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Introduction
Aurora B kinase regulates multiple different processes in cell 
division, including spindle assembly, kinetochore–microtubule 
interactions, and cytokinesis. Before anaphase, the kinase is 
concentrated at the inner centromere as part of the chromosome 
passenger complex (CPC), which includes the inner centromere 
protein (INCENP), Survivin, and Borealin. Paradoxically,  
Aurora B regulates processes at the outer kinetochore and spin-
dle, which are spatially distinct from the inner centromere. Sub-
strates have been identified at the inner centromere (mitotic 
centromere-associated kinesin), on bulk chromatin (histone 
H3), at the outer kinetochore (KNL-1/Mis12 complex/Ndc80 
complex network), and in the cytoplasm (Op18/stathmin;  
Hsu et al., 2000; Andrews et al., 2004; Lan et al., 2004; Ohi  
et al., 2004; Cheeseman et al., 2006; DeLuca et al., 2006; Gadea 
and Ruderman, 2006; Kelly et al., 2007; Welburn et al., 2010), 
and an artificial substrate targeted to spindle microtubules is also 
phosphorylated by Aurora B (Tseng et al., 2010). The differential 
localization of Aurora B relative to its substrates is important 
mechanistically, as phosphorylation of outer kinetochore sub-
strates depends on their spatial separation from the kinase, 

which underlies the regulation of kinetochore–microtubule  
interactions (Liu et al., 2009). However, it is unclear how Aurora B 
concentrated at the inner centromere contacts its substrates at 
distinct sites and how phosphorylation depends on distance 
from the kinase.

To approach this question, we considered several Aurora B 
regulatory mechanisms. Clustering of the CPC with anti- 
INCENP antibodies activates Aurora B in vitro (Kelly et al., 
2007), most likely because phosphorylation of the INCENP  
C terminus in trans activates the kinase (Bishop and Schumacher, 
2002; Honda et al., 2003; Sessa et al., 2005). Concentration  
of Aurora B at centromeres might have a similar effect  
on kinase activity in vivo. Aurora B and other CPC compo-
nents also dynamically exchange at the inner centromere  
(Murata-Hori and Wang, 2002; Beardmore et al., 2004; Ahonen 
et al., 2009), and Aurora B is inactivated by cytoplasmic phos-
phatases (Kelly et al., 2007). How spatial regulation of Aurora B 
activity depends on the combination of local concentration  
at centromeres, kinase activation, dynamics, and cytoplasmic  
inactivation is unknown.

Aurora B kinase is essential for successful cell  
division and regulates spindle assembly and  
kinetochore–microtubule interactions. The kinase 

localizes to the inner centromere until anaphase, but many 
of its substrates have distinct localizations, for example  
on chromosome arms and at kinetochores. Furthermore, 
substrate phosphorylation depends on distance from the  
kinase. How the kinase reaches substrates at a distance 
and how spatial phosphorylation patterns are determined 
are unknown. In this paper, we show that a phosphoryla­
tion gradient is produced by Aurora B concentration and 

activation at centromeres and release and diffusion to  
reach substrates at a distance. Kinase concentration, either 
at centromeres or at another chromosomal site, is neces­
sary for activity globally. By experimentally manipulating 
dynamic exchange at centromeres, we demonstrate that the 
kinase reaches its substrates by diffusion. We also directly 
observe, using a fluorescence resonance energy transfer–
based biosensor, phosphorylation spreading from centro­
meres after kinase activation. We propose that Aurora B 
dynamics and diffusion from the inner centromere create 
spatial information to regulate cell division.

