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Abstract

We evaluate here the performance of four models of cross-situational word learning: two global

models, which extract and retain multiple referential alternatives from each word occurrence; and

two local models, which extract just a single referent from each occurrence. One of these local

models, dubbed Pursuit, uses an associative learning mechanism to estimate word-referent proba-

bility but pursues and tests the best referent-meaning at any given time. Pursuit is found to per-

form as well as global models under many conditions extracted from naturalistic corpora of

parent-child interactions, even though the model maintains far less information than global mod-

els. Moreover, Pursuit is found to best capture human experimental findings from several relevant

cross-situational word-learning experiments, including those of Yu and Smith (2007), the para-

digm example of a finding believed to support fully global cross-situational models. Implications

and limitations of these results are discussed, most notably that the model characterizes only the

earliest stages of word learning, when reliance on the co-occurring referent world is at its greatest.

Keywords: Language acquisition; Word learning; Cross-situational word learning; Computational

modeling; Reinforcement learning

1. Introduction

This article presents a computational investigation of “early word learning”—the

process by which a human, when exposed to a community of speakers, comes to

understand some initial set of vocabulary items that belong to the language used by

the group. In this case, the human learner can be an infant acquiring their first lan-

guage or an adult acquiring an additional language. For all these individuals, a pri-

mary source of information is likely to be what they perceive happening in the world
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as the community goes about talking to the learner. And perhaps not surprisingly, the

early vocabulary is made up of words that, for the most part, have concrete meanings

—meanings that most straightforwardly refer to the “here and now” of the speaker

and learner. Despite the “simplicity” of these meanings, theorists and researchers have

long noted the complexity that belies the problem of early word learning. We investi-

gate here proposed computational solutions to this problem, focusing on perhaps the

central challenge to successful early word learning: the challenge of referential uncer-

tainty.

1.1. Early word learning and referential uncertainty

When hearing a word that initially has no meaning for the learner, the set of possible

meanings that exists in the moment is enormous and technically infinite. Without any

constraints or prior knowledge, an utterance like “. . .the dog” could be referring to a dog,

but also any of the co-present objects in the scene, parts or properties of these objects, or

even any combination of these alternatives within and across the objects (Quine, 1960).

Even with some reasonable “human-like” constraints on how the world is to be inter-

preted, mapping a word like “dog” onto a person’s current perceptual experience is obvi-

ously daunting, since humans, be they infants or adults, are perceptually and conceptually

sophisticated, representing their environment as an array of objects, events, properties,

spatial relations, and causes (e.g., Carey, 2009; Csibra & Shamsudheen, 2015; Gleitman,

1990; Spelke & Kinzler, 2007).

The current computational-psycholinguistic literature is populated with a large number

of proposals for how humans learn words under conditions of referential uncertainty. We

can think of these accounts as, broadly speaking, falling into two computational

approaches. “Global” approaches (e.g., Fazly, Alishahi, & Stevenson, 2010; Siskind,

1996; Yu, 2008) resolve ambiguity gradually by aggregating situational data from a large

number of word occurrences within a particular lexical item (“dog”) and across the

emerging lexicon as a whole. In this way, the learning of all early words is accomplished

through a global intersective process, an assumption that is commonly understood to

underlie the idea of cross-situational word learning (e.g., Hume, 1748/1955; Quine 1960;

Osgood, Suci, & Tannenbaum, 1957; Yu & Smith, 2007). These approaches tend to allow

the learner to use the whole range of prior experience to revise their interpretation of a

word. In contrast, “local” approaches (e.g., Medina, Snedeker, Trueswell, & Gleitman,

2011; Spiegel & Halberda, 2011; Trueswell, Medina, Hafri, & Gleitman, 2013) attempt

to resolve ambiguity in the moment, during each word’s occurrence. Specifically, the

learner attempts to identify the speaker’s intended message for the utterance and stores

only that information. These approaches limit the amount of prior experience that can be

brought to bear on the current learning situation, for example, by ignoring all potential

word meanings that do not serve to confirm or disconfirm a word’s favored interpretation.

At the extreme, local approaches completely abandon any attempt at global cross-instance

comparison and become “one trial” learners, learning only from “clear cases” of referen-

tial success and ignoring cases for which no unique referent is identifiable.
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The experimental literature offers findings that can be interpreted as consistent with

local approaches to early word learning. Novice language learners, when faced with refer-

ential ambiguity, have been found to radically limit alternatives in the moment based on

immediate evidence regarding a speaker’s intent, local situational information, and

assumptions or “priors” about word meaning (Bruner, 1974/1975). For example, children

as young as 18 months of age use the attentional stance of a speaker (as gleaned from

body posture, head orientation, and gaze) to reduce referential alternatives (e.g., Baldwin,

1991, 1993). Likewise, objects that naturally attract a learner’s attention (due to size,

movement, etc.) have been found to filter referent alternatives (e.g., Yu & Smith, 2012).

These social and physical constraints on reference occur on rare special occasions in nat-

uralistic settings, but when they do occur are precisely timed and highly informative

toward accurate referent identification (Trueswell et al., 2016). Finally, children prefer

word meanings that fall at some “basic level” (e.g., dog, rather than mammal) (Markman,

1990; Mervis, 1987; Rosch, Mervis, Gray, Johnson & Goyes-Bræm, 1976) and prefer to

distinguish object meanings for words by shape, rather than color or substance (e.g., Lan-

dau, Smith, & Jones, 1988). These data suggest novices adopt an approach to learning in

which ambiguity is to be resolved or reduced locally. And consistent with local learning,

others have shown that use of these local cues can result in so-called “one-trial” learning;

that is, evidence that the child can successfully learn a word’s meaning from just one

occurrence (e.g., Carey, 1978; Carey and Bartlett, 1978; Spiegel & Halberda, 2011).

Despite the evidence supporting local approaches, the findings do not rule out a need

for global learning—that is, learning that occurs gradually over “big data”—nor are the

findings incompatible with such an approach. In particular, it is important to keep in mind

that successful, unique referent identification in the moment from extra-linguistic informa-

tion alone should in practice be quite rare because of the complexity of the typical word-

learning environments, thus raising concerns about the influence that local learning could

have on vocabulary growth as a whole. In fact, it has been found that most of a care-

giver’s word utterances in the home occur in situations in which it is either impossible to

determine what the speaker was referring to, or in contexts in which the social-situational

cues only meagerly limit referential alternatives (Gillette, Gleitman, Gleitman, & Lederer,

1999); highly informative, referentially transparent acts are quite rare (see also Cartmill

et al., 2013; Medina et al., 2011). And importantly, none of the laboratory work men-

tioned above as support for local learning approaches addresses what a learner might do

with these more ambiguous, less informative, word occurrences. It is possible then that,

as global approaches would predict, ambiguous situational information is aggregated

across these instances to identify likely word meanings.

Indeed, Yu, Smith, and colleagues offer experimental evidence showing that adults

(Yu & Smith, 2007) and 1-year-olds (Smith & Yu, 2008) can in the lab learn word mean-

ings from a series of referentially ambiguous word occurrences, that is, seemingly global

learning in the absence of any local evidence that would permit unique referent identifica-

tion. In these studies, learners were exposed to a set of novel spoken words (“dax,”

“mipen,” etc.) each in the presence of a set of equally salient nonsense objects (for

infants, set size of 2; for adults, set sizes of 2, 3, or 4). Local, in the moment, information
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did not support any particular pairing of word and object, making each occurrence

ambiguous. But, across multiple word occurrences, each object perfectly co-occurred with

a particular nonsense word. Thus, a global learning mechanism that tracked all word-

to-object pairings would be able to identify the correct pairings by the end of the

experiment. And indeed, postexperiment tests revealed learners identified these pairings

significantly better than chance, with accuracy for adults being negatively related to set

size (see Section 4.1, Table 6, below).

Yet, like the evidence for local learning, this particular evidence in favor of global

learning is largely equivocal, in that it does not actually distinguish between global and

local learning theories. As noted by Gleitman, Trueswell, and colleagues (Medina et al.,

2011; Trueswell et al., 2013), successful learning across referentially ambiguous trials

(like those used in the studies of Smith & Yu, 2008; and Yu & Smith, 2007) can be

accomplished by a local learning process. If learners in the moment guess a particular

word-object pairing (despite the ambiguity) and store just that pairing for later test on the

next occurrence of the word (abandoning it if isn’t supported), a learner across trials

could in principle identify some or all of the correct word-object pairings over the course

of word exposures (see also Gallistel, Fairhust, & Balsam, 2004, for related issues in

learning more generally).1 This win-stay, lose-shift learning procedure was dubbed “Pro-

pose-but-Verify” (henceforth, PbV), and it was supported in a series of word-learning

studies on adults (Medina et al., 2011; Trueswell et al., 2013; and below) and 2- and 3-

year-old children (Woodard, Gleitman, & Trueswell, 2016). The findings from these stud-

ies were also inconsistent with global learning models.

Despite these findings, Trueswell et al. (2013) noted that a local learning procedure

such as PbV would be too fragile to support early vocabulary acquisition more generally.

For example, homophones could not be learned by a win-stay-lose-shift procedure: The

baseball meaning of “bat” would be abandoned the moment the learner went to the zoo,

and heard discussion of the flying mammal in the absence of baseball bats. He/she would

then proceed to re-learn the baseball meaning (and unlearn the mammal meaning) when

going to the ballpark. Moreover, word occurrences in the absence of the target referent

(consider: “where is the bat?” when no bats are in sight) would also trigger a shift away

from a correctly learned meaning to some other meaning. Thus the local learning proce-

dure, if it were to be successful outside simple experimental settings, would need to be

robust to homophonic meaning alternations and robust to noise generally. In what fol-

lows, we develop here a robust variant of PbV, which we will call Pursuit.

1.2. A simple example

We begin with an artificial example designed to illustrate how an idealized global

learning device would operate over a series of referentially ambiguous word occurrences.

