
Report
Centromere-specifying nu
cleosomes persist in
aging mouse oocytes in the absence of nascent
assembly
Highlights
d Genetic removal of Mis18a tests current models for

centromere inheritance in oocytes

d Mis18a removal has no impact onCENP-A nucleosome levels

in aging oocytes

d Mis18a removal disrupts CENP-A nucleosome assembly in

the early embryo

d CENP-A assembled prior to birth is sufficient for fertility in

aging mice
Das et al., 2023, Current Biology 33, 1–7
September 11, 2023 ª 2023 Elsevier Inc.
https://doi.org/10.1016/j.cub.2023.07.032
Authors

Arunika Das, Katelyn G. Boese, Kikue

Tachibana, Sung Hee Baek, Michael A.

Lampson, Ben E. Black

Correspondence
lampson@sas.upenn.edu (M.A.L.),
blackbe@pennmedicine.upenn.edu
(B.E.B.)

In brief

To test whether centromeres are

maintained by new assembly in aging

mouse oocytes, Das et al. conditionally

delete Mis18a, a centromere assembly

component. They find that centromere-

specifying nucleosomes containing the

histone H3 variant, CENP-A, are stably

maintained even after 6–8 months of
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SUMMARY
Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres
are defined epigenetically by the presence of a histone H3 variant, CENP-A.1 In cultured somatic cells, an
established paradigm of cell-cycle-coupled propagation maintains centromere identity: CENP-A is parti-
tioned between sisters during replication and replenished by new assembly, which is restricted to G1. The
mammalian female germ line challenges this model because of the cell-cycle arrest between pre-meiotic S
phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades).
New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocytes,2,3

suggesting that a similar process may be required for centromere inheritance in mammals. To test this
hypothesis, we developed an oocyte-specific conditional knockout (cKO) mouse for Mis18a, an essential
component of the assembly machinery. We find that embryos derived from Mis18a knockout oocytes fail
to assemble CENP-A nucleosomes prior to zygotic genome activation (ZGA), validating the knockout model.
We show that deletion of Mis18a in the female germ line at the time of birth has no impact on centromeric
CENP-A nucleosome abundance, even after 6–8 months of aging. In addition, there is no detectable
detriment to fertility. Thus, centromere chromatin is maintained long-term, independent of new assembly
during the extended prophase I arrest in mouse oocytes.
RESULTS AND DISCUSSION

In contrast to genetic information encoded in our genome, min-

imal epigenetic information is inherited because most parental

epigenetic marks are removed and reprogrammed in germ

cells and the early embryo.4,5 A key exception is the centromeric

histone H3 variant, CENP-A.6–8 Although centromeres direct the

process of genetic inheritance by connecting chromosomes

to spindle microtubules, they are not encoded in DNA but

rather epigenetically specified by nucleosomes containing

CENP-A.1,9–11 Thus, CENP-A nucleosomes are inherited to pre-

serve centromere identity.

Studies in cycling somatic cells have established a general

paradigm for propagation of epigenetic information between

cell cycles. DNA or histone modifications are partitioned be-

tween sister chromatids during DNA replication and then replen-

ished by ‘‘reader’’ proteins that recognize the modification and

‘‘writers’’ that extend it to adjacent nucleosomes.12 CENP-A

follows this paradigm, with new assembly restricted to G1 by

CDK1/2 activity.13–15 CENP-A and its bound partner histone

H4 molecules are remarkably stable in tissue culture cells,16,17

withmeasured CENP-A turnover rates explained entirely through
C

the dilution when existing CENP-A is partitioned to replicated

centromeric DNA during S phase in each cell cycle.18–20 This

paradigm poses a challenge in the mammalian female germ

line because of the extended prophase I cell-cycle arrest after

replication but before an opportunity for new G1 assembly,

which can last for the entire reproductive lifespan of the animal21

(Figure 1A). Centromeres are preserved throughout the arrest (>1

year in mouse) in the absence of new Cenpa transcription, as

shown by conditional knockout (cKO) of the Cenpa gene.22

CENP-A nucleosomes are, therefore, either replenished by

new assembly, in contrast to the somatic cell paradigm, drawing

on a stable pool of CENP-A protein, or stable for the entire

duration of the arrest (Figure 1B).