Aurora B dynamics at centromeres create a 
diffusion-based phosphorylation gradient
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Figure 1.  Local concentration of Aurora B is required for kinase activity. (A) HeLa cells were transfected with either INCENP-mCherry or CBDBD–INCENP-
mCherry with or without Borealin siRNA as indicated and fixed and stained for DNA, Borealin, and Aurora B. (B) A schematic showing targeting of 
phosphorylation sensors by fusion to Hec1 (kinetochores), CB (centromeres), or histone H2B (bulk chromatin). (C) Cells were transfected as described 
in A, together with an Aurora B phosphorylation sensor targeted to chromatin, and imaged live. The YFP/CFP emission ratio was analyzed to measure 
phosphorylation changes and averaged over multiple cells (n = 12 cells for each bar). 2 µM ZM was used to dephosphorylate the sensor, which is  
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If kinase concentration leads to activation, we predict that 
localization to a noncentromere site should also restore activity 
in Borealin-depleted cells. To test this prediction, we designed a 
system to target INCENP and Aurora B to a different chromo-
somal site. A human U2OS cell line with a lac operator array 
integrated into a euchromatic region on chromosome 1 (U2OS-
LacO) has been used to target the lac repressor protein (LacI) to 
the site of the array (Janicki et al., 2004). Expression of a LacI-
INCENP fusion protein in these cells together with depletion of 
Borealin targeted Aurora B to a spot on the chromatin rather 
than to centromeres (Fig. 1 E). Furthermore, phosphorylation of 
the chromatin-targeted sensor in Borealin-depleted cells was 
restored by expression of LacI-INCENP (Fig. 1 F). Together, 
these results demonstrate that global Aurora B activity in vivo 
requires kinase concentration either at centromeres or elsewhere  
in the cell.

To test whether Aurora B activation by concentration  
at centromeres depends on phosphorylation of the C-terminal  
Thr-Ser-Ser (TSS) motif of INCENP, we measured the effects 
of mutating the TSS to Ala-Ala-Ala (AAA) in the context of the 
CBDBD-INCENP fusion protein. We used targeted phosphoryla-
tion sensors to examine phosphorylation at different sites (Fig. 1 B 
and Table I). CBDBD-INCENPTSS/AAA restored phosphorylation 
of the centromere-targeted sensor in Borealin-depleted cells,  
although not to the same level as CBDBD-INCENP (Fig. 2 A). 
However, CBDBD-INCENPTSS/AAA did not restore phosphoryla-
tion of the chromatin-targeted sensor. INCENP can partially acti-
vate Aurora B without TSS phosphorylation (Sessa et al., 2005), 
which suggests that partial kinase activity is sufficient to phos
phorylate substrates that localize to the same site as the kinase 
but not substrates at a distance. As another test of kinase activity, 
we measured phosphorylation of a sensor targeted to the outer 
kinetochore (Liu et al., 2010). Expression of CBDBD–INCENP re-
stored phosphorylation of this sensor in Borealin-depleted cells, 
but expression of CBDBD-INCENPTSS/AAA did not (Fig. 2 A). 
This result indicates that phosphorylation of substrates at a  
distance from the kinase, either at the outer kinetochore or on 
chromosome arms, requires full activation by phosphorylation of 
the INCENP C terminus.

Results and discussion
Aurora B activity depends on 
concentration and INCENP phosphorylation
To test whether CPC concentration at centromeres contributes 
to kinase activation, we designed a strategy to manipulate cen-
tromere localization. Borealin depletion by RNAi prevents  
centromere localization of Aurora B and INCENP (Gassmann  
et al., 2004; Sampath et al., 2004), but a fusion protein between 
INCENP and the DNA-binding domain of CENP-B (CB;  
CBDBD-INCENP; Liu et al., 2009) targets Aurora B to centro-
meres independent of Borealin (Figs. 1 A and S1 A). Therefore, 
we compared Borealin-depleted cells expressing either wild 
type (wt)–INCENP or CBDBD-INCENP, as only CBDBD-INCENP 
targets to centromeres. To examine Aurora B activity both at 
centromeres and at a distance from the centromere, we used  
a fluorescence resonance energy transfer–based biosensor that  
reports on phosphorylation by Aurora B (Fuller et al., 2008). 
The sensor is fused either to CBDBD for centromere targeting or 
to histone H2B for chromatin targeting (Fig. 1 B and Table I). 
Both centromere- and chromatin-targeted sensors were dephos-
phorylated in Borealin-depleted cells (Fig. 1, C and D), though 
the dephosphorylation was incomplete compared with cells 
treated with the Aurora B inhibitor ZM447439 (ZM). This re-
sult is consistent with a previous finding that histone H3 Ser10 
phosphorylation is inhibited more completely by ZM than by 
INCENP depletion (Xu et al., 2009). We also expressed CBDBD-
INCENP or wt-INCENP in Borealin-depleted cells to determine 
the contribution of kinase localization to kinase activity. We 
normalized each experiment on a phosphorylation scale of  
0–1, determined by Borealin-depleted and control cells with wt  
CPC (Fig. 1 C). Normalized results were used to average multi-
ple experiments and to compare different targeted phos
phorylation sensors. Expression of CBDBD-INCENP but not 
wt-INCENP restored phosphorylation of both centromere- and 
chromatin-targeted sensors (Fig. 1 D). This finding indicates 
that concentration of Aurora B at centromeres contributes  
to kinase activity both locally at centromeres and globally  
on chromatin.