We then illustrate the operation of PbV over the same sequence. The resulting behaviors

of these two accounts will then be used to motivate and illustrate Pursuit. In this simple

example, five occurrences of the nonsense word “mipen” are each time accompanied by

three potential referents (Fig. 1). For illustrative purposes, assume that no other words are

J. S. Stevens et al. / Cognitive Science 41 (2017) 641



encountered or learned and assume that each referent corresponds to a single basic-level

semantic category (such as elephant, cat, etc.). Obviously these assumptions will be too

much for a broader account of early word learning to bear, but our focus here is primarily

to highlight the different computational mechanisms by which the mapping between

words and semantic categories is established.

Consider first the operation of perhaps the simplest global learning device: one that

counts all word-object pairings, with referent selection on each learning instance taking

place by selecting the object that at that moment has the highest co-occurrence count.

Fig. 2A illustrates the internal state of the model during each learning instance. On learn-

ing instance one, counts for each referential alternative are increased by one, and the

model, if forced to choose, would select at random among these three. On learning

instance 2, counts are increased based on the new referent set; and selection of the ele-

phant would occur because it has the highest co-occurrence count. Counts would increase

again on instance 3, and ‘elephant’ is again the winner. On instance 4, however, the ele-

phant is not present in Fig. 1 (perhaps if indeed “mipen” means ‘elephant,’ this is an

occurrence of the word in the absence of its referent in the visual world, or perhaps

Fig. 1. Simple example of “mipen” across five referentially ambiguous word occurrences.
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“mipen” is a homophone). Counts here (Fig. 2A) would increase, and if forced to choose,

the model would pick the dog because it is the co-present referent that enjoys the highest

count (albeit slightly lower than the currently absent elephant). Instance 5 would result in

selection of the elephant again because it has the highest count among present referents.

The final state of this model after five learning instances is one with a broad set of alter-

natives for “mipen.”

There are of course advantages and disadvantages to such a broad distribution of

alternatives from a global learning device. On one hand, if “mipen” in fact has more

than one meaning, the second meaning could very well be among the lower ranked

alternatives. However, without further refinements to this global model, it is clearly suf-

fering from a “dilution” effect: Despite the high regularity of ‘elephant’ in the input,

the model possesses only a small preference for this alternative over the many other

Fig. 2. Internal state of three different word learning models, as each encounters the five occurrences of

“mipen” from Fig. 1. (A) Idealized global model; (B) Propose-but-verify local model; (C) Idealized Pursuit

local model.
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alternatives that it has been keeping track of. Additional word encounters would likely

further dilute this preference.

Consider now the internal state of PbV (Fig. 2B) as it passes through the same

sequence depicted in Fig. 1. On the first occurrence, PbV, like a global learner, is

expected to choose at random among the referents. However, unlike the global learner,

learning here stems from the referential act itself; thus, the only thing stored in memory

is the selected referent. Assume here the model randomly selects the elephant, making

‘elephant’ the current hypothesized meaning of “mipen”; no other information (about cats

or crabs) is stored. On the second instance, “mipen” is heard and the hypothesis ‘ele-

phant’ is retrieved from memory and tested against the referent world; because an ele-

phant is present in this second instance, it is selected again.2 On instance 3, PbV would

again retrieve ‘elephant’ from memory and again it is confirmed and selected. On

instance 4, “mipen” is heard, ‘elephant’ is retrieved but it is not confirmed here: No

Fig. 2. Continued.
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elephant is present. In its simplest form PbV would be expected to “shift” here, randomly

selecting a new referent (and hence a new meaning); let’s say it picks the cat—it has no

preference for ‘dog’ because it has no memory that ‘dog’ has now occurred three times

and ‘cat’ only twice. Now on instance 5, ‘cat’ is retrieved from memory and confirmed,

resulting in a final state of “mipen” meaning ‘cat.’

The advantage of this final state is that the memory is not diluted with alternatives

(many of which are likely noise). But it has the disadvantage of not having any “sticki-

ness” to its hypothesis memory. Without any constraint on shifting, the memory state of

“mipen” is too fragile, switching toward and away from a likely referent based on poten-

tially noisy input. Moreover, it has no “counting” mechanism by which it could encode

strength of a hypothesis (though the implemented version had a mechanism for boosting

the probability of successful hypothesis retrieval after further confirmation of a hypothe-

sis, see Trueswell et al., 2013). Perhaps there are ways of combining properties of global

and local learning to accomplish an optimal outcome.

Fig. 2. Continued.
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To this end, consider our proposal for Pursuit. Like PbV, hearing a word results in the

retrieval of a single word-meaning hypothesis, which can be tested against the current ref-

erent set. Also like PbV, Pursuit learns from selected referents only (not the entire refer-

ent set). But unlike PbV, Pursuit retains disconfirmed meanings, which may be tested

later. Finally, like the simple global model, Pursuit retains “counts” of referential success.

As discussed below, the “counting” in the actual Pursuit model is more complex: It is in

fact an associative learning mechanism at its core (see Section 2), but for simplifying

purposes, we assume counting here for the example. Remember though, this model

restricts its counting to just one class of information: how often a particular referent was

selected—that is, the output of a local selection process.

Consider now the internal state of Pursuit as it passes through the same sequence

(Fig. 2C). On the first occurrence, like all other models, Pursuit is expected to choose at

random from among the referents. Like PbV but not the global learner, learning here

stems from the referential act itself; thus, the only thing stored in memory is the selected

referent. Assume here the model randomly selects the elephant; thus, ‘elephant’ is the

current hypothesized meaning of “mipen,” no other information (about cats or crabs) is

stored. The count for ‘elephant’ is 1. On instance 2, hearing “mipen” triggers retrieval of

the hypothesis ‘elephant,’ which is confirmed, increasing the count to 2. (Like PbV, selec-
tion of any other referent on instance 1 would have resulted in chance performance on

instance 2 since these other referents are not present on instance 2.) On instance 3, ‘ele-

phant’ is again confirmed, increasing the count to 3. On instance 4, however, the hypoth-

esis that “mipen” means ‘elephant’ is not confirmed. Now, rather than completely shifting

away from this hypothesis, confidence in the elephant hypothesis is simply reduced (let’s

say that the count of 3 is reduced by 1, to 2) and a new referent is randomly selected:

let’s say ‘cat.’ This new hypothesis is entered alongside ‘elephant,’ and currently has a

count of 1. On learning instance 5, the final instance, “mipen” causes the retrieval of ‘ele-

phant’ (and ‘elephant’ only) since it is the highest ranked hypothesis—hence the notion

of Pursuit, as the model always goes after the highest ranked hypothesis. This hypothesis

is confirmed because an elephant is present. Thus, the final state of Pursuit after these

five instances is a set of weighted hypotheses about the meaning of mipen (‘ele-

phant’ = 3; ‘cat’ = 1).

At least in this example, Pursuit appears to have captured the best of both a local and

a global model. It has a strong single hypothesis, and a backup hypothesis that could in

principle get further support. It was not misled by a single instance (instance 4), that is, it

was “sticky” and thus at least somewhat robust to noise. Note, however, that if ‘cat’

rather than ‘elephant’ eventually turned out to be the true meaning of “mipen” as the

learner saw additional instances, the score of ‘elephant’ would become sufficiently

reduced for ‘cat’ to be leading the way. This is another way in which Pursuit can make

cumulative use of evidence.

Relatively little can be concluded from this simple example, which is meant to illus-

trate the computational mechanisms under different conceptions of word learning. So,

what follows are answers to two broad empirical questions. (a) Which of these three

models—a global cross-situational model, PbV, or Pursuit—performs best on
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“naturalistic” corpora of English spoken by caregivers to their children? And (b) which

of these models best accounts for the patterns observed in laboratory experiments—key

laboratory experiments that have been claimed as decisive tests of global and local learn-

ing accounts? We address these two broad classes of questions in Sections 3 and 4,

respectively, but first, we provide a detailed specification of the Pursuit model of word

learning.

2. The Pursuit model of word learning

2.1. Description of model

An essential component of word learning is to establish a reliable connection between

a word form and meaning; Pursuit is a computational model of how such connections are

established. The link varies in strength as a function of the evidence supporting reference

and as a function of frequency with which reference has been established. In this sense, it

is an associative link. Note also that the link is between two abstract representations: the

word form category (“dog”) and the semantic category used to characterize the referent

(the meaning ‘dog’); it is not a link between a particular auditory stimulus (e.g., the sen-

sory stimulation of Margaret saying “dog”) and a particular perceptual stimulus (e.g., the

sensory stimulation under certain lighting conditions when her pet poodle comes into

view). Thus, it is fundamentally a cognitive learning model.

Pursuit uses a variant of reinforcement learning that is frequently used to model asso-

ciative learning processes (Bush & Mosteller, 1951; Rescorla & Wagner, 1972). The

details of the model will be given in Section 2.2; here, we present the reader with a brief

description of its key properties. The links between a word form and its candidate mean-

ings are represented as probabilities, and learning consists of updating these probabilities

as learning instances are presented. Crucially, Pursuit is a “greedy” form of probabilistic

learning (Sutton & Barto, 1998): When a word form is presented, the learner only

assesses—or pursues—the best, that is, most probable, among the set of candidates. If the

best candidate meaning is confirmed, its probability increases: The rich get richer. If it

fails to be confirmed, its probability is decreased: The learner will add a new candidate

from the learning instance, but the just defeated candidate may still remain the best if its

probability was sufficiently high to begin with.

The privileged status of a single best meaning in the Pursuit model embodies two fea-

tures, one conceptual and the other empirical, which we believe to be essential to word

learning. Conceptually, we hold that word learning is not simply a matter of incidental

co-occurrence but only happens when a referential link has been made. In this sense,

learning is guided by the learner’s model of how communication works. That is, for a

given linguistic act, the mere presence of objects is not sufficient for a link to be made,

nor even is the mere act of attending to objects while hearing an utterance. Rather, the

learner-listener is attempting to select a unique referent and selection leads to learning.

Empirically, as we will review in later sections, a series of experimental results from our
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group and elsewhere suggest that human subjects appear to have limited access to all the

co-occurring meanings (Medina et al., 2011; Trueswell et al., 2013).

