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Luká�s Chmátal,1 Sofia I. Gabriel,2 George P. Mitsainas,3

Jessica Martı́nez-Vargas,4 Jacint Ventura,4

Jeremy B. Searle,5 Richard M. Schultz,1,*

and Michael A. Lampson1,*
1Department of Biology, University of Pennsylvania,
433 South University Avenue, Philadelphia, PA 19104, USA
2Centre for Environmental and Marine Studies (CESAM),
Departamento de Biologia Animal, Faculdade de Ciências da
Universidade de Lisboa, Rua Ernesto Vasconcelos,
Campo Grande, 1749-016 Lisbon, Portugal
3Section of Animal Biology, Department of Biology,
University of Patras, 26504 Patras, Greece
4Departament de Biologia Animal, Biologia Vegetal i Ecologia,
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Summary

Mammalian karyotypes (number and structure of chromo-
somes) can vary dramatically over short evolutionary

time frames [1–3]. There are examples of massive karyo-
type conversion, from mostly telocentric (centromere

terminal) to mostly metacentric (centromere internal), in
102–105 years [4, 5]. These changes typically reflect rapid

fixation of Robertsonian (Rb) fusions, a common chromo-

somal rearrangement that joins two telocentric chromo-
somes at their centromeres to create one metacentric [5].

Fixation of Rb fusions can be explained by meiotic drive:
biased chromosome segregation during female meiosis in

violation of Mendel’s first law [3, 6, 7]. However, there is
no mechanistic explanation of why fusions would preferen-

tially segregate to the egg in some populations, leading
to fixation and karyotype change, while other populations

preferentially eliminate the fusions and maintain a telo-
centric karyotype. Here we show, using both laboratory

models and wild mice, that differences in centromere
strength predict the direction of drive. Stronger centro-

meres, manifested by increased kinetochore protein levels
and altered interactions with spindle microtubules, are

preferentially retained in the egg. We find that fusions pref-
erentially segregate to the polar body in laboratory mouse

strains when the fusion centromeres are weaker than those
of telocentrics. Conversely, fusion centromeres are stron-

ger relative to telocentrics in natural house mouse popu-
lations that have changed karyotype by accumulating

metacentric fusions. Our findings suggest that natural vari-
ation in centromere strength explains how the direction of

drive can switch between populations. They also provide a
cell biological basis of centromere drive and karyotype

evolution.
*Correspondence: rschultz@sas.upenn.edu (R.M.S.), lampson@sas.upenn.

edu (M.A.L.)
Results and Discussion

When new Robertsonian (Rb) fusions arise and are present
in the heterozygous state, the direction of chromosome
segregation during female meiosis I (MI) (Figure 1A) deter-
mines whether the metacentric fusions are transmitted to the
offspring. Metacentrics that segregate to the polar body are
lost, because the homologous telocentrics are retained in the
egg. In contrast, preferential segregation of metacentrics to
the egg favors their fixation and, involving multiple different
metacentrics in a population, eventual conversion of a telo-
centric karyotype to a metacentric karyotype. This biased
segregation, a form of meiotic drive, can explain karyotype
change in numerous mammalian species that have accumu-
lated Rb fusions [5, 6, 8–10]. The western house mouse (Mus
musculus domesticus) is the best characterized example of
recently divergent telocentric and metacentric karyotypes
[11]. The typical mouse karyotype is completely telocentric,
with a diploid chromosome number of 2n = 40, but numerous
natural populations have fixed multiple different metacentrics
and show dramatically reduced chromosome numbers (e.g.,
2n = 22) [11, 12]. According to the meiotic drive hypothesis,
Rb fusions segregate preferentially to the egg in these popula-
tions and preferentially to the polar body in other populations
that have remained telocentric. It is not known what deter-
mines the direction of drive and how that direction can differ
between populations so that some retain the fusions and
change karyotype while others do not.
To establish a system exhibiting meiotic drive of Rb fusion