indicated by an increased emission ratio. The letters to the left of the vertical axis indicate how normalized phosphorylation was calculated: (c  b)/(a  b) 
for wt-INCENP or (d  b)/(a  b) for CBDBD–INCENP. (D) The experiment described in C was repeated with sensors targeted either to centromeres or 
to chromatin. Normalized values were calculated for each experiment as in C and averaged over three independent experiments. (E) U2OS-LacO cells 
were transfected with mCherry-LacI or with LacI-INCENP–mCherry with or without Borealin siRNA as indicated and then were fixed and stained for DNA, 
Borealin, and Aurora B. (F) Cells were transfected as described in E, together with the chromatin-targeted Aurora B phosphorylation sensor, and imaged 
live. The normalized YFP/CFP emission ratio was averaged over three independent experiments. Bars, 5 µm.

 

Table I.  Notation for phosphorylation sensors and INCENP fusion proteins targeted to different locations

Targeting domain Localization Phosphorylation sensor INCENP fusion protein

CBDBD Centromere Centromere sensor CBDBD-INCENP, fast turnover
CBFL Centromere NA CBFL-INCENP, slow turnover
Histone H2B Chromatin Chromatin sensor NA
Hec1 Outer kinetochore Kinetochore sensor NA
LacI lac operator array NA LacI-INCENP

NA, not applicable.
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Figure 2.  Aurora B activity at a distance depends on phosphorylation of INCENP. (A) HeLa cells were transfected with either CBDBD-INCENP–mCherry or 
CBDBD-INCENPTSS/AAA–mCherry, together with an Aurora B phosphorylation sensor targeted either to centromeres, chromatin, or kinetochores. Cells were 
also treated with or without Borealin siRNA and imaged live. The normalized YFP/CFP emission ratio or YFP/TFP for the kinetochore-targeted sensor was 
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We also examined spatial phosphorylation patterns using 
the chromatin-targeted phosphorylation sensor. To facilitate our 
analysis, we treated cells with monastrol to create monopolar 
spindles in which chromosomes are arranged radially around 
the centrosomes with centromeres oriented toward the center 
(Mayer et al., 1999). Replacement of endogenous INCENP with 
CBFL-INCENP generated phosphorylation locally at centromeres, 
which rapidly decreased with distance from the centromeres 
(Fig. 3, E and F). In contrast, replacement with CBDBD-INCENP 
generated phosphorylation all over the chromatin. Together, 
these results indicate that phosphorylation of substrates at a dis-
tance depends on release of INCENP from the centromere, which 
suggests that the kinase reaches these substrates by diffusion.

In addition to its activation at centromeres, Aurora B activity 
is suppressed by cytoplasmic phosphatases (Kelly et al., 2007), 
which suggests a model in which local activation, diffusion, and 
global inactivation would create a gradient of kinase activity 
centered at the centromere. We did not observe a phosphoryla-
tion gradient on chromosome arms in cells expressing endoge-
nous CPC, which suggests that kinase activity at a distance from 
the centromere might dominate over phosphatase activity, so 
that chromatin substrates are uniformly phosphorylated. Partial 
inhibition of Aurora B might decrease kinase activity to the point 
at which it is balanced by phosphatase activity on chromosome 
arms. Therefore, we analyzed phosphorylation of the chromatin- 
targeted sensor with different concentrations of ZM. At 0.3 µM 
ZM, the sensor is partially dephosphorylated (Fig. 4 A), and we 
observed a clear gradient of phosphorylation centered at the 
centromere in monopolar spindles (Fig. 4, B and C). At 0.1 or 
0.5 µM ZM, the sensor is predominantly phosphorylated or de-
phosphorylated, respectively, and spatial patterns are less pro-
nounced. These findings indicate that there is a gradient of kinase 
activity centered at the centromere, but differences in phosphory
lation are usually not observed because phosphatase activity  
on chromosome arms is not high enough to oppose the kinase.