2.2. The algorithm

We begin with an explanation of the notations. The input data is a sequence of utter-

ances U = (WU, MU), where WU and MU are the sets of words and available meanings in

that utterance U. The learner has access to the sets of words, meanings, and their associa-

tions (W, M, A), and adjusts their values after each utterance. For notational convenience,

let Aw for a given word w be the set of associations {A(w, x)} for all meanings x that

have been hypothesized for w. Similarly, let Am be {A(x, m)} for all words x for which

meaning m has been hypothesized. We can speak of the conditional probability of a word

meaning, P(m|w), by normalizing A(w, m) with respect to Aw with smoothing to prevent

zero probabilities. This is shown in Eq. 1, where N is the number of observed meaning

types, and k is a small smoothing factor.

P mjwð Þ ¼ A w;mð Þ þ k
P

Awþ N � k
ð1Þ

The term P(m|w) can be viewed as the learner’s belief in the word-meaning (w, m)
pairing. The smoothing factor k reserves a small amount of probability mass to unseen

mappings, a standard practice in computational linguistics that is also used in virtually all

statistical learning models including Fazly et al. (2010), which explicitly uses smoothing,

and Frank, Goodman, and Tenenbaum (2009), which reserves probability mass for “non-

referential” use of words (i.e., when the speaker does not refer to an observable object in

Box 1

INPUT: The learner’s words (W), meanings (M), their associations A, and the new utterance U = (WU, MU).

For every w 2 WU

(a) Initialization

If w is a novel word, initiate Aw = {A(w, h0) = c}, where h0 ¼ arg minm2MU
maxðAmÞ

(b) Pursuit

Select the most probable meaning h for w (i.e., arg maxh A(w, h)):

i. If h is confirmed (h 2 MU), reward A(w, h), go to (c)

ii. Ifh is disconfirmed (h =2 MU), penalizeA(w, h) and rewardA(w, h’) for a randomly selected h’ 2 MU

(c) Lexicon

If any conditional probability P(ĥ|w) exceeds a certain threshold value (h), then file (w, ĥ) into the lexicon.
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the scene). If P(m|w) exceeds a certain threshold value, then the learner concludes m to

be the meaning of the word w.
Consider now the learning algorithm in Box 1. Let’s first consider the Pursuit step,

which is the core of our model; we will return to the Initialization step, which chooses a

meaning candidate for a novel word that the learner encounters for the first time. Our

approach could be described as “pursuit with abandon”: the privileged status of a single

meaning hypothesis comes at the expense of other meanings. This is the fundamental dif-

ference between our model and global learning models, which track co-occurrence statis-

tics over all available word and meaning pairs.

In Pursuit, the learner selects the most favored meaning hypothesis (h) for the word w,
that is, the one with the highest association score. It then adjusts the association score

A(w, h) according to its presence or absence in the current utterance context. If h is con-

firmed (i.e., found in MU, the current set of meanings), then A(w, h) increases, and if h
fails to be confirmed, it decreases. In the case of confirmation, the learner ignores all

other meanings present in the current utterance context and moves on. In the case of dis-

confirmation, its association score decreases, and the learner randomly chooses a single

new meaning from the current set MU to reward (using the same reward rule which is

given in Box 2 below), again ignoring all other available meanings.

Lest there be any confusion about the minimalist nature of Pursuit: If the most proba-

ble hypothesis fails to be confirmed, the model does not test out the second most proba-

ble hypothesis, but rather chooses a meaning from the current context instead.

Furthermore, the selection of the new meaning also follows a minimalist strategy: If there

are multiple meanings available, the model does not favor meanings it has seen before,

but chooses completely randomly. These properties of Pursuit keep the computational

cost at an absolute minimum, which we believe is an important feature of a realistic

model of word learning given the volume of linguistic data the child is bombarded with

during language acquisition.

Under Pursuit, the currently favored hypothesis h may retain its privileged status if

confirmed, but may lose it to the hypothesis immediately below it. Step 3 (Lexicon)

describes the criterion for success: a meaning ĥ may emerge as the winner if its condi-

tional probability P(ĥ|w), a normalization of A(ĥ, m) as described in Eq. 1, exceeds a cer-

tain threshold.

Again, it is instructive to compare Pursuit with global cross-situational learning models

as well as the PbV approach (Medina et al., 2011; Trueswell et al., 2013). Like global

cross-situational learning, the association between words and meanings is probabilistic

and dynamically updated in response to the learning data. Like PbV but unlike global

cross-situational learning, the Pursuit model considers only one hypothesis at a time and

ignores all other meanings upon confirmation. Unlike PbV, however, a disconfirmed

meaning is not discarded but only has its association value lowered. Given the Pursuit

scheme, a disconfirmed meaning may still remain the most probable hypothesis and will

be selected for verification next time the word is presented in the learning data. This cru-

cial feature adds considerable robustness to learning behavior (as compared to PbV) as

we shall see.
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The function that specifies the magnitude of a reward/penalty is found in Box 2. We

use a simple reinforcement learning model to adjust the association scores for words and

their meanings (Bush & Mosteller, 1951; Sutton & Barto, 1998), which has been success-

fully applied to other cases of language acquisition (Yang, 2002, 2004). The amount of

adjustment is determined by the learning rate c, usually a small value between 0 and 1.

The Pursuit model falls in the subclass of greedy algorithms: Instead of sampling over

hypotheses thereby giving every hypothesis a chance to be selected, the learner simply

chooses the most favored hypothesis. As long as the most favored meaning continues to

be confirmed, the learner ignores all other competing meanings. This is a familiar idea

sometimes known as error-driven learning in the formal studies of language acquisition

(Berwick, 1985), and it is the basis of Pursuit’s congruence with the experimental find-

ings (Medina et al., 2011; Trueswell et al., 2013).

Let’s now consider the Initialization process, which deals with novel words that the

learner has not seen before. This step encodes a probabilistic form of the “mutual exclu-

sivity” constraint (Markman & Wachtel, 1988; equivalently for our purposes the “no syn-

onym” linguistic constraint offered by Clark, 1987), which has been implemented in

various ways by many computational models of word learning (Fazly et al., 2010; Frank

et al., 2009; Yu & Ballard, 2007): When encountering novel words, children favor map-

pings to novel rather than familiar meanings. For instance, Fazly et al. (2010) build in

the mutual exclusivity constraint in that the learner gives larger association boosts to

newer meanings and smaller association boosts to meanings that are already associated

with other words in the utterance. The Bayesian model of Frank et al. (2009) penalizes

many-to-one mappings and places a higher prior probability on smaller lexicons, which is

also a probabilistic encoding of mutual exclusivity. In our model, the learner chooses an

initial hypothesis for a brand-new word that is least likely to be referred to by another

word in the learner’s hypothesis space. For example, say the new word is “cat,” and both

‘cat’ and ‘dog’ are available candidate meanings in the scene. Now imagine that the

meaning ‘dog’ is already paired with the word “dog” with an association score of 0.8,

and that the meaning ‘cat’ is paired with the word “whisker” with association score 0.6

and with the words “dog” and “ball” each with association score 0.1. In this case, the

learner’s best guess for the word that means ‘cat’ has association score max(ACAT) = 0.6,

and the learner’s best guess for ‘dog’ has association score max(ADOG) = 0.8. Thus, it is

less likely that she knows the word for ‘cat’ than for ‘dog,’ making ‘cat’ a better guess

for the new word “cat”; ‘dog’ is ignored completely.

Box 2

Adjust association A(w, h) against an utterance U = (WU, MU) where w 2 WU:

If h is confirmed (h 2 MU): A w; hð Þ0 ¼ A w; hð Þ þ �ð1�A w; hð ÞÞ
If h is disconfirmed (h =2 MU): A w; hð Þ0 ¼ A w; hð Þ � ð1� �Þ
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In summary, Pursuit maintains the essential statistical machinery of a cross-situational

learning model, that is, a mechanism for representing association strengths and meaning

probabilities, but shares a core component of hypothesis-testing models like Trueswell

et al.’s (2013) PbV model. Namely, our model places a strong limit on how much infor-

mation can be maintained across learning trials. Where a full probabilistic model

increases associations between the words of an utterance and all visible candidate mean-

ings, the Pursuit model picks winners. As we discuss in Section 4, Pursuit appears to pro-

vide the best account for a range of experimental results. But perhaps more surprisingly,

Pursuit competes with, and can in some cases outperform, global cross-situational learn-

ing models (in terms of numerical measures of accuracy and completeness) when tested

on annotated corpora of child-caregiver linguistic interactions. We report these simulation

results first as they generate a useful discussion of the design features of the Pursuit

model and address the somewhat paradoxical question: how (and under what conditions)

could a limited resource learner that ignores much of the available data remain competi-

tive against a learner that tracks cross-situational statistics in their entirety? The reason,

as we shall see, also provides the background for the explanation of the experimental

results.

3. Pursuit of word meanings in child-directed corpus data

In this section, we present the results from a computational comparison of several

word-learning models, each operating over the same codings of naturally occurring par-

ent-child interactions. We will provide as input to the model child-directed speech and

our codings of the co-present referent world. We will use two data sets: (a) selected video

samples of the Rollins corpus within the CHILDES database (the Rollins Corpus); and

(b) video samples of parent-child interactions that were used in the Human Simulation

Paradigm (HSP) experiments of Cartmill et al. (2013).

