to the process of re-
solving supertag ambiguity as “supertagging”. One indication that the work of
structural analysis has indeed been shifted into lexical ambiguity resolution is
that the run-time of the parser is reduced by a factor of thirty when the correct
supertags for a sentence are selected in advance of parsing.?

Importantly for the current work, this change in the nature of parsing
has been complemented by the recent development of statistical techniques
for lexical ambiguity resolution. Simple statistical methods for resolving part-
of-speech ambiguity have been one of the major successes in recent work on
statistical natural language processing (cf. Church & Mercer, 1993). Several al-
gorithms tag part-of-speech with accuracy between 95% and 97% (cf. Char-
niak, 1993). Applying such techniques to the words in a sentence before parsing
can substantially reduce the work of the parser by preventing the construction
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Figure 1. A partial illustration of the elementary tree possibilities for the sentence the
police officer believed the victim was lying. Trees involved in the correct parse of the
sentence are highlighted in boxes

of spurious syntactic analyses. Recently, Srinivas and Joshi (1999) have demon-
strated that the same techniques can be effective in resolving the greater am-
biguity of supertags. They implemented a tri-gram Hidden Markov Model of
supertag disambiguation. When trained on 200,000 words of parsed Wall Street
Journal text, this model produced the correct supertag for 90.9% of lexical
items in a set of held out testing data.

Thus, simple statistical techniques for lexical ambiguity resolution can be
applied to supertags just as they can to part-of-speech ambiguity. Due to the
highly constraining nature of supertags, these techniques have an even greater
impact on structural analysis when applied to supertags than when applied to
part-of-speech tags. These results demonstrate that much of the computation
of linguistic analysis, which has traditionally been understood as the result of
structure building operations, might instead be seen as lexical disambiguation.
This has important implications for how psycholinguists are to conceptualize
structural analysis. It expands the potential role in syntactic analysis of simple
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pattern recognition mechanisms for word recognition, which have played a
very limited role in classical models of human syntactic processing.

Note that the claim here is not that supertagging accomplishes the entire
task of structural analysis. After elementary trees have been selected for the
words in a sentence, there remains the job of connecting the trees via the ITTAG
l combinatory operations of adjunction and substitution. The principal claim
here is that in designing a system for syntactic analysis there are sound linguis-
tic and engineering reasons for storing large amounts of grammatical informa-
tion in the lexicon and for performing much of the work of syntactic analysis
: with something like supertagging. If such a system is also to be used as a psy-
l cholinguistic model, it is natural to predict that many of the initial processing
| commitments of syntactic analysis are made by a level of processing analogous
{ to supertagging. In the following section, we discuss how an LTAG-based su-
V pertagging system resolves at the lexical level many of the same syntactic ambi-
, guities that have concerned researchers in human sentence processing, suggest-

ing that a supertagging system might provide a good psycholinguistic model of
’ syntactic processing. Thus, although the question of how such a system fits into
a complete language processing system is an important one, it may be useful to
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begin exploring the psychological implications of supertagging in advance of a
complete understanding of how to design the rest of the system.*

A model of the grammatical aspects of word recognition using LTAG

In the remaining sections of this paper, we describe an ongoing project which
attempts to use LTAG to develop a more fully-specified description of the CBL
theory of human sentence processing. We argue that the notion of supertagging
can become the basis of a model of the grammatical aspects of word recogni-
; tion, provided that certain key adjustments are made to bring it in line with the
| assumptions of psycholinguistic theory (Kim, Srinivas & Trueswell, in prepa-
| ration). Before introducing this model, we outline how LTAG can be used to
advance the formal specification of the CBL theory.” We then turn to some
of the findings of the model, which capture some of the major phenomena

reported in the human parsing literature.

LTAG lexicalizes syntactic information in a way that is highly consistent
with descriptions of the CBL theory, including the lexicalization of head-
complement relations, filler-gap information, tense, and voice. The value of
LTAG as a formal framework for a CBL account can be illustrated by the LTAG
treatment of several psycholinguistically interesting syntactic ambiguities, e.g.,
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prepositional phrase attachment ambiguity, the NP/S ambiguity, the reduced
relative/main clause ambiguity, and the compound noun ambiguity. In all but
one of these cases, the syntactic ambiguity is characterized as stemming from a
lexical ambiguity.