We also analyzed spatial phosphorylation patterns in 
U2OS-LacO cells depleted of endogenous INCENP and ex-
pressing LacI-INCENP. In these cells, the chromatin-targeted 
sensor is uniformly phosphorylated in the absence of kinase  
inhibitor or uniformly dephosphorylated with 10 µM ZM. At 
intermediate concentrations of 0.5 or 2 µM ZM, we observed a 
gradient of phosphorylation around the site at which LacI- 
INCENP localizes (Fig. 4, D and E). The relatively high levels 
of LacI-INCENP at the LacO site (Fig. S2 B) may explain why 
phosphorylation persists at 2 µM ZM, which is sufficient for 
complete dephosphorylation in cells expressing only endog
enous INCENP (Fig. 4 A). To test whether kinase activity at  
2 µM ZM is associated with phosphorylation of LacI-INCENP 
at the C-terminal TSS motif, we generated a phospho-specific 
antibody against this motif (Salimian et al., 2011). With 2 µM 

To determine the importance of INCENP phosphorylation 
for kinase activity toward endogenous substrates, we used 
phospho-specific antibodies toward Aurora B sites on chromatin 
(histone H3 Ser10) and at the outer kinetochore (Dsn1 Ser100; 
Hsu et al., 2000; Welburn et al., 2010). Both substrates are de-
phosphorylated in INCENP-depleted cells, though to different  
degrees. H3 Ser10 was still partially phosphorylated, consistent 
with a previous study (Xu et al., 2009), but the absence of detect-
able Dsn1 Ser100 phosphorylation may reflect higher phosphatase  
activity at kinetochores as a result of PP1 localization (Trinkle- 
Mulcahy et al., 2003; Liu et al., 2010). Phosphorylation of both 
H3 Ser10 and Dsn1 Ser100 was restored in INCENP-depleted 
cells expressing siRNA-resistant CBDBD-INCENP but not in cells 
expressing CBDBD-INCENPTSS/AAA (Fig. 2, B and C).

Because phosphorylation of outer kinetochore substrates 
destabilizes kinetochore microtubules, we analyzed cold-stable 
microtubules as a functional assay for kinetochore phosphoryla-
tion differences. In INCENP-depleted cells, attachments are de-
stabilized by CBDBD-INCENP but not by CBDBD-INCENPTSS/AAA 
(Fig. 2, D and E), which is consistent with the analysis of kineto-
chore substrate phosphorylation (Fig. 2, A–C). We also found that 
CBDBD-INCENP and CBDBD-INCENPTSS/AAA recruit Aurora B to 
centromeres equally well (Fig. S1, C–E). These findings demon-
strate that INCENP phosphorylation is required for kinase activ-
ity toward substrates at sites distinct from Aurora B itself.

Aurora B activity toward substrates  
at a distance depends on dynamics  
at centromeres
Our results indicate that phosphorylation of substrates at a dis-
tance requires Aurora B concentration and activation at centro-
meres, suggesting that the kinase reaches substrates at other 
sites by release and diffusion. To test this model, we designed  
a strategy to manipulate INCENP dynamics at centromeres  
in vivo. CBDBD exchanges more rapidly than full-length CB 
(CBFL) at mitotic centromeres (Hemmerich et al., 2008), which 
allowed us to design INCENP fusion proteins with different 
turnover rates (Table I). Indeed, FRAP measurements show that  
CBFL-INCENP exchanges very slowly at centromeres, whereas 
CBDBD-INCENP recovers to 40% of prebleach levels within 
2 min (Fig. 3, A and B). We constructed both CB-INCENP 
fusion proteins to be siRNA resistant and expressed them in cells 
depleted of endogenous INCENP (Fig. S1 B). Both CBDBD- 
INCENP and CBFL-INCENP targeted Aurora B to centromeres 
and restored phosphorylation of the centromere-targeted sensor 
in INCENP-depleted cells (Fig. 3, C and D). This result is ex-
pected because the kinase should reach these substrates without 
diffusion. However, CBDBD–INCENP restored phosphorylation 
of the chromatin-targeted sensor more effectively than CBFL–
INCENP (Fig. 3 D).