3.1. Rollins corpus simulations

3.1.1. Data
We chose to use the Rollins Corpus to maintain continuity with previous modeling

research (Frank et al., 2009; Yu & Ballard, 2007). In line with these two previous com-

putational simulations of word learning, we manually coded data from four videos of

mother-child interaction from the Rollins corpus, where two videos were used for training

and two for evaluation. The data consists of mothers talking to their infant children while

playing with toys from a box. We coded only these verbal interactions, skipping songs,

periods of fussiness, etc. Following the past work (Frank et al., 2009; Yu & Ballard,

2007), the annotator coded which concrete noun meanings were available to the learner

(e.g., visible on the video, judged not to be outside the baby’s visual field, and judged to

be in the attentional focus of an observer of this scene). Again following the past work,

the coding was only of basic-level categories of discrete and whole objects. Thus, for
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example, if we included the meaning ‘bird’ in the interpretation of a scene, we did not

also include ‘beak’ or ‘animal.’ This coding scheme assumes (within very broad limits)

that learners were also capable of making assumptions about the likely gist of the scenar-

io, that is, that they can exclude from their list of hypotheses visible items that none of

the interlocutors are attending to, or that are just about always there and therefore not

“newsworthy” except under special circumstances, for example, one of the shoes that the

speaker or listener is wearing. Thus, the coding scheme used in this and other computa-

tional modeling efforts was treated (rightly or wrongly) as an approximation of the lin-

guistic and contextual information available to the human subject, especially a language-

learning child. Its purpose is to provide a common dataset on which alternative concep-

tions of word learning can be tested and compared. There were 496 distinct utterances in

the training set and 184 in the evaluation set, 680 total.

The performance of all models was evaluated based on comparison to a single gold

standard lexicon consisting of the set of word-meaning pairs that, in the judgment of the

experimenters, could have reasonably been learned. The two criteria for inclusion in the

gold standard were (a) the word must refer to a concrete object (since only concrete

object meanings were coded as “present” in the scenes), and (b) the word must appear

more than once in the data, and must refer to a meaning that is at some point visible to

the child as judged from the video.

3.1.2. Simulations
We tested four models on the derived data sets from CHILDES: two global cross-situa-

tional learning models, plus the two local models, PbV and Pursuit.3 First, we ran an

implementation of the Fazly et al. (2010) cross-situational learning model exactly follow-

ing the description in their paper. The Fazly et al. (2010) model is a cross-situational

model par excellence as it tabulates word-meaning co-occurrences throughout the learn-

ing process. It is also explicit in its use of mutual exclusivity effects. It avoids the map-

ping of multiple words within an utterance to the same meaning by calculating

“alignments” between words and meanings, where for each meaning in the scene, a fixed

amount of alignment mass is distributed among the words in the utterance proportionally

to the value of P(m|w) for each word. The alignments determine the amount by which

association strength is boosted. The effect of this is that if the learner is already certain

that a word w has meaning m, then other words that co-occur in the same utterance as w
do not get mapped to m with the same strength. The Pursuit model makes use of a simi-

lar strategy (see Initialization), which allows for direct comparison between the models.

Second, we implemented an additional global learning model, with a modification of the

model presented in Alishahi, Fazly, Koehne, and Crocker (2012). Where Fazly et al.’s

(2010) model distributes a fixed alignment mass among words, this modified model dis-

tributes a fixed alignment mass among meanings. This is implemented by having align-

ments proportional to P(w|m) for each visible meaning, rather than P(m|w) for each

uttered word.4 This model is more similar to Pursuit in that it favors strong initial candi-

dates, and “late-comers” are penalized. We also implemented PbV with perfect memory

(Trueswell et al., 2013); that is, the learner’s retrieval of the current hypothesis is
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unfailing and not subject to other memory constraints. Finally, we implemented the

Pursuit model as it is described in Box 1.

As is standard in computational linguistics and previous word-learning research, all

four models were independently optimized for maximum performance on the training

data. These include, for all models, the smoothing parameter k (e.g., Eq. 1) and threshold

value above which a word-meaning pair is considered to be learned.5 For the Pursuit

model, the learning rate parameter (c in Box 2) is set to a small value (0.02) following

earlier applications to language learning (Yang, 2002, 2004). All models are tuned to

maximize the F-score on the training data (see technical supplement for more details).

Models were evaluated based on precision, recall and the combined F-score (the har-

monic mean of precision and recall) of the learned lexicon against the gold standard. Pre-

cision refers to the percentage of accurate word-meaning pairs, compared to the gold

standard lexicon, that the model has learned, and recall refers to the percentage of all

word-meaning pairs in the gold standard that have been learned by the model. Due to the

probabilistic nature of the algorithm (e.g., the hypothesis is randomly selected from the

set of possible meanings in the context), Pursuit yields slightly different lexicons each

time the model is run. PbV is similarly stochastic. Therefore, the results reported for the

Pursuit and PbV models were obtained by averaging precision and recall over 1,000 sim-

ulations and using those averages to calculate an F-score. By contrast, the two global

cross-situational learners, which track the co-occurring statistics over the entire dataset,

produce deterministic results.

3.1.3. Results and analysis
Performance of the four models on the training data is shown in Table 1. This repre-

sents the optimized, best-case performance for these models on this set of learning

instances. We see that PbV achieves the highest recall (i.e., learns the most correct

words), and yet cannot compete on overall performance due to its low precision (it must

make some mapping for every word, even function words which of course are co-present

with many target meanings). Pursuit performs comparably though slightly worse in terms

of recall but drastically boosts average precision (i.e., proportion of learned mappings

which are correct) from 4% to 45%. Both precision and recall for both global cross-situa-

tional models are lower than that of Pursuit.

Table 1

496 utterances from hand-coded videos from the Rollins corpus. Highest value for each column is in bold.

Numbers in parentheses indicate 95% confidence intervals for nondeterministic models, calculated via boot-

strapping from 1,000 resamples of the F-scores

Precision Recall F1

Propose/Verify 0.04 0.45 0.07 (0.071–0.075)
Fazly et al. (2010) 0.39 0.21 0.27

Modified Fazly 0.42 0.24 0.30

Pursuit 0.45 0.37 0.41 (0.402–0.410)
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To combat over-fitting, we ran all trained models on a smaller set of evaluation data,

which is also part of the Rollins corpus. The results are given in Table 2. We see that,

although Pursuit loses its precision advantage to the original Fazly et al. (2010) model,

which does somewhat better on this data set, overall performance as represented by the

F-score is still highest for the Pursuit model. Confidence intervals obtained by resampling

Pursuit’s output 1,000 times indicate that the advantage is reliable.

3.2. Cartmill et al. (2013)

3.2.1. Data from the Human Simulation Paradigm
It must be said that the Rollins Corpus, which was collected in a controlled laboratory

setting, does not fully reflect the complexity of real-world language learning situations. At

the same time, one needn’t make the task of computational learning unnecessarily hard—
by tracking all and every aspect of the learning situation, for instance—as it is widely rec-

ognized that children bring cognitive and perceptual biases to language learning which

narrow down the range of referential choices. The effects of these biases can be approxi-

mated by the scene coding scheme called the HSP, which was developed precisely for the

purpose of quantifying the referential complexity of word learning in realistic situations

(Gillette et al., 1999; Medina et al., 2011; Snedeker & Gleitman, 2004). In HSP, mother-
child interactions during varied everyday circumstances were videotaped. Na€ıve human

subjects (usually adults, but sometimes children as in Piccin & Waxman, 2007; Medina

et al., 2011) are asked to “guess what the mother said” when they are shown the video-

taped segments, but with the audio turned off: The only audible aspect is a beep or non-

sense syllable occurring exactly when the mother said the word of interest. HSP provides

us with a “crowd-based” estimate of the set of plausible referents for a given word utter-

ance with several obvious advantages: The HSP crowd is blind to the actual word uttered

by the mother, and it can only use the extra-linguistic context and not the linguistic con-

tent of the rest of the utterance to make their guess. This “simulates” the early word lear-

ner, who similarly does not have linguistic knowledge and can only use the unfolding

extra-linguistic social interaction to form one or many referential hypotheses.

We use the Cartmill et al. (2013) HSP corpus, which consists of 560 50-s videos

(“vignettes”), 10 each from each of the 56 families—6.2 h in total. All vignettes are exam-

ples of parents talking to their 14- and 18-month-old children. Each vignette was an example

Table 2

184 utterances from hand-coded videos from the Rollins corpus, with parameters fine-tuned on training data.

Highest value for each column is in bold. Numbers in parentheses indicate 95% confidence intervals for non-

deterministic models, calculated via bootstrapping from 1,000 resamples of the F-scores

Precision Recall F1

Propose/Verify 0.03 0.50 0.06 (0.053–0.057)
Fazly et al. (2010) 0.75 0.21 0.33

Modified Fazly 0.25 0.43 0.32

Pursuit 0.60 0.25 0.35 (0.343–0.360)
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of the parent uttering one of the 41 most common concrete nouns from the entire transcript

sample, uttered usually within a sentence context (e.g., Can you give me the book?).

Vignettes were aligned so that 30 s into the video, the parent uttered the target word (at

which point a beep was inserted). To select vignettes, Cartmill et al. (2013) ranked concrete

nouns uttered to children at 14–26 months by frequency, and randomly chose a single exam-

ple of each of the 10 highest-ranked words parents produced at 14–18 months. Because

highest-ranked nouns varied across parents, the final test corpus contained 41 different

nouns. Further details about this corpus can be found in Cartmill et al. (2013).

Cartmill et al. (2013) asked na€ıve subjects (200+ in total) to view subsets of these videos

(approximately 15 subjects per video) and to guess what word the mother had said at the

beep. We took these ~15 responses as an estimate of plausible referential candidates of the

word, and used this as our “coding” of the referent scene. Each scene was then paired with

the transcript of the utterance containing the target word, as in the following example.

Utterance “are you offering your book”

Meanings {‘stop,’ ‘done,’ ‘give,’ ‘read,’ ‘read,’ ‘book,’ ‘book,’ ‘book’}

As one might expect, the words guessed by HSP participants were almost unexception-

ally ones that parents say to their children (e.g., bear, hello, teddy, hair, handsome, head,
mess, silly, sit, book, done, going, read, toy, where, yellow). Although Cartmill et al.

(2013) selected concrete nouns as their target words of study, HSP subject responses were

not limited to them—nor should they be, because Cartmill et al. did not tell subjects any-

thing about the lexical class of the “mystery words” they were to identify. This more

open-ended nature of word reference (as, potentially, in the real life of child learners)

yields a much higher degree of ambiguity: Rather than an average of 3.1 possible refer-

ent-meanings per scene in the Rollins Corpus, the Cartmill et al. video corpus averages

7.4 unique meanings supported by the observational context.

