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Abstract

This paper studies the averaging GMM estimator that combines a conservative GMM es-

timator based on valid moment conditions and an aggressive GMM estimator based on both

valid and possibly misspecified moment conditions, where the weight is the sample analog of an

infeasible optimal weight. We establish asymptotic theory on uniform approximation of the up-

per and lower bounds of the finite-sample truncated risk difference between any two estimators,

which is used to compare the averaging GMM estimator and the conservative GMM estimator.

Under some sufficient conditions, we show that the asymptotic lower bound of the truncated risk

difference between the averaging estimator and the conservative estimator is strictly less than

zero, while the asymptotic upper bound is zero uniformly over any degree of misspecification.

The results apply to quadratic loss functions. This uniform asymptotic dominance is established

in non-Gaussian semiparametric nonlinear models.
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1 Introduction

We are interested in estimating some finite dimensional parameter θF ∈ Rdθ which is uniquely

identified by the moment restrictions

EF [g1(W, θF )] = 0r1×1 (1.1)

for some known vector function g1 (·) : W × Θ→Rr1 , where Θ is a compact subset of Rdθ , W is a

random vector with supportW and joint distribution F , and EF [·] denotes the expectation operator

under F . Suppose we have i.i.d. data {Wi}ni=1, where Wi has distribution F for i = 1, . . . , n.1 Let

g1(θ) = n−1
∑n

i=1 g1(Wi, θ). An efficient GMM estimator for θF is

θ̂1 = arg min
θ∈Θ

g1(θ)′(Ω1)−1g1(θ), (1.2)

where Ω1 = n−1
∑n

i=1 g1(Wi, θ̃1)g1(Wi, θ̃1)′ − g1(θ̃1)g1(θ̃1)′ is the efficient weighting matrix with

some preliminary consistent estimator θ̃1.2 In a linear instrumental variable (IV) example, Y =

X ′θF + U where the IV Z1 ∈ Rr1 satisfies EF [Z1U ] = 0r1×1. The moments in (1.1) hold with

g1(W, θ) = Z1(Y −X ′θ) and θF is uniquely identified if EF [Z1X
′] has full column rank. Under cer-

tain regularity conditions, it is well-known that θ̂1 is consistent and achieves the lowest asymptotic

variance among GMM estimators based on the moments in (1.1), see Hansen (1982).

If one has additional moments

EF [g∗(W, θF )] = 0r∗×1 (1.3)

for some known function g∗(·) : W × Θ→Rr∗ , imposing them together with (1.1) can further

reduce the asymptotic variance of the GMM estimator. However, if these additional moments are

misspecified in the sense that EF [g∗(W, θF )] 6= 0r∗×1, imposing (1.3) may result in inconsistent

estimation. The choice of moment conditions is routinely faced by empirical researchers. Take

the linear IV model for example. One typically starts with a large number of candidate IVs but

only has confidence that a small number of them are valid, denoted by Z1. The rest of them,

denoted by Z∗, are valid only under certain economic hypothesis that yet to be tested. In this

example, g∗(W, θ) = Z∗(Y − X ′θ). In contrast to the conservative estimator θ̂1, an aggressive

estimator θ̂2 always imposes (1.3) regardless of its validity. Let g2(Wi, θ) = (g1(Wi, θ)
′, g∗(Wi, θ)

′)′

1The main theory of the paper can be easily extended to time series models with dependent data, as long as the
preliminary results in Lemma B.1 hold.

2For example, θ̃1 could be the GMM estimator similar to θ̂1 but with an identity weighting matrix, see (B.5) in
the Appendix.
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Figure 1: Finite Sample (n = 500) MSEs of the Pre-test and the Averaging GMM Estimators
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Note: “Pre-test(0.01)” and “Pre-test(0.05)” refer to the pre-test GMM estimator based on the J test statistic

ng2(θ̂2)′(Ω2)−1g2(θ̂2) with nominal size 0.01 and 0.05 respectively. “Emp-opt” refers to the averaging GMM es-

timator with weight defined in (4.3) of the paper. In this simulation, we set δF = c0ω where c0 is in [0,1] and ω is

a real vector. At each c0, we consider 127 different values for ω and report the largest finite sample MSEs of the

estimators. Details of the simulation design for this figure is provided in Subsection 6.1.

for i = 1, . . . , n, and g2(θ) = n−1
∑n

i=1 g2(Wi, θ). The aggressive estimator θ̂2 takes the form

θ̂2 = arg min
θ∈Θ

g2(θ)′(Ω2)−1g2(θ), (1.4)

where Ω2 is constructed in the same way as Ω1 except that g1(Wi, θ) is replaced by g2(Wi, θ).
3

Because imposing EF [g∗(W, θF )] = 0r∗×1 is a double-edged sword, a data-dependent decision

usually is made to choose between θ̂1 and θ̂2. To study such a decision and the subsequent estimator,

let

δF = EF [g∗(W, θF )] ∈ Rr
∗
. (1.5)

The pre-testing approach tests the null hypothesis H0 : δF = 0r∗×1 and constructs an estimator

θ̂pre = 1{Tn > cα}θ̂1 + 1{Tn ≤ cα}θ̂2 (1.6)

for some test statistic Tn with the critical value cα at the significance level α. One popular test is the

3See the first line of equations (E.13) in the Supplemental Appendix for the definition of Ω2. In particular, Ω2 is

constructed using θ̃1, the preliminary consistent estimator based on the valid moment conditions in (1.1) only.
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J-test, see Hansen (1982), and cα is the 1−α quantile of the chi-squared distribution with degree of

freedom r2−dθ where r2 = r1 +r∗. Because the power of this test against the fixed alternative is 1,

θ̂pre equals θ̂1 with probability 1 asymptotically (n→∞) for those fixed misspecified model where

δF 6= 0r∗×1. Thus, it seems that θ̂pre is immune to moment misspecification. However, we care

about the finite-sample mean squared error (MSE) of θ̂pre in practice and this standard pointwise

asymptotic analysis (δF is fixed and n → ∞) provides a poor approximation to the former.4 To

see the comparison between θ̂pre and θ̂1, the dashed line and the dashed-dotted line in Figure 1

plot the maximum finite-sample (n = 500) MSEs of θ̂pre with α = 0.01 and 0.05 respectively, while

the MSE of θ̂1 is normalized to 1.5 For some values of δF , the MSE of θ̂pre may be larger than

that of θ̂1, sometimes by more than 50%. Note that the pre-test estimators exhibit multiple peaks

because the simulation design allows for multiple potentially misspecified moments and considers

two different ways of parametrizing δF . Given c0, the norm of δF may be different in the two

different parametrizations.

The goal of this paper is twofold. First, we propose a data-dependent averaging of θ̂1 and θ̂2

that takes the form

θ̂eo = (1− ω̃eo)θ̂1 + ω̃eoθ̂2 (1.7)

where ω̃eo ∈ [0, 1] is a data-dependent weight specified in (4.7) below. The subscript in ω̃eo is short

for empirical optimal because this weight is an empirical analog of an infeasible optimal weight

ω∗F defined in (4.3) below. We plot the finite-sample MSE of this averaging estimator as the solid

line in Figure 1. This averaging estimator is robust to misspecification in the sense that the solid

line is below 1 for all values of δF , in contrast to the bump in the dashed line that represents the

pre-test estimator. Second, we develop a uniform asymptotic theory to justify the finite-sample

robustness of this averaging estimator. We quantify the upper and lower bounds of the asymptotic

risk differences between the averaging estimator and the conservative estimator, and show that this

averaging estimator dominates the conservative estimator uniformly over a large class of models

with different degrees of misspecification in certain asymptotic sense.6 The uniform dominance is

established under the truncated weighted loss function which is defined in (3.11) below.7 Our

uniform dominance result relies on the asymptotic properties of the GMM estimators, therefore it

is weaker than the exact finite sample dominance result of the James-Stein estimator established

4The poor approximation of the pointwise asymptotics to the finite sample properties of the pre-test estimator
has been noted in Shibata (1986), Pötscher (1991), Kabaila (1995, 1998) and Leeb and Pötscher (2005, 2008), among
others.

5That is, the dashed line and the dashed-dotted line represent the ratios of the maximum MSEs of the two pre-test
estimators divided by the MSE of θ̂1 respectively.

6The lower and upper bounds of asymptotic risk difference are defined in (3.12) below.
7Truncation at a large number is needed for the asymptotic analysis of the risk of general estimator without

imposing stringent conditions such as uniform integrability.
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in the Gaussian sampling models.

The rest of the paper is organized as follows. Section 2 discusses the literature related to our

paper. Section 3 defines the parameter space over which the uniform result is established and defines

uniform dominance. Section 4 introduces the averaging weight. Section 5 provides an analytical

representation of the bounds of the asymptotic risk differences and applies it to show that the

averaging GMM estimator uniformly dominates the conservative estimator. Section 6 investigates

the finite sample performance of our averaging estimator using Monte Carlo simulations. Section 7

concludes. Proof of the main results of the paper and additional simulation results are given in the

Appendix. Analysis of the pre-test estimator, extra simulation studies and proofs of some auxiliary

results are included in the Supplemental Appendix of the paper.

Notation. For any real matrix A, we use ||A|| to denote the Frobenius norm of A, that is ||A|| =

(tr(A′A))1/2 where tr(·) denotes the trace operator of square matrices. If A is a real symmetric

matrix, ρmin(A) and ρmax(A) denote the smallest and largest eigenvalues of A, respectively. For

any positive integers d1 and d2, Id1 and 0d1×d2 stand for the d1 × d1 identity matrix and d1 × d2

zero matrix, respectively. Let vec (·) denotes vectorization of a matrix and vech (·) denotes the half

vectorization of a symmetric matrix. Let R = (−∞,+∞), R+ = [0,+∞), R∞ = R ∪ {±∞} and

R+,∞ = R+∪{+∞}. For any positive integer d and any set S, Sd denotes the Cartesian product of

d many sets: S1× · · · × Sd with Sj = S for j = 1, . . . , d. For any finite positive integer d and any

set S ⊂ Rd, int(S) denotes the interior of S under the Euclidean norm. We use N to denote the set

of natural numbers and {pn} = {pn : n ∈ N} denote a subsequence of {n}n∈N. For any (possibly

random) positive sequences {an}∞n=1 and {bn}∞n=1, an = Op(bn) means that supn∈N Pr (an/bn > c)→

0 as c→∞; an = op(bn) means that for all ε > 0, limn→∞ Pr (an/bn > ε) = 0. Let “→p” and “→D”

stand for convergence in probability and convergence in distribution, respectively. The notation

a ≡ b means a is defined as b.

2 Related Literature

Our uniform dominance result is related to the Stein’s phenomenon (Stein, 1956) in parametric

models. The James-Stein (JS) estimator shrinks the maximum likelihood estimator (MLE) toward

zero and has been shown to dominate the MLE in exact normal sampling, see James and Stein

(1961). Green and Strawderman (1991) propose an averaging estimator in the Gaussian location

model which shrinks an unbiased estimator toward a biased estimator with a JS-type of weight,

and show that the averaging estimator dominates the unbiased estimator. Green and Strawderman

(1991) assume that the unbiased estimator is independent of the biased estimator, which is relaxed
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in Kim and White (2001), Judge and Mittelhammer (2004) and Mittelhammer and Judge (2005).8, 9

These papers propose averaging estimators which shrink asymptotically unbiased estimators toward

biased estimators in the semiparametric setting, and show that the averaging estimators based on

infeasible weights dominate the unbiased estimators in the Gaussian location models. Kim and

White (2001) show that the infeasible weight can be consistently estimated when the asymptotic

bias of the biased estimator is zero. Judge and Mittelhammer (2004) and Mittelhammer and Judge

(2005) provide approximators of the infeasible optimal weights and show that these approximators

can be consistently estimated. These estimators and our estimator are all linear combinations of

the unbiased estimator and the biased estimator. However even in the Gaussian location models,

the weights are different and their sufficient conditions and proofs for dominance are different, see

Appendix A for details.10

Hansen (2016) considers the JS type averaging estimator in general parametric models and

shows the Stein-dominance result in a pointwise local asymptotic sense.11 Hansen (2017) proposes

an averaging estimator that combines the ordinary least squares (OLS) estimator and the two-

stage-least-squares (2SLS) estimator in linear IV models, and shows that the averaging estimator

has smaller local asymptotic risk than the OLS estimator. DiTraglia (2016) also studies the av-

eraging GMM estimator in the pointwise local asymptotic framework. The averaging weight of

his estimator is based on the focused moment selection criterion with a targeted parameter. The

simulation results in the paper show that this averaging estimator does not uniformly dominate

the conservative estimator. Many other frequentist model averaging estimators are studied in the

literature, including Buckland, Burnham, and Augustin (1997), Hjort and Claeskens (2003, 2006),

Hansen (2007), Claeskens and Carroll (2007), Hansen and Racine (2012), Cheng and Hansen (2015),

Lu and Su (2015), to name only a few.

Different from the aforementioned papers, our paper is the first to show global dominance

based on uniform asymptotic approximation.12 This uniform analysis is similar to those studied

8We thank an anonymous referee who referred Green and Strawderman (1991) and Judge and Mittelhammer
(2004) to us.

9Judge and Mittelhammer (2007) propose an averaging estimator which combine different GMM estimators with
weights determined by the empirical likelihood method. However, the properties of this averaging estimator are not
fully investigated and no dominace results are established in this paper.

10In the Gaussian location model, our dominance results require dθ ≥ 4; Green and Stawderman (1991) requires
dθ ≥ 3 by imposing independence between the unbiased and the biased estimators; and Kim and White (2001), Judge
and Mittelhammer (2004) and Mittelhammer and Judge (2005) require dθ ≥ 5.

11For a given real vector d, the pointwise local asymptotic analysis considers a sequence of local DGPs {Fn}n under

which δFn = dn−1/2, and derives the asymptotic (truncated) risk of the averaging estimator under {Fn}n for the
given d. Such analysis will produce a pointwise risk function (on d) for the averaging estimator. Evaluation of the
averaging estimator is then conducted using the pointwise local asymptotic risk function.

12In the uniform global asymptotic framework, one has to study the asymptotic behavior of the supermum and the
infimum of the finite sample risk of the averaging estimator, where the supermum and the infimum are taken over a
class of DGPs which include both the locally misspecified and many more severely misspecified DGPs. See Section
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in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2011) for uniform

size control for inference in non-standard problems, but the present paper is for estimation rather

than inference and focuses on a misspecification issue that is not studied in these papers.

The uniform dominance property of the averaging estimator does not contradict the risk prop-

erties of the post-model-selection estimators found in Yang (2005) and Leeb and Pötscher (2008).

Measured by the MSE, the post-model-selection estimator usually does better than the unrestricted

estimator in part of the parameter space and worse than the latter in other part of the parameter

space. One standard example is the Hodge’s estimator, whose scaled maximal MSE diverges to in-

finity with the growth of the sample size (see, e.g., Lehmann and Casella, 1998). Similar unbounded

risk results are established in Yang (2005) and Leeb and Pötscher (2008) for post-model-selection

estimator based on consistent model selection procedures. Such estimators have unbounded (scaled)

maximal MSE because given the consistent model selection procedure: (i) there exist DGPs where

the restrictions to be tested/selected are (locally) misspecified; (ii) the model selection procedures

select these misspecified restrictions with high probabilities, converging to 1 asymptotically; (iii) the

restricted estimator has unbounded (scaled) MSE under these DGPs.13 In contrast, the empirical

optimal weight of our averaging estimator is based on an infeasible optimal weight that satisfies:

(i) when the aggressive/restricted GMM estimator has unbounded (scaled) MSE, the averaging

weight on it is small, converging to 0 asymptotically. The resulting averaging estimator has the

same asymptotic properties as the conservative GMM estimator; (ii) the Stein’s dominance result

applies in the asymptotic sense. Hence our averaging estimator is essentially different from the

post-model-selection estimator.

There is a large literature studying the validity of GMM moment conditions. Many methods

can be applied to detect the validity, including the over-identification tests (see, e.g., Sargan, 1958;

Hansen, 1982; and Eichenbaum, Hansen and Singleton 1988), the information criteria (see, e.g.,

Andrews, 1999; Andrews and Lu, 2003; and Hong, Preston and Shum, 2003), and the penalized

estimation methods (see, e.g., Liao, 2013; Cheng and Liao, 2014). Recently, misspecified moments

and their consequences are considered by Ashley (2009), Berkowitz, Caner, and Fang (2012), Conley,

Hansen, and Rossi (2012), Doko Tchatoka and Dufour (2008, 2014), Guggenberger (2012), Nevo

and Rosen (2012), Kolesar, Chetty, Friedman, Glaeser, Imbens (2014), Small (2007), Small, Cai,

Zhang, Kang (2015), among others. Moon and Schorfheide (2009) explore over-identifying moment

3 for more details.
13The post-model-selection estimator based on a conservative model selection procedure (e.g., hypothesis test

with fixed critical value or Akaike information criterion) typically do not have unbounded (scaled) maximal MSE.
However its asymptotic maximal MSE is not guaranteed to be less than or equal to the benchmark estimator (e.g.,
the conservative GMM estimator in the framework of this paper). The pre-test estimators in Figure 1 are good
examples, since they are based on the J-test with nominal size 0.01 and 0.05.
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inequalities to reduce the MSE. This paper contributes to this literature by providing new uniform

results for potentially misspecified semiparametric models.

There is also a large literature studying adaptive estimation in nonparametric regression model

using model averaging; see Yang (2000, 2003, 2004), Leung and Barron (2006), and the references

therein. Since the unknown function can be written as a linear combination of (possibly infinitely

but countably many) basis functions, the nonparametric model may be well approximated by

parametric regression models in finite samples. These papers show that the averaging estimators

which combine OLS estimators from different parametric models with data dependent weights may

achieve the optimal convergence rate up to some logarithm factor. Our paper is different from

these papers since the parameter of interest in our paper is a finite dimensional real value, not

an unknown function, and the bias and variance trade-off of our averaging estimator is due to the

possibly misspecified moment conditions. Moreover, there is a benchmark estimator in our paper,

i.e., the conservative GMM estimator whose asymptotic properties are well-known. Our goal is to

propose an averaging estimator with uniformly smaller risk than the conservative estimator.

3 Parameter Space and Uniform Dominance

Let g2,j(w, θ) (j = 1, . . . , r2) denote the j-th component function of g2(w, θ). We assume that

g2,j(w, θ) for j = 1, . . . , r2 is twice continuously differentiable with respect to θ for any w ∈ W.

The first and second order derivatives of g2(w, θ) with respect to θ are denoted by

g2,θ(w, θ) ≡


∂g2,1(w,θ)

∂θ′

...
∂g2,r2 (w,θ)

∂θ′

 and g2,θθ(w, θ) ≡


∂2g2,1(w,θ)
∂θ∂θ′

...
∂2g2,r2 (w,θ)

∂θ∂θ′

 , (3.1)

respectively.14 Let F be a set of distribution functions on W. For k = 1 and 2, define the

expectation of the moment functions, the Jacobian matrix and the variance-covariance matrix as

Mk,F ≡ EF [gk(W, θF )] ,

Gk,F ≡ EF [gk,θ(W, θF )] , and

Ωk,F ≡ EF
[
gk(W, θF )gk(W, θF )′

]
−Mk,FM

′
k,F (3.2)

for any F ∈ F respectively. The moments above exist by Assumption 3.2 below.

14By definition, g1,θ(w, θ) and g1,θθ(w, θ) are the leading r1 × dθ and (r1dθ) × dθ submatrices of g2,θ(w, θ) and
g2,θθ(w, θ), respectively.
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Let

QF (θ) ≡ EF [g2(W, θ)]′Ω−1
2,FEF [g2(W, θ)] (3.3)

for any θ ∈ Θ, which denotes the population criterion of the GMM estimation in (1.4). For any

θ ∈ Θ, define Bc
ε(θ) = {θ∗ ∈ Θ : ||θ∗ − θ|| ≥ ε}. We consider the risk difference between two

estimators uniformly over F ∈ F , where F satisfies Assumptions 3.1-3.3 below.

Assumption 3.1 The following conditions hold:

(i) for any F ∈ F , EF [g1(W, θF )] = 0r1×1 for some θF ∈ int(Θ);

(ii) for any ε > 0, inf
F∈F

inf
θ∈Bcε(θF )

||EF [g1(W, θ)] || > 0;

(iii) for any F ∈ F , there is θ∗F ∈ int(Θ) such that

inf
F∈F

inf
θ∈Bcε(θ∗F )

[QF (θ)−QF (θ∗F )] > 0 for any ε > 0;

(iv) inf
{F∈F : ‖δF ‖>0}

||G′2,FΩ−1
2,F δ2,F ||

‖δ2,F‖τ > 0 where δ′2,F = (01×r1 , δ
′
F ) and τ > 0 is a fixed constant;

(v) 0r∗×1 ∈ int(∆δ) where ∆δ = {δF : F ∈ F}.

Assumptions 3.1.(i)-(ii) require that the true unknown parameter θF is uniquely identified by

the moment conditions EF [g1(W, θF )] = 0r1×1 for any DGP F ∈ F . Assumption 3.1.(iii) implies

that for any F ∈ F , a pseudo true value θ∗F is identified by the unique minimizer of the population

GMM criterion QF (θ) under possible misspecification. Assumption 3.1.(iv) requires that δ2,F is not

orthogonal to Ω−1
2,FG2,F , which rules out the special case that θF may be consistently estimable

even with severely misspecified moment conditions. Assumption 3.1.(v) implies that the set of dis-

tribution functions F is rich such that it includes the distributions under which the extra moment

conditions are correctly specified, locally misspecified or severely misspecified. Uniform dominance

can be easily established if we only allow for correctly specified models or severely misspecified mod-

els, because the desired dominance results hold trivially following a pointwise analysis. Assumption

3.1.(v) ensures that the extra moment conditions may have different degrees of misspecification in

the parameter space.

Assumption 3.2 The following conditions hold:

(i) For j = 1, . . . , r2, g2,j(w, θ) is twice continuously differentiable with respect to θ for any w ∈ W;

(ii) sup
F∈F

EF
[
sup
θ∈Θ

(
||g2(W, θ)||2+γ + ||g2,θ(W, θ)||2+γ + ||g2,θθ(W, θ)||2+γ

)]
<∞ for some γ > 0;

(iii) infF∈F ρmin(Ω2,F ) > 0;

(iv) infF∈F ρmin(G′1,FG1,F ) > 0.
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Assumption 3.2.(i) requires that the moment functions are smooth. Assumption 3.2.(ii) imposes

2+γ finite moment conditions on the GMM moment functions and their first and second derivatives.

Assumptions 3.2.(iii) and 3.2.(iv) are important sufficient conditions for the local identification of

the unknown parameter in GMM with valid moment conditions.

The next assumption is on the nuisance parameters of the DGP F ∈ F . Write

vF =
(
vec(G2,F )′, vech(Ω2,F )′, δ′F

)
(3.4)

for any F ∈ F . It is clear that vF includes the Jacobian matrix, the variance-covariance matrix,

and the measure of misspecification of the moment conditions EF [g∗(W, θF )] = 0r∗×1. Let

vF =
(
vec(G2,F )′, vech(Ω2,F )′

)
(3.5)

for any F ∈ F .

Assumption 3.3 The following conditions hold:

(i) For any F ∈ F with δF = 0r∗×1, there exists a constant εF > 0 such that for any δ̃ ∈ Rr∗

with 0 ≤ ||δ̃|| < εF , there is F̃ ∈ F with δ
F̃

= δ̃ and
∥∥v

F̃
− vF

∥∥ ≤ C||δ̃||κ for some κ > 0;

(ii) The set Λ ≡ {vF : F ∈ F} is closed.

Assumption 3.3.(i) requires that for any F ∈ F such that EF [g2(W, θF )] = 0r∗×1 is valid, there

are many DGPs F̃ ∈ F which are close to F . Here the closeness of any two DGPs F and F̃ is

measured by the distance between vF and v
F̃

. Assumption 3.3 (i) and (ii) are useful to derive the

exact expression of the asymptotic risk of the GMM estimator.