metacentrics in mouse oocytes, we crossed a standard labo-
ratory strain (CF-1), with all telocentric chromosomes (2n =
40), to a strain homozygous for a single metacentric fusion be-
tween chromosomes 6 and 16 (2n = 38). This fusion originated
in a natural population that accumulatedmultiplemetacentrics
[13] and was subsequently crossed into a lab strain (C57BL/6)
to generate a strain homozygous for a single metacentric. In
the offspring from this cross, Rb(6.16)3 CF-1, the metacentric
pairs with the homologous telocentric chromosomes in MI
oocytes to form a trivalent structure. There are two possible
outcomes of balanced trivalent segregation in anaphase I (Fig-
ure 1A), and any difference between their frequencies indi-
cates meiotic drive. On the basis of both centromere counting
and morphological detection of the metacentric chromosome,
we found that 40% of MII eggs contained the metacentric,
indicating significantly biased segregation to the polar body
(Figure 1B). This result demonstrates meiotic drive and is
consistent with previous reports for more than 30 different
Rb fusion metacentrics that are singly heterozygous in a
laboratory mouse background, although in some cases the
reported transmission ratio distortion could be due to postzy-
gotic selection (e.g., embryonic lethality) [6].
The direction of segregation of the metacentric and homol-

ogous telocentrics depends on interactions between centro-
meres of the trivalent and microtubules of the MI spindle.
To determine whether functional differences between cen-
tromeres might contribute to biased segregation, we stained
Rb(6.16) 3 CF-1 MI oocytes for HEC1 (also known as
NDC80), a major microtubule binding protein at kinetochores
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mologous telocentric chromosomes in MI: the
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the telocentrics stay in the egg (i) or vice versa (ii).

(B) DNA and centromere (CREST) staining in

Rb(6.16) 3 CF-1 MII eggs treated with kinesin-5

inhibitor to disperse the chromosomes. Insets

show telocentric (left) or metacentric (right) chro-

mosomes. The metacentric preferentially segre-

gates to the polar body (60%, n = 168, p = 0.009).

(C) HEC1 staining in Rb(6.16) 3 CF-1 MI oocytes

(n = 91) was quantified for the metacentric (inset,

yellow asterisk) and homologous telocentrics in

the trivalent, and for other telocentrics.

(D) CENP-A staining, shown with synaptonemal

complex protein SYCP2, was quantified for the

metacentric (inset 1) and telocentrics (inset 2) in

Rb(6.16) spermatocytes (n = 305).

Black asterisks, p < 0.05; scale bars, 5 mm; AU,

arbitrary units. See also Figure S1.
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[14]. We find 40% less HEC1 at centromeres of metacentrics
compared with telocentrics (Figure 1C), and we obtained
similar results for two other Rb fusion metacentrics (Figure S1
available online) that also exhibit biased segregation [6]. We
also investigated staining of CENP-A, the histone H3 variant
that defines the centromere, using spermatocytes because
of technical difficulties with CENP-A staining in oocytes. We
find 16% less CENP-A protein at centromeres of metacentrics
relative to telocentrics (Figure 1D). These results indicate that
centromeres of metacentric chromosomes are weaker relative
to centromeres of telocentrics, on the basis of levels of two key
kinetochore proteins, in a system where the metacentrics are
preferentially lost in MI.

In contrast to our Rb(6.16) 3 CF-1 system, metacentrics
likely exhibited drive in the opposite direction in wild popula-
tions that have accumulated Rb fusion metacentrics and
changed karyotype (metacentric races). Using commercially
available mice from one of these metacentric races, CHPO
(2n = 26), which is homozygous for seven metacentrics and
six telocentrics [11, 15], we assessed centromere strength
by HEC1 staining in MI oocytes, with
CF-1 for comparison. We found w50%
less HEC1 at each CHPO centromere,
on average, compared with CF-1 cen-
tromeres (Figure 2A). To determine
whether this difference reflects an
intrinsic property of centromeres rather
than different HEC1 expression levels,
we stained HEC1 in oocytes from a CF-
1 3 CHPO cross. For this analysis we
focused on the six telocentric bivalents
formed from the six CHPO telocentrics
paired with homologous CF-1 telocen-
trics. We found unequal HEC1 staining
across each bivalent, with an average
difference of 40% (Figure 2B), which
we interpret as the brighter and dimmer
centromeres originating from CF-1 and
CHPO, respectively. We did not see
such HEC1 asymmetry across bivalents
from either of the parental strains, CF-1 or CHPO (Figure 2B). If
the observed differences in centromere strength, as measured
by HEC1 staining, have functional consequences for microtu-
bule interactions, we predict that CF-1 3 CHPO bivalents
would be positioned off-center at metaphase I because of
unbalanced microtubule pulling forces on either side of each
bivalent. Consistent with this prediction, we find that CF-1 3
CHPO bivalents are frequently off-center on the spindle,
toward the pole facing the stronger centromere (i.e., more
HEC1) (Figures 2C–2E). In contrast, bivalents in the CF-1
parental line were well aligned in the center of the spindle.
These results indicate that differences in centromere
strength, as measured by HEC1 staining, are intrinsic to cen-
tromeres and lead to functional differences in microtubule
interactions.
In the Rb(6.16)3 CF-1 system, centromeres of metacentrics