3.2.2. Simulation results on HSP data and the role of referential ambiguity
How well did our word-learning models perform on this new, considerably more com-

plex referent set? Results are given in Table 3, where the models are individually opti-

mized for the Cartmill et al. corpus. We see for these data Pursuit is still competitive,

and still outperforms one of the cross-situational comparison models. The other compar-

ison model, our implementation of the original Fazly et al. (2010) algorithm, performs

especially strong here. We now ask why this is.

Table 3

Results from simulations on the corpus of video vignettes used by Cartmill et al. (2013). Highest value for

each column is in bold. Numbers in parentheses indicate 95% confidence intervals around the mean

Precision Recall F1

Propose/Verify 0.03 0.42 0.06 (0.057–0.061)
Fazly et al. (2010) 0.47 0.37 0.41
Modified Fazly 0.17 0.71 0.27

Pursuit 0.59 0.29 0.39 (0.378–0.394)

J. S. Stevens et al. / Cognitive Science 41 (2017) 655



One of the most striking differences between the Rollins and Cartmill corpora is not

only that there are more (and more varied types of) meanings in the scenes, but also that

the Cartmill corpus exhibits only about a 60% rate of co-occurrence between target word

and its intended meaning. Contrast this with Rollins, where a learnable word co-occurs

with its referent on more than 90% of the instances. So a reasonable initial hypothesis

would be that Pursuit is more hindered than the other models by increased referential

uncertainty and comparatively low co-occurrence rates. But, as we explore here in an

additional set of simulations, this explanation is not supported.

To understand the conditions that favor different learning models, we created a series

of artificial HSP corpora based off of the Cartmill data, which vary along two dimen-

sions: (a) the degree of referential uncertainty, that is, the average number possible mean-

ings per learning instance, and (b) the consistency with which a target word occurs with

its target referent. The utterances used were the same as above, but the scenes were gen-

erated randomly according to the relevant constraints. For example, the “60%—4” corpus

has the referent present on 60% of the word instances and has on average 4 referents pre-

sent per instance. We generated this corpus by starting with the target meaning for the

target word in each utterance, then adding between 0 and 6 random distractor meanings

(taken from a set of 500 possible distractor types), such that the average number of over-

all meanings is close to 4, and then replacing 40% of the target meanings with distrac-

tors. The purpose of these manipulations is to enumerate/simulate a wide range of

conditions, which are likely to arise in real-world learning situations, and explore the

robustness of the word-learning models. For instance, previous research has demonstrated

that the referential ambiguity of words are quite uneven, and some words are much easier

to identify than others (see Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005,

for review); these distributional aspects of referential ambiguity are effectively simulated

in our manipulation of the Cartmill et al. corpus. Since children need to learn easy and

hard words alike, a desirable word-learning model should show “graceful degradation” as

the complexity of the task increases, rather than suffer from catastrophic failure.

Tables 4 and 5 show the resulting F-scores (with values for Pursuit obtained by aver-

aging over 50 simulations per condition). Pursuit is quite robust to increases in average

number of competing meanings, especially in the 80% and 100% conditions. While both

models suffer as the uncertainty increases and consistency decreases, Pursuit is robust

Table 4

Performance of Pursuit on simulated Cartmill-style corpora. Boldface indicates a better average F-score

(before rounding) than the Fazly et al. model on that condition

Pursuit 3 4 6 7 8 10 15

100% 0.45 0.47 0.47 0.47 0.47 0.44 0.37
80% 0.45 0.47 0.44 0.44 0.44 0.42 0.31
60% 0.41 0.40 0.37 0.33 0.35 0.32 0.19
40% 0.38 0.38 0.26 0.26 0.18 0.15 0.08
20% 0.05 0.09 0.04 0.00 0.02 0.00 0.00
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enough to surpass the comparison model on the more “difficult” conditions in the lower

right area of the tables.

One difference between the Cartmill and Rollins corpora which may favor full cross-

situational models for the former and Pursuit for the latter is the degree of meaning-

meaning co-occurrence. The Rollins corpus has a high degree of meaning-meaning co-

occurrence, such that more than half of the observed meaning tokens co-occur with at

least one other meaning on most of the scenes containing that token. Intuitively, this

reflects an aspect of real-life learning, for example, that the family dog and the family cat

will often be seen together. The Cartmill corpus and the artificially constructed corpora

used for the experiments taken up in the next section do not have this property; meaning-

meaning co-occurrence is very low for those data sets. It is not hard to see why this

might favor Pursuit: If the learner has the opportunity to guess correctly from an early,

highly informative exposure, then those consistent competitors will be ignored altogether,

whereas they will dilute the probability space of the full cross-situational learner, making

the learner less confident in her mappings, and increasing the likelihood of either omis-

sions from or erroneous additions to her lexicon. In other words, the Rollins corpus, like

some real-life learning contexts, and unlike the Cartmill data set, is akin to Figs. 1 and 2

from Section 1 above, in that there are rather consistent distractors to deal with.

Taken together, the results from both the Rollins Corpus and the Cartmill et al. corpus

(including the manipulations to simulate the real world) suggest that Pursuit, a local

model that keeps track of a smaller number of meaning candidates, is competitive across

a wide range of conditions against global models that retain the cross-situational statistics

of all word-meaning associations. A systematic investigation of the formal properties of

global versus local models will have to await future research, but a plausible explanation

of this apparently paradoxical finding is that Pursuit is better equipped at capitalizing on

the few but highly informative learning instances, which tend to get diluted by global

learners in the averaging process across all instances. In any word-learning model, the

successful acquisition of a word requires the learner having considerably higher confi-

dence in a meaning over its competitors. This notion corresponds to the threshold value

above which the word is considered to have been learned, which, in the computational

models implemented here, is a threshold for the normalized probabilistic associations

between a word and all of its possible meanings. Thus, the more competitor meanings a

word has, the less the target meaning stands out in the end. Pursuit, being a strictly local

Table 5

Performance of Fazly et al. (2010) on simulated Cartmill-style corpora. Boldface indicates better performance

than Pursuit on that condition

Fazly 3 4 6 7 8 10 15

100% 0.71 0.66 0.66 0.55 0.54 0.51 0.33

80% 0.65 0.63 0.63 0.53 0.42 0.36 0.09

60% 0.55 0.51 0.45 0.36 0.33 0.22 0.00

40% 0.44 0.39 0.29 0.18 0.14 0.00 0.00

20% 0.13 0.00 0.00 0.00 0.00 0.00 0.00
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model, keeps track of many fewer candidates than global models which keep track of all

available candidates. Thus, it degrades much more gracefully as the ambiguity of learning

instances increases, as we have seen in the simulation of the Cartmill et al. corpus. Inter-

estingly, in experimental studies of cross-situational learning, which employ idealized,

“easier” learning tasks on which global models are expected to learn quite accurately, the

global models are in fact “too good” to model human subjects: Subjects’ behavior is

more in line with a probabilistic local model, as we will see. We now turn to this point

as we explore the suitability of these computational models as models of psychological

mechanisms of early word learning.

4. Testing learning models on experimental conditions

In this section we show that the Pursuit algorithm captures key behaviors found in sev-

eral experimental studies of word learning (in particular, Yu & Smith, 2007; Trueswell

et al., 2013; Koehne, Trueswell, & Gleitman, 2013). We show that the results of Yu and

Smith (2007), which are often cited as evidence for a global learning mechanism, are bet-

ter modeled by the PbV and Pursuit models than they are by the comparison models

which tabulate full cross-instance statistics. Our simulations of the first experiment of

Trueswell et al. (2013) show that Pursuit and PbV—and not the other two models—accu-

rately capture the qualitative behavior of experimental subjects. Finally, we show that

only Pursuit—and not PbV—can capture the additional results of Koehne et al. (2013),

whose findings suggest that word learners do maintain multiple possible meanings for a

word, while still only one such meaning is tested by the learner during any given learning

instance.

4.1. Yu and Smith (2007)

The word-learning experiments of Yu and Smith (2007) and similar studies have

provided the key evidence that individuals can learn word meanings from a series of

referentially underdetermined learning instances. Adult subjects were exposed to pic-

tures on a computer screen, with either two, three, or four objects depicted on the

screen at a time. During each exposure, each of the visible objects was named aloud

with a nonsense word, but subjects were not told which word went with which object.

After six exposures to each nonsense word, subjects were asked to pick the correct

intended meaning of each word from a set of four possible referents. The correct ref-

erent was always visible during the utterance of each word. The principal finding of

these experiments is that when subjects learned from instances with lower referential

ambiguity, that is, fewer objects on screen at a time, subjects’ guesses at the end

were more accurate overall (see Table 6 for their results). That lower ambiguity

across learning instances has a positive effect on learning has been interpreted as sup-

port for global models that track all possible word-referent pairings (e.g., Yu, 2008;

Yu & Smith, 2007).

658 J. S. Stevens et al. / Cognitive Science 41 (2017)



T
ab
le

6

P
ro
p
o
rt
io
n
o
f
co
rr
ec
t
g
u
es
se
s
in

m
o
d
el

si
m
u
la
ti
o
n
s
o
f
Y
u
/S
m
it
h
ex
p
er
im

en
ts

v
er
su
s
ac
tu
al

re
p
o
rt
ed

v
al
u
es
.
F
az
ly

et
al
.
an
d
m
o
d
ifi
ed

F
az
ly

et
al
.

m
o
d
el
s
g
u
es
se
d
v
ia

sa
m
p
li
n
g
w
it
h
m
ea
n
in
g
p
ro
b
ab
il
it
ie
s;

v
ar
ia
n
ts

w
h
ic
h
g
u
es
s
v
ia

ch
o
o
si
n
g
th
e
m
ax
im

al
ly

p
ro
b
ab
le

ca
n
d
id
at
e
p
er
fo
rm

at
ce
il
in
g
o
n

al
l
co
n
d
it
io
n
s.