Example 3.1 (Linear IV Model) We study a linear IV model and provide a set of low-level

conditions that imply Assumptions 3.1, 3.2 and 3.3. The parameters of interest θ0 are the coefficients

of the endogenous regressors X in

Y = X ′θ0 + U , (3.6)

with some valid IVs Z1 ∈ Rr1 and some potentially misspecified IVs Z∗ ∈ Rr∗ such that

EF ∗ [U ] = 0, EF ∗ [Z1U ] = 0r1×1, and (3.7)

Z∗ = Uδ0 + V , with EF ∗ [V ] = 0r∗×1 and EF ∗ [V U ] = 0r∗×1, (3.8)

where F ∗ denotes the joint distribution of (X ′, Z ′1, V
′, U)′. In the reduced-form equation (3.8), δ0

is a r∗ × 1 real vector which characterizes the degree of misspecification. Let F∗ denote a class of
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distributions containing F ∗, and let Θ and ∆δ denote the parameter spaces of θ0 and δ0 respectively.

The joint distribution of W = (Y,Z ′1, Z
∗′, X ′)′ is denoted as F which is determined by θ0, δ0 and

F ∗ through the linear equations in (3.6) and (3.8).

For ease of discussion, we further assume that the random vector (X ′, Z ′1, V
′, U)′ follows the nor-

mal distribution with mean φ and variance-covariance matrix Ψ. Under the normality assumption,

each distribution F ∗ corresponds to a pair of φ and Ψ.

For notational simplicity, in Lemma 3.1 below, for any finite dimensional random vectors a1

and a2, let φaj = EF ∗ [aj ] for j = 1, 2, Γa1a2 = EF ∗ [a1a
′
2], and Ωa1a2 = EF ∗ [a1a

′
2]− φa1φ′a2 .

Lemma 3.1 Let F∗ denote the set of normal distributions which satisfies:

(i) φu = 0, Γz1u = 0r1×1 and Γvu = 0r∗×1;

(ii) infF ∗∈F∗ ρmin(Γxz1Γz1x) > 0, supF ∗∈F∗ ||φ||2 <∞ and

0 < infF ∗∈F∗ ρmin (Ψ) ≤ supF ∗∈F∗ ρmax (Ψ) <∞;

(iii) infF ∗∈F∗ inf{‖δ‖≥ε} ‖δ‖−1 ||(Γxz1Γ−1
z1z1Γz1v − Γxv)δ − Γxu|| > 0 for some ε > 0 that is small

enough;15

(iv) θ0 ∈ int(Θ) and Θ is compact and large enough such that the pseudo-true value θ∗F ∈ int(Θ);16

(v) ∆δ = [c1,∆, C1,∆] × · · · × [cr∗,∆, Cr∗,∆] where {cj,∆, Cj,∆}r
∗

j=1 is a set of finite constants with

cj,∆ < 0 < Cj,∆ for j = 1, . . . , r∗,

then Assumptions 3.1, 3.2 and 3.3 hold.

Condition (i) lists the moment conditions in (3.7) and (3.8). The inequality in Condition (ii)

rules out DGPs under which ρmin(Γxz1Γz1x) may be close to zero and (part of) the unknown

parameter θ0 is weakly identified. Condition (ii) also requires that the mean of the random vector

(X ′, Z ′1, V
′, U)′ is uniformly bounded and the eigenvalues of its variance-covariance matrix are

uniformly finite and bounded away from 0. Condition (iii) requires that the projection residual

of the vector Γxu on the subspace spanned by the matrix Γxz1Γ−1
z1z1Γz1v − Γxv is bounded away

from zero. It is a sufficient condition for Assumption 3.1.(iv), which ensures that the aggressive

estimator is inconsistent under severe misspecification. Condition (iv) is needed to derive the limit

of the aggressive estimator under misspecification. The compactness assumption of Θ is not needed

for the linear IV model. However, it is useful to verify Assumptions 3.1, 3.2 and 3.3 which do not

assume any special structure on the model. Condition (v) specifies that the parameter space of δ0

is a product space.

15The constant ε depends on the infimum and supremum in Condition (ii) and it is given in (B.3) in the Appendix.
16Specific restritions on Θ which ensures that θ∗F ∈ int(Θ) are given in (D.8) and Assumption D.1.(vi) in the

Supplemental Appendix.
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Lemma 3.1 provides simple conditions on θ0, δ0 and F∗ on which uniformity results are subse-

quently established.17

Now we get back to the general set up. For a generic estimator θ̂ of θ, consider a weighted

quadratic loss function

`(θ̂, θ) = n(θ̂ − θ)′Υ(θ̂ − θ), (3.9)

where Υ is a dθ × dθ pre-determined positive semi-definite matrix. For example, if Υ = Idθ ,

EF [`(θ̂, θF )] is the MSE of θ̂. If Υ = (Σ1,F − Σ2,F )−1 where Σk,F (k = 1, 2) is defined in (4.4), the

weighting matrix Υ rescales θ̂ by the scale of variance reduction due to the additional moments. If

Υ = EF [XiX
′
i] for regressors Xi, EF [`(θ̂, θF )] is the MSE of X ′i θ̂, an estimator of X ′iθ.

Below we compare the averaging estimator θ̂eo and the conservative estimator θ̂1. We are

interested in the bounds of the truncated finite sample risk difference

RDn(θ̂eo, θ̂1; ζ) ≡ inf
F∈F

EF [`ζ(θ̂eo, θF )− `ζ(θ̂1, θF )] and

RDn(θ̂eo, θ̂1; ζ) ≡ sup
F∈F

EF [`ζ(θ̂eo, θF )− `ζ(θ̂1, θF )], (3.10)

where

`ζ(θ̂, θF ) ≡ min{`(θ̂, θF ), ζ} (3.11)

denotes the truncated loss function with an arbitrary trimming parameter ζ. The truncated loss

function is employed to facilitate the asymptotic analysis of the bounds of the risk difference. The

finite-sample bounds in (3.10) are approximated by

AsyRD(θ̂eo, θ̂1) ≡ lim inf
ζ→∞

lim inf
n→∞

RDn(θ̂eo, θ̂1; ζ) and

AsyRD(θ̂eo, θ̂1) ≡ lim sup
ζ→∞

lim sup
n→∞

RDn(θ̂eo, θ̂1; ζ), (3.12)

which are called lower and upper bounds of the asymptotic risk difference respectively in this paper.

The averaging estimator θ̂eo asymptotically uniformly dominates the conservative estimator θ̂1 if

AsyRD(θ̂eo, θ̂1) < 0 and AsyRD(θ̂eo, θ̂1) ≤ 0. (3.13)

The bounds of the asymptotic risk difference build the uniformity over F ∈ F into the definition

by taking infF∈F and supF∈F before lim infn→∞ and lim supn→∞ respectively. Uniformity is crucial

17Similar results have been established in Section D of the Supplemental Appendix for the linear IV model when
the normality assumption on (X ′, Z′1, V

′, U)′ is relaxed. Section D of the Supplemental Appendix also provides proof
for Lemma 3.1 with and without the normality assumption.
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for the asymptotic results to give a good approximation to their finite-sample counterparts. These

uniform bounds are different from pointwise results which are obtained under a fixed DGP. The

sequence of DGPs {Fn} along which the supremum or the infimum are approached often varies with

the sample size.18 Therefore, to determine the bounds of the asymptotic risk difference, one has to

derive the asymptotic distributions of these estimators under various sequences {Fn}. Under {Fn},

the observations {Wn,i}ni=1 form a triangular array. For notational simplicity, Wn,i is abbreviated

to Wi throughout the paper.

To study the bounds of asymptotic risk difference, we consider sequences of DGPs {Fn} such

that δFn satisfies19

(i) n1/2δFn → d ∈ Rr
∗

or (ii) ||n1/2δFn || → ∞. (3.14)

Case (i) models mild misspecification, where δFn is a n−1/2-local deviation from 0r∗×1. Case (ii)

includes the severe misspecification where ‖δFn‖ is bounded away from 0 as well as the intermediate

case in which δFn → 0 and ||n1/2δFn || → ∞. To obtain a uniform approximation, all of these

sequences are necessary. Once we study the bounds of asymptotic risk difference along each of

these sequences, we show that we can glue them together to obtain the bounds of asymptotic risk

difference.

4 Averaging Weight

We start by deriving the joint asymptotic distribution of θ̂1 and θ̂2 under different degrees of

misspecification. We consider sequences of DGPs {Fn} in F such that (i) n1/2δFn → d ∈ Rr∗ or

||n1/2δFn || → ∞; and (ii) G2,Fn , Ω2,Fn and M2,Fn converges to G2,F , Ω2,F and M2,F for some F ∈ F .

20

For k = 1, 2 and any F ∈ F , define

Γk,F = −
(
G′k,FΩ−1

k,FGk,F

)−1
G′k,FΩ−1

k,F . (4.1)

Let Z2,F denote a zero mean normal random vector with variance-covariance matrix Ω2,F and

Z1,F denote its first r1 components.

18In the rest of the paper, we use {Fn} to denote {Fn ∈ F : n = 1, 2, ...}.
19Since Fn ∈ F , by Assumption 3.2.(ii), the sequence δFn in (3.14) should satisfy ‖δFn‖ ≤ C for any n.
20The requirement on the convergence of G2,Fn , Ω2,Fn and M2,Fn is not restrictive. Lemma B.7 in Appendix

B.1 shows that the sequences G2,Fn , Ω2,Fn and M2,Fn have subsequences that converge to G2,F , Ω2,F and M2,F ,
respectively, for some F ∈ F . The general result on the lower and upper bounds of the asymptotic risk difference,
Lemma B.14 in Appendix B.2, only requires to consider the subsequence {Fpn} such that G2,Fpn

, Ω2,Fpn
and M2,Fpn

are convergent, where {pn} is a subsequence of {n}. The asymptotic properties of the GMM estimators established
in this section under the full sequence of DGPs {Fn} holds trivially for its subsequence.
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Lemma 4.1 Suppose Assumptions 3.1 and 3.2 hold. Consider any sequence of DGPs {Fn} such

that vFn → vF = (vec(G2,F )′, vech(Ω2,F )′, δ′F ) for some F ∈ F , and n1/2δFn → d for d ∈ Rr∗∞.

(a) If d ∈ Rr∗, then n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→D

 ξ1,F

ξ2,F

 ≡
 Γ1,FZ1,F

Γ2,F (Z2,F + d0)

 ,

where d0 = (01×r1 , d
′)′.

(b) If ||d|| =∞, then n1/2(θ̂1 − θFn)→D ξ1,F and ||n1/2(θ̂2 − θFn)|| →p ∞.

Given the joint asymptotic distribution of θ̂1 and θ̂2, it is straightforward to study θ̂(ω) =

(1− ω)θ̂1 + ωθ̂2 if ω is deterministic. Following Lemma 4.1.(a),

n1/2(θ̂(ω)− θFn)→D ξF (ω) ≡ (1− ω)ξ1,F + ωξ2,F (4.2)

for n1/2δFn → d, where d ∈ Rr∗ . In Section E of the Supplemental Appendix, a simple calculation

shows that the asymptotic risk of θ̂(ω) is minimized at the infeasible optimal weight

ω∗F ≡
tr(Υ (Σ1,F − Σ2,F ))

d′0

(
Γ2,F − Γ∗1,F

)′
Υ
(

Γ2,F − Γ∗1,F

)
d0 + tr(Υ (Σ1,F − Σ2,F ))

, (4.3)

where Υ is the matrix specified in the loss function,

Σk,F ≡
(
G′k,FΩ−1

k,FGk,F

)−1
for k = 1, 2 and Γ∗1,F ≡ [Γ1,F ,0dθ×r∗ ] . (4.4)

To gain some intuition, consider the case where Υ = Idθ such that the MSE of θ̂(ω) is minimized

at ω∗F . In this case, the infeasible optimal weight ω∗F yields the ideal bias and variance trade off.

However, the bias depends on d, which cannot be consistently estimated. Hence, ω∗F cannot be

consistently estimated. Our solution to this problem follows the popular approach in the literature

which replaces d by an estimator whose asymptotic distribution is centered at d, see Liu (2015)

and Charkhi, Claeskens, and Hansen (2016) for similar estimators in the least square estimation

and maximum likelihood estimation problems, respectively.

The empirical analog of ω∗F is constructed as follows. First, for k = 1 and 2, replace Σk,F by its

consistent estimator Σ̂k ≡ (Ĝ′kΩ̂
−1
k Ĝk)

−1,21 where

Ĝk ≡ n−1
n∑
i=1

gk,θ(Wi, θ̂1) and Ω̂k ≡ n−1
n∑
i=1

gk(Wi, θ̂1)gk(Wi, θ̂1)′ − gk(θ̂1)gk(θ̂1)′. (4.5)

21The consistency of Σ̂k is proved in the proof of Lemma 4.2.
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Note that Ĝk and Ω̂k are based on the conservative GMM estimator θ̂1. Hence they are consistent

regardless of the degree of misspecification of the moment conditions in (1.3). Second, replace

(Γ2,F − Γ∗1,F )d0 by its asymptotically unbiased estimator n1/2(θ̂2 − θ̂1) because

n1/2(θ̂2 − θ̂1)→D (Γ2,F − Γ∗1,F ) (Z2,F + d0) , (4.6)

for d0 = (01×r1 , d
′)′ and d ∈ Rr∗ following Lemma 4.1(a). Then the empirical optimal weight takes

the form

ω̃eo ≡
tr(Υ(Σ̂1 − Σ̂2))

n(θ̂2 − θ̂1)′Υ(θ̂2 − θ̂1) + tr(Υ(Σ̂1 − Σ̂2))
, (4.7)

and the averaging GMM estimator takes the form

θ̂eo = (1− ω̃eo)θ̂1 + ω̃eoθ̂2. (4.8)

Next we consider the asymptotic distribution of θ̂eo under different degrees of misspecification.

Lemma 4.2 Suppose that Assumptions 3.1-3.3 hold. Consider any sequence of DGPs {Fn} such

that vFn → vF = (vec(G2,F )′, vech(Ω2,F )′, δ′F ) for some F ∈ F , and n1/2δFn → d for d ∈ Rr∗∞.

(a) If d ∈ Rr∗, then

ω̃eo →D ωF ≡
tr(Υ(Σ1,F − Σ2,F ))

(Z2,F + d0)′(Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )(Z2,F + d0) + tr(Υ(Σ1,F − Σ2,F ))

and

n1/2(θ̂eo − θFn)→D ξF ≡ (1− ωF )ξ1,F + ωF ξ2,F .

(b) If ||d|| =∞, then ω̃eo →p 0 and n1/2(θ̂eo − θFn)→D ξ1,F .

To study the bounds of the asymptotic risk difference between θ̂eo and θ̂1, it is important to take

into account the data-dependent nature of ω̃eo. Unlike Σ̂1 and Σ̂2, the randomness in ω̃eo is non-

negligible in the mild misspecification case (a) of Lemma 4.2. In consequence, θ̂eo does not achieve

the same bounds of asymptotic risk difference as the ideal averaging estimator (1− ω∗F )θ̂1 + ω∗F θ̂2

does. Nevertheless, below we show that θ̂eo is insured against potentially misspecified moments

because it uniformly dominates θ̂1.

5 Bounds of Asymptotic Risk Difference under Misspecification

In this section, we study the bounds of the asymptotic risk difference defined in (3.12). Note

that the asymptotic distributions of θ̂1 and θ̂eo in Lemma 4.1 and 4.2 only depend on d, G2,F and
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Ω2,F . For notational convenience, define

hF,d = (d′, vec(G2,F )′, vech(Ω2,F )′) (5.1)

for any F ∈ F and any d ∈ Rr∗∞. For the mild misspecification case, define the parameter space of

hF,d as

H = {hF,d : d ∈ Rr
∗

and F ∈ F with δF = 0r∗×1} (5.2)

where δF is defined by (1.5) for a given F .

Theorem 5.1 Suppose that Assumptions 3.1-3.3 hold. The bounds of the asymptotic risk difference

satisfy

AsyRD(θ̂eo, θ̂1) = max

{
sup
h∈H

[g(h)] , 0

}
,

AsyRD(θ̂eo, θ̂1) = min

{
inf
h∈H

[g(h)] , 0

}
,

where g(h) ≡ E[ξ
′
FΥξF − ξ′1,FΥξ1,F ], ξ1,F and ξF are given in Lemma 4.1 and Lemma 4.2 re-

spectively, and the expectation is taken under the joint normal distribution with mean zero and

variance-covariance matrix Ω2,F .

The upper (or lower) bound of the asymptotic risk difference is determined by the maximum be-

tween suph∈H [g(h)] and zero (or the minimum between infh∈H [g(h)] and zero), where suph∈H [g(h)]

(or infh∈H [g(h)]) is related to the mildly misspecified DGPs and the zero component is associated

with the severely misspecified DGPs. Since the GMM averaging estimator has the same asymp-

totic distribution as the conservative GMM estimator θ̂1 under the severely misspecified DGPs,

their asymptotic risk difference is zero.

To show that θ̂eo uniformly dominates θ̂1 following (3.13), Theorem 5.1 implies that it is suf-

ficient to show that infh∈H [g(h)] < 0 and suph∈H [g(h)] ≤ 0. We can investigate infh∈H g(h) and

suph∈H g(h) by simulating g(h). In practice, we replace G2,F and Ω2,F by their consistent esti-

mators and plot g(h) as a function of d. Even if the uniform dominance condition does not hold,

min {infh∈H [g(h)] , 0} and max {suph∈H [g(h)] , 0} quantify the most- and least-favorable scenarios

for the averaging estimator.

Theorem 5.2 Let AF ≡ Υ (Σ1,F − Σ2,F ) for any F ∈ F . Suppose that Assumptions 3.1-3.3 hold.

16



If tr(AF ) > 0 and tr(AF ) ≥ 4ρmax(AF ) for any F ∈ F with δF = 0, we have

AsyRD(θ̂eo, θ̂1) < 0 and AsyRD(θ̂eo, θ̂1) = 0.

Thus, θ̂eo uniformly dominates θ̂1.

Theorem 5.2 indicates that: (i) there exists ε1 < 0 and some finite integer nε1 such that the

minimum risk difference between θ̂eo and θ̂1 is less than ε1 for any n larger than nε1 ; (ii) for any

ε2 > 0, there exists a finite integer nε2 such that the maximum risk difference between θ̂eo and θ̂1 is

less than ε2 for any n larger than nε2 . Pre-test estimators fail to satisfy both properties (i) and (ii)

above at the same time. Take the pre-test estimator based on the J-test for example22 and consider

three scenarios: (a) the critical value is fixed for any sample size; (b) the critical value diverges

to infinity; and (c) the critical value converges to zero. In the pointwise asymptotic framework,

the J-test based on the critical values in (a), (b) and (c) leads to inconsistent (but conservative)

model selection, consistent model selection and no model selection results respectively. The pre-test

estimator based on the J-test violates property (ii) in scenarios (a) and (b), and violates property

(i) in scenario (c).

Different from the finite-sample results for the JS estimator established for the Gaussian location

model, our comparison of the two estimators θ̂eo and θ̂1 is based on the asymptotic bounds of the risk

difference. For a given sample size n, we do not provide results on this asymptotic approximation

error, and therefore our results do not state how the finite-sample upper bound RDn(θ̂eo, θ̂1; ζ)

approaches to zero as n→∞ and then ζ →∞ (e.g., from above or from below). For the Gaussian

location model, the asymptotically uniform dominance here is weaker than the classical finite-

sample results established for the JS estimator. However, the asymptotic results here apply to

general nonlinear econometric models with non-normal random variables.23

To shed light on the sufficient conditions in Theorem 5.2, let us consider a scenario similar to the

JS estimator: Σ1,F = σ2
1,F Idθ , Σ2,F = σ2

2,F Idθ , and Υ = Idθ . In this case, the sufficient conditions

become σ1,F > σ2,F and dθ ≥ 4. The first condition tr(AF ) > 0, which is reduced to σ1,F > σ2,F ,

requires that the additional moments EF [g∗(Wi, θF )] = 0 are non-redundant in the sense that they

lead to a more efficient estimator of θF . The second condition tr(AF ) ≥ 4ρmax(AF ), which is

reduced to dθ ≥ 4, requires that we are interested in the total risk of several parameters rather

than that of a single one. In a more general case where Σ1,F and Σ2,F are not proportional to the

identity matrix, the sufficient conditions are reduced to Σ1,F > Σ2,F and dθ ≥ 4 under the choice

22See Section F in the Supplemental Appendix for definition and analysis of this estimator.
23In Section A of the Appendix, we show that the averaging GMM estimator has similar finite sample dominace

results in the Gaussian location model.
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Υ = (Σ1,F −Σ2,F )−1, which rescales θ̂ by the variance reduction Σ1,F −Σ2,F . In a simple linear IV

model (Example 3.1) where Z∗i is independent of Z1,i and the regression error Ui is homoskedastic

conditional on the IVs, Σ1,F > Σ2,F requires that EF ∗ [Z∗iX ′i] and EF ∗ [Z∗i Z∗′i ] both have full rank.

6 Simulation Studies

In this section, we investigate the finite sample performance of our averaging GMM estimator

in linear IV models. In addition to the empirical optimal weight ω̃eo, we consider another averaging

estimator based on the JS type of weight. Define the positive part of the JS weight24:

ωJS = 1−

(
1− tr(Â)− 2ρmax(Â)

n(θ̂2 − θ̂1)′Υ(θ̂2 − θ̂1)

)
+

(6.1)

where (x)+ = max {0, x} and Â is the estimator of AF using Σ̂k for k = 1, 2. In the simulation

study of this paper, we consider an alternative averaging estimator with the restricted JS weight

ωR,JS = (ωJS)+ . (6.2)

By construction, ωJS ≤ 1 and 0 ≤ ωR,JS ≤ 1. We compare the finite-sample (truncated and

untruncated) MSEs of our proposed averaging estimator with the empirical optimal weight, the JS-

type of averaging estimator with the restricted weight in (6.2), the conservative GMM estimator θ̂1,

and the pre-test GMM estimator based on the J-test. The finite-sample MSE of the conservative

GMM estimator is normalized to 1. That is, we report the ratios of various MSEs to the MSE of

the conservative GMM estimator and call these ratios as relative MSEs. Three different simulation

designs are considered in this section.

6.1 Simulation Model 1

We consider a linear regression model with i.i.d. observed data

Wi = (Yi, X1,i, . . . , X6,i, Z1,i, . . . , Z12,i, Z
∗
1,i, . . . , Z

∗
6,i)
′ for i = 1, ..., n, (6.3)

where Y is the dependent variable, (X1, ..., X6) are 6 endogenous regressors, (Z1, ..., Z12) are 12

valid IVs, and (Z∗1 , ..., Z
∗
6 ) are 6 potentially invalid IVs. The data are generated as follows. The

24This formula is a GMM analog of the generalized JS type shrinkage estimator in Hansen (2016) for parametric

models. The shrinkage scalar τ is set to tr(Â)− 2ρmax(tr(Â)) in a fashion similar to the original JS estimator.

18



regression model is

Y =
6∑
j=1

θjXj + u, (6.4)

where (θ1, . . . , θ6) is set to 2.5× 11×6 and Xj is generated by

Xj = 2−1(Zj + Zj+6) + Zj+12 + εj for j = 1, . . . , 6. (6.5)

We first draw (Z1, ..., Z18, ε1, . . . , ε6, u
∗)′ from normal distribution with mean zero and variance-

covariance matrix diag(I18×18,Σ7×7) where

Σ7×7 =

 I6×6 0.25× 16×1

0.25× 11×6 1

 . (6.6)

We consider two designs for generating the structural error u in (6.4). The first design (S1

hereafter) has non-Gaussian errors. Draw η from exponential distribution with mean 1 and η is

independent of (Z1, . . . , Z18, ε1, . . . , ε6, u
∗). Generate the structural error

u = (u∗ + η0)/2, (6.7)

where η0 is the demeaned version of η to ensure that the mean of u is zero. The second design (S2

hereafter) has normal error

u = u∗. (6.8)

The potentially invalid IVs are generated by

Z∗j = (1− c2
j )

1/2Zj+12 + cj(εj + u), (6.9)

where cj ∈ [0, 1] for j = 1, . . . , 6. In this simulation study, we consider different DGPs by choosing

various values for c = (c1, ..., c6) where cj ∈ [0, 1] for j = 1, . . . , 6. Therefore,

E
[
uZ∗j

]
=

 5cj/8 under (6.7)

5cj/4 under (6.8)
. (6.10)

From the above expression, we see that Z∗j is a valid IV if cj is zero while increasing cj to 1 will

enlarge the correlation coefficient between Z∗j and u and hence the endogeneity of Z∗j .