Figure 2 presents the LTAG treatment of these ambiguities. Each of the
sentence fragments in the figure ends with a syntactically ambiguous word
and is accompanied by possible supertags for that word. First, the preposi-
tional phrase attachment ambiguity is illustrated in Figure 2a. The ambiguity
lies in the ability of the prepositional phrase with the ... to modify either the
noun phrase the cop (e.g., with the red hair) or the verb phrase headed by saw
(e.g., with the binoculars). Within LTAG, prepositions like with indicate lexi-
cally whether they modify a preceding noun phrase or verb phrase. This causes
prepositional phrase attachment ambiguities to hinge on the lexical ambiguity
of the preposition. Similarly, the NP/S ambiguity discussed in the Introduc-
tion arises directly from the ambiguity between the elementary trees shown
in Figure 2b. In this case, these trees encode the different complement-taking
properties of the verb forgot (e.g., the recipe vs. the recipe was ... ). Figure 2c
shows a string that could be parsed as a Noun-Noun compound (e.g., the ware-
house fires were extinguished.) or a Subject-Verb sequence (e.g., the warehouse
fires older employees.). In non-lexicalist grammars, this ambiguity is treated as
arising from the major category ambignity of fires. In LTAG, this ambiguity in-
volves not only the category ambiguity but also a more fine-grained ambiguity
regarding the previous noun warehouse. Due to the nature of combinatory op-
erations of LTAG, nouns that appear as phrasal heads or phrasal modifiers are
assigned different types of elementary trees (i-e., the Alpha-/Beta- distinction
in ITAG, see Doran, Egedy, Hockey, Srinivas & Zaidel, 1994). Figure 2d illus-
trates the reduced relative/main clause ambiguity (e.g., the defendant examined
by the lawyer was ... vs. the defendant examined the pistol.). Here again, the
critical features of the phrase structure ambiguity are lexicalized. For instance,
the position of the gap in an object-extraction relative clause is encoded at
the verb (right-hand tree in Figure 2d). This is because LTAG trees encode the
number, type, and position of all verb complements, including those that have
been extracted. Finally, Figure 2e illustrates a structural ambiguity that is not
treated lexically in ITAG. As in Figure 2a, the preposition with is associated
with two elementary trees, specifying verb phrase or noun phrase modifica-
tion. However, in this example, both attachment possibilities involve the same
tree (NP-attachment), which can modify either general or secretary. The syn-
tactic information that distinguishes between local and non-local attachment
is not specified lexically. So, within LTAG, this final example is a case of what we
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(a) The spy saw the cop with ... (d) The defendent examined...
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(c) The warehouse fires ...
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‘ Figure 2. LTAG treatment of several psycholinguistically interesting syntactic ambigu-
ities: (a) PP-attachment ambiguity; (b) NP/S ambiguity; (c) N/V category ambiguity;
(d) reduced relative/main clause ambiguity; (e) PP-attachment ambiguity with both
attachment sites being nominal.

might call true attachment ambiguity. This example illustrates the point made
earlier that even when a lexical tree is selected, syntactic processing is not com-
plete, since lexical trees need to be combined together through the operations
of substitution and adjunction. In the first four examples, the selection of lex-
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ical trees leaves only a single way to combine these items. In the final example,
however, multiple combinatory possibilities remain even after lexical selection.

The examples in Figure 2 illustrate the compatibility of LTAG with the CBL
theory. The two frameworks lexicalize structural ambiguities in similar ways,
with LTAG providing considerably more linguistic detail. This suggests that
LTAG can be used to provide a more formal statement of the representational
claims of the CBL theory. For instance, one can characterize the grammati-
cal aspects of word recognition as the parallel activation of possible elemen-
tary trees. The extent to which a lexical item activates a particular elementary
tree is determined by the frequency with which it has required that tree during
an individual’s linguistic experience. The selection of a single tree is accom-
plished through the satisfaction of multiple probabilistic constraints, includ-
ing semantic and syntactic contextual cues. The CBL theory has traditionally
focused on the activation of verb argument structure. The introduction of a
wide-coverage grammar into this theory generates clear predictions about the
grammatical representations of other classes of words. The same ambiguity res-
olution processes occur for all lexical items for which LTAG specifies more than
one elementary tree.

The grammatical predictions of LTAG are worked out in an English gram-
mar, which is the product of an ongoing grammar development project at the
University of Pennsylvania (Doran et al., 1994). The grammar provides lexi-
cal descriptions for 37,000 words and handles a wide range of syntactic phe-
nomena, making it a highly robust system. The supertagging work described
in this chapter makes critical use of this grammar. The comprehensiveness of
the grammar makes it a valuable tool for psycholinguistic work, by allowing
formal statements about the structural properties of a large fragment of the
language. In our case, it plays a critical role in our attempt to “scale up” CBL
models in order to investigate the viability of such models on more complex
grammatical situations than they have been tested on before.