S
ig
n
ifi
ca
n
t
d
if
fe
re
n
ce
s
d
et
er
m
in
ed

v
ia

p
ai
rw

is
e
co
m
p
ar
is
o
n
o
f
p
re
d
ic
to
r
p
-v
al
u
es

u
n
d
er

a
b
in
o
m
ia
l
m
ix
ed

ef
fe
ct
s
re
g
re
ss
io
n
m
o
d
el

w
it
h
co
n
d
it
io
n
(4

9
4
,
et
c.
)
as

a
p
re
d
ic
to
r
o
f
co
rr
ec
tn
es
s
w
it
h
ra
n
d
o
m

su
b
je
ct

an
d
it
em

ef
fe
ct
s.

N
u
m
b
er
s
in

p
ar
en
th
es
es

in
d
ic
at
e
9
5
%

co
n
fi
d
en
ce

in
te
rv
al
s

4
9

4
3
9

3
2
9

2

S
ig
n
ifi
ca
n
t

d
if
fe
re
n
ce
s

C
I
o
v
er
la
p
s
w
/

o
b
se
rv
ed

P
ro
p
o
se
/V
er
if
y

0
.5
4
(0
.4
3
–0
.6
3
)

0
.6
3
(0
.5
4
–0
.7
2
)

0
.7
6
(0
.6
8
–0
.8
4
)

4
9

4
/
2
9

2

3
9

3
/
2
9

2

4
9

4
/
3
9

3

Y
es
/y
es
/y
es

F
az
ly

et
al
.
(2
0
1
0
)

0
.9
8
(0
.9
4
–1
.0
0
)

0
.9
8
(0
.9
4
–1
.0
0
)

0
.9
9
(0
.9
8
–1
.0
0
)

4
9

4
/
2
9

2

3
9

3
/
2
9

2

N
o
/n
o
/y
es

M
o
d
ifi
ed

F
az
ly

0
.9
6
(0
.9
5
–0
.9
7
)

0
.9
7
(0
.9
6
–0
.9
8
)

0
.9
9
(0
.9
9
–1
.0
0
)

4
9

4
/
2
9

2

3
9

3
/
2
9

2

N
o
/n
o
/y
es

P
u
rs
u
it

0
.7
1
(0
.6
2
–0
.8
0
)

0
.8
4
(0
.7
6
–0
.9
1
)

0
.9
6
(0
.9
2
–0
.9
9
)

4
9

4
/
2
9

2

3
9

3
/
2
9

2

4
9

4
/
3
9

3

Y
es
/y
es
/y
es

R
ep
o
rt
ed

0
.5
3
(0
.3
7
–0
.6
9
)

0
.7
6
(0
.6
2
–0
.9
0
)

0
.8
9
(0
.7
9
–0
.9
9
)

J. S. Stevens et al. / Cognitive Science 41 (2017) 659



As we noted above in Section 1.1, the Yu and Smith finding (2007) is also consistent

with a simple local learning device. Namely, the effect of lower ambiguity in learning is

expected from a learner who makes guesses and tests their guesses against later instances.

When only two possible referents for a word are visible, the learner has a 50/50 chance

of guessing the correct meaning on any given instance, and if the correct guess continues

to be tested and confirmed, the word is very likely to be learned after just a few

instances. If, on the other hand, there are four possible referents, it is more likely for the

learner to get through six instances of a word without ever happening upon the right

meaning, thus reducing final average accuracy after this more ambiguous condition.

While the learner must remember previous guesses in order to confirm their hypothesis, it

is not necessary for the learner to attend to more than one possible meaning per instance.

In fact, the learner need not store any information about statistical distribution in order to

produce this effect.

We sought here to verify that the PbV model can in fact capture the Yu and Smith

(2007) findings; we also sought to compare PbV to the performance of the Pursuit model

and the two global models (Fazly et al., and Modified Fazly et al.). Table 6 presents the

results of these four simulations for Yu and Smith’s first experiment. This table gives

average accuracy of responses from 300 total simulated subjects as produced from each

model, with variance across subjects indicated by 95% CI. Experiments were simulated

by first constructing artificial stimuli according to the specifications given in Yu and

Smith (2007), processing those stimuli using the various models, and then forcing the sys-

tem to guess between the correct meaning and three other randomly chosen distractor

meanings for final testing. For the Pursuit learner, guessing means choosing the most

probable candidate meaning, if it is present (in accordance with step (b-i) in Box 1 in

Section 2), and otherwise randomly selecting a visible meaning if the preferred hypothe-

sis is absent (step (b-ii)). For the PbV learner, hypotheses are categorical, and thus to

guess a word’s meaning is simply to select the single hypothesis associated with that

word. In contrast, model behavior for the two global learning models is completely deter-

ministic and will always generate the same network of word-meaning probabilities when-

ever passed through the training set. Applying a winner-take-all guessing mechanism to

the probabilities that were generated by the global models yields a completely undesirable

result: 100% correct responses regardless of the degree of ambiguity. So instead we sam-

pled the resulting probability space proportionally, with each sample representing the

response of a different simulated subject; this is equivalent to the normalization of word-

meaning associations.

As anticipated, PbV captures the Yu and Smith findings very well. In particular, PbV

predicts statistically significant differences between each pair of conditions, and the 95%

confidence intervals around the average simulated performance overlap with the 95% con-

fidence intervals around average human performance in all three conditions (4 x 4, 3 9 3

and 2 9 2). Given that PbV provides a good fit for these experiment results, it is perhaps

no surprise that the Pursuit model, which is similar to PbV, also provides a good fit:

Again, performance on each condition is significantly different from the others, again

with overlap in 95% CI in all three conditions. What is perhaps more surprising though is
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that the two global models do not do particularly well in fitting the effect in question.

We see in Table 6 that both of the global models predict less of an effect of referent set

size, with near-ceiling performance across the board, contrary with what is actually

observed. This is because the target meaning, which is always present, thoroughly over-

whelms the competitor meanings, which are available only about 20% of the time, so

sampling from their probabilistic associations overwhelmingly favors the target meaning.

Nonetheless, it should be noted that all models replicate the observed qualitative pattern

to some extent, perhaps with the exception of the unmodified Fazly et al. (2010) model.

We do not claim that the inability to exactly match quantitative data precludes, in and of

itself, the usefulness of the global models. After all, post hoc memory constraints could

be imposed on a global learner to make the numbers match better. But importantly, our

results show that findings like this do not at all support a global approach at the expense

of a local one.

In addition to the role of within-trial ambiguity, Yu and Smith (2007) report a sec-

ond experiment that manipulated the number of exposures to target words versus num-

ber of misleading distractor referents. The most striking result is that, using only the

four-referent scenario, giving learners 12 exposures to 9 words does not improve perfor-

mance over the case where subjects are given 6 exposures to 18 words. The reason is

that in the 9-word condition there is a significantly higher probability of repeated, mis-

leading distractor meanings, making co-occurrences less informative on average than in

the 18-word condition. The authors take this as further evidence of pure global learn-

ing: one might expect a local hypothesis-testing model to benefit from having 12 expo-

sures rather than 6, because this presents double the opportunities to guess the correct

meaning. However, it turns out that the increased number of “pretender” meanings sim-

ilarly affects both PbV and Pursuit models, and again, the global models outperform

human subjects. In particular, where the observed proportion of correct guesses in the

9-word condition is about 60%, Pursuit yields 64% and PbV yields 58% on simulations

of this condition, and the global cross-situational models yield around 95%. Taken

together, the simulation results on Yu and Smith’s (2007) experiments suggest that the

paradigm study in support of cross-situational learning is well accounted for by local

models such as PbV and Pursuit.

4.2. Trueswell et al. (2013)

In Trueswell et al. (2013), adult subjects were presented with repeated sequences of

nonsense words accompanied by visual stimuli and asked to learn meanings for those

words from the visual scenes. Each target word was associated with a unique target

meaning. The possible meanings were presented using a constructed layout of static

images on a computer screen. Subjects were asked to indicate their guesses by clicking

on an image with a mouse. The target meaning was always present. For example, a sub-

ject might have been presented with five instances of the word “mipen” throughout the

experiment (intermixed with other word trials), and although each of the five instances

was accompanied by a different visual scene, an exemplar of the meaning ‘ball’ was
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always visible. Subjects were asked to guess the intended meaning of each nonsense word

after each instance, and the experimenters tracked the rate at which subjects guessed

“correctly” (e.g., guessed ‘ball’ for “mipen”).

The authors found that subjects were more likely to guess correctly when they had

guessed correctly on the previous instance of a word. When the subject had guessed

incorrectly on the previous instance, performance was at chance (20%), indicating they

had not retained any alternative meaning hypotheses from the previous learning instance

(though see Dautriche & Chemla, 2014 and Yurovsky & Frank, 2015; and our discussion

of this work below). Trueswell et al. (2013) used this data to motivate the “Propose-but-

Verify” (PbV) model of word learning.

We simulated Trueswell et al.’s first experiment, in which every instance presented the

learner with exactly five possible meanings. Fig. 3A reproduces these experimental find-

ings from Trueswell et al. (2013). Fig. 3B presents the results of the memory-restricted

PbV model and Fig. 3C the idealized PbV without memory restrictions. Fig. 3D presents

the results from the Pursuit model. All three models capture the behavior accordingly,

with perfect memory models (Fig. 3C, D) remembering their previous guess better than

human subjects. But all models, as expected, are at chance (20% correct) after guessing

incorrectly.

Contrast this behavior with that of the global cross-situational models (Fig. 3E, F).