calculated as described in Fig. 1 C and averaged over three independent experiments. (B and C) Cells were transfected with the indicated constructs with 
or without INCENP siRNA as indicated and then were fixed and stained for phospho-Dsn1 (pDsn1) Ser100 or phospho-H3 (pHH3) Ser10. Representative 
images are shown (B), and normalized phospho-Dsn1 or phospho-H3 staining was quantified and averaged over three independent experiments (C).  
(D and E) Cells transfected as described in B and C were fixed and analyzed for cold-stable microtubules. (D) Images are maximum intensity projections of 
confocal stacks; the insets are optical sections showing individual kinetochores on the right. (E) The percentage of kinetochores with cold-stable microtubules 
from multiple cells was averaged over three independent experiments. Bars: (B and D) 5 µm; (D, insets) 2.5 µm.
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Figure 3.  Aurora B activity at a distance depends on INCENP dynamics at centromeres. (A and B) Cells were transfected with either CBDBD-INCENP–GFP 
or CBFL-INCENP–GFP and treated with monastrol to induce monopolar spindles, which facilitates tracking of individual centromeres (indicated by white 
boxes). Images (A) were acquired before and after bleaching a single pair of centromeres (at time = 0) using a 405-nm laser, and fluorescence intensity 
was measured at each time point and averaged over multiple cells (each point represents n ≥ 8 cells; B). (C) Cells were transfected with either CBDBD- 
INCENP–mCherry or CBFL-INCENP–mCherry with or without INCENP siRNA as indicated and fixed and stained for Aurora B. (D) Cells were transfected as 
described in C, together with an Aurora B phosphorylation sensor targeted either to centromeres or to chromatin, and imaged live. The normalized YFP/
CFP emission ratio was calculated as described in Fig. 1 C and averaged over three independent experiments. (E and F) Cells were transfected with either 
CBDBD-INCENP–mCherry or CBFL-INCENP–mCherry, together with INCENP siRNA and the chromatin-targeted Aurora B phosphorylation sensor. Cells were 
treated with monastrol to induce monopolar spindles with centromeres oriented toward the middle and imaged live. (E) The left panels show centromeres 
(mCherry) and chromosomes (YFP emission), and the right panels show the YFP/CFP emission ratio, color coded as indicated by the color scale. Spatial 
phosphorylation patterns were analyzed along lines drawn manually extending outward from mCherry-labeled centromeres (white lines). (F) The emission 
ratio was averaged over multiple line scans (each line represents n ≥ 5 cells, five centromeres per cell).
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Figure 4.  Partial Aurora B inhibition reveals a spatial phosphorylation gradient. (A–C) HeLa cells were transfected with the chromatin-targeted Aurora B  
phosphorylation sensor together with CB-mCherry to label centromeres and then were treated for 1 h with monastrol to orient centromeres toward the 
middle, MG132 to prevent mitotic exit, and ZM at the indicated concentrations. (A) Cells were imaged live, and the YFP/CFP emission ratio was averaged 
over multiple cells (n ≥ 6 for each concentration) to determine concentrations in which phosphorylation is most sensitive to local kinase activity. (B) Images 
show centromeres and chromosomes and the color-coded YFP/CFP emission ratio. (C) Spatial phosphorylation patterns were analyzed along lines extend-
ing out from centromeres (B, white lines). Each curve represents n ≥ 6 cells, at least four centromeres per cell. (D and E) U2OS-LacO cells were transfected 
with the chromatin-targeted Aurora B phosphorylation sensor, INCENP siRNA vector, and siRNA-resistant LacI-INCENP–mCherry. Cells were treated for 1 h 
with nocodazole and ZM at the indicated concentrations and imaged live. (D) Images show LacI-INCENP and chromosomes and the color-coded YFP/CFP 
emission ratio. (E) Phosphorylation was analyzed along lines extending from the LacI spot (D, white lines). Each curve represents n ≥ 8 cells, three line 
scans per cell. Bars, 5 µm.
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phosphorylation. We also analyzed H3 Ser10 phosphorylation 
in fixed cells at various times after ZM washout and observed a 
similar pattern, with phosphorylation beginning at centromeres 
and gradually spreading over the chromosome arms (Fig. S3). 
These results demonstrate that the centromere is the source of 
active kinase, which produces a gradient of kinase activity.