Implementation

In this section, we describe preliminary results of a computational modeling
- project exploring the ability of the CBL theory to integrate the representations
of LTAG. We have been developing a connectionist model of the grammati-
cal aspects of word recognition (Kim et al., in preparation), which attempts
to account for various psycholinguistic findings pertaining to syntactic am-
biguity resolution. Unlike previous connectionist models within the CBL ap-
proach (McRae et al., 1998; Tabor et al., 1997; Spivey-Knowlton, 1996; Juliano
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& Tanenhaus, 1994), this model has wide coverage in that it has an input vo-
cabulary of 20,000 words and is designed to assign 304 different LTAG ele-
mentary trees to input words. The design of the model was not guided by the
need to match a specific set of psycholinguistic data. Rather, we applied sim-
ple learning principles to the acquisition of a wide coverage grammar, using as
input a corpus of highly-variable, naturally occurring text. Certain patterns of
structural preferences and frequency effects, which are characteristic of human
data, fall directly out of the model’s system of distributed representation and
frequency-based learning.

The model resembles the statistical supertagging model of Srinivas & Joshi
(1999), which we briefly described above. We have, however, made key changes
to bring it more in line with the assumptions behind the CBL framework. The
critical assumptions are that human language comprehension is characterized

by distributed, similarity-based representations (cf. Seidenberg, 1992) and by

incremental processing of a sentence. The Srinivas and Joshi model permits
the use of information from both left and right context in the syntactic analy-
sis of a lexical item (through the use of Viterbi decoding). Furthermore, their
model has a “perfect” memory, which stores the structural events involving
each lexical item separately and without error. In contrast, our model pro-
cesses a sentence incrementally, and its input and internal representations are
encoded in a distributed fashion. Distributed representations cause each repre-
sentational unit to play a role in the representation of many lexical items, and
the degree of similarity among lexical items to be reflected in the overlap of
their representations.

These ideas were implemented in a connectionist network, which provided
a natural framework for implementing a distributed processing system.® The
model takes as input information about the orthographic and semantic prop-
erties of a word and attempts to assign the appropriate supertag for the word
given the local left context. The architecture of the model consists of three layers
with feed-forward projections, as illustrated in Figure 3.

The model’s output layer is a 95 unit array of syntactic features which is
capable of uniquely specifying the properties of 304 different supertags. These
features completely specify the components of an LTAG elementary tree: 1)
part-of-speech, 2) type of “extraction,” 3) number of complements, 4) category
of each complement, and 5) position of complements. Each of these compo-
nents is encoded with a bank of localist units. For instance, there is a separate
unit for each of 14 possible parts of speech, and the correct activation pattern
for a given supertag activates only one of these units (e.g., “Noun”).
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Figure 3. Architecture of the model

The model was given as input rudimentary orthographic information and
fine-grained distributional information about a word. 107 of the units encoded
orthographic features, namely the 50 most common three-letter word-initial
| segments (e.g., ins), the 50 most common two-letter word-final segments (e.g.,
v ed), and seven properties such as capitalization, hyphenation, etc. The remain-
' ing 40 input units provide a “distributional profile” of each word, which was
derived from a co-occurrence analysis.

The orthographic encoding scheme served as a surrogate for the output of
morphological processing, which is not explicitly modeled here but is assumed
to be providing interactive input to lexico-syntactic processes that are mod-
eled. The scheme was chosen primarily for its simplicity — it was automatically
derived and easily applied to the training and testing corpus, without requir-
ing the use of a morphological analyzer. It was expected to correlate with the

presence of common English morphological features.

Similarly, the distributional profiles were used as a surrogate for the acti-
vation of detailed semantic information during word recognition. Although
space prevents a detailed discussion, we note that several researchers have
found that co-occurrence-based distributional profiles provide detailed infor-
mation about the semantic similarity between words (cf. Burgess & Lund, 1997;
Landauer & Dumais, 1997; Schuetze, 1993). The forty-dimensional profiles
used here were created by first collecting co-occurrence statistics for a set of
20,000 words in a large corpus of newspaper text.” The co-occurrence matrix
was compressed by extracting the 40 principal components of a Singular Value
Decomposition (see Kim et al., in preparation, for details). An informal in-
spection of the space reveals that it captures certain grammatical and semantic
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information. Table 1 shows the nearest neighbors in the space for some selected
words. These are some of the better examples, but in general the information
in the space consistently encodes semantic similarities between words.