The modified Fazly et al. model (3E), which is similar to Pursuit in that it is sensitive to

the order of learning instances, does show some effect of having guessed correctly on the

previous instance, but crucially, accuracy after a previous incorrect guess is much higher

than predicted, and—at about 65%—much higher than chance level, which represents a

qualitative difference between this model, on the one hand, and Pursuit and PbV, on the

other. The original Fazly et al. model (3F) is equally above chance regardless of whether

the model had been correct on the previous learning instance, contra the human results

(Fig. 3A). Under both global cross-situational comparison models, the probability of the

correct meaning is increased slightly with each instance, and thus having guessed incor-

rectly has either a much smaller effect than predicted (3E) or no effect at all (3F). See

Table 7 for a full quantitative comparison. Note that Fig. 3E and F both assume a model

where guesses are made probabilistically, unlike Pursuit which always chooses the best

candidate. As mentioned in Section 4.1, to incorporate a winner-takes-all guessing mech-

anism into the global models would yield an even worse prediction: For both models in

both conditions, performance is at ceiling. This is again due to the global models’ incre-

mentally increasing the association between target word and target meaning on each

instance.

Finally, Trueswell et al. (2013) reported (in Experiment 3) that a correct guess on trial

N � 2 did not correlate with a correct guess on trial N if trial N � 1 was guessed incor-

rectly. Fig. 4 presents this result for Pursuit, by showing performance on the fourth

instance of each word as a function of whether the second and third guesses were correct.

In the case where the third guess was incorrect, whether the second guess was correct has

no bearing on whether the fourth guess is correct. This is straightforward under PbV,

because once the learner has chosen a wrong hypothesis, his or her previous hypothesis is
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Fig. 3. Simulations of Trueswell et al. (2013), Experiment 1. (A) Performance of human subjects, from

Trueswell et al. (2013); (B) Propose/Verify model; (C) Propose/Verify with no memory constraints; (D) Pur-

suit; (E) Modified Fazly et al. (2010) model with guesses made via weighted sampling; (F) Original Fazly

et al. model.
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not stored in memory at all. Pursuit exhibits this same behavior, though for a somewhat

more complex reason. Under part ii. of the Pursuit step of the algorithm (Box 1), if the

most probable hypothesis is disconfirmed, the learner chooses a random object from the

set of visible objects, and this random choice could happen to be correct. However, this

is no guarantee that the learner will choose the correct hypothesis next time, because the

disconfirmed hypothesis, despite being penalized once in the immediate past, may still

remain most probable. Thus, under Pursuit the learner may happen to guess correctly on

the second instance even if a different hypothesis remains the most probable. In that case,

the subject is likely to choose a false hypothesis for the third instance, and the correct

hypothesis maintains a low probability. This places the rate of correct guessing for the

Table 7

Trueswell et al. (2013), Experiment 1, proportion of correct guesses on instances >1 by whether the subject

guessed correctly on the previous instance. Significance determined by a mixed effects regression model.

Numbers in parentheses indicate 95% confidence intervals

Previously Incorrect Previously Correct

Significant

Difference?

Greater

Than

Chance

CI Overlaps

w/ observed

Propose/Verify 0.19 (0.183–0.207) 0.46 (0.431–0.491) Yes No/yes Yes/yes
Propose/Verify

(perfect memory)

0.18 (0.171–0.195) 1.00 (1.000–1.000) Yes No/yes Yes/no

Fazly et al., 2010 0.35 (0.341–0.369) 0.35 (0.325–0.371) No Yes/yes No/yes
Modified Fazly 0.65 (0.640–0.669) 0.87 (0.857–0.877) Yes Yes/yes No/no

Pursuit 0.21 (0.197–0.224) 0.80 (0.781–0.825) Yes No/yes Yes/no
Human subjects 0.21 (0.171–0.249) 0.47 (0.332–0.700) Yes No/yes

Fig. 4. Average performance of Pursuit model on the fourth learning instance in Trueswell et al. (2013) sim-

ulations, by whether second and third guesses had been correct.
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fourth instance around chance level. Choosing the maximally probable candidate under

the global cross-situational comparison models does not yield valid behavioral predictions

in that by the third instance, all guesses are correct, due to the fact that in this experiment

the correct referent is always present. Moreover, choosing the instance based on probabil-

ities does not yield expected results either, as is evident from the previous data on the

influence of N � 1 (Fig. 3E, F).

Although we do not include the results here, we were also able to produce similar

results for Medina et al.’s (2011) first experiment, which uses video vignettes in the HSP,

similarly to the Cartmill et al. (2013) study. Medina et al. show that those subjects who

guessed the correct target on the first instance were more likely to have learned the word

by the end of the experiment, and this was independent of how easy it was to guess the

correct meaning in isolation (as determined in a separate experiment). Pursuit behaves on

these simulations exactly like a memory-unrestricted version of PbV,6 and it exhibits a

similar contrast to the comparison models, as is shown here.

4.3. Koehne et al. (2013)

Thus far, our simulations have shown that both Pursuit and PbV, but not a cross-situa-

tional model, capture the patterns observed in experimental data. We now turn to our

simulations of the first experiment in Koehne et al. (2013), which differentiate Pursuit

from PbV on a behavioral level, in that only the former captures the observed behaviors.

Koehne et al. tested whether subjects would maintain prior knowledge about chosen

hypotheses when making guesses about word meaning. The study uses a similar paradigm

to the experiments of Trueswell et al. (2013), but there are two target referents for each

target word: a “fifty percent referent” (FPR), which is present for exactly half of the

instances of a given word; and a “hundred percent referent” (HPR), which is present for

every instance. At the end of the learning trials, the subjects were asked to guess each

word’s meaning from a set of eight candidate meanings. Crucially, the HPR was absent

during these testing trials. Thus, the subject was forced to choose between the FPR and a

number of distractor referents.

The experimenters manipulated the order in which instances were presented. Each

learning instance was classified as a “Present” (P) instance if the FPR was present, or an

“Absent” (A) instance if the FPR was absent. Each word occurred six times during the

learning phase of the experiment, with the same number of possible referents for each

instance. Four orders were tested: AAAPPP, APAPAP, PAPAPA, and PPPAAA.

The PbV model of Trueswell et al. (2013) predicts that subjects will only choose the

FPR above chance level during the final test for a word if the last instance of that word

was a P-instance, that is, conditions AAAPPP and APAPAP. This is because in condi-

tions PPPAAA and PAPAPA, there is no possibility that the subject chose the FPR as her

most recent hypothesis for that word. Therefore, the subject will not have any reason to

choose it above chance level during testing. Contrary with this prediction, the experi-

menters find that subjects do in fact choose the FPR above chance level in all conditions

(Fig. 5A), with an elevated probability of picking the FPR in the absent-final conditions
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Fig. 5. Simulations of Koehne et al., Experiment 1, rate of choosing 50 percent referent. (A) Performance of

human subjects, from Koehne et al. (2013); (B) Propose/Verify; (C) Pursuit; (D) modified Fazly et al. (2010)

model with guesses made via weighted sampling; (E) original Fazly et al. model.
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(PAPAPA and PPPAAA)–precisely the conditions in which PbV predicts chance-level

selection of the FPR.

PbV does not correctly predict Koehne et al.’s (2013) results because once a hypo-

thesis has been rejected and a new one chosen, there is no record of the rejected

hypothesis having previously succeeded. Pursuit, by contrast, does not completely reject

a hypothesis in the face of disconfirming evidence. Rather, it only lowers the associa-

tion score of that word-meaning pair. If a particular hypothesis succeeds multiple times

and then fails, it is still possible for that hypothesis to maintain its position as the most

probable candidate. We see this in Fig. 5C: Pursuit yields a higher advantage for the

FPR in the PPPAAA condition, because the likelihood of giving the FPR a very high

probability score based on consistent initial evidence from the first three trials is higher

in this condition. This is exactly the trend found by Koehne et al. (see Graph 1 in that

paper). And, as expected, PbV does not replicate this trend, as we see in Fig. 5B.

Moreover, the global comparison models do not replicate the qualitative pattern either,

as seen in Fig. 5D, E.

Interestingly, Koehne et al. find that participants are only above chance at selecting the

FPR at final test if and only if they had selected an FPR at least once during the learning

trials (Fig. 6A). This would be expected by Pursuit because consideration as a referent is

the only way an item can enter the word meaning set. And indeed, Fig. 6C below repli-

cates Koehne et al.’s result using Pursuit simulations, whereas PbV fails to capture this

result (see Fig. 6B). See Table 8 for a quantitative comparison of Pursuit, PbV, and

human performance.

5. General discussion

5.1. Learning by Pursuit: Summary and evaluation

In this article, we proposed the Pursuit model of word learning, which combines

insights from general considerations of probabilistic learning as well as experimental

demonstrations of the word-learning process. Our model pursues the highest-valued word

meaning at the expense of other meaning candidates. By contrast, fully global cross-situa-

tional models do not favor any one particular meaning, but rather tabulate statistics across

all learning instances to look for consistent co-occurrences.

Our main results are two-fold. On one hand, the Pursuit model provides a mechanistic

account of human learning behavior as revealed in a series of word-learning experiments

(Medina et al., 2011; Trueswell et al., 2013) and improves upon the PbV model, as

shown in the behavioral study of Koehne et al. (2013) and the simulation results based

on that study. By contrast, the global learning models we tested (Fazly et al., 2010; and a

more apples-to-apples modified version of that model) do not capture the experimental

results. Moreover, the Pursuit model also accounts for the results from Yu and Smith

(2007), the paradigm study for cross-situational learning of word meanings, and in fact

provides a closer match with subject responses than the global models tested here. On the
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other hand, we have seen simulation results on two distinct types of child-directed corpus

data showing that Pursuit is competitive against cross-situational models. We have argued

that the apparent limitation of Pursuit is in fact the key ingredient for its success in realis-

tic word-learning situations: A local model that keeps track of few options is better

equipped to capitalize on the rare but highly informative learning instances, which are

diluted under models that keep track of all options.

Fig. 6. Koehne et al. (2013), Experiment 1, average rate of choosing 50 percent referent (FPR), by whether

FPR had been chosen after a previous instance. (A) Performance of human subjects; (B) Propose/Verify; (C)

Pursuit; (D) modified Fazly et al. (2010) model with guesses made via weighted sampling; (E) original Fazly

et al. model.
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Future work will explore the predictions of the Pursuit model in an experimental set-

ting, which may further refine the details of the model. Additionally, more effort should

be devoted to expand the empirical ground of model testing, by both increasing the

amount of data as well as using more realistic learning situations: Our use of the Cartmill

et al. (2013) corpus takes an initial step in this direction, moving beyond the limitations

of the Rollins Corpus used in previous computational studies of word learning. That

investigation suggests that perhaps a Pursuit learner has an advantage over a global cross-

situational learner in cases where there are frequently co-occurring competing referents.