Given the sample size n, different DGPs of the simulated data {Wi : i = 1, ..., n} are employed
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Figure 2: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S1
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estimators based on the restricted James-Stein weight, respectively.

20



Figure 3: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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in the simulation study by changing the values of (c1, ..., c6). We consider

cj = c0ωj for j = 1, . . . , 6 (6.11)

where c0 is a scalar that takes values on the grid points between 0 and 1 with the grid length

0.02, and (ω1, ..., ω6) is parametrized in two different ways. In the first one, we set ωj = 0 or 1 for

j = 1, . . . , 6 and rule out the case that ωj = 0 for all j (since this is the same as the case which sets

c0 = 0). In the second one, we consider the polar transformation and set

ω1 = sin(α1) sin(α2) sin(α3) sin(α4) sin(α5),

ωj = cos(αj−1) sin(αj)× · · · × sin(α5) for j = 2, . . . , 5,

ω6 = cos(α5), (6.12)

where α1 ∈ {π/4, 3π/4, 5π/4, 7π/4} and αj ∈ {π/4, 3π/4} for j = 2, . . . , 5. Therefore, there are

127 different values for (ω1, . . . , ω6) for each of the 51 different values of c0. For each DGP, we

consider sample size n = 50, 100, 250, 500, 1000 and use 10000 simulation repetitions.

Given the sample size and the value of c0, we report the minimum and the maximum of the

127 values of the finite sample relative MSEs for each estimator, and the weight ω̃eo in our aver-

aging estimator in the DGP with the maximum relative MSE. Given each sample size, the maxi-

mum/minimum finite sample relative MSE and the weight are plotted as functions of c0, see Figure

2 for S1 and Figure 3 for S2. In each figure, the left three panels and the right three panels include

the results with sample size n = 100 and 500, respectively.25 For each sample size, we also report

the upper bound and the lower bound of the finite sample relative MSEs (among all 127×51 DGPs)

of the averaging estimators and the pre-test estimator in Table 1.26

Our findings in the simulation designs S1 and S2 are summarized as follows. First, in both

Figure 2 and Figure 3, we see that the minimum relative MSE of the averaging GMM estimator θ̂eo

is smaller than 1 (which is the normalized finite sample MSE of the conservative GMM estimator θ̂1)

for all c0 considered in both simulation designs. The maximum relative MSE of θ̂eo is smaller than

1 when c0 is small and approaches 1 when c0 is close to 1. Table 1 provides detailed information

25We only report the untruncated MSEs with n = 100 and n = 500 here. The untruncated MSEs in S1 and S2 with
n = 50, 250 and 1000 can be found in Figure C.1 and Figure C.2 in Section C of the Appendix, and the truncated
MSEs (ζ = 1000) in S1 and S2 with n = 50, 100, 250, 500 and 1000 can be found in Figure G.1, Figure G.2, Figure
G.4 and Figure G.5 in Section G of the Supplemental Appendix. The simulation results on truncated MSEs are very
similar to what we get without truncation. The maximum finite sample bias and finite sample variance for each c0
are reported in Figure C.4 and Figure C.5 in Section C of the Appendix.

26The upper bound and the lower bound of the finite sample relative truncated MSEs are reported in Table G.1 in
Section G of the Supplemental Appendix.
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Table 1: The Lower and Upper Bounds of the Finite Sample Relative MSEs

Design S1 Design S2 Design S3
Lower Upper Lower Upper Lower Upper

θ̂oe 0.5732 0.7968 0.6113 0.8980 0.9302 1.0012

n = 50 θ̂JS 0.9755 0.9959 0.9776 0.9978 0.9995 1.0003

θ̂pret 0.4424 0.9574 0.5057 1.0973 1.0324 1.4283

θ̂oe 0.5325 0.8789 0.5513 0.9781 0.9733 1.0040

n = 100 θ̂JS 0.9208 0.9911 0.9202 0.9956 0.9996 1.0002

θ̂pret 0.3586 1.1940 0.3937 1.3539 0.9990 1.4709

θ̂oe 0.5316 0.9587 0.5384 1.0118 0.9720 1.0079

n = 250 θ̂JS 0.7591 0.9787 0.7506 0.9923 0.9999 1.0000

θ̂pret 0.3360 1.5106 0.3598 1.6392 0.9753 1.4394

θ̂oe 0.5331 0.9846 0.5355 1.0112 0.9700 1.0096

n = 500 θ̂JS 0.6443 0.9823 0.6359 0.9953 1.0000 1.0000

θ̂pret 0.3368 1.6196 0.3495 1.6937 0.9562 1.4236

θ̂oe 0.5335 0.9934 0.5341 1.0082 0.9681 1.0119

n = 1, 000 θ̂JS 0.5803 0.9890 0.5737 0.9978 1.0000 1.0000

θ̂pret 0.3395 1.6433 0.3451 1.6864 0.9473 1.3953

Note: 1. θ̂JS and θ̂pret denote the GMM averaging estimator based on the weight in (6.1) and the pre-testing GMM
estimator based on J-test with nominal size 0.01 respectively; 2. the ”Upper” and ”Lower” refer to the upper bound
and the lower bound of the finite sample relative MSEs among all DGPs considered in the simulation design given
the sample size.

on the lower and upper bounds of the relative MSE of θ̂eo. In both simulation designs S1 and S2,

the lower bound stays far below 1 while the upper bound approaches 1 with increasing sample size.

These results are predicted by our theory because the key sufficient condition is satisfied in both

S1 and S2.27 Second, the pre-test GMM estimator has non-shrinking maximum relative MSE in

S1 or S2, and therefore it fails to dominate the conservative GMM estimator θ̂1 in the asymptotic

sense. For example, when n = 500, the pre-test GMM estimator in S1 has relative MSE above

1.5 when c0 is between 0.2 and 0.4. From Table 1, we see that the upper bound of its relative

MSE does not converge to 1 with increasing sample size. It stays around 1.61 and 1.69 in S1 and

S2 respectively, when the sample size is large (e.g., n = 500 or 1000). Third, comparing the two

averaging estimators, we find that the restricted JS estimator does not reduce the MSE as much

as the averaging estimator based on ω̃eo. Fourth, the weight ω̃eo becomes close to zero when c0 is

close to 1 for large n, which is clearly illustrated by the simulation with n = 500 in both S1 and

S2. Last, the maximum relative MSE of the pre-test GMM estimator may show multiple peaks in

27It is easy to show that when δF = 0 and Υ is identity matrix, we have tr(AF ) = 4 and tr(AF )−4ρmax(AF ) = 4/3
for S1 and tr(AF ) = 8 and tr(AF )− 4ρmax(AF ) = 8/3 for S2.
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Figure 2 and Figure 3, because given c0 the Euclidean norm of (c1, . . . , c6) may be different under

the two different parametrizations of (ω1, . . . , ω6). In the polar transformation, the Euclidean norm

of (c1, . . . , c6) is c0. However, the Euclidean norm of (c1, . . . , c6) is c0(ω1 + · · ·+ ω6)1/2 in the other

design and it may take 5 different values when we set ωj = 0 or 1 for j = 1, . . . , 6 and rule out the

case that ωj = 0 for all j. This also explains the kinks of the weight ω̃eo in the averaging estimator

associated with the maximum MSE.

6.2 Simulation Model 2

In this subsection, we investigate the finite sample properties of the pre-test GMM estimator

and the averaging GMM estimators when the key uniform dominance condition in Theorem 5.2

does not hold. In this simulation design, the structural equation takes the same form as (6.4) with

(θ1, ..., θ6) = 2.5 × 11×6, but the regressors Xj (j = 1, . . . , 6) are generated in a different way. We

draw i.i.d. random vectors (Z1, ..., Z13, ε1, ..., ε5, u) from normal distribution with mean zero and

variance-covariance matrix diag(I13×13,Σ6×6), where

Σ6×6 =

 I5×5 0.25× 15×1

0.25× 11×5 1

 . (6.13)

The observed data are W = (Y,X1, ..., X6, Z6, Z7, Z8, Z
∗
1 , ..., Z

∗
5 ), where (X1, ..., X5) are exogenous

regressors and X6 is an endogenous regressor, (X1, ..., X5, Z6, Z7, Z8) are valid IVs and (Z∗1 , ..., Z
∗
5 )

are potentially invalid IVs. The exogenous variables are generated by

Xj = 3−
1
2 (Zj + Zj+1 + Zj+8), for j = 1, ..., 4,

X5 = 3−
1
2 (Z5 + Z1 + Z13). (6.14)

The endogenous variable X6 is generated by

X6 = 2−1
8∑
j=6

Zj + 10−1/2
5∑
j=1

(Zj+8 + εj). (6.15)

The potentially invalid IVs are generated by

Z∗j = (1− c2
j )

1/2Zj+8 + cj(εj + u) for j = 1, ..., 5. (6.16)
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Note that the key sufficient condition in Theorem 5.2 is not satisfied for this design.28 We call the

simulation design in this subsection as S3.

Given the sample size n, we consider different DGPs of the simulated data {Wi : i = 1, ..., n}

by changing the values of (c1, ..., c5). We consider the following parametrization

cj = c0ωj for j = 1, ..., 5 (6.17)

where c0 is a scalar that takes values on the grid points between 0 and 1 with the grid length 0.02,

(ω1, ..., ω5) is parametrized in two different ways. In the first one, we set ωj = 0 or 1 for j = 1, . . . , 5

and rule out the case that ωj = 0 for all j (since this is the same as the case which sets c0 = 0). In

the second one, we consider the polar transformation and set

ω1 = sin(α1) sin(α2) sin(α3) sin(α4),

ωj = cos(αj−1) sin(αj)× · · · × sin(α4) for j = 2, . . . , 4,

ω5 = cos(α4), (6.18)

where α1 ∈ {π/4, 3π/4, 5π/4, 7π/4} and αj ∈ {π/4, 3π/4} for j = 2, . . . , 5. Therefore, there are 63

different values for (ω1, . . . , ω5) for each of the 51 different values of c0. For each DGP, we consider

sample size n = 50, 100, 250, 500, 1000 and use 10000 simulation repetitions.

Given the sample size and the value of c0, we report the minimum and maximum of the 63 values

of the finite sample relative MSEs for each estimator, and the weight ω̃eo in our averaging estimator

in the DGP with maximum relative MSE. Given each sample size, the maximum/minimum finite

sample relative MSE and the weight are plotted as functions of c0, see Figure 4.29 For each sample

size, the upper bound and the lower bound of the finite sample relative MSEs (among all 127× 51

DGPs) of the averaging estimators and the pre-test estimator in this simulation design are also

reported in Table 1.

Our findings in this simulation design are summarized as follows. First, compared to the con-

servative GMM estimator, the improvement of the pre-test GMM estimator or the averaging GMM

estimator is small even when all the IVs Z∗j (j = 1, . . . , 5) are valid. This is because there is only

one endogenous regressor and the improvement of using Z∗j (j = 1, . . . , 5) is mainly through the

28It is easy to show that, when δF = 0, we have tr(AF ) = 0.4916 and tr(AF )− 4ρmax(AF ) = −1.4748 < 0.
29We only report the untruncated MSEs with n = 100 and n = 500 here. The untruncated MSEs in S3 with n = 50,

250 and 1000 can be found in Figure C.3 in Section C of the Appendix, and the truncated MSEs (ζ = 1000) in S3
with n = 50, 100, 250, 500 and 1000 can be found in Figure G.3 and Figure G.6 in Section G of the Supplemental
Appendix. The simulation results on truncated MSEs are very similar to what we get without truncation. The
maximum finite sample bias and finite sample variance for each c0 are reported in Figure C.6 in Section C of the
Appendix.
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Figure 4: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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estimation of its coefficient. Second, both the pre-test GMM estimator and our averaging GMM

estimator fail to dominate the conservative GMM estimator. However, the overall performance of

the averaging GMM estimator is better than the pre-test GMM estimator. For example, when the

sample size is 500, the maximum MSE of the pre-test GMM estimator is 1.4 times of that of the

conservative GMM estimator. In contrast, the maximum MSE of our averaging GMM estimator is

only slightly higher than (1.01 times of) that of the conservative GMM estimator. Third, the MSE

of the JS-type averaging estimator is identical to the conservative GMM estimator even when all

the IVs Z∗j (j = 1, . . . , 5) are valid. Therefore, this estimator performs the same as the conservative

GMM estimator. Fourth, as c0 goes to 1, the weight ω̃eo goes to zero for large sample size, which

is well illustrated by the simulation with n = 500. Last, the maximum MSE of the pre-test GMM

estimator and the weight ω̃eo in our averaging estimator may show multiple peaks for the same

reason explained in the previous subsection.

7 Conclusion

This paper studies the averaging GMM estimator that combines the conservative estimator

and the aggressive estimator with a data-dependent weight. The averaging weight is the sample

analog of an optimal non-random weight. We provide a sufficient class of drifting DGPs under

which the pointwise asymptotic results combine to yield uniform approximations to the finite-

sample risk difference between two estimators. Using this asymptotic approximation, we show that

the proposed averaging GMM estimator uniformly dominates the conservative GMM estimator for

quadratic loss functions such as the mean square errors.

Inference based on the averaging estimator is an interesting and challenging problem. As pointed

out in Pötscher (2006), the finite sample density of the averaging estimator can not be consistently

estimated, which implies that directly applying an estimator of the finite-sample density may not

yield uniformly valid inference. In addition to the uniform validity, a desirable confidence set

should have smaller volume than that obtained from the conservative moments alone. We leave

the inference issue to future investigation.
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Appendix

A Illustration in Gaussian Location Model

This section shows that in a Gaussian location model, the averaging GMM estimator dominates

the conservative GMM estimator in finite samples, i.e., it exhibits the JS phenomenon.

Suppose that we have one observation (X ′, Y ′)′ from the normal distribution

 X

Y

 ∼ N
 θ

θ + d

 , σ2I2k

 (A.1)

where σ2 is a known positive value, θ and d are k × 1 vectors, and I2k is a 2k × 2k identity matrix

(k ≥ 3). It is clear that dθ = k in model (A.1). We are interested in estimating θ.

Green and Strawderman (1991) consider the same model defined in (A.1). They propose the

following JS-type of estimator

θ̂GS = X − τσ2

(X − Y )′(X − Y )
(X − Y ) (A.2)

where τ is a real constant in (0, 2(k − 2)). Apparently, the above estimator θ̂GS is an averag-

ing estimator which combines an unbiased estimator X with a biased estimator Y with weight

τσ2 ‖X − Y ‖−2 on the biased estimator. Green and Strawderman (1991) show that when k ≥ 3,

θ̂GS has smaller MSE than the unbiased estimator X (which is the MLE of θ) for any θ ∈ Rk, any

d ∈ Rk and any σ2 > 0, and hence it uniformly dominates the MLE of θ.

Kim and White (2001), Judge and Mittelhammer (2004) and Mittelhammer and Judge (2005)

propose averaging estimators which shrink the (asymptotic) unbiased estimator toward the biased

estimator in semiparametric regression models. These papers show the dominance of the averaging

estimator over the (asymptotic) unbiased estimator in the Gaussian location models using the joint

normal distribution of the unbiased and biased estimators. In these papers, X and Y are the

unbiased and biased estimators respectively with general variance-covariance matrix that allows

for correlation between X and Y . The averaging estimator proposed in Kim and White (2001) is

θ̂KW = X −
(
c1 +

c2

(X − Y )′(X − Y )

)
(X − Y ) (A.3)

where c1 and c2 constants. When k ≥ 5, Kim and White (2001) show that there exist optimal values

for c1 and c2 such that θ̂KW dominates the unbiased estimator X. In the semiparametric setting,
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they show that these optimal values can be consistently estimated when E [Y ] = θ. In Judge and

Mittelhammer (2004) and Mittelhammer and Judge (2005), the averaging estimator takes the same

form as θ̂GS in (A.2) except τσ2 is replaced by a constant. They show that when k ≥ 5, there exists

an optimal constant under which their averaging estimator dominates the unbiased estimator X.

They provide an approximator of the infeasible constant and show that the approximator can be

consistently estimated.

We next consider our averaging GMM estimator. Let Υ be the k × k identity matrix. The

conservative GMM estimator θ̂1 = X has risk σ2tr(ΥIk) = σ2k. On the other hand, the aggressive

GMM estimator is θ̂2 = (X + Y )/2, which has risk σ2k/2 + ‖d‖2 /4. The empirical optimal weight

defined in (4.7) becomes

ω̃eo =
2kσ2

2kσ2 + (X − Y )′(X − Y )
, (A.4)

which together with the conservative and aggressive GMM estimators leads to the averaging GMM

estimator

θ̂eo = X − kσ2

2kσ2 + (X − Y )′(X − Y )
(X − Y ). (A.5)

From (A.2) and (A.5), we see that both θ̂GS and θ̂eo shrink the same unbiased estimator X to the

same biased estimator Y but with different weights.

Lemma A.1 When k ≥ 4, the averaging estimator θ̂eo defined in (A.5) satisfies

E
[
||θ̂eo − θ||2 − ||θ̂1 − θ||2

]
< 0 (A.6)

for any θ ∈ Rk, any d ∈ Rk and any σ2 > 0.

The inequality (A.6) shows that the risk of the averaging GMM estimator is strictly smaller

than that of the conservative GMM estimator if k ≥ 4, for any θ ∈ Rk, any d ∈ Rk and any σ2 > 0,

and hence it uniformly dominates the MLE of θ. The condition on k for the uniform dominance

result of our averaging estimator is slightly stronger than the condition for Green and Strawderman

(1991)’s estimator. The proof of Lemma A.1 is given in Section E of the Supplemental Appendix. It

is different from the proof for that in Green and Strawderman (1991) and Judge and Mittelhammer

(2004) because the two averaging estimators are different. But this proof is analogous to the proof

of Theorem 5.2 for the general case. Thus we put it in the Supplemental Appendix.
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B Proof of Results in Section 4 and Section 5

In Lemma 3.1, define

cρ ≡ min
F ∗∈F∗

{ρmin(Γxz1Γz1x), ρmin (Ψ)} ,

Cρ ≡ max
F ∗∈F∗

{
||φ||2, ρmax (Ψ)

}
.

C∆ ≡ sup
δ0∈∆δ

‖δ0‖2 (B.1)

Let

C∗,W ≡ 2(dθ + r2 + 1)Cρ, c∗,ρ ≡ min{1, c2
ρ} and C∗,ρ ≡ C2

∗,W (2 + C
1/2
∆ )2. (B.2)

Then, in Lemma 3.1 (iii), the constant ε is given by

ε = c∗,ρC
−1
∗,ρC

−1
∆ , (B.3)

i.e., we require the condition to hold on a set bounded away from 0 by ε. The details of the proofs

are given in Section D of the Supplemental Appendix.

B.1 Proof of the Results in Section 4

Let µn(g2(W, θ)) = n−1/2
∑n

i=1(g2(Wi, θ)−EFn [g2(Wi, θ)]). In the rest of the Appendix, we use

C to denote a generic fixed positive finite constant which does not depend on any F ∈ F or n.

Lemma B.1 Suppose that Assumption 3.2.(ii) holds and Θ is compact. Then we have

(i) supθ∈Θ ‖g2(θ)− EFn [g2(Wi, θ)]‖ = op(1);

(ii) supθ∈Θ

∥∥n−1
∑n

i=1 g2(Wi, θ)g2(Wi, θ)
′ − EFn [g2(Wi, θ)g2(Wi, θ)

′]
∥∥ = op(1);

(iii) supθ∈Θ

∥∥n−1
∑n

i=1 g2,θ(Wi, θ)− EFn [g2,θ(Wi, θ)]
∥∥ = op(1);

(iv) µn(g2(W, θ)) is stochastic equicontinuous over θ ∈ Θ;

(v) Ω
−1/2
2,Fn

µn(g2(W, θFn))→D N(0r2×1, Ir2).

Proof of Lemma B.1. See Lemma 11.3-11.5 of Andrews and Cheng (2013).

Define Mk,F (θ) = EF [gk(W, θ)], Gk,F (θ) = EF [gk,θ(W, θ)] and Ωk,F (θ) =VarF [gk(W, θ)], for

any F ∈ F , for any θ ∈ Θ and for k = 1, 2. The next lemma shows that M2,F (·), G2,F (·) and

Ω2,F (·) are Lipschitz continuous uniformly over F ∈ F .

Lemma B.2 Under Assumptions 3.2.(i)-(ii), for any F ∈ F and any θ1, θ2 ∈ Θ, we have:
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(i) ‖M2,F (θ1)−M2,F (θ2)‖ ≤ C ‖θ1 − θ2‖;

(ii) ‖G2,F (θ1)−G2,F (θ2)‖ ≤ C ‖θ1 − θ2‖;

(iii) ‖Ω2,F (θ1)− Ω2,F (θ2)‖ ≤ C ‖θ1 − θ2‖.

Proof of Lemma B.2 is included in Section E of the Supplemental Appendix.

Lemma B.3 Suppose that Assumptions 3.1.(i)-(ii) and 3.2.(i)-(ii) hold. Then for any sequence

of DGPs {Fn}, we have

θ̃1 − θFn = op(1) and Ω2 = Ω2,Fn + op(1), (B.4)

where θ̃1 is a preliminary estimator defined as

θ̃1 = arg min
θ∈Θ

g1(θ)′g1(θ) (B.5)

and Ω2 is defined in (E.13) of the Supplemental Appendix.

Proof of Lemma B.3 is included in Section E of the Supplemental Appendix.

Lemma B.4 Suppose that Assumptions 3.1.(i)-(ii) and 3.2 hold. Then for any sequence of DGPs

{Fn}, we have

n1/2(θ̂1 − θFn) = Γ1,Fnµn(g1(W, θFn)) + op(1), (B.6)

where Γ1,Fnµn(g1(W, θFn)) ≡ −
(
G′1,FnΩ−1

1,Fn
G1,Fn

)−1
G′1,FnΩ−1

1,Fn
= Op(1).

Proof of Lemma B.4 is included in Section E of the Supplemental Appendix.

Lemma B.5 Suppose that Assumptions 3.1.(iii) and 3.2.(i)-(iii) hold. Then for any sequence of

DGPs {Fn}, we have

θ̂2 − θ∗Fn = op(1). (B.7)

Proof of Lemma B.5 is included in Section E of the Supplemental Appendix.

Lemma B.6 Suppose that Assumptions 3.1.(i)-(ii) and 3.2.(i)-(iii) hold. Consider any sequence

of DGPs {Fn} such that δFn = o(1). Then we have

θ̂2 − θFn = op(1). (B.8)
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If we further have Assumption 3.2.(iv), then

n1/2(θ̂2 − θFn) = (Γ2,Fn + op(1))
{
µn(g2(W, θFn)) + n1/2δ2,Fn

}
+ op(1), (B.9)

where Γ2,Fn = −
(
G′2,FnΩ−1

2,Fn
G2,Fn

)−1
G′2,FnΩ−1

2,Fn
and δ2,Fn = (01×r1 , δ

′
Fn

)′.

Proof of Lemma B.6 is included in Section E of the Supplemental Appendix.

Lemma B.7 Under Assumptions 3.2.(ii) and 3.3.(ii), for any sequence of DGPs {Fpn} with Fpn ∈

F where {pn} is a subsequence of {n}, there is a subsequence {p∗n} of {pn} such that vFp∗n
(θFp∗n

)→

vF (θF ) as p∗n →∞, where F ∈ F .