Table 1. Nearest neighbors of sample words based on distributional profiles

Word : Nearest neighbors by distributional profile
scientist  researcher, scholar, psychologist, chemist
london tokyo, chicago, atlanta, paris

literature poetry, architecture, drama, ballet
believed feared, suspected, convinced, admitted
bought purchased, loaned, borrowed, deposited
smashed punched, cracked, flipped, slammed
confident hopeful, optimistic, doubtful, skeptical
certainly definitely, obviously, hardly, usually

from with, by, at, on

We implemented two variations on the basic architecture described above,
which gave the model an ability to maintain information over time so that
its decisions would be context sensitive. The first variation expanded the input
pattern to provide on each trial a copy of the input pattern from the previous
time step along with the current input. This allowed the network’s decisions
about the current input to be guided by information about the preceding in-
put. We will call this architecture the “two-word input” model (2W). The sec-
ond variation provided simple recurrent feedback from the output layer to the
hidden layer so that on a given trial the hidden layer would receive the previous
state of the output layer. This again allowed the model’s decision on a given trial
to be contingent on activity during the previous trial. We call this architecture
the “output-to-hidden” architecture (OH). For purposes of brevity, we discuss
only the results of the 2W architecture. In all statistical analyses reported here,
the OH architecture produced the same effects as the 2W architecture.

The model was trained on a 195,000 word corpus of Wall Street Journal
text, which had been annotated with supertags. The annotation was done by
translating the annotations of a segment of the Penn Treebank (Marcus, San-
torini & Marcinkiewicz, 1993) into I'TAG equivalents (Srinivas, 1997). During
training, for each word in the training corpus, the appropriate orthographic
units and distributional profile pattern were activated in the input layer. The
input activation pattern was propagated forward through the hidden layer to
the output layer. Learning was driven by back propagation of the error between
the model’s output pattern and the correct supertag pattern for the current
word (Rumelhart, Hinton & Williams, 1986).
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We tested the overall performance of the model by examining its supertag-
ging accuracy on a 12,000 word subset of the training corpus that was held out
of training. The network’s syntactic analysis on a given word was considered
to be the supertag whose desired activation pattern produced the lowest error
with respect to the model’s actual output (using least squares error). On this
metric, the model guessed correctly on 72% of these items. Using a slightly re-
laxed metric, the correct supertag was among the model’s top three choices (the
three supertags with the lowest error) 80% of the time. This relaxed metric was
used primarily to assess the model’s potential for increased overall accuracy in
future work; if the correct analysis was highly activated even when it was not
the most highly activated analysis, then future changes might be expected to
increase the model’s overall accuracy (e.g., improvements to the quality of the
input representation). Accuracy for basic part of speech on the relaxed metric
was 91%. The performance of the network can be compared to 79% accuracy
for a “greedy” version of the tri-gram model of Srinivas & Joshi (1999), which
was trained on the same corpus. The greedy version eliminated the previously
mentioned ability of the original model to be influenced by information from
right context in its decisions about a given word.

Although these results indicate that the model acquired a substantial
amount of grammatical knowledge, the main goal of this work is to exam-
ine the relationship between the model’s operation and human behavioral pat-
terns, including the patterns of misanalysis characteristic of human process-
ing. In pursuing this goal, we measure the model’s degree of commitment to
a given syntactic analysis by the size of its error to that analysis relative to its
error to other analyses. We make the linking hypothesis that reading time eleva-
tions due to misanalysis and revision in situations of local syntactic ambiguity
should be predicted by the model’s degree of commitment to the erroneous
syntactic analysis at the point of ambiguity. For example, in the NP/S ambigu-
ity of Example 1, the model’s degree of commitment to the NP-complement
analysis over the S-complement analysis should predict the amount of read-
ing time elevation at the disambiguating region was in... . Examination of the
model’s processing of syntactic ambiguities revealed patterns characteristic of
human processing.

Modeling the NP/S ambiguity

One pattern of behavioral data that our model aims to account for is the pat-
tern of processing difficulty around the NP/S ambiguity, illustrated by The chef
forgot the recipe was in the back of the book (discussed in the Introduction as
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(1)). In (1a), comprehenders can initially treat the noun phrase the recipe as
either a NP-complement of forgot or the subject of a sentential complement.
Numerous experiments have found that readers of locally ambiguous sentences
like 1a often erroneously commit to a NP-complement interpretation (Holmes
et al., 1989; Ferreira & Henderson, 1990; Trueswell et al., 1993; Garnsey et
al,, 1997).