are weaker relative to telocentrics and preferentially lost in
the polar body during MI (Figure 1). We tested whether this
centromere strength relationship is reversed in CHPO, which
represents a natural population that accumulated Rb fusions.
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Figure 2. Differential Centromere Strength within Telocentric Bivalents Affects Their Position at Metaphase I

(A) HEC1 staining per centromere was quantified in CF-1 (n = 28) and CHPO (n = 15) MI oocytes. AU, arbitrary units; error bars, SEM.

(B) HEC1 staining in CF-13 CHPO oocytes (n = 28). Graph shows the binned distribution of HEC1 intensity ratios (dimmer divided by brighter kinetochore)

calculated for each telocentric bivalent in CF-1 3 CHPO oocytes (green, n = 28), CF-1 oocytes (red, n = 32), or CHPO oocytes (blue, n = 30).

(C) Images show AURKA, HEC1, and DNA staining in CF-1 3 CHPO oocytes (n = 64) at metaphase I: a maximal intensity z-projection including all chromo-

somes (1) and optical sections showing each telocentric bivalent individually (2–7). Schematic shows bivalent positions as equidistant between the two

poles (middle) or off-center toward the stronger kinetochore (upper panel) or weaker kinetochore (lower panel). The proportion of bivalents in each group

is plotted.

(D and E) Schematic shows bivalent position measured as distance (d) from the spindle midzone. Positions of CF-1 and CF-1 3 CHPO bivalents at meta-

phase I are plotted. Each point represents one bivalent; the mean is shown as a red bar.

Insets show HEC1 in individual bivalents. Scale bars, 5 mm; asterisks, p < 0.001.
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To measure centromere strength of metacentrics relative to
telocentrics in CHPO, we first examined oocytes from the
CF-1 3 CHPO cross. These oocytes contain seven trivalents,
in which CHPO metacentric fusions pair with homologous
CF-1 telocentrics (Figure 3A), and the CHPO metacentrics
can be unambiguously identified on the basis of the trivalent
morphology. Additionally, the CHPO telocentrics can be
identified in the same oocytes as the dimmer centromeres in
telocentric bivalents. On the basis of this analysis, we find
that centromeres of CHPO metacentrics contain 14% more
HEC1 on average than centromeres of CHPO telocentrics
(Figure 3B). Second, we analyzed CENP-A staining intensity
in chromosome spreads from CHPO spermatocytes, in which
the metacentrics and telocentrics can easily be identified.
Consistent with the HEC1 result, centromeres of CHPO
metacentrics havew25%more CENP-A relative to CHPO telo-
centrics (Figure 3C). These results show that centromeres of
metacentrics are stronger relative to telocentrics in animals
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in which the metacentrics were presumably preferentially
retained during MI.

On the basis of our results with lab strains (CF-1, CHPO),
we propose that relative centromere strength of metacentric
fusions versus homologous telocentrics determines the direc-
tion of meiotic drive, with stronger centromeres preferentially
remaining in the egg. Thus, if an Rb fusion metacentric arises
or is introduced into a strain with strong centromeres, such
that the fusion centromere is weaker than the homologous
telocentrics, it preferentially segregates to the polar body (Fig-
ure 1B). Conversely, Rb fusions originating on a weak centro-
mere background may be strong relative to the telocentrics
and segregate preferentially to the egg. If there is natural
variation in centromere strength such that some mouse popu-
lations have weak centromeres, consistent with rapid centro-
mere evolution [16], our hypothesis can explain why these
populations would accumulate Rb fusions. We observed
such variation in centromere strength on the basis of HEC1
staining in oocytes from evolutionarily and geographically
diverse mouse species, subspecies, and strains (Figures 4A
and 4C). Although factors like population size and geograph-
ical isolation also likely contribute to chromosomal fixation
[17], there are two predictions of our model for the formation
of natural metacentric races that can be tested by analyzing
centromere strength in wild mouse populations. First, meta-
centric races should have weak centromeres overall, as seen
with CHPO (Figures 2A and 4C), so that a newly arising
Rb fusion would appear relatively stronger. Second, if we
compare centromeres within a single cell from a metacentric
population, centromeres of metacentric chromosomes should
be stronger than those of telocentrics (e.g., CHPO; Figure 3).