Conclusions
Our results support a model in which Aurora B is locally acti-
vated at centromeres by concentration and phosphorylation of 
the INCENP C terminus followed by release and diffusion of 
active kinase to reach substrates at a distance. In combination 
with cytoplasmic phosphatase activity, these dynamics create  
a phosphorylation gradient centered at the centromere. Many  
Aurora B substrates do not freely diffuse, for example because 
they localize to chromosomes, so spatial phosphorylation patterns 
would be preserved. The model is supported by our experi
mental manipulations of kinase targeting, INCENP phosphory-
lation, and INCENP dynamics at the centromere, combined 
with observations in live cells using targeted biosensors and  
in fixed cells using phospho-specific antibodies. In Xenopus  

ZM, INCENP is dephosphorylated at centromeres in cells ex-
pressing only endogenous INCENP but is highly phosphory-
lated in U2OS-LacO cells expressing LacI-INCENP (Fig. S2 C). 
These results suggest that concentration at the LacO site leads 
to increased INCENP phosphorylation and therefore higher  
kinase activity, though differences in local phosphatase activ
ity may also contribute.

As another approach to test whether a phosphorylation 
gradient is generated by Aurora B activation and release from 
centromeres, we analyzed phosphorylation dynamics during  
kinase activation. We treated cells with monastrol to create  
monopolar spindles and with ZM to inhibit Aurora kinase activ-
ity, so that the chromatin-targeted phosphorylation sensor starts 
in the dephosphorylated state. After washing out the inhibitor, 
we directly observed phosphorylation dynamics during kinase 
activation (Lampson et al., 2004). Phosphorylation gradually 
increased after inhibitor washout (Fig. 5 A), with a clear spatial 
gradient as phosphorylation started at the centromeres and 
spread over the chromosome arms (Fig. 5 [B and C] and Video 1). 
The timing of these changes likely reflects a combination of  
inhibitor washout, kinase turnover and diffusion, and substrate 

Figure 5.  Real-time observation of phosphorylation spreading from centromeres. (A–C) Cells were transfected with the chromatin-targeted Aurora B phos-
phorylation sensor together with CB-mCherry to label centromeres and then were treated with monastrol, MG132, and ZM. Cells were imaged live during 
activation of Aurora B by ZM washout. (A) The YFP/CFP emission ratio was averaged over multiple cells (n = 11) to determine the kinetics of phosphoryla-
tion during ZM washout. The arrow indicates the time point analyzed in C. (B, top) Centromeres (CB-mCherry) and chromosomes (YFP emission) for a single 
time point. (bottom) Color-coded YFP/CFP emission ratio at different time points. The timestamp (minutes and seconds) is relative to ZM washout at t = 0. 
Bar, 5 µm. (C) The spatial phosphorylation gradient was analyzed by averaging the emission ratio over lines extending outward from mCherry-labeled 
centromeres (B, white lines) at t = 8 min (n = 11 cells, four centromeres per cell).
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Cells were transfected with plasmid DNA using Fugene (Roche) for 
HeLa cells or Effectene (QIAGEN) for U2OS cells, following the manufac-
turer’s instructions. HeLa cells were used for all experiments, except for the 
LacI-INCENP experiments, in which we used the U2OS-LacO cell line.

Plasmids
CBDBD-INCENP–mCherry encodes the centromeric CBDBD (aa 1–158), trun-
cated INCENP (aa 47–920), and C-terminal fusion mCherry in vector 
pcDNA3.1(+). CBFL-INCENP–mCherry and LacI-INCENP–mCherry were 
generated by replacing CBDBD with either CBFL or with LacI. We swapped 
GFP for mCherry to create the CBDBD–INCENP-GFP and CBDBD–INCENP-GFP 
constructs used for FRAP experiments. The INCENPTSS/AAA mutant was cre-
ated by PCR.

The design of the Aurora B phosphorylation sensors is based on a 
protein kinase C sensor (Violin et al., 2003), a CFP/YFP (or TFP/YFP) 
fluorescence resonance energy transfer pair with a substrate peptide 
and an FHA2 phospho-Thr–binding domain in between. An N-terminal 
targeting domain localizes the sensor to centromeres (CB fusion), chro-
matin (H2B fusion), or kinetochores (Hec1 N-terminal fusion) as previ-
ously described (Fuller et al., 2008; Liu et al., 2009; Welburn et al., 
2010). As with other phosphorylation sensors following this design, a 
decrease in the YFP/CFP emission ratio indicates increased phosphory-
lation (Violin et al., 2003; Kunkel et al., 2005, 2007; Johnson et al., 
2007; Fuller et al., 2008).

