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Abstract. These notes are intended as a brief introduction to flow networks, with

motivation and emphasis in biological applications. We introduce basic circuit theory

and proceed to discuss questions related to optimization, adaptation, and more. The

work is intended for college seniors and graduate students in the beginning of their

careers, or post-docs with no previous exposure to circuit theory.

1. Introduction

Transport networks appear in a variety of forms, and serve indispensable functions.

They deliver load in the form of nutrients or information and help rid of waste.

Figure 1: Examples of physical, spatially

embedded, constrained degree networks. (A)

Animal vascular network from the murine

cortex (image by Patrick Drew). (B)

Dicotyledonous leaf vascular network (image

by EK). (C) Physarum polycephalum, (image

adapted from [1]). (D) Channel network from

the Ganges Brahmaputra Delta.

The xylem and phloem in plants, the system

of arteries, veins, and lymphs in animals,

mycelia in fungi are just a few of the many

complex biological flow systems that life

has engineered to optimize flow and allow

for organisms to grow beyond the limits

set by diffusion. Transport networks are

a necessary ingredient of all multicellular

life, but also of human life. Road networks,

irrigation and other water delivery systems,

power grids, are several examples of how

transport networks permeate all aspects of

human life.

The study networks in their most

general form can be traced at least as back

as Euler, and his forays into graph theory,

as exemplified by the problem of the seven

bridges of Koenigsberg [2]. The history of

the study of networks in mathematics and graph theory is long, and a lot of that interest

has continued in physics and engineering in the form of circuit theory, random resistor
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networks and percolation theory [3]. In the 90’s a series of seminal papers by Barabasi,

Newmann and several others brought network science into the forefront, and introduced

the idea that the architecture of networks is something that warrants exploration as

a means to understand interconnected systems and human behavior [4, 5]. Examples

include the internet, airport connectivity, friendship networks, citation networks, even

biological examples such as gene networks and the brain connectome. Several metrics

such as degree distribution, clustering, betweenness centrality were introduced and

popularized. Classes architectures of complex networks were extensively studied and

understood, such as Erdos-Renyi, small world, Watts-Strogatz.

Figure 2: (A) A graph as a

set of nodes and oriented edges.

The orientation of the edges is

displayed by the arrow. (B) A

flow field is defined on the edges

of the graph. The arrows now

represent the orientation of the

flow along the link.

The networks that we will be discussing in this

review belong in this broad class of complex network

systems, so a lot of the tools that we will present

should apply beyond the specific examples that we

present here. However, the networks in this review

come with their own set of challenges. They are

embedded in space, which imposes several constraints

in the architecture, that non-embedded, abstract

networks do not have. For example, geometrically

embedded networks of the class we will focus in this

review are typically, but not always, of low node

degree. They have no hubs, and typically they are

not strongly clustered, so a lot of the popular tools for

complex systems to examine them are not adequate.

Also, unlike information or neuronal networks, they

transport a physical quantity that is conserved at

the nodes, unless the node acts as an explicit source,

injecting flow in the system, or a sink, removing flow.

The proper function of biological flow systems,

such as the ones we will focus in these notes, is

necessary for the survival and fitness of organisms [6].

Deviations from the intended design and operation

signifies disease. However their biological importance

is not by any means the only motivation to study them.

Exploring the physics of biological flow networks is

an excellent way to think about problems in discrete

calculus, graph theory and gain practice using many

other tools that are transferrable to a broad array of problems.

These lecture notes will start with an introduction to some basic circuit theory

and the physics of flow networks. Then, I will talk about optimization, adaptation,

and their relevance to biological systems and finally discuss aspects from topology and

graph theory. The tone throughout the notes will be informal and educational, with

several worked examples and references, so that the interested reader can delve into



Biological flow networks 3

more rigorous derivations.This is the first version of this document, so please forgive the

abundant typos.

Interwoven in each chapter there will be homework exercises, some requiring simple

analytic calculations and some programming. They may vary in difficulty, and I

strongly recommend that you at least attempt all of them. The computational exercises

were designed with a programming language like Python in mind (and the associated

toolboxes line NetworkX), but in practice any language you are sufficiently familiar with

will do.

For students interested in performing the computational exercises, but have no

relevant software (Python, Matlab etc) already installed, an easy way to get started

is to install the open source Anaconda distribution https://www.anaconda.com/

distribution/. Then, the Jupyter notebooks is a very convenient “Mathematica”

style environment to do your claculations.