To test these predictions, we collected mice from nat-
ural metacentric-containing populations in Barcelona [18],
Madeira Island [4], and Greece [19] (Figure 4F) and confirmed
their karyotype (Figure S2). The metacentrics are fixed or
almost entirely fixed in the Madeira and Greece populations
(i.e., metacentric races), but the Barcelona population includes
individuals that are heterozygous for some fusions and homo-
zygous for others, and none of the fusions are fixed (i.e., the
population is polymorphic) [18]. To compare centromere
strength between populations, we stained HEC1 in MI oocytes
from these animals (Figures 4B and 4C), using a standard telo-
centric laboratory strain (C57BL/6 or BALB/c) for comparison.
We find that mice from the metacentric population in Greece
(GROL) have w60% less HEC1 per centromere relative to
lab mice, consistent with our results from CHPO and with our
prediction that ametacentric population should have relatively
weak centromeres. The Barcelona mice (EBAR 2n = 27–35)
showed variability in HEC1 among individual animals (Fig-
ure S3), suggesting that metacentrics are not fixed in this
population because they are not consistently driving against
weak centromeres. We also detected weak centromeres in a
telocentric population in Greece (2n = 40), which suggests
that different geographical populations of house mouse can
vary in centromere strength, consistent with our results with
commercially available animals. We were not able to obtain a
standard lab strain on Madeira for comparison and therefore
did not include these animals in our analysis.
To compare centromeres within single cells, we stained

CENP-A in spermatocytes and compared the metacentrics
and telocentrics. Results from all three localities sampled in
Madeira (PSAN 2n = 22, PEDC 2n = 24, PPOD 2n = 27–28)
and from Greece (GROL 2n = 24) showed 10%–15% stronger
CENP-A signal at centromeres of metacentrics relative to
telocentrics (Figures 4D and 4E). Metacentrics and telocen-
trics were not statistically different in CENP-A staining in the
EBAR mice (Figures 4E and S4), which suggests that meiotic
drive is not strong enough to fix metacentrics in this popu-
lation. In summary, comparisons both between and within
metacentric-containing populations support our model in
which relative centromere strength determines the direction
of meiotic drive acting on metacentrics.

Conclusions

Overall our results show natural variation in centromere
strength and that these differences are functionally relevant
as they affect interactions with spindle microtubules. Rb
fusion metacentrics that preferentially segregate to the polar
body in laboratory animals have weaker centromeres relative
to the homologous telocentrics. In contrast, centromeres
of Rb fusions are relatively stronger than telocentrics in meta-
centric populations where the fusions were preferentially re-
tained. Our findings provide the first experimental evidence
for the idea that stronger centromeres, with increased levels
of centromere proteins, preferentially segregate to the egg,
which was previously proposed based on theoretical consid-
erations [20]. Our results also explain howRb fusions can drive
in either direction, on the basis of relative centromere strength.
We propose that fusions arising on a strong centromere back-
ground tend to have weaker centromeres than the homolo-
gous telocentrics, preferentially segregate to the polar body,
and are lost from the population. In contrast, metacentrics
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emerging on weak centromere backgrounds are stronger
than the telocentrics, are preferentially retained, and therefore
accumulate in the population (Figure 4G). This karyotype
evolution can lead to speciation because hybrids between
different karyotypes exhibit meiotic abnormalities contributing
to reproductive isolation [21, 22]. Our findings motivate future
studies to determine the molecular basis for differences in
centromere strength.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be foundwith this article online at http://dx.doi.org/

10.1016/j.cub.2014.08.017.
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(Cambridge: Cambridge University Press), pp. 407–430.

http://dx.doi.org/10.1016/j.cub.2014.08.017
http://dx.doi.org/10.1016/j.cub.2014.08.017

	Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice
	Results and Discussion
	Conclusions

	Supplemental Information
	Acknowledgments
	References