Studies in worm and starfish oocytes show nascent CENP-A

chromatin assembly in prophase I (akin to a G2 biochemical

cell-cycle state in a somatic cell).2,3 In mouse, continual deposi-

tion of nucleosomes containing another H3 variant, H3.3, during

oocyte development is required for oocyte genome integrity and,

ultimately, for fertility.24 These studies suggest that new assem-

bly may maintain CENP-A chromatin through the prophase I

arrest. To test this prediction, we created an oocyte-specific

cKO of an essential component of the CENP-A deposition
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Figure 1. Testing models for stable retention of CENP-A chromatin in oocytes

(A) Schematic showing maintenance of CENP-A chromatin across the oogenesis timeline. Oocytes arrested in prophase I are cyclically recruited to begin growth

before ovulation and maturation. Prophase arrest prior to recruitment can last up to 2 years in mice. Centromeric CENP-A levels are stable over time, even if the

Cenpa gene is eliminated shortly after birth.22

(B) Models for retention of CENP-A in meiotic prophase I arrested eggs.

(C) Schematic of theMis18a conditional knockout gene locus.23 The 1st and 2ndMis18a protein coding exons are flanked by loxP sites (floxed [fl]). The FRT site is a

remnant from FLP-mediated excision of the neomycin cassette in the original construct used to generate the KO animals (see Figure S1 for genotyping).

(D) Genotype frequencies of the progeny from a cross of Mis18a+/D or fl/D heterozygotes (see Figure S2 for generation of heterozygotes). Number of litters = 6,

number of pups = 27.
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machinery, Mis18a (Mis18a in mouse but referred to as Mis18a

for simplicity),25–30 to prevent nascent CENP-A chromatin as-

sembly. Mis18a is part of the Mis18 complex, which recruits

the CENP-A chaperone, HJURP, bound to nascent CENP-A/his-

tone H4 dimers,31–34 to centromeres. The Mis18 complex is

required for both nascent CENP-A chromatin assembly in G1

and replication-coupled CENP-A chromatin assembly in S phase

in cycling somatic cells.20,35 Specifically relevant to our test of

ongoing chromatin assembly in the mouse oocyte, prophase I

assembly in both worms and starfish oocytes requires the

Mis18 complex.2,3 Thus, if CENP-A chromatin is replenished
2 Current Biology 33, 1–7, September 11, 2023
by new assembly, CENP-A nucleosome levels would decay in

Mis18a KO oocytes.

For cKO, we used a floxed Mis18a allele in which the first two

exons, encoding the YIPPEE domain necessary for CENP-A

deposition, are flanked by loxP sites23,36 (Figures 1C and S1).

To confirm that Cre-mediated excision generates a null allele,

we crossed Mis18a heterozygous parents and did not recover

any progeny homozygous for the deletion, as expected because

Mis18a is an essential gene23 (Figures 1D and S2). Combining

the floxed allele with Cre recombinase driven by oocyte-specific

promoters, we generated cKOs of Mis18a, either early or late in
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Figure 2. Maternally deposited Mis18a protein is eliminated in late KO oocytes

(A) Schematic showing early and lateMis18a knockout, depending on the timing ofCre recombinase expression driven by eitherGdf9 or Zp3 promoters (colored

arrows).

(B) Experimental design to test for a stable pool of Mis18a protein in the maternal cytoplasm. CENP-A-EGFP and H2B-mCherry mRNA are injected into one-cell

embryos, and CENP-A foci are assessed after the first embryonic mitosis when assembly is expected to occur but before zygotic genome activation.

(C) Images show H2B-mCherry, CENP-A-EGFP, and DNA (40,6-diamidino-2-phenylindole [DAPI]) in interphase two-cell embryos from control or cKO mothers.