Proof of Lemma B.7. Recall that Λ = {vF : F ∈ F}. By Assumptions 3.2.(ii) and 3.3.(ii), Λ is

compact. Hence for any sequence
{
vFpn (θFpn )

}
in Λ, it has a convergent subsequence {vFp∗n (θFp∗n

)}

such that vFp∗n
(θFp∗n

)→ vF (θF ) as p∗n →∞, where F ∈ F .

Lemma B.8 Suppose that Assumptions 3.1.(i)-(ii) and 3.2 hold. Consider any sequence of DGPs

{Fn} such that vFn → vF for some F ∈ F , and n1/2δFn → d for d ∈ Rr∗. Then

 n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→D

 ξ1,F

ξ2,F

 ≡
 Γ1,FZ1,F

Γ2,F (Z2,F + d0)

 ,

where d0 = (01×r1 , d
′)′.

Proof of Lemma B.8. In the proof, we use

G2,Fn → G2,F and Ω2,Fn → Ω2,F (B.10)

for some F ∈ F , which is assumed in the lemma. Under Assumptions 3.1.(i)-(ii) and 3.2, for the

sequence of DGPs {Fn} considered in the lemma, we can apply Lemma B.4 and Lemma B.6 to

deduce that n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

 =

 Γ1,Fnµn(g1(W, θFn))

(Γ2,Fn + op(1))
{
µn(g2(W, θFn)) + n1/2δ2,Fn

}
+ op(1), (B.11)

where δ2,Fn = (01×r1 , δ
′
Fn

)′. By (B.10) and Assumption 3.2, we have

Γ1,Fn = Γ1,F + o(1) and Γ2,Fn = Γ2,F + o(1) (B.12)
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where Γk,F = −
(
G′k,FΩ−1

k,FGk,F

)−1
G′k,FΩ−1

k,F for k = 1, 2. Collecting the results in Lemma B.1.(v),

(B.11) and (B.12), and then applying the continuous mapping theorem (CMT), we have

 n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→D

 Γ∗1,F

Γ2,F

 (Z2,F + d0) , (B.13)

where Z2,F ∼ N(0r2×1,Ω2,F ), Γ∗1,F = (Γ1,F ,0dθ×r∗) and d0 = (01×r1 , d
′)′. The claimed result

follows from (B.13) and the definitions of Γ∗1,F and Z2,F .

Proof of Lemma 4.1. The claimed result in Part (a) has been proved in Lemma B.8.

We next consider the case that n1/2δFn → d with ||d|| =∞. Note that the results in (B.6) and

(B.12) do not depend on ||d|| <∞ or ||d|| =∞. Using (B.6), (B.12), Lemma B.1.(v) and the CMT,

we have

n1/2(θ̂1 − θFn)→D Γ1,FZ1,F . (B.14)

To study the properties of θ̂2, we have to consider two separate scenarios: (1) δFn = o(1); and

(2) ‖δFn‖ > cδ for some cδ > 0. In scenario (1), Assumption 3.2, Lemma B.1.(v) and Lemma B.6

imply that

n1/2(θ̂2 − θFn) = (Γ2,Fn + op(1))n1/2δFn +Op(1). (B.15)

By Assumption 3.1.(iv) and ||n1/2δFn || → ∞,

nδ′FnΓ′2,FnΓ2,FnδFn ≥ C−2nδ′FnδFn →∞ (B.16)

which together with (B.15) implies that ||n1/2(θ̂2 − θFn)|| →p ∞.

Finally, we consider the scenario (2) where ‖δFn‖ > cδ. By Assumption 3.1.(iv),

||G′2,FnΩ−1
2,Fn

δFn || > C−1 ‖δFn‖ > cδC
−1 (B.17)

for any n. As θ∗Fn is the minimizer of QFn(θ), it has the following first order condition

0dθ×1 = G2,Fn(θ∗Fn)′Ω−1
2,Fn

M2,Fn(θ∗Fn), (B.18)
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which implies that

G′2,FnΩ−1
2,Fn

δFn = G2,Fn(θFn)′Ω−1
2,Fn

M2,Fn(θFn)−G2,Fn(θ∗Fn)′Ω−1
2,Fn

M2,Fn(θ∗Fn)

=
[
G2,Fn(θFn)−G2,Fn(θ∗Fn)

]′
Ω−1

2,Fn
M2,Fn(θFn)

+G2,Fn(θ∗Fn)′Ω−1
2,Fn

[
M2,Fn(θFn)−M2,Fn(θ∗Fn)

]
. (B.19)

By Lemma B.2, the Cauchy-Schwarz inequality and Assumption 3.2.(ii)-(iii), we have

∥∥∥[G2,Fn(θFn)−G2,Fn(θ∗Fn)
]′

Ω−1
2,Fn

M2,Fn(θFn)
∥∥∥

≤
∥∥G2,Fn(θFn)−G2,Fn(θ∗Fn)

∥∥∥∥∥Ω−1
2,Fn

M2,Fn(θFn)
∥∥∥ ≤ C ∥∥θFn − θ∗Fn∥∥ , (B.20)

where C is a fixed constant. Similarly, we have

∥∥∥G2,Fn(θ∗Fn)′Ω−1
2,Fn

[
M2,Fn(θFn)−M2,Fn(θ∗Fn)

]∥∥∥
≤

∥∥M2,Fn(θFn)−M2,Fn(θ∗Fn)
∥∥∥∥∥Ω−1

2,Fn
G2,Fnθ

∗
Fn)
∥∥∥ ≤ C ∥∥θFn − θ∗Fn∥∥ . (B.21)

Combining the results in (B.19), (B.20) and (B.21), and using the triangle inequality, we have

∥∥θFn − θ∗Fn∥∥ ≥ cδC (B.22)

for some fixed constant C. Using θ̂2 = θ∗Fn +op(1) (which is proved in Lemma B.5) and the triangle

inequality, we obtain

∥∥∥θ̂2 − θFn
∥∥∥ ≥ ∣∣∣||θ̂2 − θ∗Fn || −

∥∥θ∗Fn − θFn∥∥∣∣∣ =
∥∥θ∗Fn − θFn∥∥ (1 + op(1)), (B.23)

which together with (B.22) implies that n1/2||θ̂2 − θFn || →p ∞. This finishes the proof.

Lemma B.9 (a) Γ∗1,Fd0 = 0dθ×1; (b) Γ∗1,FΩ2,FΓ∗′1,F = Σ1,F ; (c) Γ∗1,FΩ2,FΓ′2,F = Σ2,F ; (d) Γ2,FΩ2,FΓ′2,F =

Σ2,F .

Proof of Lemma B.9 is included in Section E of the Supplemental Appendix.

B.2 Proof of the Results in Section 5

We first present some generic results on the bounds of asymptotic risk difference between two

estimators under some high-level conditions. Then we apply these generic results to the two specific
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estimators we consider in this paper: θ̂eo and θ̂1. The proof uses the subsequence techniques used

to show the asymptotic size of a test in Andrews, Cheng, and Guggenberger (2011) but we adapt

the proof and notations to the current setup and extend results from test to estimators.

Recall that hF,d = (d′, vec(G2,F )′, vech(Ω2,F )′) and vF = (vec(G2,F )′, vech(Ω2,F )′) for any F ∈ F

and any d ∈ Rr∗∞. We have defined

H = {hF,d : d ∈ Rr
∗

and F ∈ F with δF = 0r∗×1} (B.24)

where δF is defined by (1.5) for a given F . Define

H∗∞ = {hF,d : d ∈ Rr
∗
∞ with ||d|| =∞ and F ∈ F}. (B.25)

Let dh = r∗ + dθr2 + (r2 + 1)r2/2. It is clear that hF,d is a dh-dimensional vector.

Condition B.1 (i) For any sequence of DGPs {Fpn} with Fpn ∈ F where {pn} is a subsequence

of {n}, there exists a subsequence {p∗n} of {pn} and some F ∈ F such that vFp∗n
→ vF as p∗n →∞;

(ii) M1,F (θ) = 0r1×1 has a unique solution at θF ∈ Θ for any F ∈ F ;

(iii) M2,F (·) is uniform equicontinuous over F ∈ F ;

(iv) for any subsequence {pn} of {n}n∈N, if (pn)1/2δFpn → d for d ∈ Rr∗∞ and vFpn → vF , then

lim
n→∞

EFpn [`ζ(θ̂, θFpn )] = Rζ(hF,d) and lim
n→∞

EFpn [`ζ(θ̃, θFpn )] = R̃ζ(hF,d)

where Rζ(hF,d) and R̃ζ(hF,d) are some non-negative functions that are bounded from above by ζ for

any F ∈ F and any d ∈ Rr∗∞;

(v) for any F ∈ F with δF = 0r∗×1, there exists a constant εF > 0 such that for any δ̃ ∈ Rr∗ with

0 ≤ ||δ̃|| < εF , there is F̃ ∈ F with δ
F̃

= δ̃ and ||vF − vF̃ || ≤ C||δ̃||
κ for some κ > 0;

(vi) for any hF,d ∈ H∗∞ and h
F,d̃
∈ H∗∞, we have

Rζ(hF,d) = Rζ(hF,d̃) and R̃ζ(hF,d) = R̃ζ(hF,d̃)

for any ζ > 0.

Condition B.1.(i) requires that for any sequence of {vFpn}, it has a convergent subsequence

{vFp∗n} with limit being vF for some F ∈ F . This condition is verified under Assumptions 3.2.(ii)

and 3.3.(ii) in Lemma B.7. Condition B.1.(ii) is the unique identification condition of θF which

holds under Assumptions 3.1.(i)-(ii). Condition B.1.(iii) holds under Assumption 3.2.(ii) by Lemma
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B.2. Condition B.1.(iv) is a key assumption to derive an explicit upper bound of asymptotic risk.

This condition can be verified by using Lemma 4.1 as we shall show in the proof of Theorem 5.1.

Condition B.1.(v) enables us to show that the upper bound we derived for the asymptotic risk is

also a lower bound. This condition is assumed in Assumption 3.3.(i). Condition B.1.(vi), in our

context, requires that the asymptotic (truncated) risk of θ̂ (or θ̃) under the subsequences of DGPs

{Fpn} satisfying the restrictions in Condition B.1.(iv) are identical whenever (pn)1/2δFpn → d with

||d|| =∞. Condition B.1 is verified in the proof of Theorem 5.1 below.

Lemma B.10 Under Conditions B.1.(i) - B.1.(iv), we have

AsyRζ(θ̂) ≤ max

{
sup
h∈H

Rζ(h), sup
h∈H∗∞

Rζ(h)

}
, (B.26)

where AsyRζ(θ̂) ≡ lim sup
n→∞

supF∈F EF [`ζ(θ̂, θF )].

Proof of Lemma B.10. Let {Fn} be a sequence such that

lim sup
n→∞

EFn [`ζ(θ̂, θFn)] = lim sup
n→∞

(
sup
F∈F

EF [`ζ(θ̂, θF )]

)
≡ AsyRζ(θ̂). (B.27)

Such a sequence always exists by the definition of supremum. The sequence {EFn [`ζ(θ̂, θFn)]: n ≥ 1}

may not converge. However, by the definition of limsup, there exists a subsequence of {n}n∈N, say

{pn}, such that {EFpn [`ζ(θ̂, θFpn )]: n ≥ 1} converges and

lim
n→∞

EFpn [`ζ(θ̂, θFpn )] = AsyRζ(θ̂). (B.28)

Below we show that for any subsequence {pn} of {n}n∈N such that {EFpn [`ζ(θ̂, θFpn )]: n ≥ 1} is

convergent, there exists a subsequence {p∗n} of {pn} such that

lim
n→∞

EFp∗n [`ζ(θ̂, θFp∗n
)] = Rζ(h) for some h ∈ H or H∗∞. (B.29)

Because limn→∞ EFp∗n [`ζ(θ̂, θFp∗n
)] = limn→∞ EFpn [`ζ(θ̂, θFpn )], which combined with (B.28) and

(B.29) implies that

AsyRζ(θ̂) = Rζ(h) for some h ∈ H or H∗∞. (B.30)

The desired result in (B.26) follows immediately by (B.30).

To show that there exists a subsequence {p∗n} of {pn} such that (B.29) holds, it suffices to show

that for any sequence {Fn} and any subsequence {pn} of {n}n∈N, there exists a subsequence {p∗n}
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of {pn} for which we have

(p∗n)1/2δFp∗n
→ d for d ∈ Rr

∗
∞ and vFp∗n

→ vF (B.31)

for some F ∈ F . If (B.31) holds, then we can use Condition B.1.(iv) to deduce that

lim
n→∞

EFp∗n [`ζ(θ̂, θFp∗n
)] = Rζ(hF,d) (B.32)

for the sequence of DGPs {Fp∗n} that satisfies (B.31). As d ∈ Rr∗∞, we have either ‖d‖ < ∞ or

‖d‖ = ∞. In the first case, ‖d‖ < ∞ together with (p∗n)1/2δFp∗n
→ d and δFp∗n

→ δF (which is

implied by vFp∗n
→ vF ) implies that δF = 0r∗×1, which implies that hF,d ∈ H by the definition of

H. In the second case, hF,d ∈ H∗∞ by the definition of H∗∞. We have proved that hF,d in (B.32)

belongs either to H or H∗∞ which together with (B.32) proves (B.29).

Finally, we show that for any sequence {Fn} and any subsequence {pn} of {n}n∈N, there ex-

ists a subsequence {p∗n} of {pn} for which (B.31) holds. Let δpn,j denote the j-th component

of δpn and p1,n = pn for any n ≥ 1. For j = 1, either (a) lim supn→∞ |p
1/2
j,n δpj,n,j | < ∞; or

(b) lim supn→∞ |p
1/2
j,n δpj,n,j | = ∞. If (a) holds, then for some subsequence {pj+1,n} of {pj,n},

p
1/2
j+1,nδpj+1,n,j → dj for some dj ∈ R. If (b) holds, then for some subsequence {pj+1,n} of {pj,n},

p
1/2
j+1,nδpj+1,n,j → ∞ or −∞. As r∗ is a fixed positive integer, we can apply the same arguments

successively for j = 1, ..., r∗ to obtain a subsequence {pr∗,n} of {pn} such that (pr∗,n)1/2δpr∗,n →

d ∈ Rr∗∞. By Condition B.1.(i), we know that there exists a subsequence {p∗n} of {pr∗,n} such that

vp∗n → vF for some F ∈ F , which finishes the proof of (B.31).

Lemma B.11 Suppose that Condition B.1.(v) holds. Then (i) for any hF,d ∈ H, there exists a

sequence of DGPs {Fn} with Fn ∈ F such that

n1/2δFn → d, G2,Fn → G2,F and Ω2,Fn → Ω2,F ; (B.33)

(ii) for any hF,d ∈ H∗∞, there exists a sequence of DGPs {Fn} with Fn ∈ F such that

||n1/2δFn || → ∞, G2,Fn → G2,F , Ω2,Fn → Ω2,F and δFn → δF . (B.34)

Proof of Lemma B.11. (i) By the definition of H, we have δF = 0r∗×1 for any F such that

hF,d ∈ H. Let NεF be the smallest n such that ‖d‖n−1/2 < εF . By Condition B.1.(v), for any
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n ≥ NεF we can find a DGP Fn such that

δFn = n−1/2d and ‖vFn − vF ‖ ≤ n−κ/2C||d||κ. (B.35)

For any n < NεF such that ‖d‖n−1/2 ≥ εF , we let Fn = F . The desired properties in (B.33) holds

under the constructed sequence of DGPs {Fn} by (B.35), because C is a fixed constant and κ > 0.

(ii) For any hF,d ∈ H∗∞, we have either δF = 0r∗×1 or ||δF || > 0. We first consider the case

that δF = 0r∗×1. Let 1r∗×1 denote the r∗ × 1 vector of ones. Let NεF be the smallest n such that

n−1/4(r∗)1/2 < εF . By Condition B.1.(v), for any n ≥ NεF we can find a DGP Fn such that

δFn = n−1/41r∗×1 and
∥∥vFpn − vF∥∥ ≤ Cn−κ/4(r∗)κ/2. (B.36)

For any n < NεF such that n−1/4(r∗)1/2 ≥ εF , we let Fn = F . The desired properties in (B.34)

holds under the constructed sequence of DGPs {Fn} by (B.36), because C is a fixed constant and

κ > 0. When ||δF || > 0, we define a trivial sequence of DGPs {Fn} as Fn = F for any n. It is clear

that (B.34) holds trivially in this case.

Lemma B.12 Under Condition B.1, we have

AsyRζ(θ̂) = max

{
sup
h∈H

Rζ(h), sup
h∈H∗∞

Rζ(h)

}
. (B.37)

Proof of Lemma B.12. In view of the upper bound in (B.26) in Lemma B.10, it is sufficient to

show that

AsyRζ(θ̂) ≥ max

{
sup
h∈H

Rζ(h), sup
h∈H∗∞

Rζ(h)

}
. (B.38)

First, we note that for any hd,F = (d′, vec(G2,F )′, vech(Ω2,F )′) ∈ H, there exists a sequence

{Fn ∈ F : n ≥ 1} such that

n1/2δFn → d ∈ Rr
∗

and vFn → vF (B.39)

by Lemma B.11.(i). The sequence EFn [`ζ(θ̂, θFn)] may not be convergent, but there exists a subse-

quence {pn} of n such that EFpn [`ζ(θ̂, θFpn )] is convergent and

lim
n→∞

EFpn [`(θ̂, θFpn )] = lim sup
n→∞

EFn [`(θ̂, θFn)]. (B.40)
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As {pn} is a subsequence of {n}n∈N, by (B.39)

(pn)1/2δFpn → d ∈ Rr
∗

and vFpn → vF . (B.41)

By Condition B.1.(iv), we have that

lim
n→∞

EFpn [`(θ̂, θFpn )] = Rζ(hF,d), (B.42)

which combined with (B.40) and the definition of AsyRζ(θ̂) gives

AsyRζ(θ̂) = lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂, θF )] ≥ lim sup
n→∞

EFn [`(θ̂, θFn)] = Rζ(hF,d). (B.43)

Second, consider any hd,F = (d′, vec(G2,F )′, vech(Ω2,F )′) ∈ H∗∞. By Lemma B.11.(ii), there

exists a sequence of DGPs {Fn} such that

||n1/2δFn || → ∞ and vFn → vF . (B.44)

Using the same arguments in proving (B.40) to (B.42), we can show that for some subsequence

{pn} of {n}n∈N,

|p1/2
n δFpn || → ∞ and vpn → vF (B.45)

and

lim sup
n→∞

EFn [`(θ̂, θFn)] = lim
n→∞

EFpn [`(θ̂, θFpn )] = Rζ(hF,d). (B.46)

for ||d|| =∞ by Conditions B.1.(vi). By the definition of AsyRζ(θ̂) and (B.46),

AsyRζ(θ̂) = lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂, θF )] ≥ lim sup
n→∞

EFn [`(θ̂, θFn)] = Rζ(hF,d). (B.47)

Combining the results in (B.43) and (B.47), we immediately get (B.37).

Lemma B.13 Under Conditions B.1.(i) - B.1.(iv), the upper and lower bounds of the asymptotic

risk difference between θ̂ and θ̃ satisfy

AsyRD(θ̂, θ̃) ≤ lim
ζ→∞

(
max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
, (B.48)

AsyRD(θ̂, θ̃) ≥ lim
ζ→∞

(
min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
, (B.49)
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where

R̃ζ(h) ≡ E[min
{
ξ′1,FΥξ1,F , ζ

}
] and Rζ(h) ≡

 E
[
min

{
ξ
′
FΥξF , ζ

}]
, ‖d‖ <∞

E
[
min

{
ξ′1,FΥξ1,F , ζ

}]
, ‖d‖ =∞

for any h ∈ H ∪H∗∞.

Proof of Lemma B.13. Define

Rζ(H,H
∗
∞) ≡ max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
, (B.50)

Rζ(H,H
∗
∞) ≡ min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
. (B.51)

By the definition of AsyRD(θ̂, θ̃), to show (B.48) it is sufficient to show that for any ζ > 0

lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂, θF )− `ζ(θ̃, θF )] ≤ Rζ(H,H∗∞), (B.52)

which can be proved using the same arguments in the proof of Lemma B.10 (but replacing `ζ(θ̂, θF )

and Rζ(h) by `ζ(θ̂, θF ) − `ζ(θ̃, θF ) and Rζ(h) − R̃ζ(h) respectively). Similarly by the definition of

AsyRD(θ̂, θ̃), for (B.49) it is sufficient to show that for any ζ > 0

lim inf
n→∞

inf
F∈F

EF [`ζ(θ̂, θF )− `ζ(θ̃, θF )] ≥ Rζ(H,H∗∞), (B.53)

which can be proved using the same arguments in the proof of Lemma B.10 (but replacing lim supn,

supF∈F , `ζ(θ̂, θF ) and Rζ(h) by lim infn, infF∈F , `ζ(θ̂, θF ) − `ζ(θ̃, θF ) and Rζ(h) − R̃ζ(h) respec-

tively).

Lemma B.14 Under Condition B.1, the upper and lower bounds of the asymptotic risk difference

between θ̂ and θ̃ have the following representations:

AsyRD(θ̂, θ̃) = lim
ζ→∞

(
max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
, (B.54)

AsyRD(θ̂, θ̃) = lim
ζ→∞

(
min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
. (B.55)
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Proof of Lemma B.14. By Lemma B.13, it is sufficient to show that

lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂, θF )− `ζ(θ̃, θF )] ≥ Rζ(H,H
∗
∞), (B.56)

lim inf
n→∞

inf
F∈F

EF [`ζ(θ̂, θF )− `ζ(θ̃, θF )] ≤ Rζ(H,H
∗
∞), (B.57)

for any ζ > 0. (B.56) can be proved using the same arguments in the proof of Lemma B.12 by

replacing `ζ(θ̂, θF ) and Rζ(h) by `ζ(θ̂, θF ) − `ζ(θ̃, θF ) and Rζ(h) − R̃ζ(h) respectively. Similarly,

(B.57) can be proved using the same arguments in the proof of Lemma B.12 by replacing lim supn,

supF∈F , `ζ(θ̂, θF ) and Rζ(h) by lim infn, infF∈F , `ζ(θ̂, θF )−`ζ(θ̃, θF ) and Rζ(h)−R̃ζ(h) respectively.

Lemma B.15 Under Assumptions 3.2.(ii) and 3.2.(iv), we have

sup
h∈H

E[(ξ′1,FΥξ1,F )2] ≤ C and sup
h∈H

E[(ξ
′
FΥξF )2] ≤ C. (B.58)

Lemma B.16 Let gζ(h) ≡ E
[
min{ξ′FΥξF , ζ} −min

{
ξ′1,FΥξ1,F , ζ

}]
. Under Assumptions 3.2.(ii)

and 3.2.(iv), we have

lim
ζ→∞

sup
h∈H

[|gζ(h)− g(h)|] = 0 (B.59)

where suph∈H [|g(h)|] ≤ C.

Proof of Theorem 5.1. The proof consists of two steps. The first step is to apply Lemma B.14

to show (B.60) and (B.61) below, and the second step is to apply Lemma B.16 to show (B.75) and

(B.76) below.

In the first step, we apply Lemma B.14 with θ̂ = θ̂eo and θ̃ = θ̂1 to show that

AsyRD(θ̂eo, θ̂1) = lim
ζ→∞

max

{
sup
h∈H

[gζ(h)] , 0

}
and (B.60)

AsyRD(θ̂eo, θ̂1) = lim
ζ→∞

min

{
inf
h∈H

[gζ(h)] , 0

}
. (B.61)

To prove (B.60) and (B.61), we now verify Condition B.1 under Assumptions 3.1-3.3. Condition

B.1.(i) is verified by Lemma B.7 under Assumptions 3.2.(ii) and 3.3.(ii). Condition B.1.(ii) is
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implied by Assumptions 3.1.(i) and 3.1.(ii). Condition B.1.(iii) is implied by Assumptions 3.2.(i)-

(ii) as a result of Lemma B.2. Condition B.1.(v) is assumed in Assumption 3.3.(ii). We next verify

Conditions B.1.(iv) and B.1.(vi).