2. Circuit theory and flow networks

2.1. Definitions

We represent our circuit as a graph consisting of a set of N nodes V and M edges E
(see Fig. 2(A)). An edge (otherwise called link) is a vessel that connects two nodes and

has some resistance to the flow of current, and the nodes (or vertices) are the junctions

between the links. An edge eij ∈ E can be represented by the ordered pair {vi, vj}, where

vi ∈ V . The orientation of the edge determines which direction of the flow (discussed

below) is considered positive of negative. An oriented edge is different than a directed

edge, otherwise known as a diode, which permits current flow only in one direction.

Unless otherwise noted, we will be considering networks, or graphs, that form a single

component, namely where you can hop from one node to any other node using the edges.

We can represent the relationship between oriented edges and nodes with the

incidence matrix. The incident matrix encodes which nodes belong to which end of

the each oriented edge. The incidence matrix ∆̂T is an N ×M matrix with elements

∆T
i,k = 0 if node i is not part of the edge ek, ∆T

i,k = −1 if node i if edge ek is oriented

out of the vertex i, and ∆T
i,k = 1 if node i if edge ek is oriented into the vertex i.

If the edges of the graph shown in Fig. 2(A) are e1 = {1, 2}, e2 = {2, 3}, e3 =

{2, 4}, e4 = {4, 3}, e5 = {5, 4}, e6 = {3, 6}, then the incidence matrix of the graph is:

∆̂T =



−1 0 0 0 0 0

1 −1 −1 0 0 0

0 1 0 1 0 −1

0 0 1 −1 1 0

0 0 0 0 −1 0

0 0 0 0 0 1


(1)

Note that
N∑
i=1

∆̂T
ij = 0.

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
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Problem 1. In your favorite programming language, plot the graph of Figure 2. Also,

plot a 10 × 10 square grid. The purpose for this exercise is that you get familiarized

with constructing a graph in the computer and plotting it. Note that the Python module

NetworkX has several functions that automate this process.

Now assume that this network is transferring some sort of load. This load can

be blood, in the case of the animal circulatory system, or sap, in the case of plants.

To describe the flow of that load from node to now, we consider the field Qki, which

represents the current from node k to node i. The current is defined positive when the

current flows in the same direction as that of the oriented edge the boundaries of which

are the nodes k and i. In Fig. 2(B) the arrows now represent the flow direction. The

flow Q23 through oriented edge e23 is positive. The flow Q43 through oriented edge e43

is negative, as the orientation of the edge e43 = {4, 3} is opposite that of the current.

However, the flow Q34 is positive, as the current flows in the same direction as that

of the oriented edge {3, 4}. The N × N matrix Q̂, defined by the entries Qki is thus

antisymmetric. Mass conservation at each node implies
∑

kQki = 0, unless there is net

loss of current at that edge, and the edge is considered a “sink”, or net input at that

edge and the edge is considered a source. We define at each vertex i the net current qi,

that is zero if there is strict current conservation at that node, positive if the source is

a sink and negative if it is a source. So finally∑
k

Qki = qi (2)

Note that I can define a M × 1 vector ~Q whose kth element is the current through

the kth edge ek = {i, j}. I can also define a N × 1 vector ~q whose jth element is the

net current qj through the jth node. With these definitions, the current conservation

equation 2 can be written in a simple algebraic form:

∆̂T ~Q = ~q. (3)

Quantity Symbol

Current through edge ij Qij

Net current at node i qi
Conductance of edge ij Cij
Pressure at node i pi
Pressure drop between nodes i and j ∆pij ≡ pi − pj

Table 1: Symbols.

A quick note to the

undergraduates: Knowing the

net currents qi at all nodes

is not sufficient to uniquely

determine the all flows in the

system. Imagine a simple

network in the form of two

resistors connected in parallel,

where one of the terminals

(terminal 1) in the current

source and the other (terminal 2) is the current sink. The current from the source
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is split in the two parallel branches A and B of the network, but without any extra

information any splitting would satisfy the boundary conditions. We obviously need

extra information to determine the flows, in the form of a constitutive relation.

This constitutive relation in its simplest form can be intuited as follows. Consider

the two aforementioned parallel paths A and B. Now assume that each of the two routes

has a certain conductance CA (respectively CB), or a degree of “ease” with which each

link can carry flow. Now assume that the current Q that takes each path is proportional

to the conductance of that path, or QA/CA = QB/CB. If we define a field p defined

on each node 1 or 2, then the previous proportionality relationship can in general read

pi − pj =
Qij

Cij
or

Qij = (pi − pj)Cij (4)

This field is the pressure, and this relation tells us simply that if the pressure drop

between two nodes is pi − pj, with pi > pj, then the current Qij will be positive and

flow from i to j, and its magnitude will be equal to Cij(pi − pj). The conductances can

be written as a symmetric matrix with elements Cij in row i and column j.