Table shows frequencies of detectable assembly for CENP-A-EGFP and H2B-mCherry, obtained from 2 independent matings. Scale bars, 5 mm. Also see

Figures S2 and S3.
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prophase I (Figure S2). The early Cre driver (Gdf9-Cre) deletes

Mis18a in arrested oocytes 2 days post birth, preventing assem-

bly of new CENP-A nucleosomes for nearly the entire lifespan of

the animal.37 The late Cre driver (Zp3-Cre) deletes the gene dur-

ing oocyte growth, 2–3 weeks prior to ovulation37 (Figure 2A).

As a functional assay for Mis18a deletion, we tested for

CENP-A chromatin assembly in embryos from late KO mothers

(driven by Zp3-Cre) and a wild-type (WT) father (Figure 2B). Prior

to zygotic genome activation (ZGA) at the two-cell stage of

embryos, CENP-A deposition during the early embryonic mitotic

cycles depends solely on maternal Mis18a protein. To assess

new chromatin assembly, we injected mRNAs encoding
CENP-A-EGFP (enhanced green fluorescent protein) and H2B-

mCherry into one-cell embryos derived from either KO mothers

or WT mothers as controls (Figure 2B). H2B-mCherry serves as

a positive control for chromatin assembly because it utilizes a

deposition pathway distinct from that of CENP-A and, therefore,

does not require the Mis18 complex. Based on the paradigm es-

tablished in cycling somatic cells, we expected new CENP-A

chromatin assembly in G1 after the first embryonic mitosis.

Any Mis18a protein present in the embryo prior to ZGA would

be solely contributed maternally from the oocyte. We expect

that embryos derived from control oocytes would be assembly

proficient, whereas embryos from KO oocytes lacking Mis18a
Current Biology 33, 1–7, September 11, 2023 3
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Figure 3. Mis18a knockout mothers can support fertility

(A) Litter sizes for control, early cKO, and late cKO mothers (age 2–4 months) crossed to wild-type (WT) males. See Figure S2 for generating cKO mothers.

(B and C) Genotype frequencies of the progeny from a cross between aWT orMis18afl/fl father and an early or late cKOmother, respectively (N = 29 pups, 5 litters;

N = 30 pups, 5 litters).
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would fail to assemble. Indeed, CENP-A-EGFP localized to cen-

tromeres in all control embryos (100%, n = 19) fromWTmothers.

In contrast, none of the embryos from late Mis18a KO mothers

(0%, n = 20) contained detectable centromeric CENP-A-EGFP

(Figure 2C). H2B-mCherry was present in chromatin in 100%

of both control and KO-injected embryos, as expected. The

all-or-none effect of Mis18a KO is due to the high efficiency of

Cre excision and the relatively fast turnover of Mis18a mRNA in

oocytes following excision (Figure S3). This finding establishes

that even after a relatively short-duration KO, Mis18a deletion

in oocytes abrogates nascent CENP-A chromatin assembly in

early embryos.

Next, we measured fertility of Mis18a KO mothers as the ulti-

mate test of centromere function because centromeres are

required for the meiotic divisions and for maternal centromere

inheritance, and even partial reduction ofmaternal CENP-A chro-

matin lowers fertility.8 AllMis18a early and late KOmothers were

fertile when crossed toWTmales (Figure 3A). We also confirmed

that both Cre recombinases have a 100% deletion efficiency, as

we did not recover a floxed allele ofMis18a inherited from a cKO
4 Current Biology 33, 1–7, September 11, 2023
mother (Figures 3B and 3C). Combined with our embryo experi-

ments, this result confirms that every oocyte with a combination

of floxed alleles and Cre lacks Mis18a protein and that fertility is

not a consequence of inefficient Cre activity in some oocytes.

Thus, centromere identity is maintained in aging oocytes without

Mis18a protein or nascent CENP-A assembly.

Even though the cKO mice are fertile, there could still be a

reduction in CENP-A nucleosomes over time. Therefore, we

tested whether CENP-A levels decay in the late KO oocytes.