Consider any sequence of DGPs {Fpn} with

(pn)1/2δFpn → d for d ∈ Rr
∗
∞ and vFpn → vF (B.62)

for some F ∈ F , where {pn} is a subsequence of {n}n∈N. First, we consider the case that d ∈ Rr∗ .

By Lemma 4.1.(a) and 4.2.(a),

(pn)1/2(θ̂1 − θFpn )→D ξ1,F and (pn)1/2(θ̂eo − θFpn )→D ξF (B.63)

which combined with the continuous mapping theorem implies that

`(θ̂1, θFpn )→D ξ′1,FΥξ1,F and `(θ̂eo, θFpn )→D ξ
′
FΥξF . (B.64)

Since Υ is positive semi-definite, ξ′1,FΥξ1,F and ξ
′
FΥξF are both non-negative. The function fζ(x) =

min {x, ζ} is a bounded continuous function for x ≥ 0. By (B.64) and the Portmanteau Lemma

(see Lemma 2.2 in van der Vaart (1998)),

EFpn [`ζ(θ̂eo, θFpn )]→ E
[
min{ξ′FΥξF , ζ}

]
and EFpn [`ζ(θ̂1, θFpn )]→ E

[
min{ξ′1,FΥξ1,F , ζ}

]
. (B.65)

Second, we consider the case that ‖d‖ =∞. Then under Lemma 4.1.(b) and 4.2.(b),

(pn)1/2(θ̂1 − θFpn )→D ξ1,F and (pn)1/2(θ̂eo − θFpn )→D ξ1,F . (B.66)

Using the same arguments in showing (B.65), we get

EFpn [`ζ(θ̂eo, θFpn )]→ E
[
min{ξ′1,FΥξ1,F , ζ}

]
and EFpn [`ζ(θ̂1, θFpn )]→ E

[
min{ξ′1,FΥξ1,F , ζ}

]
.

(B.67)

Define

R̃ζ(hF,d) = E
[
min{ξ′1,FΥξ1,F , ζ}

]
and Rζ(hF,d) =

 E[min{ξ′FΥξF , ζ}], ‖d‖ <∞

E
[
min{ξ′1,FΥξ1,F , ζ}

]
, ‖d‖ =∞

. (B.68)

Collecting the results in (B.65) and (B.67), we deduce that under the sequence of DGPs {Fpn}
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satisfying (B.62),

EFpn [`ζ(θ̂eo, θFpn )]→ Rζ(hF,d) and EFpn [`ζ(θ̂1, θFpn )]→ R̃ζ(hF,d), (B.69)

where Rζ(hF,d) and R̃ζ(hF,d) are non-negative and bounded from above by ζ for any d ∈ Rr∗∞ and

any F ∈ F . This verifies Condition B.1.(iv).

By definition, R̃ζ(hF,d) in (B.68) does not depend on d for any F . Moreover, for any d and d̃

with ||d|| =∞ and ||d̃|| =∞, by the definition of Rζ(hF,d) in (B.69),

Rζ(hF,d) = E
[
min{ξ′1,FΥξ1,F , ζ}

]
= Rζ(hF,d̃). (B.70)

Hence, Condition B.1.(vi) is also verified.

We next apply Lemma B.14 to get (B.60) and (B.61) above. By (B.68),

Rζ(h)− R̃ζ(h) = E[min{ξ′FΥξF , ζ}]− E[min{ξ′1,FΥξ1,F , ζ}] for any h ∈ H (B.71)

and

Rζ(h)− R̃ζ(h) = E
[
min{ξ′1,FΥξ1,F , ζ}

]
− E

[
min{ξ′1,FΥξ1,F , ζ}

]
= 0 for any h ∈ H∗∞. (B.72)

By Lemma B.14, (B.71) and (B.72), we have

AsyRD(θ̂eo, θ̂1) = lim
ζ→∞

max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}

= lim
ζ→∞

max

{
sup
h∈H

E
[
min{ξ′FΥξF , ζ} −min{ξ′1,FΥξ1,F , ζ}

]
, 0

}
(B.73)

and

AsyRD(θ̂eo, θ̂1) = lim
ζ→∞

min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
= lim

ζ→∞
min

{
inf
h∈H

E
[
min{ξ′FΥξF , ζ} −min{ξ′1,FΥξ1,F , ζ}

]
, 0

}
, (B.74)

which proves (B.60) and (B.61).
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In the second step, we show that

lim
ζ→∞

max

{
sup
h∈H

[gζ(h)] , 0

}
= max

{
sup
h∈H

[g(h)] , 0

}
, and (B.75)

lim
ζ→∞

min

{
inf
h∈H

[gζ(h)] , 0

}
= min

{
inf
h∈H

[g(h)] , 0

}
. (B.76)

By Lemma B.16,

lim
ζ→∞

sup
h∈H

[gζ(h)] = sup
h∈H

[g(h)] and lim
ζ→∞

inf
h∈H

[gζ(h)] = inf
h∈H

[g(h)] , (B.77)

where suph∈H [g(h)] and infh∈H [g(h)] are finite real numbers. Let f(x) = max(x, 0) and f(x) =

min(x, 0). It is clear that f(x) and f(x) are continuos function on R. The asserted results in (B.75)

and (B.76) follow by (B.77), and the continuity of f(x) and f(x).

Proof of Theorem 5.2. For any F ∈ F , define

BF = (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F ) and DF = (Γ2,F − Γ∗1,F )′ΥΓ∗1,F . (B.78)

Recall that we have defined AF = Υ (Σ1,F − Σ2,F ) in Theorem 5.2. By the definition of ξF ,

E[ξ
′
FΥξF ] = tr(ΥΣ1,F ) + 2tr(AF )J1,F + tr(AF )2J2,F (B.79)

where

J1,F = E

[
Z ′d,2,FDFZd,2,F

Z ′d,2,FBFZd,2,F + tr(AF )

]
and J2,F = E

[
Z ′d,2,FBFZd,2,F

(Z ′d,2,FBFZd,2,F + tr(AF ))2

]
. (B.80)

We provide a upper bound for J1,F defined in (B.80). Define a function

η(x) ≡ x

x′BFx+ tr(AF )
for any x ∈ Rr2 . (B.81)

Its derivative is
∂η(x)′

∂x
=

1

x′BFx+ tr(AF )
Ir2 −

2BF

(x′BFx+ tr(AF ))2xx
′. (B.82)

Then J1,F = E [η(Zd,2,F )′DFZd,2,F ]. Note that DFZd,2,F = DFZ2,F by construction because the
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last r∗ columns of Γ∗1,F are zeros. Applying Lemma B.9 yields

tr (DFΩ2,F ) = tr
(
(Γ2,F − Γ∗1,F )′ΥΓ∗1,FΩ2,F

)
= tr(Υ

(
Γ∗1,FΩ2,FΓ′2,F − Γ∗1,FΩ2,FΓ∗1,F

)
)

= tr(Υ (Σ2,F − Σ1,F )) = −tr(AF ). (B.83)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1981),

J1,F = E
(
η(Zd,2,F )′DFZd,2,F

)
= E

[
tr

(
∂η(Zd,2,F )′

∂x
DFΩ2,F

)]
. (B.84)

Plugging (B.81)-(B.83) into (B.84), we have

J1,F = E

[
tr (DFΩ2,F )

Z ′d,2,FBFZd,2,F + tr(AF )

]
− 2E

 tr
(
BFZd,2,FZ ′d,2,FDFΩ2,F

)
(
Z ′d,2,FBFZd,2,F + tr(AF )

)2


= E

[
−tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
+ 2E

 −Z ′d,2,FDFΩ2,FBFZd,2,F(
Z ′d,2,FBFZd,2,F + tr(AF )

)2

 (B.85)

where the second equality is by (B.83). By definition and Lemma B.9

−Z ′d,2,FDFΩ2,FBFZd,2,F

= −Z ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FΩ2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F

= Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Σ1,F − Σ2,F )Υ(Γ2,F − Γ∗1,F )Zd,2,F

≤ ρmax(Υ1/2(Σ1,F − Σ2,F )Υ1/2)(Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F )

= ρmax(AF )Z ′d,2,FBFZd,2,F , (B.86)

where the last equality is by ρmax(Υ1/2(Σ1,F −Σ2,F )Υ1/2) = ρmax(Υ(Σ1,F −Σ2,F )). Combining the
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results in (B.85) and (B.86), we get

J1,F ≤E

[
−tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
+ 2E

 ρmax(AF )Z ′d,2,FBFZd,2,F(
Z ′d,2,FBFZd,2,F + tr(AF )

)2


=E

[
−tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]

+ 2E


[
Z ′d,2,FBFZd,2,F + tr(A)

]
ρmax(AF )− tr(AF )ρmax(AF )(

Z ′d,2,FBFZd,2,F + tr(AF )
)2


=E

[
2ρmax(AF )− tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

 2ρmax(AF )tr(AF )(
Z ′d,2,FBFZd,2,F + tr(AF )

)2

 . (B.87)

Next, note that

J2,F =E

 Z ′d,2,FBFZd,2,F∣∣∣Z ′d,2,FBFZd,2,F + tr(AF )
∣∣∣2


= E

Z ′d,2,FBFZd,2,F + tr(AF )− tr(AF )∣∣∣Z ′d,2,FBFZd,2,F + tr(AF )
∣∣∣2


=E

[
1

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

 tr(AF )∣∣∣Z ′d,2,FBFZd,2,F + tr(AF )
∣∣∣2
 . (B.88)

Combining (B.79), (B.87), (B.88) and the definition of g(h) (in Theorem 5.1), we obtain that

g(hd,F )=2tr(AF )J1,F + tr(AF )2J2,F

≤2tr(AF )

E

[
2ρmax(AF )− tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

 2tr(AF )ρmax(AF )∣∣∣Z ′d,2,FBFZd,2,F + tr(AF )
∣∣∣2



+tr(A)2

E

[
1

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

 tr(AF )∣∣∣Z ′d,2,FBFZd,2,F + tr(AF )
∣∣∣2



=E

[
tr(AF ) (4ρmax(AF )− tr(AF ))

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

tr(AF )2 (4ρmax(AF ) + tr(AF ))∣∣∣Z ′d,2,FBFZd,2,F + tr(AF )
∣∣∣2
 . (B.89)

For all G2 and Ω2 such that h = (d, vec(G2)′, vech(Ω2)′) ∈ H, we have G2 = G2,F and Ω2 =
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Ω2,F for some F ∈ F by the definition of H. If tr(AF ) > 0, then ρmax(AF ) > 0 and thus the

second term in the right-hand side of the last equality of (B.89) will be negative. If in addition

tr(AF ) ≥ 4ρmax(AF ), then the first term in the right-hand side of the last equality of (B.89) will

be non-negative. As a result, when tr(AF ) > 0 and 4ρmax(AF )− tr(AF ) ≤ 0 for ∀F ∈ F , we have

suph∈H [g(h)] < 0. This combined with Theorem 5.1 implies the results of this theorem.

C Supplementary Simulation Results
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Figure C.1: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.2: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.3: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.4: Finite Sample Biases and Variances in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.5: Finite Sample Biases and Variances in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.6: Finite Sample Biases and Variances in S3
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estimators based on the restricted James-Stein weight, respectively.
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Supplemental Appendix of
“An Averaging GMM Estimator Robust to Misspecification”

Xu Cheng, Zhipeng Liao, Ruoyao Shi

In this supplemental appendix, we present supporting materials for Cheng, Liao and Shi (2018)

(cited as CLS hereafter in this Appendix):

• Section D provides primitive conditions for Assumptions 3.1, 3.2 and 3.3 and the proof of

Lemma 3.1 of CLS.

• Section E provides the proof of (4.3) in Section 4 and the proof of some Lemmas in Appendix

B.1 of CLS. The proof of Lemma A.1 in Appendix A of CLS is also included in this section.

• Section F studies the bounds of asymptotic risk difference of the pre-test GMM estimator.

• Section G contains simulation results under the truncated risk for the simulation designs in

Section 6 of CLS.

• Section H includes extra simulation studies.

D Primitive Conditions for Assumptions 3.1, 3.2 and 3.3 and

Proof of Lemma 3.1 of CLS

In this section, we provide primitive conditions for Assumption Assumptions 3.1, 3.2 and 3.3 in

the linear IV model presented in Example 3.1 of CLS.

We first provide a set of sufficient conditions without imposing the normal distribution assump-

tion on (X ′, Z ′1, V
′, U)′ in Lemma D.1. Then, we impose the normality assumptions and show that

these conditions can be simplified to those in Lemma 3.1 of CLS under normality.

For ease of notations, we define Γz1vu2 ≡ EF ∗ [Z1V
′U2], Ωz1z1u2 ≡ EF ∗ [Z1Z

′
1U

2] and Ωvvu2 ≡
EF ∗ [V V ′U2]. The Jacobian matrices are

G1,F = −EF [Z1X
′] and G2,F =

 −EF [Z1X
′]

−EF [Z∗X ′]

 . (D.1)

Let Z2 = (Z ′1, Z
∗′)′. The variance-covariance matrix of the moment conditions is

Ω2,F = EF [Z2Z
′
2(Y −X ′θ0)2]− EF [(Y −X ′θ0)Z2]EF [(Y −X ′θ0)Z ′2]. (D.2)

By definition, Ω1,F is the leading r1 × r1 submatrix of Ω2,F .
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Let F denote the joint distribution of W = (Y,Z ′1, Z
∗′, X ′)′ induced by θ0, δ0 and F ∗. By

definition, we can write

δF = Ωuuδ0, G2,F =

 −Γz1x

−δ0Γux − Γvx

 , Ω2,F =

 Ωz1z1u2 Ω2,1r,F

Ω2,r1,F Ω2,rr,F

 (D.3)

where

Ω2,1r,F = Γz1u3δ
′
0 + Γz1vu2 = Ω′2,r1,F , and

Ω2,rr,F = Ωu2u2δ0δ
′
0 + δ0Γu3v + Γvu3δ

′
0 + Ωvvu2 . (D.4)

Therefore, the parameter vF defined in (3.4) depends on F through F ∗ and δ0, and its dependence

on F ∗ is through v∗,F ∗ , where

v∗,F ∗ =

 Ωu2u2 ,Ωuu, vec(Γz1x)′, vec(Γux)′, vec(Γvx)′, vech(Ωz1z1u2)′,

vec(Γz1u3)′, vec(Γz1vu2)′, vec(Γu3v)
′, vech(Ωvvu2)′

 . (D.5)

Define

ρ2,max ≡ max{ sup
F∈F

ρmax(Ω2,F ), sup
F∈F

ρmax(G2,FG
′
2,F )},

ρ2,min ≡ min{ inf
F∈F

ρmin(Ω2,F ), inf
F∈F

ρmin(G2,FG
′
2,F )},

CW ≡ sup
F ∗∈F∗

EF ∗ [||(X ′, Z ′1, V ′, U)||2] and C∆ ≡ sup
δ0∈∆δ

‖δ0‖2 . (D.6)

In the proof of Lemma D.1 below, we show that ρ2,max <∞ (see (D.14) and (D.18)). Moreover, we

have ρ2,min > 0, CW <∞ and C∆ <∞ by Assumptions D.1.(iii), D.1.(ii) and D.1.(vii) respectively.

Define

Bc
ρ2 ≡ {δ ∈ Rr

∗
: ‖δ‖ ≥ ρ2,minρ

−1
2,maxC

−1/2
∆ }. (D.7)

Let Θ0 be a non-empty set in Rdθ . Define

BΘ0 ≡ {θ ∈ Rdθ : ‖θ − θ0‖ ≤ ρ−4
2,minρ

3
2,maxC∆C

2
W for any θ0 ∈ Θ0}. (D.8)

Let {cj,∆, Cj,∆}r
∗

j=1 be a set of finite constants. We next provide the low-level sufficient conditions

for Assumptions 3.1, 3.2 and 3.3.

Assumption D.1 The following conditions hold:

(i) EF ∗ [V ] = 0, EF ∗ [U ] = 0, EF ∗ [Z1U ] = 0r1×1 and EF ∗ [V U ] = 0r∗×1 for any F ∗ ∈ F∗;

(ii) sup
F ∗∈F∗

EF ∗ [||X||4+γ + ||Z1||4+γ + ||V ||4+γ + U6] <∞ for some γ > 0;

(iii) inf
F ∗∈F∗

EF ∗ [U2] > 0, inf
F ∗∈F∗

ρmin(Γxz1Γz1x) > 0 and inf
F∈F

ρmin(Ω2,F ) > 0;
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(iv) inf
F ∗∈F∗

inf
δ∈Bcρ2

‖δ‖−1 ||(Γxz1Ω−1
z1z1u2

Γz1vu2 − Γxv)δ + Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu|| > 0;

(v) the set {v∗,F ∗ : F ∗ ∈ F∗} is closed;

(vi) θ0 ∈ Θ0, BΘ0 ⊂ int(Θ) and Θ is compact;

(vii) ∆δ = [c1,∆, C1,∆]× · · · × [cr∗,∆, Cr∗,∆] where cj,∆ < 0 < Cj,∆ for j = 1, . . . , r∗.

Lemma D.1 Suppose that {Wi}ni=1 are i.i.d. and generated by the linear model (3.6) and (3.8) in

CLS. Then under Assumption D.1, F satisfies Assumptions 3.1, 3.2 and 3.3.

For the linear IV model, Lemma D.1 provides simple conditions on θ0, δ0 and F∗ on which

uniformity results are subsequently established.

Proof of Lemma D.1. By Assumption D.1.(i) and the definition of G1,F ,

EF [g1(W, θ)] = EF ∗ [Z1(U −X ′(θ − θ0))] = G1,F (θ − θ0), (D.9)

which together with Assumption D.1.(iii) implies that θF = θ0 and hence EF [g1(W, θF )] = 0r1×1.

Also θF ∈ int(Θ) holds by θF = θ0 and Assumption D.1.(vi). This verifies Assumption 3.1.(i).

By (D.9) for any θ ∈ Θ with ||θ − θF || ≥ ε and any F ∈ F

‖EF [g1(W, θ)]‖ ≥ ρ1/2
min(G′1,FG1,F ) ‖θF − θ‖ ≥ ερ1/2

min(G′1,FG1,F ) (D.10)

which combined with Assumption D.1.(iii) and G1,F = −Γ′xz1,F ∗ implies that

inf
F∈F

inf
θ∈Bcε(θF )

||EF [g1(W, θ)] || > 0. (D.11)

This verifies Assumption 3.1.(ii).

Next, we show Assumption 3.1.(iii). Let Z2 ≡ (Z ′1, Z
∗′)′. By the Lyapunov inequality, Assump-

tions D.1.(i)-(ii) and D.1.(vii),

sup
F∈F

EF [||Z2||2] ≤ sup
F ∗∈F∗

EF ∗ [||Z1||2] + 2 sup
F ∗∈F∗

EF ∗ [||V ||2]

+2 sup
δ0∈∆δ

‖δ0‖2 sup
F ∗∈F∗

EF ∗ [U2] <∞. (D.12)

By (D.12), the Hölder inequality, the Lyapunov inequality and Assumption D.1.(ii),

sup
F∈F
‖G2,F ‖ = sup

F∈F

∥∥EF [Z2X
′]
∥∥ ≤ sup

F∈F
(EF [||Z2||2])1/2 sup

F ∗∈F∗
(EF ∗ [||X||2])1/2 <∞, (D.13)

which together with the definition of G2,F and the Cauchy-Schwarz inequality implies that

sup
F∈F

∥∥G′2,FG2,F

∥∥ <∞. (D.14)
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Similarly by the Cauchy-Schwarz inequality, the Lyapunov inequality, Assumptions D.1.(ii) and

D.1.(vii), we have

sup
F∈F

EF [||Z2||4] = sup
F∈F

EF [(||Z1||2 + ||Z∗||2)2]

≤ 2 sup
F ∗∈F∗

EF ∗ [||Z1||4] + 2 sup
F∈F

EF [||Z∗||4]

≤ 2 sup
F ∗∈F∗

EF ∗ [||Z1||4] + 8 sup
F ∗∈F∗

EF ∗ [||V ||4]

+8 sup
δ0∈∆δ

‖δ0‖4 sup
F ∗∈F∗

EF ∗ [U4] <∞. (D.15)

By (D.12), (D.15), Assumption D.1.(ii), the Lyapunov inequality and the Hölder inequality, we

have

sup
F∈F

∥∥EF [Z2Z
′
2(Y −X ′θ0)2]

∥∥
≤ sup

F∈F
EF [||Z2||2(Y −X ′θ0)2]

≤ sup
F∈F

(EF [||Z2||4])1/2 sup
F ∗∈F∗

(EF ∗ [U4])1/2 <∞, (D.16)

and

sup
F∈F

∥∥EF [(Y −X ′θ0)Z2]
∥∥ ≤ sup

F∈F
(EF [||Z2||2])1/2 sup

F ∗∈F∗
(EF ∗ [U2])1/2 <∞. (D.17)

By the definition of Ω2,F , the triangle inequality, the Cauchy-Schwarz inequality and the results in

(D.16) and (D.17),

sup
F∈F
‖Ω2,F ‖ <∞. (D.18)

We then show that θ∗F ∈ int(Θ). By the triangle inequality, the Cauchy-Schwarz inequality and

the Hölder inequality,

‖G2,F ‖ ≤ ‖Γxz1‖+ ‖δ0‖ ‖Γxu‖+ ‖Γxv‖
≤ (EF ∗ [||X||2])1/2(EF ∗ [||Z1||2])1/2

+ ‖δ0‖ (EF ∗ [||X||2])1/2(EF ∗ [U2])1/2

+(EF ∗ [||X||2])1/2(EF ∗ [||V ||2])1/2

≤ CW (2 + C
1/2
∆ ), (D.19)

for any F ∈ F , where CW < ∞ by Assumptions D.1.(ii) and (vii). Since G′2,F = (G′1,F , G
′
r∗,F )

where Gr∗,F = −δ0EF ∗ [UX ′]− EF ∗ [V X ′], we have

G′2,FG2,F = G′1,FG1,F +G′r∗,FGr∗,F , (D.20)
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which implies that for any F ∈ F ,

ρmin(G′2,FG2,F ) ≥ ρmin(G′1,FG1,F ). (D.21)

To show Assumption 3.1.(iii), we write

QF (θ) = EF [Z2(Y −X ′θ)]′Ω−1
2,FEF [Z2(Y −X ′θ)]

= θ′G′2,FΩ−1
2,FG2,F θ + 2θ′G′2,FΩ−1

2,FCF + C ′FΩ−1
2,FCF , (D.22)

where CF = EF [Z2Y ]. Since G′2,FΩ−1
2,FG2,F is non-singular by (D.18), (D.21) and Assumption

D.1.(iii), QF (θ) is minimized at θ∗F = −(G′2,FΩ−1
2,FG2,F )−1G′2,FΩ−1

2,FCF for any F ∈ F . Therefore,

‖θ∗F − θ0‖2 =
∥∥∥(G′2,FΩ−1

2,FG2,F )−1G′2,FΩ−1
2,FEF [Z2U ]

∥∥∥2

≤
ρ2

max(Ω2,F )

ρ2
min(G′2,FG2,F )

EF
[
UZ ′2

]
Ω−1

2,FG2,FG
′
2,FΩ−1

2,FEF [Z2U ]

≤
ρ2

max(Ω2,F )ρmax(G′2,FG2,F )Γ2
uu

ρ2
min(Ω2,F )ρ2

min(G′2,FG2,F )
‖δ0‖2

≤ ρ−4
2,minρ

3
2,maxC∆C

2
W (D.23)

for any F ∈ F . By Assumption D.1.(vi), θ∗F ∈ int(Θ). Moreover for any θ ∈ Θ with ||θ − θ∗F || ≥ ε,

QF (θ)−QF (θ∗F ) ≥ ρmin(G′2,FΩ−1
2,FG2,F ) ‖θ − θ∗F ‖

2

≥ ε2ρmin(G′2,FΩ−1
2,FG2,F )

≥ ε2ρ−1
max(Ω2,F )ρmin(G′2,FG2,F ), (D.24)

which together with (D.18), (D.21) and Assumption D.1.(iii) implies that

inf
F∈F

inf
θ∈Bcε(θ∗F )

[QF (θ)−QF (θ∗F )] > 0. (D.25)

This verifies Assumption 3.1.(iii).