Several experiments have found that the general processing bias toward
the NP-complement is modulated by the structural bias of the main verb
(Trueswell et al., 1993; Garnsey et al., 1997). Erroneous commitments to the
NP-complement interpretation are weakened or eliminated when the main
verb has a strong S-bias (e.g., claimed). Similar effects have also been found
when verb bias information is introduced to processing through a lexical prim-
ing technique (Trueswell & Kim, 1998). Thus, the language processing sys-
tem appears to be characterized simultaneously by an overall bias toward the
NP-complement analysis and by the influence of the lexical preferences of
S-bias verbs.

The coexistence of these two conflicting sources of guidance may be ex-
plained in terms of “neighborhoods of regularity” in the representation of
verb argument structure (Seidenberg, 1992; Juliano & Tanenhaus, 1994). NP-
complement and S-complement verbs occupy neighborhoods of represen-
tation, in which the NP-complement neighborhood dominates the “irregu-
lar” S-complement neighborhood, due to greater membership. The ability
of S-complement items to be represented accurately is dependent on fre-
quency. High frequency S-complement items are accurately represented, but
low frequency S-complement items are overwhelmed by their dominant NP-
complement neighbors. Juliano & Tanenhaus (1993) found evidence in sup-
port of this hypothesis in a study in which the ability of verb bias information
to guide processing was characterized by an interaction between the frequency
and the subcategory of the main verb. The ability of S-complement verbs to
guide processing commitments was correlated with the verb’s lexical frequency.
Low frequency S-complement verbs allowed erroneous commitments to the
NP-complement analysis in spite of the verb’s bias, while high frequency S-
complement items caused rapid commitments to the correct S-complement
analysis.

Our model provides such a neighborhood-based explanation of the hu-
man processing data for NP/S ambiguities. We presented the model with NP/S
ambiguous fragments, such as The economist decided . .., which contained ei-
ther a verb that strongly tended to take S-complements in the training cor-
pus or strongly tended to take NP-complements. The model assigned either a
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NP- or S-complement analysis to 96% of such verbs, indicating that it clearly
recognized NP/S verbs. In resolving the NP/S ambiguity, the model showed a
general bias toward the NP-complement structure, which can be overcome by
lexical information from high frequency S-complement verbs. All NP-biased
verbs were correctly analyzed, but S-biased verbs were misanalyzed on 9 of 14
items, with 8 of 9 misanalyses being to the NP-complement. The dominance
of the NP-complement analysis, however, is modulated by the frequency of ex-
posure to S-complement items. The model éccurately subcategorized S-biased
verbs when they were high in frequency (5 of 7) but was highly inaccurate on
low frequency items (none were correctly classified; 6 of 7 were mis-analyzed
as NP-complement verbs).

The models frequency-by-subcategory interaction arises from its system
of distributed representation and frequency sensitive learning. S-complement
verbs and NP-complement verbs have a substantial overlap in input represen-
tation, due to distributional and orthographic similarities (-ed, -ng, etc.) be-
tween the two types of verbs and the fact that S-complement verbs are often
NP/S ambiguous. NP-complement tokens dominate S-complement tokens in
frequency by a ratio of 4 to 1, causing overlapping input features to be more
frequently associated with the NP-complement output than the S-complement
output during training. The result is that a portion of the input representation
of S-complement verbs becomes strongly associated with the NP-complement
output, causing a tendency for the model to misanalyze S-complement items
as NP-complement items. The model is able to identify non-overlapping input
features that distinguish S-complement verbs from their dominant neighbors,
but its ability to do so is affected by frequency. When S-complement verbs
are seen in high frequencies, their distinguishing features are able to influence
connection weights enough to allow accurate representation; however, when
S-complement verbs are seen in low frequencies, their NP-complement-like
input features dominate their processing. The explanation here is similar to
the explanation given by Seidenberg & McClelland (1989) for frequency-by-
regularity interactions in word naming (e.g., the high frequency irregularity of
have vs. the regularity of gave, wave, save) and past tense production.