We predicted that if CENP-A nucleosomes are continually re-

plenished by new assembly from a stable pool of CENP-A pro-

tein, centromeric CENP-A levels would decline in the KO oocytes

compared with control oocytes. We did not see any reduction in

centromeric CENP-A levels in late KO oocytes compared with

controls (Figures 4A and 4B). However, Mis18a is deleted for

only 2–3 weeks before ovulation in the late KO, leaving open

the possibility of a more dramatic reduction in CENP-A nucleo-

somes on longer timescales.

Thus, we leveraged the early KO (Gdf9-Cre) oocytes that

delete Mis18a shortly after birth, to test whether centromeric
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Figure 4. Pre-meiotically assembledCENP-A

chromatin is maintained in prophase-ar-

rested oocytes without new assembly

(A andC) Images showmetaphase I oocytes stained

for CENP-A (green) and DNA (DAPI, blue) from late

cKO (A) or early cKO (C) mothers. Scale bars, 5 mm.

(B and D) Quantifications of CENP-A intensities in

metaphase I oocytes from late cKO (B) or early cKO

(D) mothers. Each data point represents average

CENP-A levels at centromeres in each oocyte

normalized to the control mean. Late cKO (Zp3-Cre,

purple): mean ± SEM = 1.1 ± 0.034 (number of oo-

cytes = 58; number of centromeres = 1,512; N = 7

females) relative to Cre negative control oocytes

(number of oocytes = 40, number of centromeres =

962, N = 5 females). Early cKO (Gdf9-Cre, blue):

mean ± SEM = 0.97 ± 0.068 (number of oocytes =

47, number of centromeres = 1,746, N = 7 females)

relative toCre negative control (number of oocytes =

50, number of centromeres = 2,019, N = 8 females);

n.s.: Mann-Whitney U test. Error bars: geometric

mean ± 95% confidence interval. The early cKO

mothers are aged 6–8 months, and their oocytes

lack Mis18a for the entire lifespan. Also see Fig-

ure S2 for generation of cKO animals.
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CENP-A levels decline after months without new assembly

(Figures 4C and 4D). We aged control and early KO females for

6–8 months, representing most of the fertile lifespan, and found

that CENP-A levels were not significantly reduced compared

with the controls. Although not statistically significant, we

measured a �3% decrease in CENP-A levels in the KO oocytes

relative to the control (Figure 4D), which equates to loss at a rate

of�0.02%per day over 180 days. Such loss in signal would be in

the range of one nucleosome per month, assuming �200

CENP-A nucleosomes per centromere as estimated in human

cells.18 In comparison, new assembly in starfish oocytes is esti-

mated at a rate of 2% per day, based on centromere localization

of GFP-tagged exogenous CENP-A in cells cultured in vitro for

10 days.3 Our result is consistent with our previous study, where

we conditionally deleted the Cenpa gene using Gdf9-Cre and

followed CENP-A nucleosome stability further and measured

no substantial decrease.22

Conclusions
In conclusion, these results provide clear evidence supporting

long-term retention of CENP-A nucleosomes assembled prior

to birth as the dominant pathway for maintaining centromere

identity in mammalian oocytes. This is in stark contrast to

H3.3, whose ongoing deposition into bulk chromatin during

prophase I is essential for normal oocyte chromatin structure

and fertility.24 In addition, our findings have implications for hu-

man female meiosis, which is inherently error prone and espe-

cially vulnerable to aging. With advancing maternal age at

childbirth, mechanisms that preserve centromeres in aging
oocytes gain increasing significance. Although maternal KO of

Mis18a in mice preserves fertility due to early ZGA, maternal

depletion of Mis18a is expected to have more severe conse-

quences in human embryos, where activation occurs later.

Our findings can now direct future research into the mecha-

nisms that underlie CENP-A retention in mammalian oocytes.