This probably sounds all too familiar. The physics of linear flow networks maps

one to one with that of electric circuit theory. The voltage is now the pressure, the the

electronic current flow is now the fluid flow and the electrical conductance is the flow

conductance.

Note that we can write Eq. 4 in matrix form using the incidence matrix. Consider

a diagonal matrix M ×M where the Cmm diagonal element is the mth element of the

vector ~C. We will denote this matrix as diag(~C). With this definition, Eq. 4 reads:

~Q = −diag(~C)∆̂~p (5)

Bear in mind that Eq. 4 can be derived by a Taylor expansion from any pressure

drop relationship of the form ∆p = f(q) if f(q) = f(−q), if the function f is odd. In

the next paragraph we will derive the pressure flow relationship of Eq. 4 in the case of

laminar flow through a pipe, known as Poisseuille flow.

2.2. Poisseuille flow

Consider a smooth pipe that carries laminar flow of low Reynolds number, with non-slip

boundary conditions at the wall. The fluid is incompressible. The pipe has radius R and

length L. There is a pressure drop ∆p between the two ends of the pipe. The pressure

gradient “pushes” the fluid and results in fluid flow. Because of the no slip boundary

condition at the wall, the flow speed is zero there and increases towards the center of

the pipe. In general, if two layers of fluid are moving at different speeds, as shown in

Fig. 3(A), there is a frictional shear force

F = −µAdvx
dy

(6)

assuming that the fluid is moving in the x direction and the gradient of the speed is

along the y axis. Here, A is the area of contact between the two layers, and µ is the
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fluid viscocity. Each layer of fluid is experiencing two frictional forces, one from each

side of the layer. The force is opposite to the direction of motion from if the contact

fluid layer is slower, and in the direction of fluid motion if it is faster. The net frictional

force will determine if the fluid layer will accelerate or decelerate.

Figure 3: (A) Shear in the velocity

gradient. (B) Parabolic laminar flow

profile in a cylindrical pipe.

To overcome this frictional force and maintain

the fluid velocity we need a net force along the

direction of fluid motion. In the case of a

cylindrical geometry, as that of the pipe shown

in Fig. 3(B), we calculate the net force in each

cylindrical shell dr, and equate that with the net

force ∆p2πrdr pushing that shell. Eventually:

∆p = −µL1

r

d

dr

(
r
dv

dr

)
(7)

Integrating this equation one can find the fluid flow

at each distance r from the center of the pipe:

v =
1

4µ

∆p

L

(
R2 − r2

)
(8)

The profile is parabolic, as shown in Fig. 3(B).

The total flow in the pipe is

Q =

∫ R

0

v(r)2πrdr =
2π∆p

4µL
=

∫ R

0

(R2 − r2)rdr =
πR4

8Lµ
∆p (9)

If we identify C ≡ πR4

8Lµ
, then we pressure flow relationship assumes the form of the linear

constitutive relation Q = C∆p of Eq. 4. The conductance scales as the fourth power of

the pipe radius, a fact that has major implications for several structural aspects of our

circulatory system, and something we will revisit in subsequent sections.

Problem 2. Assume now that the fluid is complex and that the effective fluid viscosity

is now dependent on r, via some complicated interaction of the fluid with the wall. What

is the fluid velocity v(r) dependence on the distance to the center of the pipe and what

is the dependence of C(R) on the radius of the pipe if (a) µ = b1r and (b) µ = b2/r . Is

either a physical scenario?

2.3. The Laplacian operator

So far we have established the basic nomenclature for the network topology and pressure

flow function. In what follows we will see how we can determine all the network flows,

through each link of the network. First, we will derive the basic equations without

explicit using any matrix formalism.
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Remember the flow conservation boundary condition Eq. 2 and pressure flow

relationship Eq. 4. To determine the pressures pi we plug in the latter into the former,

and we have
∑

iCij(pi − pj) = qj. We can massage the left hand side to∑
i

Cij(pi − pj) =
∑
i

(Cijpi)− (
∑
i

Cij)pj (10)

=
∑
i

(Cijpi)−
∑
i

[(
∑
k

Cjk)δji]pi (11)

=
∑
i

[Cji − (
∑
k

Cjk)δji]pi (12)

Now define a matrix L̂ with elements

Lij = −Cji + (
∑
k

Cjk)δji. (13)

This is the weighted Laplacian of the network. This is a symmetric positive semidefinite

matrix. With the introduction of this matrix, the equation for p can be written as

L̂~p = −~q. (14)

Note that we could have equally simply used the matrix form of the flow conserva-

tion boundary condition Eq. 3 and pressure flow relationship Eq. 5. To determine the

pressures ~p we plug in the latter into the former, and we have ∆T C̃∆~p = −~q. If we

identify L̂ ≡ ∆Tdiag ~C∆ we recover Eq. 14.