For example, a Pursuit learner might decide early on that “dog” means ‘dog,’ and then

ignore the fact that the family cat is also present for a large number of utterances of

“dog.” A global learner, by contrast, will dilute her probability space with ‘cat.’ More

sophisticated global learning algorithms (like our modified global model) seem to dampen

this effect down, but not get rid of it entirely. This would explain why Pursuit outper-

forms all other models on the Rollins corpus, where meaning-meaning co-occurrence is

very high, but not on other corpora for which meaning tokens are more evenly dis-

tributed. Finally, a virtue of computational models lies in their explicitness; as such, both

local and global models may be evaluated as general frameworks in which other cues for

word meaning can be incorporated.

5.2. Results unaccounted for by Pursuit

It is important to note that some recent findings are not so straightforwardly accounted

for by Pursuit (Dautriche & Chemla, 2014; Yurovsky & Frank, 2015). Most notably, Yur-

ovsky and Frank find that at least under some specific situations, adult word learners can

extract and retain more than one referential alternative from a given occurrence of a

word. In a paradigm similar to Trueswell et al. (2013), each experimental trial consisted

of subjects hearing a nonsense word and selecting among several visually depicted refer-

ents. In the Yurovsky and Frank study, the scene that accompanied the second occurrence

of a nonsense word always contained objects that were not present during the word’s first

occurrence plus exactly one object from the first occurrence; this object was either the

one selected by the subject or an object that had not been selected. Like Trueswell et al.

(2013), they find an effect of prior selection, with participants being much better at

selecting the prior object if they had selected it on the first word occurrence. However,

unlike Trueswell et al. and inconsistent with the expectations of Pursuit and PbV, partici-

pants were found to be reliably above chance at selecting the previously unselected refer-

ent, suggesting they retained more than one referential alternative from the word’s first

occurrence.

Yurovsky and Frank suggest that their results differ from Trueswell et al. (2013)

because Trueswell et al. used a greater trial interval between word occurrences (11 inter-

vening trials) than they did in their studies (7 or fewer trials). And indeed, manipulations

of interval length and referent set size by Yurovsky and Frank suggest that as interval

and referent set size increase, learners behave in the limit like a purely local learner, in

line with Pursuit and PbV. For greater distances between words with highly ambiguous
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contexts, learners are at chance when considering a previously unselected referent. The

results for smaller set sizes are, however, important and warrant further investigation; for

instance, it is notable that the conditions used by Yurovsky and Frank are optimal for

recalling the prior context, in that the co-occurring object of interest only occurred once

before in one context; yet typically in studies of word learning, an object will also appear

in other contexts in the study, as a low probability co-occurring object with other words

and other objects (as would be the case in real life). And indeed, memory research sug-

gests that memory for the context of an item becomes much poorer the more other con-

texts in which that item also occurred (c.f., Anderson & Bower, 1974). (We thank Judith

Koehne for this observation.) In general, we point out that the Pursuit model is meant to

be a model of an idealized core learning mechanism: We should expect that, under cer-

tain favorable conditions (like when word instances are close together), a Pursuit learner

will be able to retain some additional contextual information in virtue of being able to

remember recent experiences. The important prediction of our model is that contextual

information that is not actively used for hypothesizing about meanings will decay rather

quickly, as it is not represented within the learning mechanism itself. As a whole though,

the findings of Yurovsky and Frank suggest that the word-learning strategies of adults are

more complex than the global and local models we have presented here.

Notably though, young children behave like local rather than global word learners, as

observed in other work by Trueswell and colleagues (Woodard et al., 2016). They find

that 2- and 3-year olds show no sign of recalling an unselected referential alternative in a

child-friendly version of this experimental paradigm, even when the referent set size was

small (two referents) and the interval was short (two intervening trials). These findings

suggest that children’s memory and attentional limitations drive them toward single refer-

ent consideration during word learning. Our simulation work above suggests that, in

doing so, there may be little cost for accurate word learning, and it may in many circum-

stances be beneficial.

There are other challenging cases that involve learning under conditions of close word

instance proximity. Kachergis, Yu, and Shiffrin (2012) provide evidence that adult sub-

jects retain multiple hypotheses during word learning, but the effect they report only

arises when a particular meaning occurs six or nine times in a row along with the

intended target meaning. Along the same lines, the massed learning trials of Smith,

Smith, and Blythe (2011)—those where one instance of a word is immediately followed

by another instance of the same word—show better performance than the nonmassed tri-

als. In general, there seems to be support for the retention of multiple hypothesis when

learning instances are massed, just as there is support for such retention when word

instances occur closer together more generally. As discussed above, this is likely due to

the recruitment of additional short-term memory resources that are not available to the

learner in most realistic learning contexts (where instances of a given word can be quite

far apart). We take nonmassed learning to be more indicative of the word-learning task in

the real world, and thus take the Pursuit model to be a good candidate for modeling a

“core” learning mechanism. Further exploration of how such a mechanism can be made

to recruit additional memory resources in certain situations must be left to future work.
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5.3. Do the models model human children?

Before ending this article, we feel it necessary to consider how the formal models con-

sidered here might link to the questions of how young children acquire the lexicons of

their native tongue. Though we cannot attack such questions in all their full (and partly

unknown) glory, we here point to some of our own underlying assumptions about what

would properly constitute evidence linking the modeling findings to the population whose

behavior they purport to describe.

We start by reiterating that our proposal here, in the form of the Pursuit model, is only

a very small part of the very complex character and process of word learning. The lin-

guistic, cognitive, and perceptual constraints on words and their acquisition, amply docu-

mented in previous research, are in a sense “built in” in our model as well as in other

computational models compared here. Nevertheless, we have assumed throughout that

word-to-world pairing constitutes a proper part of the word-learning task, and that it is in

play early, serving as a scaffold for further learning steps (Gleitman et al., 2005). And

for this constrained mapping problem, simulation results suggest advantages of the Pursuit

model over a range of alternative solutions, both in terms of its congruence with observed

behavior and its relative effectiveness as a learning algorithm.

Second, we would like to address the tension that naturally arises when one conducts

computational modeling research, which sits at the intersection of linguistics, psychology,

and computer science. For instance, in computational linguistics, progress and success are

in general measured by performance results (e.g., F-score). Models are not bound by psy-

chological concerns and computational complexity is of secondary concern as long as it

does not affect practicality. In light of the discussion above, we may ask the question: Is

it reasonable at all to say that the more accurately (the faster and least errorfully) the

model learns from some approximation of realistic data (e.g., the corpora as used herein),

the more that model resembles The Human Child? This remains unclear. Children’s early

vocabulary initially grows quite sluggishly (e.g., approximately 1 word at 8 months to

just 20–25 words 6 months later, Bates, Dale, & Thal, 1995) although recent evidence

suggests that, at least for discrimination in two-alternative-choice tasks, even very young

children may grasp some aspects of the meanings of everyday words (Bergelson &

Swingley, 2012). Thus, it may be a virtue—in terms of realism—for a proposed formal

model that it be quite poor at acquiring the Gold Standard Lexicon. Maybe the real infant

is a simpler machine than even the Pursuit model suggests and so learns slowly and error-

fully until overtaken by sophisticated multiple-cue machinery that can redress its inherent

inadequacies in terms of character and rate of learnable items. In this sense, global cross-

situational learning models are problematic when tested on the experimental stimuli from

Yu and Smith (2007): They outperform the human subjects considerably and hence better

numerical performance is a defect rather than a virtue. Thus, we acknowledge that it is

simplistic to identify the best formal model with its presumed target, the human infant

performing word-to-world pairing over a restricted semantic space.

Nevertheless, researchers learn a great deal by going back and forth between idealized

models of learning and experimental exploration of the behaviors observed in the child
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(and adult) language learner. Computational models of the sort explored here provide a

way of specifying the range of logical solutions to a problem, in ways typically not possi-

ble from experimentation alone. Moreover, a computational model that is motivated by

an existing body of behavioral results can produce imminently testable predictions upon

the manipulation of the learning data it receives. Experimentation, in turn, allows

researchers to understand which of these possible logical solutions is practical “on the

ground” in the everyday life of a learner, who is faced with the nonideal situation of

exploring the real, sometimes confusing and unhelpful, world. Our work suggests that

those logical solutions that simplify the input and simplify the learning procedure may

solve the problem of early word learning better than those that maintain the complexity

of the world within the learning model itself.
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Notes

1. Although Smith and Yu (2008) acknowledged that localist accounts could explain

their findings, they advocated for a purely associative, global-intersective account,

which is further detailed in Yu (2008).

2. Had any other referent been selected on the first instance, such as the crab, the

PbV learner in this alternative state would choose randomly on instance 2 because

the scene does not contain a crab.

3. We did not test the Bayesian model of Frank et al. (2009), as it operates in a batch

mode, that is, it is designed to produce an optimal lexicon after the entire corpus is

processed. It is difficult to evaluate this model in the context of experimental

studies of word learning (see Section 4), where the human subjects are to process

the learning instances one at a time and produce behavioral responses as learning

progresses.

4. It is also possible to sum P(m|w) over meanings rather than words, but we found

that using P(w|m), thus making the modified model a “mirror image” of the origi-

nal, gets much better results. See technical supplement for details.

5. More specifically, for the associative models, for a reasonable range of k values

(0.1, 0.05, 0.01, etc.), the threshold parameter was optimized to two decimal places,

and the best-case values were used for each model.

6. Among the models we test, PbV is the only one which explicitly builds in limits

on the retrieval of meaning hypotheses. Such limits could be superimposed on Pur-

suit and other models to make the quantitative match closer. Here, we are primarily

interested in the qualitative behavior of the models.
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