The theoretical significance of this interaction lies partly in its emergence
in a comprehensive model, which is designed to resolve a wide range of syntac-
tic ambiguities over a diverse sample of the language. These results provide
a verification of conclusions drawn by Juliano & Tanenhaus (1994) from a
much simpler model, which acquired a similar pattern of knowledge about NP-
complement and S-complement verbs from co-occurrence information about
verbs and the words that follow them. It is important to provide such follow-
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up work for Juliano & Tanenhaus (1994), because their simplifications of the
domain were extreme enough to allow uncertainty about the scalability of their
results. Although their training materials were drawn from naturally occurring
text (Wall Street Journal and Brown corpus), they sampled only a subset of the
verbs in that text and the words occurring after those verbs. S-complement to-
kens were more common in their corpus than in the full language, and only
past-tense tokens were sampled. This constitutes a substantial simplification
of the co-occurrence information available in the full language. In our sam-
ple of the Wall Street Journal corpus, non-auxiliary verbs account for only
10.8% of all tokens, suggesting that the full language may contain many ¢o-
occurrence events that are “noise” with respect to the pattern detected by the
Juliano & Tanenhaus (1994) model. For instance, as Juliano & Tanenhaus ob-
serve, their domain restricts the range of contexts in which the determiner the
occurs, obscuring the fact that in the full language, the often introduces a sub-
ject noun phrase rather than an object noun phrase. It is conceivable that the
complexity of the full language would obscure the pattern of co-occurrences
around the NP/S ambiguity sufficiently to prevent a comprehensive constraint-
based model from acquiring the pattern of knowledge acquired by the Juliano
& Tanenhaus (1994) model. Our results demonstrate that the processing and
representational assumptions that allow constraint based models to haturally
express frequency-by-regularity interactions are scalable — they continue to
emerge when the domain is made very complex.

Modeling the noun/verb lexical category ambiguity

Another set of behavioral data that our model addresses is the pattern of read-
ing times around lexical category ambiguities like that of fires in (4).

(4) a. the warehouse fires burned for days.
b.  the warehouse fires many workers every spring.

The string warehouse fires can be interpreted as a subject-verb sequence (4a)
or a compound noun phrase (4b). This syntactic ambiguity is anchored by the
lexical ambiguity of fires, which can occur as either a noun or a verb. .

Several experiments have shown that readers of sentences like (4a) often
commit erroneously to a subject-verb interpretation, as indicated by processing
difficulty at the next word (burned), which is inconsistent with the erroneous
interpretation and resolves the temporary ambiguity. Corley (1998) has shown
that information about the category bias of the ambiguous word is rapidly
employed in the resolution of this ambiguity. When the ambiguous word is
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one that tends statistically to be a verb, readers tend to commit erroneously to
the subject-verb interpretation, but when the word tends to occur as a noun,
readers show no evidence of misanalysis. MacDonald (1993) has found evi-
dence of more subtle factors, including the relative frequency with which the
preceding noun occupies certain phrase-structural positions, the frequency of
co-occurrence between the preceding noun and ambiguous word, and seman-
tic fit information. Most important for the current work, MacDonald found
that when the ambiguous word was preceded by a noun that tended to occur
as a phrasal head, readers tended to commit to the subject-verb interpreta-
tion. However, when the preceding noun tended to occur as a noun modifier,
readers tended to commit immediately to the correct noun-noun compound
analysis. The overall pattern of data suggests a complex interplay of constraints
in the resolution of lexical category ambiguity. Lexically specific information
appears to be employed very rapidly and processing commitments appear to
be affected by multiple sources of information, including subtle cues like the
modifier/head likelihood of a preceding noun.

Like human readers, our model shows sensitivity to both lexical category
bias and fine-grained contextual cues when processing locally ambiguous frag-
ments like the warehouse fires. We presented the model with fragments end-
~ ing in noun/verb ambiguous verbs (e.g., the emergency plans). The ambiguous
words were either noun biased (e.g., plans), verb-biased (e.g., pay), or equi-
biased (e.g., bid). The preceding noun was either one that tended to occur as a
phrasal head in the training corpus (e.g., division) or one that tended to occur
as a noun modifier in the corpus (e.g., emergency). Lexical bias was determined
by frequency properties in the training corpus.

The model clearly recognized the target words as nouns and verbs, as indi-
cated by the fact that 97% of the test items were assigned either a noun supertag
or a verb supertag. More subtle aspects of the model’s operation were revealed
by an examination of the activation values of the noun and verb part-of-speech
units separately from the rest of the output layer. The model showed strong
commitments to the contextually supported category when that category was
either the dominant sense of a biased word or when the word was equi-biased —
the contextually supported unit had superior activation in 90% of such cases.
In contrast, the model had difficulty activating the contextually supported cat-
egory when it was the subordinate category of a biased word — showing su-
perior activation for the contextually supported category in only 35% of such
cases. Thus, context and lexical bias interacted such that the model showed a
strong tendency to activate a contextually-supported pattern when it was ei-
ther the dominant pattern or had an equally frequent alternative, but when
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context supported the subordinate pattern, the model was unable to activate
this pattern. ‘