Previous studies of centromere chromatin suggest multiple po-

tential molecular mechanisms that could contribute to its stabil-

ity: the relatively low level of transcription of centromeric

DNA38–41 relative to genic regions harboring histone H3.3

nucleosomes42, structural features that differ from canonical

nucleosomes—including internal structural rigidity at the

CENP-A/histone H4 interface43,44—and non-histone constitu-

tive centromere associated network (CCAN) components that

bind and stabilize CENP-A nucleosomes in tissue culture

cells.16,17,45 In sum, it remains to be seen whether the mecha-

nisms that function to retain CENP-A chromatin over short pe-

riods of time in cycling cells also contribute to extreme stability

during oogenesis.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-CENP-A (C51A7) Cell Signaling 2048; RRID: AB_1147629

Alexa Fluor 488 conjugate donkey

anti-rabbit IgG (H+L)

Molecular Probes (Invitrogen) A-21206

RRID:AB_2535792

Chemicals, peptides, and recombinant proteins

Lambda phosphatase New England Biolabs P0753L

Milrinone Sigma M4659

Mineral Oil (BioXtra) Sigma M8410

Mineral Oil (Fuji) Fuji Film Irvine 9305-500 ml

Pregnant Mare Serum Gonadotropin (PMSG) Peptides International HOR_272-5000 IU

Human Chorionic Gonadotropin Sigma CG10-1VL

Vectashield Antifade (DAPI) Vector Laboratories H-1200

CZB Fisher Scientific MR-019-D

EmbryoMax M2 medium,

with Phenol Red

Millipore Sigma MR-015

Embryomax Advanced KSOM Millipore Sigma MR-101-D

Phenol (UltraPure buffer saturated) Thermofisher Scientific 15513039

Dulbecco’s PBS (without Ca and Mg) Corning MT21-031-CV

Triton X 100 Sigma X100-500 ml

RedExtract N-Amp PCR ready Mix Millipore Sigma R4775

Kapa Polymerase Hifi Hotstart

Ready Mix

Roche KK2602

Taqman Fast Advanced

Master Mix

Thermofisher Scientific 4444557

Extraction Solution Millipore Sigma E7526

Tissue Preparation Solution Millipore Sigma T3073

Neutralization Solution B Millipore Sigma N3910

1 Kb Plus ladder Thermofisher SM1333

Stellar Competent cells Takara Bio 636766

Nucleospin Plasmid kit Takara Bio 740588.250

Critical commercial assays

T7 mScript Standard mRNA Cell Script C-MSC100625

Superscript III First Strand Synthesis Thermofisher Scientific 18080051

Arcturus Picopure RNA Isolation Kit Thermofisher Scientific KIT0204

Taqman Assay (Mis18a) Thermofisher Scientific Mm01209645_m1

Taqman Assay (Hist2h2) Thermofisher Scientific Mm0051974_s1

Experimental models: Organisms/strains

Mouse: Mis18afl/fl; B6-129-CBA-Mis18afl/fl Kim et al.23 N/A

Mouse: Mis18a early KO; B6-129-

CBA- Mis18afl/fl;Gdf9-Cre

This paper N/A

Mouse: Mis18a late KO; B6-129-

CBA- Mis18afl/fl;Zp3-Cre

This paper N/A

Mouse: Zp3-Cre; B6-Tg(Zp3-cre)93Knw/J Jackson laboratory RRID:IMSR_JAX:003651

Mouse: Gdf9-Cre; B6-Tg(Gdf9-icre)5092Coo/J Jackson laboratory RRID:IMSR_JAX:011062

Oligonucleotides

SDL-Forward: 5’-TGC CTA TTG GTG

TAC CTT CCA GTG-3’

Kim et al.23 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

LOX-Reverse: 5’-CCT AAG TCG TTG

ACC TGA CCG AGG-3’

Kim et al.23 N/A

Mis18-DeltaAT2: 5’-GGA CAG GAA

TAG GAC ACT TTC AAC-3’

Kim et al.23 N/A

Mis18F (exons 1-4): 5’-AGA AGT GGG

CAA ACA TGT CG-3’

This paper N/A

Mis18R (exons 1-4): 5’-GAG GAC CCT

AAG GTG TAA CTT TCA A-3’

This paper N/A

Mis18F (exons 2-4): 5’- AGC GTC TCC

TGT AAC GTC TC-3’

This paper N/A

Mis18R (exons 2-4): 5’-GTC AGG ACT

TCT TCC ATC TGC TT-3’

This paper N/A

Recombinant DNA

CENPA-EGFP Smoak et al.22 N/A

H2B-mCherry Akera et al.46 N/A

Software and algorithms

GraphPad Prism 9.3.1 (350) GraphPad http://www.graphpad.com/

FIJI/ImageJ Schindelin et al.47 https://fiji.sc/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ben E.