Problem 3. Prove that [∆Tdiag ~C∆]ij = −Cji + (
∑

k Cjk)δji.

You are probably already wondering why the operator defined in Eq. 13 is called a

Laplacian and how it is related to the Laplacian operator ∇2 you know from calculus.

The usage of the same name is not a coincidence; the Laplacian operator defined in

Eq. 13 (which, if we wanted to minimize confusion, we should call the discrete Laplace

operator) is an matrix operator that has the exact same properties as the continuum

Laplacian operator, but operating on a network rather than a continuous field. This is a

fact of paramount importance, as it is at the core of the connection of circuit theory to

discrete calculus. We will not discuss this further, but instead refer the mathematically

inclined reader to the book [7].

To provide some intuition here we will show how the discrete Laplacian operator

on a square grid is connected to the continuous Laplace operator in the long wavelength

limit. Note that the discrete Laplacian operator should not be confused with

the discretized Laplacian operator [7]. The discrete Laplacian operator, unlike the

discretized one is the correct generalization of the continuous one.
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Consider a square grid of conductances C, equal for all the links, as shown in

Fig. 4. Now the nodes i are represented with the coordinates on the grid, aka i = (x, y).

Equation 14 for the node (x, y) reads

[L̂p]x,y = −(C(p(x,y+∆y) + p(x+∆x,y) + p(x,y−∆y)) + p(x−∆x,y)) + 4Cp(x,y) (15)

After a Taylor expansion:

[L̂p]x,y = C(∆y
dp

dy

∣∣∣∣
x,y+∆y/2

−∆y
dp

dy

∣∣∣∣
x,y−∆y/2

+ ∆x
dp

dx

∣∣∣∣
x+∆x/2,y

−∆x
dp

dx

∣∣∣∣
x−∆x/2,y

)

= C(∆y2d
2p

dy2
+ ∆x2 d

2p

dx2
) (16)

Figure 4: A network as a

discretization of the contin-

uum.

So finally, if ∆x = ∆y, Eq. 16 in the continuum

limit reads ∇2p = q(x,y)
C∆x2

. This is Poisson’s equation from

electromagnetism, where ∆2V = −ρ/ε, where here V is

the voltage and ρ is the charge. Note that the nega-

tive sign is missing in our derivation. Can you think

why?

Before we leave the discussion of the discrete Laplacian op-

erator, we need to mention a few words about the incidence

matrix. As some of you might have already guessed, there

is something highly “suspicious” representing the incidence

matrix as the transpose ∆T of a matrix ∆. This M ×N matrix ∆ is actually a matrix

with direct physical meaning: it is a boundary operator, which, when acts on a N × 1

vector assigning a field on each network node, for example the pressures ~p, returns a

(M × 1) vector of the differences of the field values between the end nodes of each

oriented edge.

2.4. Determining the pressure and flows

To solve for ~p and eventually all the Q, we would simply need to invert the matrix L̂.

L̂~p = −~q ⇒ ~p = −L̂−1~q (17)

However, Det|L̂| = 0, as
∑

i Lji = −
∑

iCji+(
∑

k Cjk)
∑

i δji = 0, so the Laplacian

is not invertible. This is intimately related to the fact that the pressure, like the voltage

in an electrical circuit, is gauge invariant, and it can only be determined by differences.

How can we then determine the pressures?

We can explore three different ways to solve this problem.
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(a) Fix the pressure in one node, akin to grounding a node in a circuit. We can

then remove the grounded node from ~p, and the circuit, replacing its value with

the imposed value in the equations that determine the pressure flow relationship.

Ultimately, we rewrite L̂ as a non-degenerate (N − 1×N − 1) matrix so that it is

non-degenerate. This is approach is in some ways the most straghtforward, but in

many cases somewhat cumbersone to implement.

(b) We can use the pseudoinverse, which is typically computed via singular value

decomposition.

(c) Last, there is a nice trick, that provides the correct result but avoids the issues

with either (a) or (b). You can add a small constant α to the first diagonal element

of the Laplacian L11, i.e. L11 → L11 + α. This is simple and obviously makes

the Laplacian invertible, but how does it eventually provide the correct pressure

differences and flows?

To see why and how method (c) works, augment the circuit you are trying to solve

by adding a node 0 with q0 = 0, and connect it with a finite C01 > 0 to node 1. Note,

no current can go through edge {0, 1}, so there is no pressure drop between the nodes

0 and 1.