Next, we verify Assumption 3.1.(iv). Let Ω
(22)
2,F = (Ω2,rr,F − Ω′2,r1,FΩ−1

z1z1u2
Ω2,1r,F )−1, where

5



Ω2,1r,F and Ω2,rr,F are defined in (D.4). Then

G′2,FΩ−1
2,F δ2,F

= −(Γxz1 ,Γxv + Γxuδ
′
0)

 −Ω−1
z1z1u2

Ω2,1r,F

Ir∗

Ω
(22)
2,F Ωuuδ0

= Ωuu[(Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu)δ′0 + Γxz1Ω−1
z1z1u2

Γz1vu2 − Γxv]Ω
(22)
2,F δ0

= Ωuuδ
′
0Ω

(22)
2,F δ0(Γxz1Ω−1

z1z1u2
Γz1u3 − Γxu)

+Ωuu(Γxz1Ω−1
z1z1u2

Γz1vu2 − Γxv)Ω
(22)
2,F δ0, (D.26)

by the formula of the inverse of partitioned matrix. For any δ0 ∈ ∆δ with ‖δ0‖ > 0, we have

δ′0(Ω
(22)
2,F )2δ0

(δ′0Ω
(22)
2,F δ0)2

≥
(ρmin(Ω

(22)
2,F ))2

(ρmax(Ω
(22)
2,F ))2

1

δ′0δ0
≥

ρ2
2,min

C∆ρ2
2,max

(D.27)

and

δ′0Ω
(22)
2,F δ0 =

δ′0Ω
(22)
2,F δ0(δ′0(Ω

(22)
2,F )2δ0)1/2

(δ′0(Ω
(22)
2,F )2δ0)1/2

≥ ‖δ0‖
ρ2,max

δ′0Ω
(22)
2,F δ0

(δ′0(Ω
(22)
2,F )2δ0)1/2

(D.28)

where the last inequality in (D.27) and the inequality in (D.28) are due to

ρmin(Ω
(22)
2,F ) ≥ ρmin(Ω−1

2,F ) = ρ−1
2,max

and

ρmax(Ω
(22)
2,F ) ≤ ρmax(Ω−1

2,F ) = ρ−1
2,min.

Therefore, for any F ∈ F with δ2,F = Ωuu(01×r1 , δ
′
0)′ and ‖δ0‖ > 0,

∥∥∥G′2,FΩ−1
2,F δ2,F

∥∥∥
‖δ2,F ‖

=
δ′0Ω

(22)
2,F δ0

‖δ0‖

∥∥∥∥∥∥∥
(Γxz1Ω−1

z1z1u2
Γz1vu2 − Γxv)

Ω
(22)
2,F δ0

δ′0Ω
(22)
2,F δ0

+(Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu)

∥∥∥∥∥∥∥
≥ 1

ρ2,max

δ′0Ω
(22)
2,F δ0

(δ′0(Ω
(22)
2,F )2δ0)1/2

∥∥∥∥∥∥∥
(Γxz1Ω−1

z1z1u2
Γz1vu2 − Γxv)

Ω
(22)
2,F δ0

δ′0Ω
(22)
2,F δ0

+(Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu)

∥∥∥∥∥∥∥
=

1

ρ2,max

1

||δ̃0||

∥∥∥∥∥∥ (Γxz1Ω−1
z1z1u2

Γz1vu2 − Γxv)δ̃0

+(Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu)

∥∥∥∥∥∥ (D.29)

where δ̃0 ≡ Ω
(22)
2,F δ0/δ

′
0Ω

(22)
2,F δ0 and the inequality is by (D.28). By (D.28) and the definition of Bc

ρ2 ,
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δ̃0 ∈ Bc
ρ2 . Therefore, (D.29) implies that

∥∥∥G′2,FΩ−1
2,F δ2,F

∥∥∥
‖δ2,F ‖

≥ 1

ρ2,max
inf

δ∈Bcρ2
‖δ‖−1

∥∥∥∥∥∥ (Γxz1Ω−1
z1z1u2

Γz1vu2 − Γxv)δ

+(Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu)

∥∥∥∥∥∥ . (D.30)

Collecting the results in (D.18) and (D.30) and then applying Assumption D.1.(iv), we get

inf
{F∈F : ‖δF ‖>0}

∥∥∥G′2,FΩ−1
2,F δ2,F

∥∥∥
‖δ2,F ‖

> 0 (D.31)

which shows Assumption 3.1.(iv) with τ = 1.

Assumption 3.1.(v) is implied by Assumption D.1.(vii). This finishes the verification of As-

sumption 3.1.

To verify Assumption 3.2, note that g2(W, θ) = Z2(U − X ′(θ − θ0)), g2,θ(W, θ) = −Z2X
′ and

g2,θθ(W, θ) = 0(r2dθ)×dθ . Therefore, Assumption 3.2.(i) holds automatically. Moreover Assumption

3.2.(ii) is implied by Assumption D.1.(ii) and the assumption that Θ is bounded. Assumptions

3.2(iii)-(iv) follow from Assumption D.1.(iii).

We next verify Assumption 3.3. By definition,

vF =
(
vec(G2,F )′, vech(Ω2,F )′, δF

)
. (D.32)

Let Λ∗ = {v∗,F ∗ : F ∗ ∈ F∗}. From the expressions in (D.3), we see that Λ = {vF : F ∈ F} is the

image of Λ∗ ×∆δ under a continuous mapping. By Assumption D.1.(ii) and the Hölder inequality,

Λ∗ is bounded which together with Assumption D.1.(v) implies that Λ∗ is compact. Since ∆δ is

also a compact set by Assumption D.1.(vii), we know that Λ∗ × ∆δ is compact. Therefore, Λ is

compact and hence closed. This verifies Assumption 3.3.(ii).

Let εF = Ωuuc∆ where c∆ = min {minj≤r∗ |cj,∆|,minj≤r∗ |Cj,∆|}. Below we show that for any

δ̃ ∈ Rr∗ with 0 ≤ ||δ̃|| ≤ εF , there is F̃ ∈ F such that

δ̃
F̃

= δ̃, ||G
2,F̃
−G2,F || ≤ C1||δ̃F ||1/4 and ||Ω

2,F̃
− Ω2,F || ≤ C2||δ̃||1/4 (D.33)

for some fixed constants C1 and C2. This verifies Assumption 3.3.(i) with κ = 1/4.

First if δ̃ = 0r∗×1, then we set F̃ to be F which is induced by δ0, θ0 and F ∗ with δ0 = 0r∗×1.

By definition G
2,F̃

= G2,F , Ω
2,F̃

= Ω2,F and δ̃
F̃

= δF = δ0Ωuu = 0 = δ̃ which implies that (D.33)

holds.

Second consider any δ̃ ∈ Rr∗ with 0 < ||δ̃|| < εF . Define δ̃0 = δ̃Ω−1
uu . Since ||δ̃|| < εF and

εF = Ωuuc∆,

||δ̃0|| = ||δ̃Ω−1
uu || = ||δ̃||Ω−1

uu < c∆, (D.34)

which combined with the definition of ∆δ implies that δ̃0 ∈ ∆δ. Let F̃ be the joint distribution
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induced by δ̃0, θ0 and F ∗. By the definition of F , we have F̃ ∈ F . Moreover,

δ̃
F̃

= δ̃0Ωuu = δ̃ (D.35)

which verifies the equality in (D.33). By definition,

G
2,F̃

=

 −EF ∗ [Z1X
′]

−δ̃0EF ∗ [UX ′]− EF ∗ [V X ′]

 and G2,F =

 −EF ∗ [Z1X
′]

−EF ∗ [V X ′]

 (D.36)

which together with the Cauchy-Schwarz inequality and the Hölder inequality implies that

||G
2,F̃
−G2,F || = ||δ̃0EF ∗ [UX ′]|| ≤ ||δ̃0||(ΩuuEF ∗ [||X||2])1/2

= ||δ̃0||3/4Ω1/4
uu (EF ∗ [||X||2])1/2||δ̃0Ωuu||1/4. (D.37)

By Assumption D.1.(ii),

sup
F ∗∈F∗

EF ∗ [||X||2] <∞ and sup
F ∗∈F∗

Ωuu <∞ (D.38)

which together with (D.34), (D.37) and the definition of δ̃ implies that

||G
2,F̃
−G2,F || ≤ C1||δ̃||1/4, (D.39)

where C1 = c
3/4
∆ supF ∗∈F∗(EF ∗ [||X||2])1/2 supF ∗∈F∗ Ω

1/4
uu is finite.

To show the last inequality in (D.33), note that by definition θ
F̃

= θ0 = θF and hence

E
F̃

[Z1Z
′
1(Y −X ′θ

F̃
)2] = EF ∗ [Z1Z

′
1U

2] = EF [Z1Z
′
1(Y −X ′θF )2]. (D.40)

Under F̃ ,

E
F̃

[Z1Z
∗′(Y −X ′θ

F̃
)2] = EF ∗ [Z1(Uδ̃0 + V )′U2] = EF ∗ [U3Z1]δ̃

′
0 + EF ∗ [U2Z1V

′], (D.41)

and

E
F̃

[Z∗Z∗′(Y −X ′θ
F̃

)2]

= EF ∗ [(Uδ̃0 + V )(Uδ̃0 + V )′U2]

= EF ∗ [U4]δ̃0δ̃
′
0 + δ̃0EF ∗ [U3V ′] + EF ∗ [U3V ]δ̃

′
0 + EF ∗ [U2V V ′]. (D.42)
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Under F ,

EF [Z1Z
∗′(Y −X ′θF )2] = EF ∗ [U2Z1V

′] and EF [Z∗Z∗′(Y −X ′θF )2] = EF ∗ [U2V V ′]. (D.43)

Collecting the results in (D.40), (D.41), (D.42) and (D.43), and applying the triangle inequality,

we get

∥∥E
F̃

[Z2Z
′
2(Y −X ′θ

F̃
)2]− EF [Z2Z

′
2(Y −X ′θF )2]

∥∥
≤

∥∥∥EF ∗ [U3Z1]δ̃
′
0

∥∥∥+
∥∥∥EF ∗ [U4]δ̃0δ̃

′
0

∥∥∥
+
∥∥∥δ̃0EF ∗ [U3V ′]

∥∥∥+
∥∥∥EF ∗ [U3V ]δ̃

′
0

∥∥∥ . (D.44)

By Assumption D.1.(ii) and the Lyapunov inequality

sup
F ∗∈F∗

EF ∗ [|U |5] <∞, sup
F ∗∈F∗

EF ∗ [||Z1||4] <∞ and sup
F ∗∈F∗

EF ∗ [||V ||4] <∞. (D.45)

By the Hölder inequality,

∥∥EF ∗ [U3Z1]
∥∥ ≤ (EF ∗ [|U |||Z1||2]EF ∗ [|U |5])1/2

≤ (EF ∗ [|U |5])1/2(EF ∗ [||Z1||4])1/4(EF ∗ [U2])1/4

= Ω1/4
uu (EF ∗ [|U |5])1/2(EF ∗ [||Z1||4])1/4. (D.46)

Similarly, we can show that

∥∥EF ∗ [U3V ′]
∥∥ ≤ Ω1/4

uu (EF ∗ [|U |5])1/2(EF ∗ [||V ||4])1/4 (D.47)

and

EF ∗ [U4] ≤ (EF ∗ [U2]EF ∗ [U6])1/2 = Ω1/4
uu sup

F ∗∈F∗
(EF ∗ [U6])1/2. (D.48)

Let C2,0 = supF ∗∈F∗{(EF ∗ [|U |
5])1/2[(EF ∗ [||Z1||4])1/4 +(EF ∗ [||V ||4])1/4]+(EF ∗ [U6])1/2}. Combining

the results in (D.44), (D.46), (D.47) and (D.48), and applying the Cauchy-Schwarz inequality, we

get

∥∥E
F̃

[Z2Z
′
2(Y −X ′θ

F̃
)2]− EF [Z2Z

′
2(Y −X ′θF )2]

∥∥
≤ 3C2,0Ω1/4

uu ||δ̃0||+ C2,0Ω1/4
uu ||δ̃0||2

= (3C2,0||δ̃0||3/4 + C2,0||δ̃0||7/4)Ω1/4
uu ||δ̃0||1/4 ≤ C2,1||δ̃||1/4 (D.49)

where C2,1 = C2,0(3c
3/4
∆ + c

7/4
∆ ), the second inequality is by (D.34) and the definition of δ̃. By

(D.45), Assumption D.1.(ii) and the definition of c∆,

C2,1 <∞. (D.50)
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Next note that

E
F̃

[Z2(Y −X ′θ
F̃

)] =

 EF ∗ [Z1U ]

δ̃0Ωuu

 and EF [Z2(Y −X ′θF )] =

 EF ∗ [Z1U ]

0r∗×1

 (D.51)

which implies that ∥∥∥∥∥∥ E
F̃

[Z2(Y −X ′θ
F̃

)]E
F̃

[Z ′2(Y −X ′θ
F̃

)]

−EF [Z2(Y −X ′θF )]EF [Z ′2(Y −X ′θF )]

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 0r1×r1 Ωuu,F ∗EF ∗ [Z1U ]δ̃

′
0

δ̃0EF ∗ [Z ′1U ]Ωuu δ̃0δ̃
′
0Ω2

uu

∥∥∥∥∥∥
≤ Ωuu

∥∥∥EF ∗ [Z1U ]δ̃
′
0

∥∥∥+ Ωuu

∥∥∥δ̃0EF ∗ [Z1U ]
∥∥∥+ Ω2

uu||δ̃0||2

≤ 2Ωuu||δ̃0|| ‖EF ∗ [Z1U ]‖+ Ω2
uu||δ̃0||2

≤ (2Ω5/4
uu ||δ̃0||3/4(EF ∗ [||Z1||2])1/2 + Ω7/4

uu ||δ̃0||7/4)||δ̃||1/4 ≤ C2,2||δ̃||1/4 (D.52)

where C2,2 = supF ∗∈F∗{2Ω
5/4
uu (EF ∗ [||Z1||2])1/2c

3/4
∆ + Ω

7/4
uu c

7/4
∆ }, the second inequality is by the

Cauchy-Schwarz inequality, the third inequality is by the Hölder inequality. By Assumption D.1.(ii)

and the definition of c∆,

C2,2 <∞. (D.53)

By the definition of Ω2,F in (D.2), we can use the triangle inequality and the results in (D.49) and

(D.52) to deduce that ∥∥∥Ω
2,F̃
− Ω2,F

∥∥∥ ≤ C2||δ̃||1/4 (D.54)

where C2 = C2,1 + C2,2 and C2 < ∞ by (D.50) and (D.53), which proves the second inequality in

(D.33). This verifies Assumption 3.3.(i) with κ = 1/4.

Proof of Lemma 3.1. Next, we apply Lemma D.1 to prove Lemma 3.1 in the paper. For

convenience, the conditions of Lemma 3.1 are stated here. The proof verifies the conditions of

Lemma D.1 with the following conditions in a Gaussian model. Let F∗ denote the set of normal

distributions which satisfies:

(i) φu = 0, Γz1u = 0r1×1 and Γvu = 0r∗×1;

(ii) infF ∗∈F∗ ρmin(Γxz1Γz1x) > 0, supF ∗∈F∗ ||φ||2 <∞ and

0 < infF ∗∈F∗ ρmin (Ψ) ≤ supF ∗∈F∗ ρmax (Ψ) <∞;

(iii) infF ∗∈F∗ inf{‖δ‖≥ε} ‖δ‖−1 ||(Γxz1Γ−1
z1z1Γz1v − Γxv)δ − Γxu|| > 0 for some ε > 0 that is small

enough (where ε is given in (B.3) in the Appendix of CLS);

(iv) θ0 ∈ int(Θ) and Θ is compact and large enough such that the pseudo-true value θ∗(F ) ∈ int(Θ);

(v) ∆δ = [c1,∆, C1,∆] × · · · × [cr∗,∆, Cr∗,∆] where {cj,∆, Cj,∆}r
∗

j=1 is a set of finite constants with

cj,∆ < 0 < Cj,∆ for j = 1, . . . , r∗.

Specifically, we assume that condition (ii) of Lemma 3.1 holds with some constants cρ and Cρ
such that cρ ≤ ρmin(Γxz1Γz1x), ||φ||2 ≤ Cρ and cρ ≤ ρmin (Ψ) ≤ ρmax (Ψ) ≤ Cρ; condition (iii) of
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Lemma 3.1 holds with

infδ∈Bcε ‖δ‖
−1 ||(Γxz1Γ−1

z1z1Γz1v − Γxv)δ − Γxu|| ≥ cΓ (D.55)

for some positive constant cΓ and

Bc
ε ≡ {δ ∈ Rr

∗
: ‖δ‖ ≥ c∗,ρC−1

∗,ρC
−1
∆ }, (D.56)

where

C∗,W ≡ 2(dθ + r2 + 1)Cρ, c∗,ρ ≡ min{1, c2
ρ} and C∗,ρ ≡ C2

∗,W (2 + C
1/2
∆ )2 (D.57)

and C∆ ≡ supδ0∈∆δ
‖δ0‖2.

Assumption D.1.(i) holds under Condition (i) of Lemma 3.1. Since (X ′, Z ′1, V
′, U)′ is a normal

random vector, Assumption D.1.(ii) holds by ‖φ‖2 ≤ Cρ and ρmax (Ψ) ≤ Cρ. By ρmin (Ψ) ≥ cρ and

φu = 0, we have EF ∗ [U2] ≥ cρ for any F ∗ ∈ F∗ and hence infF ∗∈F∗ EF ∗ [U2] > 0. Let F denote the

distribution of W induced by F ∗ with mean φ and variance-covariance matrix Ψ. By definition,

G1,F = −EF ∗ [Z1X
′] = Γz1x. Therefore,

infF∈F ρmin(G′1,FG1,F ) ≥ cρ > 0 (D.58)

holds by ρmin(Γxz1Γz1x) ≥ cρ > 0 for any F ∗ ∈ F∗. Since Γz1u = 0r1×1 and Γvu = 0r∗×1 for any

F ∗ ∈ F∗, U is independent with respect to (Z ′1, V
′)′ under the normality assumption. Therefore,

by Condition (i) of Lemma 3.1

Ω2,F =

 ΩuuΓz1z1 ΩuuΓz1v

ΩuuΓ′z1v 2Ω2
uuδ0δ

′
0 + ΩuuΓvv


= Ωuu

 Ωz1z1 Ωz1v

Ωvz1 Ωvv

+ Ωuu

 φz1

φv

 φz1

φv

′ +
 0r1×r1 0r1×r∗

0r∗×r1 2Ω2
uuδ0δ

′
0

(D.59)

which implies that ρmin(Ω2,F ) ≥ ρ2
min(Ψ) where F is the distribution of W induced by F ∗ with

mean φ and variance-covariance matrix Ψ. Since ρmin(Ψ) ≥ cρ > 0, we have

infF∈F ρmin(Ω2,F ) ≥ c2
ρ > 0. (D.60)

This finishes the proof of Assumption D.1.(iii).

By (D.59), Conditions (ii) and (v) of Lemma 3.1

sup
F∈F

ρmax(Ω2,F ) ≤ ρ2
max(Ψ) + ρmax(Ψ) ‖φ‖2 + 2ρ2

max(Ψ)C∆ ≤ 2C2
ρ(1 + C∆). (D.61)
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By (D.19) in the proof of Lemma D.1,

‖G2,F ‖ ≤ 2Cρ(dθ + r2 + 1)(2 + C
1/2
∆ )

which implies that

sup
F∈F

ρmax(G′2,FG2,F ) ≤ 4C2
ρ(dθ + r2 + 1)2(2 + C

1/2
∆ )2. (D.62)

By (D.58) and (D.60),

min

{
inf
F∈F

ρmin(Ω2,F ), inf
F∈F

ρmin(G′2,FG2,F )

}
≥ min{1, c2

ρ}. (D.63)

By (D.61) and (D.62),

max

{
sup
F∈F

ρmax(Ω2,F ), sup
F∈F

ρmax(G′2,FG2,F )

}
≤ 4C2

ρ(dθ + r2 + 1)2(2 + C
1/2
∆ )2. (D.64)

From (D.63), (D.64), the definitions of c∗,ρ, C∗,ρ and Bc
N,ρ, we have Bc

ρ2 ⊂ Bc
N,ρ where Bc

ρ2 is

defined in (D.7). Moreover, by φu = 0, the normality assumption and the independence between U

and (Z ′1, V
′)′, we have Ωz1z1u2 = ΩuuΓz1z1 , Γz1vu2 = ΩuuΓz1v and Γz1u3 = 0r1×1, which implies that

||(Γxz1Ω−1
z1z1u2

Γz1vu2 − Γxv)δ + Γxz1Ω−1
z1z1u2

Γz1u3 − Γxu||
= ||(Γxz1Γ−1

z1z1Γz1v − Γxv)δ − Γxu||. (D.65)

Assumption D.1.(iv) follows by Bc
ρ2 ⊂ B

c
N,ρ, (D.65) and Condition (iii) of the lemma.

We next show that Assumption D.1.(v) holds. Define

v∗,F ∗ =

 Ωuu, vec(Γxz1)′, vec(Γxu)′, vec(Γxv)
′,

vec(Γz1v)
′, vech(Γz1z1)′, vech(Γvv)

′

 .

Under Condition (i) of Lemma 3.1 and the normality assumption, Γu2u2 = 3Ω2
uu, Γz1u3 = 0r1×1,

Γvu3 = 0r∗×1, Ωz1z1u2 = ΩuuΓz1z1 , Γz1vu2 = ΩuuΓz1v and Ωvvu2 = ΩuuΓvv. Therefore to verify

Assumption D.1.(v), it is sufficient to show that the set {v∗,F ∗ : F ∗ ∈ F∗} is compact because the

set {v∗,F ∗ : F ∗ ∈ F∗} is the image of the set {v∗,F ∗ : F ∗ ∈ F∗} under a continuous mapping. Let

{(φn,Ψn)}n be a convergent sequence where (φn,Ψn) satisfies Conditions (i)-(iii) of Lemma 3.1 for

any n. Let φ̃ and Ψ̃ denote the limits of φn and Ψn under the Euclidean norm respectively. We

first show that Conditions (i)-(iii) of Lemma 3.1 hold for (φ̃, Ψ̃). Since φu,n = 0, Γz1u,n = 0r1×1

and Γvu,n = 0r∗×1 for any n, we have φ̃u = 0, Γ̃z1u = 0r1×1 and Γ̃vu = 0r∗×1 which shows that

(φ̃, Ψ̃) satisfies Condition (i) of Lemma 3.1. Since φn → φ̃ and ‖φn‖2 ≤ Cρ for any n, we have

||φ̃||2 ≤ Cρ. By the convergence of (φn,Ψn), Γxz1,n → Γ̃xz1 . Since the roots of a polynomial
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continuously depends on its coefficients, we have

ρmin(Γxz1,nΓ′xz1,n)→ ρmin(Γ̃xz1Γ̃′xz1), ρmin(Ψn)→ ρmin(Ψ̃) and ρmax (Ψn)→ ρmax(Ψ̃)

which together with the assumption that Γxz1,n and Ψn satisfy Condition (ii) of Lemma 3.1 implies

that

cρ ≤ ρmin(Γ̃xz1Γ̃′xz1) and cρ ≤ ρmin(Ψ̃) ≤ ρmax(Ψ̃) ≤ Cρ.