Black (blackbe@pennmedicine.upenn.edu).

Materials availability
Mouse lines generated in this study are available upon request.

Data and code availability
All imaging data reported in this paper will be shared by the lead contact upon request.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal experiments and protocols were approved by the Institutional Animal Use and Care Committee of the University of Penn-

sylvania and were consistent with National Institutes of Health guidelines (protocol #803994). Experimental animals were compared

to age, gender and genetic background matched controls. The Mis18afl/fl strain is a previously published and validated knockout

strain.23 This strain is in a mixed genetic background of C57BL6/J/129Sv/CBA/J (generated by Sung Hee Baek, Seoul National Uni-

versity and obtained from Kikue Tachibana, Max Planck Institute). Oocyte specific conditional knockout strains Mis18afl/fl;Zp3-Cre

(Mis18a late KO) andMis18afl/fl;Gdf9-iCre (Mis18a early KO) were generated by crossing the originalMis18afl/fl strain to eitherC57BL/

6-Tg(Zp3-cre)93Knw/J (RRID:IMSR_JAX:003651, Jackson Laboratory) or Tg(Gdf9-icre)5092Coo/J (RRID:IMSR_JAX:011062, Jack-

son Laboratory). The following primers were used to genotype the animals: 1)Mis18afl/fl: SDL-Forward: TGCCTA TTGGTG TACCTT

CCA GTG, LOXP-Reverse: CCT AAG TCG TTG ACC TGA CCG AGG, 2) Mis18afl/D: Mis18-DeltaAT2 Reverse: GGA CAG GAA TAG

GAC ACT TTC AAC combined with SDL-Forward (Figure S1). For testing fertility, age matched single conditional knockout (Mis18a

early or late KO) or control mothers (Mis18afl/fl) were mated in cages to single males (eitherMis18afl/fl orMis18afl/fl ). Litter sizes were

determined for multiple mating pairs per cross. Oocytes and embryos were collected from multiple mothers for all experiments.

METHOD DETAILS

Oocyte collection, meiotic maturation, and culture
Female mice were hormonally primed with 5 U of pregnant mare serum gonadotropin (PMSG, Peptides International) 44-48 h before

oocyte collection. Germinal vesicle intact oocytes were collected in bicarbonate-free minimal essential medium (M2, Sigma),
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denuded from cumulus cells, and cultured in Chatot–Ziomek–Bavister48 (CZB, Fisher Scientific) medium covered with mineral oil

(Sigma, BioXTRA) in a humidified atmosphere of 5% CO2 in air at 37 �C. During collection, meiotic resumption was inhibited by

addition of 2.5 mM milrinone (Sigma). Milrinone was subsequently washed out to allow meiotic resumption and oocytes were fixed

6–7 h later at metaphase I.

Oocyte immunocytochemistry
Oocytes were fixed in 2% paraformaldehyde (Sigma) in phosphate buffered saline (PBS) with 0.1% Triton X-100 (Sigma), pH 7.4, for

20 min at room temperature (r.t.), permeabilized in PBS with 0.2% Triton X-100 for 15 min at r.t., placed in blocking solution (PBS

containing 0.3% bovine serum albumin (BSA) and 0.01% Tween-20) for 20 minutes at r.t., treated with l-phosphatase (1,600 U,

NEB) for 1 h at 30 �C for CENP-A staining, incubated for 1 h with primary antibody in blocking solution, washed three times for

10 min each, incubated for 1 h with secondary antibody, washed three times for 10 min each, and mounted in Vectashield with

40,6-diamidino-2-phenylindole (DAPI; Vector) to visualize the chromosomes. The primary antibody was rabbit anti-mouse CENP-A

(1:200, Cell Signaling, C51A7). The secondary antibody was donkey anti-rabbit Alexa Fluor 488 (1:500, Invitrogen).