Interestingly, this interaction resembles the “subordinate bias” effect ob-
served in the semantic aspects of word recognition (Duffy, Morris & Rayner,
1988). When semantically ambiguous words are encountered in biasing con-
texts, the effects of context depend on the nature of the word’s bias. When pre-
ceding discourse context supports the subordinate sense of a biased ambiguous
word, processing difficulty occurs. When context supports the dominant sense
or when it supports either sense of an equi-biased word, no processing diffi-
culty occurs. Our model shows a qualitatively identical effect with respect to
category ambiguity. We take this as further support for the idea, central to lexi-
calist theories, that lexical and syntactic processing obey many of the same pro-
cessing principles. On the basis of this kind of effect in the model, we predict
that human comprehenders should show subordinate bias effects in materials
similar to the ones used here. Furthermore, because the subordinate bias ef-
fects found here are quite natural given the model’s system of representation
and processing, we would expect similar effects to arise in the model and in
humans with respect to other syntactic ambiguities that are affected by local
left context (see Trueswell, 1996, for similar predictions about subordinate bias
effects involving the main clause/relative clause ambiguity).

General discussion

We have attempted to advance the grammatical coverage and formal specifica-
tion of Constraint-based Lexicalist models of language comprehension. A con-
vergence of perspectives between CBL theory in psycholinguistics and work in
theoretical and computational linguistics has supported and guided our pro-
posals. We have attempted to give a concrete description of the syntactic aspects
of the CBL theory by attributing to human lexical knowledge the grammatical
properties of a wide coverage Lexicalized Tree Adjoining Grammar (Doran et
al,, 1994). In developing a processing model, we have drawn insight from work
on processing with LTAG which suggests that statistical mechanisms for lex-
ical ambiguity resolution may accomplish much of the computation of pars-
ing when applied to rich lexical descriptions like those of LTAG (Srinivas &
Joshi, 1999). We have incorporated these ideas about grammar and process-
ing into a psychologically motivated model of the grammatical aspects of word
recognition, which is wide in grammatical coverage.
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The model we describe is general in purpose; it acquires mappings be-
tween a large sample of the lexical items of the language and a large number of
rich grammatical representations. Its design does not target any particular set
of syntactic ambiguities. Nevertheless, it qualitatively captures subtle patterns
of human processing data, such as the frequency-by-regularity interaction in
the NP/S ambiguity (Juliano & Tanenhaus, 1993) and the use of fine-grained
contextual cues in resolving lexical category ambiguities (MacDonald, 1993).

The wide range of grammatical constructions faced by the model and the
diversity of its sample of language include much of the complexity of the full
language and support the idea that constraint-based models of sentence pro-
cessing are viable, even on a large grammatical scale. The model provides an al-
ternative to the positions of Mitchell et al. (1995) and Corley & Crocker (1996),
which propose statistical processing models with only coarse-grained param-
eters such as part-of-speech tags. Their argument is that the sparsity of some
statistical data causes the fine-grained parameters of constraint-based models
to be “difficult to reliably estimate” (Corley & Crocker, 1996) and that the large
number of constraints in constraint-based models causes the management of
all these constraints to be computationally intensive. Such arguménts assume
that a coarse-grained statistical model is more viable and more “compact” than

a fine-grained model.
The issue of whether fine-grained statistical processing is viable may hinge
on some basic computational assumptions. The observation that sparsity of

statistical data affects the performance of statistical processing systems is cer-
tainly valid. But there are a number of reasons why this does not support argu-
ments against fine-grained statistical processing models. First, there is a large
class of statistical processing models, including connectionist systems like the

one used here, that are well suited to the use of imperfect cues. For instance, a
common strategy employed by statistical NLP systems to deal with sparse data
is to “back off” to statistics of a coarser grain. This is often done explicitly, as in
verb subcategorization methods, where decisions are conditionalized on lexical

information (individual verbs) when the lexical item is common, but are con-
ditionalized on (backed off to) basic category information (all verbs), when the
lexical item is rare (Collins, 1995). In connectionist systems like ours, statistical
back-off is the flip-side of the network’s natural tendency to generalize but also
to be guided by fine-grained cues when those cues are encountered frequently.
Fine grained features of a given input pattern are able to influence behavior
when they are encountered frequently, because they are given repeated oppor-
tunities to influence connection weights. When such fine-grained features are
not encountered often enough, they are overshadowed by coarser-grained in-
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put features, which are by their very nature more frequent. Systems like our
. model can be seen as discovering back-off points. We argue that systems that
do such backing off are the appropriate class of system for modeling much
of sentence processing. As a back-propagation learning system with multiple
grammatical tasks competing for a limited pool of processing resources, our
model is essentially built to learn to ignore unreliable cues.

Thus, the interaction between frequency and subcategory that we have
discussed emerges naturally in the operation of statistical processing devices
like the model described here. Fine-grained information about S-complement
verbs is able to guide processing when it is encountered often enough dur-
ing training to influence connection weights in spite of the dominance of NP-
| complement signals. The ability of Head/Modifier likelihood cues about nouns
| to influence connection weights is similarly explained.