The new Laplacian L′ of the matrix with the added node reads:

L̂′ =


C01 −C01 0 . . . 0

−C01

∑N
j=1C1j + C0,1 −C12 . . . −C1N

0 −C12

∑N
j=1C2j . . . −C2N

. . . . . . . . . . . . . . .

0 −C1N −C2N . . .
∑N

j=1CN,j

 (18)

and the new pressure vector p̂′ is

p̂′ =

[
p0

~p

]
(19)

Finally, since the added no has no net current, the new net current vector is:

q̂′ =

[
0

~q

]
(20)

We now apply Eq. 14, we see that the equations for the first two rows read

p0 − p1 = 0 (21)

C01p0 − (
N∑
j=1

C1j)p1 − C01p1 +
N∑
j=2

C1jpj = q1. (22)

The rest of the equations for the remaining nodes are exactly as the ones of the

original graph, before the addition of node 0. Now set p0 = 0 (equivalent to

connecting the 0 node in an electrical circuit to be the ground). Eq. 22 becomes

[−(
∑N

j=1C1j)− C01]p1 +
∑N

j=2 C1jpj = q1. The system of equations for the augmented

circuit is therefore exactly the same as the original one, and adding a constant on the

diagonal element (1, 1) of L̂, is equivalent to fixing the gauge.
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Figure 5: Practice examples

Once the pressures are determined by any of the

methods mentioned above, all the other attributes of

the system, like the edge flows, can be trivially de-

rived. So given the conductances C and net currents

~s, we can determine ~Q, ~p for any network! Note that

we can also set pressure boundary conditions by fixing

p in some nodes, and setting qj as unknowns.

The following (fairly easy) problems are intended to build intuition about the

behavior of linear circuits.

Problem 4. Can you have
N∑
i=1

qi > 0?

Problem 5. p1 is the maximum node pressure in the network in Fig. 5 (A), p4 is the

minimum. If all conductances are C = 1, what is the current in each link? What if

C12 = 2C13 = C23 = 2C24 = C34?

Problem 6. The only thing you know about the circuit in Fig. 5 (B) is that p1 = p2,

and that sj = 0 for every j that is not 1 or 2. The net currents q1, q2 are unknown.

What is the current Q? .

2.5. Dissipation and effective resistance

In this section we will show some useful identities and derivations regarding dissipation,

average pressure drop and effective resistance of linear flow networks.

The dissipation P of a linear flow network is the power that is lost due to friction

in moving the fluid through the network. The total dissipation of the entire network is

the sum of the dissipation at each link P =
∑

e Pe =
∑

e ∆peQe =
∑

e ∆p2
eCe. This can

be written in a more compact form:∑
j>k

Cjk(pj − pk)2 = ~pT L̂~p. (23)

The proof is simple

~pT L̂~p =
∑
i,j

pj[(
∑
k

Cjk)δji − Cji]pi (24)

=
∑
j

(
∑
k

Cjk)p
2
j −

∑
ji

Cjipjpi (25)

=
∑
j>k

Cjk(p
2
j + p2

k)− 2
∑
j>k

Cjkpjpk (26)

=
∑
j>k

Cjk(pj − pk)2 (27)
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Problem 7. Equation 23 can proven in half a line using the incidence matrix. Try it!

Note also that ~pT L̂~p = −~pT~q. This is a simple manifestation of energy conservation:

the total energy dissipated at the network is equal to the energy “injected” in the system

by the source (−~pT~q). To see this more clearly, consider a network with one source at

v1 and one sink at vN . The, if qo is the total injected current, −~pT~q = (p1−pN)qo. If we

identify p1− pN as the pressure drop imposed by the hydraulic equivalent of an electric

EMF, then we see how this trivially maps to very well known identities from freshman

E&M.

Problem 8. Revisit the example of Fig. 5(B). Use ~pT~s =
∑

j>k Cjk(pj − pk)2 to show

that the pressures at all nodes are equal.

A very useful concept of circuit theory is that of the effective resistance. The

effective resistance R̃ij between two nodes i and j is the potential difference between

the two nodes when a unit current q is injected in node i (node i is a current source)

and collected from node j (node j is a current sink).

R̃ij ≡
pi − pj
q

(28)

The effective resistance satisfies the triangle inequality Rik ≤ Rij + Rjk, so it defines a

metric on the graph called the resistance distance. This is a very useful tool to quantify

transport networks, with some very cool properties that you can read in [8, 9].

Problem 9. Find a simple closed form for the average pressure of a network of N nodes

with current boundary conditions qj = 1−Nδj1 when node 1 is grounded.
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