This shows that Condition (ii) of Lemma 3.1 holds for (φ̃, Ψ̃). For any δ ∈ Bc
N,ρ, by the triangle

inequality, the Cauchy-Schwarz inequality and ‖δ‖ ≥ c2
ρC
−2
ρ C−1

∆ (1 + C∆)−12−1,

‖δ‖−1 ||(Γ̃xz1Γ̃−1
z1z1Γ̃z1v − Γ̃xv)δ − Γ̃xu||

≥ ‖δ‖−1 ||(Γxz1,nΓ−1
z1z1,nΓz1v,n − Γxv,n)δ − Γxu,n||

−||Γ̃xz1Γ̃−1
z1z1Γ̃z1v − Γxz1,nΓ−1

z1z1,nΓz1v,n||
−||Γ̃xv − Γxv,n|| − 2C2

ρC∆(1 + C∆)c−2
ρ ||Γxu,n − Γ̃xu||

which together with the convergence of (φn,Ψn) and Conditions (ii)-(iii) of Lemma 3.1 implies that

‖δ‖−1 ||(Γ̃xz1Γ̃−1
z1z1Γ̃z1v − Γ̃xv)δ − Γ̃xu||

≥ cΓ − ||Γ̃xz1Γ̃−1
z1z1Γ̃z1v − Γxz1,nΓ−1

z1z1,nΓz1v,n||
−||Γ̃xv − Γxv,n|| − 2C2

ρC∆(1 + C∆)c−2
ρ ||Γxu,n − Γ̃xu||

for any n. Let n go to infinity, we get

‖δ‖−1 ||(Γ̃xz1Γ̃−1
z1z1Γ̃z1v − Γ̃xv)δ − Γ̃xu|| ≥ cΓ

for any δ ∈ Bc
ε. This shows that Condition (iii) of Lemma 3.1 also holds for (φ̃, Ψ̃). Hence the set

of (φ,Ψ) which satisfies Conditions (i)-(iii) of Lemma 3.1 is closed. By Conditions (i)-(ii) of the

Lemma, we know that this set is compact because it is also bounded. Let F ∗ denote the normal

distribution with mean φ and variance-covariance matrix Ψ. Then v∗,F ∗ is the image of (φ,Ψ)

under a continuous mapping, which implies that {v∗,F ∗ : F ∗ ∈ F∗} is compact. Therefore the set

{v∗,F ∗ : F ∗ ∈ F∗} is compact and hence closed. This proves Assumption D.1.(v).

Assumption D.1.(vi) is used to show that θF ∈ int(Θ) and θ∗F ∈ int(Θ) for any F ∈ F . By

θF = θ0 and Condition (iv) of Lemma 3.1, we have θF ∈ int(Θ) and θ∗F ∈ int(Θ).

Finally, Assumption D.1.(vii) is the same as Condition (v) of Lemma 3.1.
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E Proof of Some Auxiliary Results in Sections 4 and 5 of CLS

Proof of Lemma B.2. (i) Let g2,j(w, θ) denote the j-th (j = 1, . . . , r2) component of g2(w, θ).

By the mean value expansion,

g2,j(w, θ1)− g2,j(w, θ2) = g2,j,θ(w, θ̃1,2)(θ1 − θ2) (E.1)

for any j = 1, . . . , r2, where θ̃1,2 is some vector between θ1 and θ2. By (E.1) and the Cauchy-Schwarz

inequality

|EF [g2,j(w, θ1)− g2,j(w, θ2)]| ≤ EF
[
sup
θ∈Θ
‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖ , (E.2)

for any j = 1, . . . , r2. By (E.2), we deduce that

‖M2,F (θ1)−M2,F (θ2)‖ ≤
√
r2EF

[
sup
θ∈Θ
‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖

≤ CM,1
√
r2 ‖θ1 − θ2‖ (E.3)

for any F ∈ F , where CM,1 ≡ supF∈F EF [supθ∈Θ ‖g2,θ(W, θ)‖] and CM,1 < ∞ by Assumption

3.2.(ii). This immediately proves the claim in (i). The claim in (ii) follows by similar argument

and its proof is omitted.

(iii) By the mean value expansion,

g2,j1(w, θ1)g2,j2(w, θ1)− g2,j1(w, θ2)g2,j2(w, θ2)

=
[
g2,j1,θ(w, θ̃1,2)g2,j2(w, θ̃1,2) + g2,j1(w, θ̃1,2)g2,j2,θ(w, θ̃1,2)

]
(θ1 − θ2) (E.4)

for any j1, j2 = 1, . . . , r2, where θ̃1,2 is some vector between θ1 and θ2 and may take different values

from the θ̃1,2 in (E.1). By (E.4), the triangle inequality and the Cauchy-Schwarz inequality

|EF [g2,j1(w, θ1)g2,j2(w, θ1)− g2,j1(w, θ2)g2,j2(w, θ2)]|

≤ 2EF
[
sup
θ∈Θ
‖g2(W, θ)‖ ‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖

≤ EF
[
sup
θ∈Θ

(‖g2(W, θ)‖2 + ‖g2,θ(W, θ)‖2)

]
‖θ1 − θ2‖ (E.5)

for any j1, j2 = 1, . . . , r2, where the second inequality is by the simple inequality that |ab| ≤
(a2 + b2)/2. By (E.5)

∥∥EF [g2(W, θ1)g2(W, θ1)′ − g2(W, θ2)g2(W, θ2)′
]∥∥

≤ r2EF
[
sup
θ∈Θ

(‖g2(W, θ)‖2 + ‖g2,θ(W, θ)‖2)

]
‖θ1 − θ2‖

≤ r2CM,2 ‖θ1 − θ2‖ (E.6)
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for any F ∈ F , where CM,2 ≡ supF∈F EF
[
supθ∈Θ(‖g2(W, θ)‖2 + ‖g2,θ(W, θ)‖2)

]
and CM,2 <∞ by

Assumption 3.2.(ii). Using the triangle inequality, and the inequality in (E.2), we deduce that

|EF [g2,j1(w, θ1)]EF [g2,j2(w, θ1)]− EF [g2,j1(w, θ2)]EF [g2,j2(w, θ2)]|
≤ |EF [g2,j1(w, θ1)− g2,j1(w, θ2)]EF [g2,j2(w, θ1)]|

+ |EF [g2,j1(w, θ2)]EF [g2,j2(w, θ2)− g2,j2(w, θ1)]|

≤ 2EF
[
sup
θ∈Θ
‖g2(W, θ)‖

]
EF
[
sup
θ∈Θ
‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖ (E.7)

for any j1, j2 = 1, . . . , r2. By (E.7)

∥∥EF [g2(w, θ1)]EF [g2(w, θ1)′]− EF [g2(w, θ2)]EF [g2(w, θ2)′]
∥∥ ≤ r2CM,3 ‖θ1 − θ2‖ (E.8)

for any F ∈ F , where CM,3 ≡ 2 supF∈F EF [supθ∈Θ ‖g2(W, θ)‖]EF [supθ∈Θ ‖g2,θ(W, θ)‖] and CM,3 <

∞ by Assumption 3.2.(ii).

By the definition of Ω2,F (θ), the triangle inequality and the results in (E.6) and (E.8)

‖Ω2,F (θ1)− Ω2,F (θ2)‖ ≤ r2(CM,2 + CM,3) ‖θ1 − θ2‖ , (E.9)

which immediately proves the claim in (iii).

Proof of Lemma B.3. By Lemma B.1.(i),

g2(θ) = M2,Fn(θ) +

[
n−1

n∑
i=1

g2(Wi, θ)−M2,Fn(θ)

]
= M2,Fn(θ) + op(1), (E.10)

uniformly over θ ∈ Θ. As g1(W, θ) is a subvector of g2(W, θ), by (E.10) and Assumption 3.2.(ii),

g1(θ)′g1(θ) = M1,Fn(θ)′M1,Fn(θ) + op(1) (E.11)

uniformly over θ ∈ Θ. By Assumptions 3.1.(i)-(ii) and Fn ∈ F , M1,Fn(θ)′M1,Fn(θ) is uniquely

minimized at θFn , which together with the uniform convergence in (E.11) implies that

θ̃1 − θFn →p 0. (E.12)

To show the consistency of Ω2, note that

Ω2 = n−1
n∑
i=1

g2(Wi, θ̃1)g2(Wi, θ̃1)′ − g2(θ̃1)g2(θ̃1)′

= EFn [g2(W, θ̃1)g2(W, θ̃1)′]−M2,Fn(θ̃1)′M2,Fn(θ̃1) + op(1)

= Ω2,Fn(θ̃1) + op(1) = Ω2,Fn + op(1), (E.13)
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where the first equality is by the definition of Ω2, the second equality holds by (E.10), Lemma

B.1.(ii) and Assumption 3.2.(ii), the third equality follows from the definition of Ω2,Fn(θ), and the

last equality holds by Lemma B.2.(iii) and (E.12). This shows the consistency of Ω2.

In the rest of the Supplemental Appendix, we use C denote a generic fixed positive finite

constant whose value does not depend on F or n.

Proof of Lemma B.4. As g1(θ) is a subvector of g2(θ), and Ω1,n is a submatrix of Ω2,n, using

(E.10), (E.13) and Assumptions 3.2.(ii)-(iii), we have

g1(θ)′(Ω1)−1g1(θ) = M1,Fn(θ)′Ω−1
1,Fn

M1,Fn(θ) + op(1), (E.14)

uniformly over Θ. By Assumptions 3.2.(ii)-(iii),

C−1 ≤ ρmin(Ω−1
1,Fn

) ≤ ρmax(Ω−1
1,Fn

) ≤ C (E.15)

which together with Assumptions 3.1.(i)-(ii) implies that M1,Fn(θ)′Ω−1
1,Fn

M1,Fn(θ) is uniquely min-

imized at θFn . By the standard arguments for the consistency of an extremum estimator, we have

θ̂1 − θFn = op(1). (E.16)

Using (E.16), Lemma B.1.(iv) and Assumption 3.2.(ii), we have

g1(θ̂1) = g1(θFn) +
[
M1,Fn(θ̂1)−M1,Fn(θFn)

]
+ op(n

−1/2)

= g1(θFn) + [G1,Fn(θFn) + op(1)] (θ̂1 − θFn) + op(n
−1/2). (E.17)

Similarly,

n−1
n∑
i=1

g1,θ(Wi, θ̂1) = G1,Fn(θ̂1) + op(1) = G1,Fn + op(1), (E.18)

where the first equality follows from Lemma B.1.(iii) and the second equality follows by (E.16) and

Lemma B.2.(ii). From the first order condition for the GMM estimator θ̂1, we deduce that

0 =

[
n−1

n∑
i=1

g1,θ(Wi, θ̂1)

]′
(Ω1)−1g1(θ̂1)

= (G′1,FnΩ−1
1,Fn

+ op(1))
[
g1(θFn) + (G1,Fn + op(1))(θ̂1 − θFn) + op(n

−1/2)
]

(E.19)

where the second equality follows from Assumptions 3.2.(ii)-(iii), (E.13), (E.17) and (E.18). By

(E.19), EFn [g1(W, θFn)] = 0 and Assumption 3.2,

n1/2(θ̂1 − θFn) = (Γ1,Fn + op(1))µn(g1(W, θFn)) + op(1). (E.20)
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By Assumptions 3.2 and Lemma B.1.(v), Γ1,Fn = O(1) and µn(g1(W, θFn)) = op(1), which together

with (E.20) implies that

n1/2(θ̂1 − θFn) = Γ1,Fnµn(g1(W, θFn)) +Op(1),

where Γ1,Fnµn(g1(W, θFn)) = Op(1). This finishes the proof.

Proof of Lemma B.5. By (E.10), (E.13) and Assumptions 3.2.(ii)-(iii), we have

g2(θ)′(Ω2)−1g2(θ) = M2,Fn(θ)′Ω−1
2,Fn

M2,Fn(θ) + op(1) = QFn(θ) + op(1) (E.21)

uniformly over Θ. By Assumption 3.1.(iii), QFn(θ) is uniquely minimized at θ∗Fn . The consistency

result θ̂2−θ∗Fn →p 0 follows from standard arguments for the consistency of an extremum estimator.

Proof of Lemma B.6. By the definition of θ̂2,

g2(θ̂2)′(Ω2)−1g2(θ̂2) ≤ g2(θFn)′(Ω2)−1g2(θFn), (E.22)

which implies that

||g2(θ̂2)||2 ≤ ρmax(Ω2)ρ−1
min(Ω2) ‖g2(θFn)‖2 . (E.23)

By (E.13) and Assumptions 3.2.(ii)-(iii),

C−1 ≤ ρmin(Ω2) ≤ ρmax(Ω2) ≤ C (E.24)

with probability approaching 1. By Lemma B.1.(i), M1,Fn(θFn) = 0r1×1 and δFn = o(1),

‖g2(θFn)‖2 = op(1) (E.25)

which combined with (E.23) and (E.24) implies that

||g2(θ̂2)|| = op(1). (E.26)

Moreover, by (E.26), Lemma B.1.(i) and the triangle inequality,

||M2,Fn(θ̂2)|| ≤ ||g2(θ̂2)−M2,Fn(θ̂2)||+ ||g2(θ̂2)|| = op(1) (E.27)

which immediately implies that

||M1,Fn(θ̂2)|| = op(1). (E.28)

The first result in Lemma B.6 follows by (E.28) and the unique identification of θFn maintained by

Assumptions 3.1.(i)-(ii).
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Using θ̂2 − θFn = op(1), Lemma B.1.(iv) and Assumption 3.2.(ii), we have

g2(θ̂2) = g2(θFn) +
[
M2,Fn(θ̂2)−M2,Fn(θFn)

]
+ op(n

−1/2)

= g2(θFn) + [G2,Fn(θFn) + op(1)] (θ̂2 − θFn) + op(n
−1/2). (E.29)

Similarly,

n−1
n∑
i=1

g2,θ(Wi, θ̂2) = G2,Fn(θ̂2) + op(1) = G2,Fn(θFn) + op(1), (E.30)

where the first equality follows from Lemma B.1.(iii) and the second equality follows by θ̂2− θFn =

op(1) and Lemma B.2.(ii). From the first order condition for the GMM estimator θ̂2, we deduce

that

0 =

[
n−1

n∑
i=1

g2,θ(Wi, θ̂2)

]′
(Ω2)−1g2(θ̂2)

= (G′2,FnΩ−1
2,Fn

+ op(1))
[
g2(θFn) + (G2,Fn + op(1))(θ̂2 − θFn) + op(n

−1/2)
]

(E.31)

where the second equality follows from Assumptions 3.2.(ii)-(iii), (E.13), (E.29) and (E.30). By

(E.31) and Assumption 3.2,

n1/2(θ̂2 − θFn) = (Γ2,Fn + op(1))
{
µn(g2(W, θFn)) + n1/2EFn [g2(W, θFn)]

}
+ op(1), (E.32)

where Γ2,Fn = −
(
G′2,FnΩ−1

2,Fn
G2,Fn

)−1
G′2,FnΩ−1

2,Fn
.

Proof for the claim in equation (4.3).

Consider the case n1/2δFn → d ∈ Rr∗ . By Lemma 4.1,

n1/2
[
θ̂(ω)− θFn

]
= n1/2(θ̂1 − θFn) + ω

[
n1/2(θ̂2 − θFn)− n1/2(θ̂1 − θFn)

]
→D Γ∗1,FZd,2,F + ω(Γ2,F − Γ∗1,F )Zd,2,F , (E.33)

where Zd,2,F has the same distribution as Z2,F + d0. This implies that

`(θ̂(ω)) = n
[
θ̂n(ω)− θFn

]′
Υ
[
θ̂n(ω)− θFn

]
→D λF (ω) (E.34)

where

λF (ω) = Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F + 2ωZ ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F
+ω2Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F .
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Now we consider E[λF (ω)] using the equalities in Lemma B.9 below. First,

E[Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F ] = tr(ΥΣ1,F ) (E.35)

because Γ∗1Zd,2,F = Γ1,FZ1,F and Γ1,FE[Z1,FZ ′1,F ]Γ′1,F = Σ1,F by definition. Second,

E
[
Z ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F

]
= tr(ΥΓ∗1,FE

[
Zd,2,FZ ′d,2,F

]
(Γ2,F − Γ∗1,F )′)

= tr(ΥΓ∗1,F
[
d0d
′
0 + Ω2,F

]
(Γ2,F − Γ∗1,F )′)

= tr(Υ(Σ2,F − Σ1,F )), (E.36)

where the last equality holds by Lemma B.9. Third,

E
[
Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F

]
= tr(Υ(Γ2,F − Γ∗1,F )

[
d0d
′
0 + Ω2,F

]
(Γ2,F − Γ∗1,F )′)

= d′0Γ′2,FΥΓ2,Fd0 − tr(Υ(Σ2,F − Σ1,F )) (E.37)

by Lemma B.9. Combining the results in (E.35)-(E.37), we obtain

E[λF (ω)] = tr(ΥΣ1,F )− 2ωtr (Υ (Σ1,F − Σ2,F ))

+ω2
[
d′0Γ′2,FΥΓ2,Fd0 + tr (Υ (Σ1,F − Σ2,F ))

]
. (E.38)

Note that d′0Γ′2,FΥΓ2,Fd0 = d′0(Γ2,F −Γ∗1,F )′Υ(Γ2,F −Γ∗1,F )d0 because Γ∗1,Fd0 = 0dθ . It is clear that

the optimal weight ω∗F in (4.3) minimizes the quadratic function of ω in (E.38).

Proof of Lemma B.9. By construction, Γ∗1,Fd0 = 0dθ×1. For ease of notation, we write Ω2,F

and G2,F as

Ω2,F =

 Ω1,F Ω1r∗

Ωr∗1,F Ωr∗,F

 and G2,F =

 G1,F

Gr∗,F

 . (E.39)

To prove part (b), we have

Γ∗1,FΩ2,FΓ∗1,F = [Γ1,F ,0dθ×r∗ ]

 Ω1,F Ω1r∗

Ωr∗1,F Ωr∗,F

 [Γ1,F ,0dθ×r∗ ]

= Γ1,FΩ1,FΓ′1,F =
(
G′1,FΩ−1

1,FG1,F

)−1
= Σ1,F . (E.40)
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To show part (c), note that

Γ∗1,FΩ2,FΓ′2,F = − [Γ1,F ,0dθ×r∗ ] Ω2,FΩ−1
2,FG2,F

(
G′2,FΩ−1

2,FG2,F

)−1

= −Γ1,FG1,F

(
G′2,FΩ−1

2,FG2,F

)−1
=
(
G′2,FΩ−1

2,FG2,F

)−1
= Σ2,F (E.41)

because −Γ1,FG1,F = Idθ×dθ . Part (d) follows from the definition of Γ2,F .

Proof of Lemma 4.2. We first prove the consistency of Ω̂k, Ĝk and Σ̂k for k = 1, 2. By Lemma

4.1, we have θ̂1 = θFn + op(1). Using the same arguments in showing (E.13), we can show that

Ω̂2 = Ω2,Fn + op(1) = Ω2,F + op(1), (E.42)

where the second equality is by the assumption of the lemma that vFn → vF for some F ∈ F . As

Ω̂1 is a submatrix of Ω̂2, by (E.42) we have

Ω̂1 = Ω1,Fn + op(1) = Ω1,F + op(1). (E.43)

By the consistency of θ̂1 and the same arguments used to show (E.30), we have

n−1
n∑
i=1

g2,θ(Wi, θ̂1) = G2,Fn(θFn) + op(1) = G2,F + op(1), (E.44)

where the second equality is by (B.10) which is assumed in the lemma. As n−1
∑n

i=1 g1,θ(Wi, θ̂1) is

a submatrix of n−1
∑n

i=1 g2,θ(Wi, θ̂1), by (E.44) we have

n−1
n∑
i=1

g1,θ(Wi, θ̂1) = G1,Fn(θFn) + op(1) = G1,F + op(1). (E.45)

From Assumption 3.2, (E.42), (E.43), (E.44) and (E.45), we see that Ω̂k and Ĝk are consistent

estimators of Ωk,F and Gk,F respectively for k = 1, 2. By the Slutsky theorem and Assumption 3.2,

we know that Σ̂k is a consistent estimator of Σk,F for k = 1, 2.

In the case where n1/2δFn → d ∈ Rr∗ , the desired result follows from Lemma 4.1, the consistency

of Σ̂1,F and Σ̂2,F , and the CMT. In the case where ||n1/2δFn || → ∞, ω̃eo →p 0 because n1/2||θ̂2 −
θ̂1|| →p ∞ and

n1/2(θ̂eo − θFn) = n1/2(θ̂1 − θFn) + ω̃eon
1/2(θ̂2 − θ̂1)

= n1/2(θ̂1 − θFn) +
n1/2(θ̂2 − θ̂1)tr

[
Υ(Σ̂1 − Σ̂2)

]
n(θ̂2 − θ̂1)′Υ(θ̂2 − θ̂1) + tr

[
Υ(Σ̂1 − Σ̂2)

] →D ξ1,F (E.46)

by Lemma 4.1.
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Proof of Lemma B.15. By definition,

ξ′1,FΥξ1,F = Z ′1,FΓ′1,FΥΓ1,FZ1,F = Z ′1Ω
1/2
1,FΓ′1,FΥΓ1,FΩ

1/2
1,FZ1 (E.47)

where Z1 ∼ N(0r1 , Ir1×r1). By Assumptions 3.2.(ii) and 3.2.(iv), and the fact that Υ is a fixed

matrix,

sup
F∈F

ρmax(Ω
1/2
1,FΓ′1,FΥΓ1,FΩ

1/2
1,F ) ≤ C. (E.48)

By (E.48),

sup
h∈H

E[(ξ′1,FΥξ1,F )2] ≤ sup
h∈H

ρ2
max(Ω

1/2
1,FΓ′1,FΥΓ1,FΩ

1/2
1,F )E[(Z ′1Z1)2] ≤ 3r1C (E.49)

where the second inequality is by E[(Z ′1Z1)2] ≤ 3r1 + r1(r1 − 1) = r2
1 + 2r1 which is implied by

the assumption that Z1 is a r1-dimensional standard normal random vector. The first inequality

of this lemma follows as the upper bound in (E.49) does not depend on F .

For any F ∈ F , define

BF ≡ (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F ).