Microscopy
Confocal images were collected as z-stacks with 0.5-mm intervals, using a microscope (DMI4000 B; Leica) equipped with a 63x 1.3-

NA glycerol-immersion objective lens, an x–y piezo Z stage (Applied Scientific Instrumentation), a spinning disk confocal scanner

(Yokogawa Corporation of America), an electron-multiplying charge-coupled device camera (ImageEM C9100-13; Hamamatsu

Photonics) and either an LMM5 (Spectral Applied Research) or Versalase (Vortran Laser Technology) laser merge module, controlled

by MetaMorph software (Molecular Devices, v7.10.3.294). Images were acquired using the same laser settings and all images in a

panel were scaled the same. Single channels are shown wherever quantifications were performed.

Embryo collection, microinjection and culture
Mis18afl/fl orMis18afl/fl;Zp3-Cre (Mis18a late KO) females were hormonally primed with 5 U of PMSG (Peptides International) and the

oocytes werematured in vivowith 5 U of human chorionic gonadotropin (hCG; Sigma) before mating with B6D2F1/Jmales (F1 hybrid

of a cross between C57BL6/J and DBA2/J; RRID:IMSR_JAX:100006, Jackson Laboratory). Males were fed a special low soymeal

diet (5LG4 irradiated diet, Labdiet) and housed singly. Embryos were collected 14–16 h post hCG in M2 containing hyaluronidase

(0.3 mg ml�1) to remove cumulus cells and subsequently washed in M2 (Sigma). and cultured in EmbryoMax Advanced KSOM

(AKSOM, Millipore Sigma) with humidified air and 5% CO2.

Embryos were then subjected to inter-cytoplasmic microinjection in M2 medium covered with mineral oil (Sigma, BioXtra) at r.t.

with a micromanipulator (Narishige) and a picoinjector (Medical Systems Corp). Each embryo was injected with 2 pl of cRNA,

then cultured in EmbryoMax Advanced KSOM (AKSOM, Millipore Sigma) with humidified air and 5% CO2 until 2 cell stage and fixed

in 2% paraformaldehyde. The following cRNAs were used for microinjection: H2B-mCherry (human histone H2B with mCherry at the

C- terminus) at 25 ng/ul, CENP-A-EGFP (mouse CENP-A with EGFP at the C-terminus) at 20 ng/ul. The cRNAs were synthesized

using the T7 mScript Standard mRNA kit (Thermo Fisher Scientific) and purified by phenol-chloroform extraction.

mRNA quantification in oocytes
Total RNA was extracted from at least 20 full-grown oocytes from two females each for control and late conditional knockout (Zp3-

Cremediated) using Arcturus Picopure RNA isolation kit (Thermofisher Scientific), and cDNAwas prepared by reverse transcription of

total RNAwith Superscript III First Strand Synthesis system (Thermofisher) using oligo dT primers.Mis18awas amplified for standard

PCR using Kapa polymerase (Roche) from 1 mg of cDNA. Real time PCR was performed using Mis18a Taqman probes and H2A

serving as the endogenous control. Each sample was run twice in triplicate. Quantification was performed using the comparative

Ct method (Livak method) on an Applied Biosystems ViiA 7 machine.

QUANTIFICATION AND STATISTICAL ANALYSIS

To quantify centromere signal ratios, a sum intensity Z-projection was made using Fiji/ImageJ software. Circles of constant diameter

were drawn around individual centromeres and the average intensity was calculated for each centromere after subtracting back-

ground, obtained from nearby regions. Raw centromere intensities were obtained from several controlled independent experiments

and multiple cells were analyzed from each animal. Normalization of centromere intensities was performed using age- and gender-

matched controls for each independent experiment. Statistical tests (Mann-Whitney U test) were performed using the Graphpad

Prism software. Details of the p-values and error bars are provided in figure legends.
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