The INCENP and Borealin siRNA vectors (gifts from S.M.A Lens, 
University Medical Center Utrecht, Utrecht, Netherlands) were previously 
described (Vader et al., 2006). Depletion of INCENP and Borealin was  
assessed by Western blotting (Fig. S1, A and B) and by immunofluorescence, 
which showed that the depleted protein was undetectable in ≥90% of  
mitotic cells. The INCENP rescue constructs are siRNA resistant and are 
tagged with mCherry as described in this section. We analyzed cells with 
similar expression levels, determined from mCherry fluorescence.

Drug treatments
Monastrol (used at 100 µM), MG132 (10 µM), and ZM447439 (2 µM ex-
cept where indicated otherwise) were obtained from Tocris Bioscience, 
and nocodazole (0.33 µM) was obtained from Sigma-Aldrich. For the ZM 
washout assay, cells were treated with monastrol (to induce monopolar 
spindles), MG132 (to prevent mitotic exit), and ZM for 1 h. Then, ZM was 
washed out, and cells were incubated with monastrol and MG132.

Immunofluorescence
For Borealin and Aurora B staining in Figs. 1 and 3, cells were fixed in 
cold methanol for 10 min. For Aurora B, INCENP, and phospho-INCENP 
staining (Figs. S1 and S2), cells were fixed in PBS + 4% formaldehyde at 
37°C for 10 min. For phospo-H3 Ser10 staining, cells were fixed for 10 min 
in 4% formaldehyde in PEM buffer (100 mM Pipes, pH 6.9, 10 mM EGTA, 
and 1 mM MgCl2) with 0.2% Triton X-100. For phospho-Dsn1 staining, 
cells were preextracted for 3 min in PEM with 0.4% Triton X-100 and then 
were fixed for 10 min in 4% formaldehyde in PEM with 0.2% Triton X-100. 
For analysis of cold-stable microtubules, cells were incubated in L-15  
medium (Invitrogen) containing 20 mm Hepes, pH 7.3, on ice for 10 min 
and then were fixed for 10 min in 4% formaldehyde in PEM with 0.2%  
Triton X-100. The following primary antibodies were used: 1 µg/ml rabbit 
anti–human Borealin (a gift from H. Funabiki, The Rockefeller University, 
New York, NY; Sampath et al., 2004), mouse anti–Aurora B monoclonal 
(1:1,000; BD), rabbit anti–Aurora B polyclonal (1:1,000; ab70238;  
Abcam), 1 µg/ml rabbit anti-–phospho-Dsn1 Ser100 (a gift from I.M. 
Cheeseman, Whitehead Institute for Biological Research, Cambridge, MA; 
Welburn et al., 2010), 0.2 µg/ml mouse anti–phospho-H3 Ser10 (Milli-
pore), rabbit anti-INCENP polyclonal (1:1,000; ab36453; Abcam), and 
mouse anti-INCENP monoclonal (1:1,000; 39259; Active Motif). The 
phospho-specific rabbit polyclonal antibody against the INCENP C-terminal 
TSS motif was generated by Thermo Fisher Scientific against immunizing 
phosphorylated peptide 887RYHKRT(pS)(pS)AVWNSPC901 and is further 
characterized in Salimian et al. (2011). The secondary antibodies used 
were Alexa Fluor 488, 594, or 647 conjugates (Invitrogen) used at a 
1:500 dilution.

Immunoblotting
Whole cell lysates were prepared from nocodazole-arrested HeLa cells 
collected by mitotic shake off. Western blot analysis was performed using 
the following primary antibodies: rabbit anti-INCENP polyclonal (1:4,000; 
ab36453; Abcam), rabbit anti-Borealin polyclonal (1:500; a gift from  
S. Wheatley, University of Nottingham, Nottingham, England, UK; Barrett 

laevis egg extracts, spindle assembly depends on Aurora B  
activation through enrichment on chromosomes and likely 
involves phosphorylation of substrates at a distance on spindle 
microtubules through a similar diffusion-based mechanism 
(Kelly et al., 2007; Maresca et al., 2009). Surprisingly, in HeLa 
cells, Aurora B substrates at centromeres (CENP-A Ser7)  
and on chromatin (H3 Ser10) are still phosphorylated after de-
pletion of the mitotic kinase Haspin, which inhibits Aurora B  
localization to centromeres (Wang et al., 2010). However, con-
centration of Aurora B in other chromosomal regions in these 
cells (Yamagishi et al., 2010) may be sufficient for kinase ac-
tivity, similar to what we observed for concentration by LacI-
INCENP (Fig. 1, E and F).