By the Cauchy-Schwarz inequality and the simple inequality |ab| ≤ (a2+b2)/2 (for any real numbers

a and b),

ξ
′
FΥξF ≤ 2

(
Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F + ω2

FZ ′d,2,FBFZd,2,F
)

= 2
(
Z ′1,FΓ′1,FΥΓ1,FZ1,F + ω2

FZ ′d,2,FBFZd,2,F
)

(E.50)

where the equality is by Γ∗1,Fd0 = 0dθ×1 (which is proved in Lemma B.9). By (E.50) and the simple

inequality (a+ b)2 ≤ 2(a2 + b2) (for any real numbers a and b),

(ξ
′
FΥξF )2 ≤ 8(Z ′1,FΓ′1,FΥΓ1,FZ1,F )2 + 8(ω2

FZ ′d,2,FBFZd,2,F )2. (E.51)

By the first inequality of this lemma, we have suph∈H E[(ξ′1,FΥξ1,F )2] ≤ C. Hence by (E.51), to

show the second inequality of this lemma, it is sufficient to prove that

sup
h∈H

E[(ω2
FZ ′d,2,FBFZd,2,F )2] ≤ C. (E.52)

Recall that we have defined AF = Υ (Σ1,F − Σ2,F ) in Theorem 5.2. By the definition,

ω2
FZ ′d,2,FBFZd,2,F =

(tr(AF ))2Z ′d,2,FBFZd,2,F
(Z ′d,2,FBFZd,2,F + tr(AF ))2

= tr(AF )
tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

Z ′d,2,FBFZd,2,F
Z ′d,2,FBFZd,2,F + tr(AF )

. (E.53)
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By Lemma 2.1 in Cheng and Liao (2015), tr(AF ) ≥ 0 for any F ∈ F . This together with

Z ′d,2,FBFZd,2,F ≥ 0 implies that

tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )
≤ 1 and

Z ′d,2,FBFZd,2,F
Z ′d,2,FBFZd,2,F + tr(AF )

≤ 1. (E.54)

By (E.54) and tr(AF ) ≥ 0,

ω2
FZ ′d,2,FBFZd,2,F ≤ tr(AF ) = tr(ΥΣ1,F )− tr(ΥΣ2,F ), (E.55)

where the equality is by AF = Υ(Σ1,F − Σ2,F ). By (E.55) and the simple inequality (a + b)2 ≤
2(a2 + b2),

E[(ω2
FZ ′d,2,FBFZd,2,F )2] ≤ 2(tr(ΥΣ1,F ))2 + 2(tr(ΥΣ2,F ))2. (E.56)

By Assumptions 3.2.(ii) and 3.2.(iv),

ρmin(G′k,FΩ−1
k,FGk,F ) ≥ ρmin(Ω−1

k,F )ρmin(G′k,FGk,F ) = ρmin(G′k,FGk,F )/ρmax(Ωk,F ) ≥ C−1 (E.57)

for any F ∈ F and for k = 1, 2. By (E.57) and the definition of Σk,F (k = 1, 2),

ρmax(Σk,F ) = ρ−1
min(G′k,FΩ−1

k,FGk,F ) ≤ C (E.58)

for any F ∈ F . As Υ and Σk,F are positive definite symmetric matrix, by the standard trace

inequality (tr(AB) ≤ tr(A)ρmax(B) for Hermitian matrices A ≥ 0 and B ≥ 0),

tr(ΥΣk,F ) ≤ tr(Υ)ρmax(Σk,F ) ≤ C for k = 1, 2, (E.59)

for any F ∈ F . Collecting the results in (E.56) and (E.59), we immediately get (E.52). This finishes

the proof.

Proof of Lemma B.16. First note that

min{x, ζ} − x = (ζ − x)I{x > ζ}. (E.60)

Hence we have

sup
h∈H

∣∣∣E [min{ξ′FΥξF , ζ} − ξ
′
FΥξF

]∣∣∣
≤ sup

h∈H
E
[∣∣∣ζ − ξ′FΥξF

∣∣∣ I{ξ′FΥξF > ζ}
]

≤ ζ sup
h∈H

E
[
I{ξ′FΥξF > ζ}

]
+ sup
h∈H

E
[
ξ
′
FΥξF I{ζ−1 > (ξ

′
FΥξF )−1}

]
≤ 2ζ−1 sup

h∈H
E
[
(ξ
′
FΥξF )2

]
≤ 2Cζ−1 (E.61)
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where the first inequality is by the Jensen’s inequality, the second inequality is by the Markov

inequality, the third inequality is by the monotonicity of expectation and the last inequality is by

Lemma B.15. Using the same arguments, we can show that

sup
h∈H

∣∣E [min{ξ′1,FΥξ1,F , ζ} − ξ′1,FΥξ1,F

]∣∣ ≤ 2Cζ−1. (E.62)

Collecting the results in (E.61) and (E.62), and applying the triangle inequality, we deduce that

sup
h∈H

[|gζ(h)− g(h)|] ≤ 4Cζ−1. (E.63)

The claimed result of this lemma follows by (E.63) as C is a fixed constant.

By the triangle inequality, the Jensen’s inequality and Lemma B.15,

sup
h∈H
|g(h)| = sup

h∈H

∣∣∣E[ξ
′
FΥξF − ξ′1,FΥξ1,F ]

∣∣∣
≤ sup

h∈H
E[ξ
′
FΥξF ] + sup

h∈H
E[ξ′1,FΥξ1,F ] ≤ C

which finishes the proof of the lemma.

Proof of Lemma A.1. By definition

E
[
||θ̂eo − θ||2

]
− E

[
||θ̂1 − θ||2

]
= E

[
k2σ4(Y −X)′(Y −X)

(2kσ2 + (Y −X)′(Y −X))2

]
+ E

[
2kσ2(X − θ)′(Y −X)

2kσ2 + (Y −X)′(Y −X)

]
(E.64)

Let

J1 ≡ E
[

(X − θ)′(Y −X)

2kσ2 + (Y −X)′(Y −X)

]
and J2 ≡ E

[
(Y −X)′(Y −X)

(2kσ2 + (Y −X)′(Y −X))2

]
. (E.65)

Let X∗ = σ−1(X − θ), Y ∗ = σ−1(Y − θ) and Z∗ = (X∗′, Y ∗′)′. Then we can write

J1 = E
[

(X − θ)′(Y −X)

2kσ2 + (Y −X)′(Y −X)

]
= E

[
X∗′(Y ∗ −X∗)

2k + (Y ∗ −X∗)′(Y ∗ −X∗)

]
= E

[
Z∗′D1Z

∗

2k + Z∗′D2Z∗

]
(E.66)

where

D1 =

 −Ik 0k

Ik 0k

 and D2 =

 Ik −Ik
−Ik Ik

 . (E.67)

Note that

E
[
D1Z

∗Z∗′D′1
]

= D2 (E.68)
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by definition and the Gaussian assumption. Let η(x) = x/(x′D2x+ 2k). Its derivative is

∂η(x)′

∂x
=

1

x′D2x+ 2k
Ik −

2

(x′D2x+ 2k)2D2xx
′. (E.69)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1981),

J1 = E
(
η(Z∗)′D1Z

∗) = E
[
tr

(
∂η(Z∗)′

∂x
D1

)]
= E

[
tr (D1)

2k + Z∗′D2Z∗

]
−2E

[
tr (D2Z

∗Z∗′D1)

(2k + Z∗′D2Z∗)2

]
= E

[
−k

2k + Z∗′D2Z∗

]
−2E

[
Z∗′D1D2Z

∗

(2k + Z∗′D2Z∗)2

]
= E

[
−k

2k + Z∗′D2Z∗

]
+ 2E

[
Z∗′D2Z

∗

(2k + Z∗′D2Z∗)2

]
= E

[
2− k

2k + Z∗′D2Z∗

]
+ E

[
−4k

(2k + Z∗′D2Z∗)2

]
(E.70)

where the fourth equality follows from

D1D2 =

 −Ik Ik

Ik −Ik

 = −D2. (E.71)

Moreover,

k2σ4J2 = E
[

k2σ4(Y −X)′(Y −X)

(2kσ2 + (Y −X)′(Y −X))2

]
= E

[
k2σ2

2k + Z∗′D2Z∗

]
− E

[
2k3σ2

(2k + Z∗′D2Z∗)2

]
(E.72)

which together with (E.70) implies that

E
[
||θ̂eo − θ||2

]
− E

[
||θ̂1 − θ||2

]
= σ2E

[
2k(2− k) + k2

2k + Z∗′D2Z∗

]
− σ2E

[
2k3 + 8k2

(2k + Z∗′D2Z∗)2

]
= σ2E

[
k(4− k)

2k + Z∗′D2Z∗

]
− σ2E

[
2k2(k + 4)

(2k + Z∗′D2Z∗)2

]
. (E.73)

The asserted result follows from the fact that D2 is positive semi-definite and the second term on

the right-hand side of the second equality of (E.73) is always negative.
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F Asymptotic Risk of the Pre-test GMM Estimator

In this section, we establish similar results in Theorem 5.1 for the pre-test GMM estimator

based on the J-test statistic. The pre-test estimator is defined as

θ̂pre = 1{Jn > cα}θ̂1 + 1{Jn ≤ cα}θ̂2, (F.1)

where Jn= ng2(θ̂2)′(Ω̂2)−1g2(θ̂2) and cα is the 100(1−α)th quantile of the chi-squared distribution

with degree of freedom r2 − dθ.

Theorem F.1 Suppose that Assumptions 3.1-3.3 hold. The bounds of the asymptotic risk differ-

ence satisfy

AsyRD(θ̂pre, θ̂1)= min

{
inf
h∈H

[gp(h)] , 0

}
,

AsyRD(θ̂pre, θ̂1)= max

{
sup
h∈H

[gp(h)] , 0

}
,

where gp(h) ≡ E[ξ
′
p,FΥξp,F − ξ′1,FΥξ1,F ] and ξp,F is defined in (F.3) below.

Proof of Theorem F.1. The two equalities and inequalities in the theorem follow by the same

arguments in the proof of Theorem 5.1 with Lemma 4.2 for θ̂eo replaced by Lemma F.1 for θ̂pre,

Lemma B.15 replaced by Lemma F.2, and Lemma B.16 replaced by Lemma F.3. Its proof is hence

omitted.

By Definition,

E[ξ
′
p,FΥξp,F ] = E[Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F ] + 2E[ωp,FZ ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F ]

+E[ω2
p,FZ ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F ]

= tr(ΥΣ1,F ) + 2E[ωp,FZ ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F ]

+E[ω2
p,FZ ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F ] (F.2)

The asymptotic risk of the pre-test estimator θ̂p in Figure 2 is simulated based on the formula in

(F.2).

The following lemma provides the asymptotic distribution of the pre-test GMM estimator under

various sequence of DGPs, which is used to show Theorem F.1.

Lemma F.1 Suppose that Assumptions 3.1-3.3 hold. Consider {Fn} such that vFn → vF for some

F ∈ F .

(a) If n1/2δFn → d for some d ∈ Rr∗, then

Jn→D J∞(hd,F ) ≡ (Z2,F + d0)′LF (Z2,F + d0),
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where LF ≡ Ω−1
2,F − Ω−1

2,FG2,F

(
G′2,FΩ−1

2,FG2,F

)−1
G′2,FΩ−1

2,F and d0 = (01×r1 , d
′)′, and

n1/2(θ̂pre − θFn)→D ξp,F ≡ (1− ωp,F )ξ1,F + ωp,F ξ2,F (F.3)

where ωp,F = 1{J∞(hd,F ) ≤ cα}.

(b) If ||n1/2δFn || → ∞, then ωp,F →p 0 and n1/2(θ̂pre − θFn)→D ξ1,F .

Proof of Lemma F.1. (a) By Assumption 3.2.(ii), (E.29) and (E.32),

g2(θ̂2) = g2(θFn) + [G2,Fn(θFn) + op(1)] (θ̂2 − θFn) + op(n
−1/2)

= g2(θFn) +G2,FnΓ2,Fng2(θFn) + op(n
−1/2)

= (Ir2 +G2,FnΓ2,Fn)g2(θFn) + op(n
−1/2), (F.4)

which implies that

Jn = ng2(θFn)′LFng2(θFn) + op(1) (F.5)

where LFn ≡ Ω−1
2,Fn
− Ω−1

2,Fn
G2,Fn(G′2,FnΩ−1

2,Fn
G2,Fn)−1G′2,FnΩ−1

2,Fn
.

By n1/2δFn → d and Lemma B.1.(v),

n1/2Ω
−1/2
2,Fn

g2(θFn) = Ω
−1/2
2,Fn

µn(g2(W, θFn)) + Ω
−1/2
2,Fn

n1/2δFn →D Z+Ω
−1/2
2,F d0 (F.6)

where d′0 = (01×r1 , d
′) and Z is a r2×1 standard normal random vector. By vFn → vF , (F.5), (F.6)

and the CMT,

Jn →D (Z2,F + d0)′LF (Z2,F + d0). (F.7)

Recall that Lemma 4.1.(a) implies that

n1/2(θ̂1 − θFn)→D ξ1,F and n1/2(θ̂2 − θFn)→D ξ2,F , (F.8)

which together with (F.7) and the CMT implies that

n1/2(θ̂pre − θFn) = 1{Jn > cα}n1/2(θ̂1 − θFn) + 1{Jn ≤ cα}n1/2(θ̂2 − θFn)

→ D(1− ωp,F )ξ1,F + ωp,F ξ2,F , (F.9)

which finishes the proof of the claim in (a).

(b) There are two cases to consider: (i) ||δFn || > C−1; and (ii) ||δFn || → 0. We first consider

case (i). As g1(θ̂2) is a subvector of g2(θ̂2),

Jn = ng2(θ̂2)′(Ω̂2)−1g2(θ̂2)

≥ nρ−1
max(Ω̂2)g2(θ̂2)′g2(θ̂2)

≥ nρ−1
max(Ω̂2)g1(θ̂2)′g1(θ̂2). (F.10)
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By (B.22) and (B.23) in the Appendix of CLS∥∥∥θ̂2 − θFn
∥∥∥ ≥ C−1 with probability approaching 1, (F.11)

which together with Assumption 3.1.(ii) and Lemma B.1.(i) implies that

g1(θ̂2) = M1,F (θ̂2) + op(1) ≥ C (F.12)

with probability approaching 1. By (E.42) and Assumption 3.2.(ii), we have

ρmax(Ω̂2) ≤ C with probability approaching 1. (F.13)

Combining the results in (F.10), (F.12) and (F.13), we deduce that

Jn ≥ nC−1 with probability approaching 1, (F.14)

which immediately implies that

ωp,F = 1{Jn ≤ cα} = 0 (F.15)

with probability approaching 1, as cα is a fixed constant. By Lemma 4.1.(b), (F.15) and the

assumption that Θ is bounded, we have

n1/2(θ̂pre − θFn) = 1{Jn > cα}n1/2(θ̂1 − θFn) + 1{Jn ≤ cα}n1/2(θ̂2 − θFn)

= 1{Jn > cα}n1/2(θ̂1 − θFn) + op(1)→D ξ1,F (F.16)

where the convergence in distribution is by the CMT.

We next consider the case that ||δFn || → 0 and ||n1/2δFn || → ∞. In the proof of Lemma 4.1, we

have shown that θ̂2 − θFn = op(1), and that (F.4) and (F.5) hold in this case. It is clear that

n1/2g2(θFn) = µn(g2(W, θFn) +

 0r1×1

n1/2δFn

 (F.17)

which implies that

ng2(θFn)′LFng2(θFn) = [µn(g2(W, θFn)]′LFn [µn(g2(W, θFn)]

+2
(

01×r1 n1/2δ′Fn

)
LFn [µn(g2(W, θFn)]

+
(

01×r1 n1/2δ′Fn

)
LFn

(
01×r1 n1/2δ′Fn

)′
. (F.18)
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By Lemma B.1.(v) and Assumptions 3.2.(ii)-(iii),

[µn(g2(W, θFn)]′LFn [µn(g2(W, θFn)] = Op(1). (F.19)

In order to bound the third term in (F.18) from below, we shall show that for any d0 = (01×r1 , d
′)′

for d ∈ Rr∗ with ‖d‖ = 1,

d′0LFnd0 ≥ C−1 (F.20)

By definition, LFn has dθ many zero eigenvalues and r2 − dθ many of eigenvalues of ones. The

matrix G2,Fn contains the dθ many eigenvectors of the zero eigenvalues of LFn , because

LFnG2,Fn = 0r2×dθ and ρmin(G′2,FnG2,Fn) ≥ C−1. (F.21)

Let G⊥,Fn denote the orthogonal complement of G2,Fn with G′⊥,FnG⊥,Fn = Ir2−dθ . Then we have

 G1,Fn

Gr∗,Fn

 a1 +

 G1,⊥,Fn

Gr∗,⊥,Fn

 a2 =

 0r1×1

d

 (F.22)

for some constant vectors a1 ∈ Rdθ and a2 ∈ Rr2−dθ . As ρmin(G′1,FnG1,Fn) ≥ C−1 by Assumption

3.2, we have

a1 = −(G′1,FnG1,Fn)−1G′1,FnG1,⊥,Fna2 (F.23)

and

(Gr∗,⊥,Fn −Gr∗,Fn(G′1,FnG1,Fn)−1G′1,FnG1,⊥,Fn)a2 = d. (F.24)

Let HFn = Gr∗,⊥,Fn − Gr∗,Fn(G′1,FnG1,Fn)−1G′1,FnG1,⊥,Fn . By ρmin(G′1,FnG1,Fn) ≥ C−1, Assump-

tions 3.2.(ii), (F.24) and the Cauchy-Schwarz inequality,

‖d‖2 = a′2HFnH
′
Fna2 ≤ C ‖a2‖2 (F.25)

which together with ‖d‖ = 1 implies that

‖a2‖2 ≥ C−1. (F.26)

Using (F.21), (F.22) and (F.26), we deduce that

d′0LFnd0 = (G2,Fna1 +G⊥,Fna2)′LFn(G2,Fna1 +G⊥,Fna2)

= a′2G
′
⊥,FnLFnG⊥,Fna2 = ‖a2‖2 ≥ C−1 (F.27)

which proves (F.20). By (F.20),

(
01×r1 n1/2δ′Fn

)
LFn

(
01×r1 n1/2δ′Fn

)′
≥ C−1n||δFn ||2 (F.28)
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which together with n||δFn ||2 →∞ implies that

(
01×r1 n1/2δ′Fn

)
LFn

(
01×r1 n1/2δ′Fn

)′
→∞. (F.29)

Collecting the results in (F.18), (F.19) and (F.19),and by the Cauchy-Schwarz inequality, we deduce

that ng2(θFn)′LFng2(θFn)→p ∞, which together with (F.5) implies that

Jn →p ∞. (F.30)

Using the same arguments in showing (F.16), we deduce that

n1/2(θ̂pre − θFn)→D ξ1,F . (F.31)

This finishes the proof.

Lemma F.2 Under Assumptions 3.2, we have

sup
h∈H

E[(ξ
′
p,FΥξp,F )2] ≤ C. (F.32)

Proof of Lemma F.2. By the same arguments in showing (E.51), we have

(ξ
′
p,FΥξp,F )2 ≤ 8(Z ′1,FΓ′1,FΥΓ1,FZ1,F )2 + 8(ω2

p,FZ ′d,2,FBFZd,2,F )2. (F.33)

By the first inequality in (B.58) in the Appendix of CLS, we have suph∈H E[(ξ′1,FΥξ1,F )2] ≤ C.

Hence by (F.33), to show the inequality in (F.32), it is sufficient to prove that

sup
h∈H

E[(ω2
p,FZ ′d,2,FBFZd,2,F )2] ≤ C. (F.34)

By definition,

ωp,F = I{J∞(hd,F ) ≤ cα} = I{Z ′d,2,FLFZd,2,F ≤ cα}. (F.35)

By the simple inequality (a+ b)2 ≥ a2/2− 2b2,

(z + d0)′LF (z + d0) ≥ d′0LFd0/2− 2z′LF z (F.36)

for any z ∈ R, which together with Assumption 3.2 and (F.20) implies that

(z + d0)′LF (z + d0) ≥ ‖d‖2 /C − 2z′LF z ≥ ‖d‖2 /C − C ‖z‖2 . (F.37)

Under Assumption 3.2, ‖BF ‖ ≤ C for any F ∈ F which together with the simple inequality
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(a+ b)2 ≤ 2(a2 + b2) implies that

(z + d0)′BF (z + d0) ≤ 2C(‖d‖2 + ‖z‖2) (F.38)

for any z ∈ R. Collecting the results in (F.36) and (F.38), we get

I{(z + d0)′LF (z + d0) ≤ cα}z′BF z
≤ 2CI{‖d‖2 ≤ cαC + C2 ‖z‖2}(‖d‖2 + ‖z‖2)

≤ 2C(cαC + (C2 + 1) ‖z‖2) (F.39)

which implies that

sup
h∈H

E[(ω2
p,FZ ′d,2,FBFZd,2,F )2]

≤ 4C2E[(cαC + (C2 + 1)Z ′2,FZ2,F )2]

≤ C(cα + E[
(
Z ′2,FZ2,F

)2
]) = C(cα + 3ρ2

max(Ω2)r2). (F.40)

This finishes the proof.

Lemma F.3 Let gp,ζ(h) ≡ E
[
min{ξ′p,FΥξp,F , ζ} −min{ξ′1,FΥξ1,F , ζ}

]
. Under Assumptions 3.2,

we have

lim
ζ→∞

sup
h∈H

[|gp,ζ(h)− gp(h)|] = 0 (F.41)

where suph∈H [|gp(h)|] ≤ C.

Proof of Lemma F.3. The proof follows the same arguments of the proof of Lemma B.16 with

the second inequality in (B.58) in the Appendix of CLS replaced by (F.32).

G Simulation Results on Truncated Risk for Section 6
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Figure G.1: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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Figure G.2: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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Figure G.3: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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Figure G.4: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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Figure G.5: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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Figure G.6: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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Table G.1: The Lower and Upper Bounds of the Finite Sample Relative Truncated MSEs

Design S1 Design S2 Design S3
Lower Upper Lower Upper Lower Upper

θ̂oe 0.5732 0.7968 0.6113 0.8980 0.9694 1.0012

n = 50 θ̂JS 0.9755 0.9959 0.9776 0.9978 0.9995 1.0003

θ̂pret 0.4424 0.9574 0.5057 1.0973 1.0324 1.4283

θ̂oe 0.5325 0.8789 0.5513 0.9781 0.9733 1.0040

n = 100 θ̂JS 0.9208 0.9911 0.9202 0.9956 0.9996 1.0002

θ̂pret 0.3586 1.1940 0.3937 1.3539 0.9990 1.4709

θ̂oe 0.5316 0.9587 0.5384 1.0118 0.9720 1.0079

n = 250 θ̂JS 0.7591 0.9787 0.7506 0.9923 0.9999 1.0000

θ̂pret 0.3360 1.5106 0.3598 1.6392 0.9753 1.4394

θ̂oe 0.5331 0.9846 0.5355 1.0112 0.9700 1.0096

n = 500 θ̂JS 0.6443 0.9823 0.6359 0.9953 1.0000 1.0000

θ̂pret 0.3368 1.6196 0.3495 1.6937 0.9562 1.4236

θ̂oe 0.5335 0.9934 0.5341 1.0082 0.9681 1.0119

n = 1, 000 θ̂JS 0.5803 0.9890 0.5737 0.9978 1.0000 1.0000

θ̂pret 0.3395 1.6433 0.3451 1.6864 0.9473 1.3953

Note: 1. θ̂JS and θ̂pret denote the GMM averaging estimator based on the weight in (6.1) and the pre-testing GMM
estimator based on J-test with nominal size 0.01 respectively; 2. the ”Upper” and ”Lower” refer to the upper bound
and the lower bound of the finite sample relative MSEs among all DGPs considered in the simulation design given
the sample size.
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H Simulation under the Student-t Distribution

In this subsection, we report the simulation results on the finite sample properties of the pre-test

and averaging GMM estimators, when the residual term u in the structure equation (6.4) of CLS

is a student-t random variable with degree of freedom 2. The simulation design is the same as the

one in Subsection 6.1, except that we generate the structural error u in the following way

u =
u∗

((η2
1 + η2

2)/2)1/2

where η1 and η2 are independent standard normal random variables which are independent with

respect to (Z1, ..., Z18, ε1, . . . , ε6, u
∗).30 We call this simulation design as S4.

The finite sample untruncated and truncated MSEs are reported in Figures H.1 - H.5. It is

interesting to see that in this simulation design, both the pre-test GMM estimator and the averaging

GMM estimator have smaller finite sample MSEs than the conservative GMM estimator. The main

reason for this phenomenon is that the residual term u in the structural equation is Student-t with

degree of freedom 2, which implies that u has infinite variance and hence the conservative GMM

estimator has large variance in finite samples. When the extra IVs Z∗j (j = 1, . . . , 6) are used in the

GMM estimation, the finite sample variances of the GMM estimator is greatly reduced. Therefore,

the finite samples biases of the pre-testing GMM estimator and the averaging GMM estimator

introduced by the extra IVs Z∗j (j = 1, . . . , 6) are more than offset by the reduced finite sample

variances, which enables both estimator have smaller finite sample MSEs.

30In this design, the structural error u does not enter the possibly invalid IVs (6.4). Therefore the IVs and the
regressors are normally distributed. We thank an anonymous who suggested this simulation design.
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Figure H.1: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure H.2: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure H.3: Finite Sample Biases and Variances in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure H.4: Finite Sample TMSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.The truncation parameter for the truncated MSE

is ζ = 1000.
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Figure H.5: Finite Sample TMSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ζ = 1000.
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