In general, we view the sparsity of data as an inescapable aspect of the task
of statistical language processing rather than as a difficulty that a system might
avoid by retreating to more easily estimable parameters. Even part-of-speech
| tagging models like Corley & Crocker’s (1996) include a lexical component,
which computes the likélihood of a lexical item given a candidate part-of-
speech for that word, and their model is therefore affected by sparsity of data
for individual words — this is true for any tagger based on the dominant Hidden
Markov Model framework. Furthermore, as mentioned earlier, work in statis-
tical NLP has increasingly indicated that lexical information is too valuable to
ignore in spite of the difficulties it may pose. Techniques that count lexically
specific events have generally out-performed techniques that do not, such as
statistical context-free grammar parsing systems (see Marcus, this volume). It
seems to us that, given a commitment to statistical processing models in gen-
eral, there is no empirical or principled reason to restrict the granularity of
statistical parameters to a particular level, such as the part-of-speech tags of
a given corpus. Within the engineering work on part-of-speech tagging, there
are a number of different tag-sets, which vary in the granularity of their tags
for reasons unconnected to psychological research, so that research does not
motivate a psychological commitment to any particular level of granularity.
Furthermore, the idea that the language processing system should be capable
of counting statistical events at only a single level of granularity seems to be
an assumption that is inconsistent with much that is known about cognition,
such as the ability of the visual processing system to combine probabilistic cues
from many levels of granularity in the recognition of objects. The solution to
the data sparsity problem, as manifested in humans and in successful engineer-
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ing systems, is to adopt the appropriate learning and processing mechanisms
for backing off to more reliable statistics when necessary.

We have argued that the complexities of statistical processing over fine
grained lexical information do not warrant the proposal of lexically-blind pro-
cessing mechanisms in human language comprehension. Although the com-
plexities may be unfamiliar, they are tractable, and there are large payoffs
to dealing with them. An increasingly well understood class of constraint-
satisfaction mechanisms is well suited to recognizing fine-grained lexical pat-
terns and also to backing off to coarser-grained cues when fine-grained data
is sparse. The modeling work described here and research in computational
linguistics suggests that such mechanisms, when applied to the rich lexical rep-
resentations of lexicalized grammars, can accomplish a substantial amount of
syntactic analysis. Furthermore, the kind of mechanism we describe shows a
pattern of processing that strongly resembles human processing data, suggest-
ing that such mechanisms are good models of human language processing.
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Notes

1. The amount of syntactic structure that is lexically generated goes beyond the classical
notion of argument structure. In lexicalized grammar formalisms such as LTAG, the entire
grammar is in the lexicon. For instance, the attachment site of a preposition can be treated
as a lexically specific feature. Noun attaching prepositions and verb attaching prepositions
have different senses. We will discuss this in further detail in the following sections.

2. The down-arrows and asterisks in the trees mark nodes at which trees make contact with
each other during the two kinds of combinatory operations of Tree Adjoining Grammar,
substitution and adjunction. Down-arrows mark nodes at which the substitution operation
occurs, and asterisks mark footnodes, which participate in the adjunction operation. The
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details of the combinatory operations of TAG are beyond the scope of this chapter. See Joshi
and Schabes (1996) for a discussion.

3. This is based on run-times for a sample of 1300 sentences of Wall Street Journal text,
reported by Srinivas and Joshi (1999). Running the parser without supertagging took 120
seconds, while running it with correct supertags pre-assigned took 4 seconds.

4. Srinivas (1997) has suggested that this can be done by a process that is simpler than full
parsing. He calls this process “stapling”.

5. Of course, formal specification of this theory can be achieved by using other lexicalized
grammatical frameworks, e.g., LFG (Bresnan & Kaplan, 1982), HPSG (Pollard & Sag, 1994),
CCG (Steedman, 1996).

6. This is not to say that left-to-right processing and overlapping representations cannot
be incorporated into a symbolic statistical system. However, most attempts within psy-
cholinguistics to incorporate these assumptions into a computationally explicit model have
been made within the connectionist framework (e.g., Elman, 1990; Juliano & Tanenhaus,
1994; Seidenberg & McClelland, 1989). By using a connectionist architecture for the current
model, we are following this precedent and planning comparisons with existing modeling
results.

7- For each of the 20,000 target words, we counted co-occurrences with a set of 600 high fre-
quency “context” words in 14 million words of Associated Press newswire. Co-occurrences

were collected in a six-word window around each target word (three words to either side of
the word).
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