Our findings explain how Aurora B phosphorylates sub-
strates at micrometer scale distances from centromeres, such 
as on chromatin and on spindle microtubules. At kinetochores, 
however, phosphorylation of outer kinetochore substrates  
depends on their distance from the inner centromere on sub-
micrometer scales (Liu et al., 2009). We propose that phos-
phorylation of these substrates depends on their position in  
a diffusion-based gradient of kinase activity centered at the  
inner centromere. An alternative model is that outer kinetochore 
substrates may also be phosphorylated, while the CPC remains 
bound to the inner centromere (Santaguida and Musacchio, 
2009; Maresca and Salmon, 2010), and it remains unclear to 
what extent Aurora B can phosphorylate kinetochore sub-
strates without diffusion. The phosphorylation gradient that 
we observed extends over micrometer distances from centro-
meres on the chromosome arms, similar to a gradient previ-
ously observed in anaphase (Fuller et al., 2008), which raises 
the question of how phosphorylation of kinetochore sub
strates is regulated on submicrometer distance scales. Local-
ized phosphatase activities may provide an answer. Outer 
kinetochore substrates are dephosphorylated at metaphase 
(Liu et al., 2009; Welburn et al., 2010), whereas chromatin 
substrates remain fully phosphorylated (Hendzel et al., 1997), 
which indicates that phosphatase activity is higher at kineto-
chores than on chromatin, consistent with PP1 localization to 
kinetochores (Trinkle-Mulcahy et al., 2003). These observa-
tions suggest that local phosphatase activity may shape a phos-
phorylation gradient at kinetochores to generate spatial patterns 
on submicrometer distance scales. Several mechanisms regulate 
PP1 and PP2A localization at centromeres and kinetochores 
(Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 2006; Kim 
et al., 2010; Liu et al., 2010; Posch et al., 2010), and these phos-
phatases could locally sharpen a phosphorylation gradient by 
both inactivating Aurora B and directly dephosphorylating sub-
strates. Our findings provide a foundation for understanding 
how the combination of kinase and phosphatase activities gen-
erates a spatial phosphorylation gradient at kinetochores.

Materials and methods
Cell culture and transfection
HeLa and U2OS cells were cultured in growth medium (DME with 10% FBS 
and penicillin-streptomycin) at 37°C in a humidified atmosphere with 5% CO2. 
100 µg/ml hygromycin B was added to growth medium for the U2OS-LacO 
cell line (a gift from S.M. Janicki, The Wistar Institute, Philadelphia, PA). 
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with MetaMorph software. Images were acquired before bleaching, imme-
diately after bleaching, and then every 10 s for 2.5 min. At each time 
point, five images were taken with 0.5-µm spacing using the spinning disk 
confocal system described in this section. To measure photobleaching and 
recovery, the bleached centromeres were tracked manually, and total in-
tensity after background subtraction was calculated from the image plane 
with the brightest signal at each time point. Photobleaching as a result of 
imaging was estimated as 10% over the entire time course, based on 
analysis of unbleached centromeres. Data were normalized by defining 
the prebleach intensity as 1 and the postbleach as 0 and then averaging 
over multiple cells.

Online supplemental material
Fig. S1 shows Western blot analyses of Borealin and INCENP depletion 
by siRNA and shows that recruitment of Aurora B by INCENP does not de-
pend on the C-terminal TSS motif. Fig. S2 shows that LacI-INCENP is highly 
concentrated and phosphorylated in U2OS-LacO cells. Fig. S3 shows that 
phosphorylation of endogenous substrates spreads from centromeres during 
Aurora B activation. Video 1 shows phosphorylation spreading from cen-
tromeres after Aurora B activation. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.201103044/DC1.
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