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Abstract

This paper studies the averaging GMM estimator that combines a conservative GMM es-
timator based on valid moment conditions and an aggressive GMM estimator based on both
valid and possibly misspecified moment conditions, where the weight is the sample analog of an
infeasible optimal weight. We establish asymptotic theory on uniform approximation of the up-
per and lower bounds of the finite-sample truncated risk difference between any two estimators,
which is used to compare the averaging GMM estimator and the conservative GMM estimator.
Under some sufficient conditions, we show that the asymptotic lower bound of the truncated risk
difference between the averaging estimator and the conservative estimator is strictly less than
zero, while the asymptotic upper bound is zero uniformly over any degree of misspecification.
The results apply to quadratic loss functions. This uniform asymptotic dominance is established

in non-Gaussian semiparametric nonlinear models.
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1 Introduction

We are interested in estimating some finite dimensional parameter §7 € R% which is uniquely

identified by the moment restrictions

Eplg1(W,0p)] = 0rx1 (1.1)

for some known vector function g (-) : W x ©—R" | where © is a compact subset of R% W is a
random vector with support W and joint distribution F', and Eg|[-] denotes the expectation operator
under F. Suppose we have i.i.d. data {W;}!" |, where W; has distribution F for i =1,... ’”D Let
g1(0) =n"t3 0 g1(Wi,0). An efficient GMM estimator for 0 is

B = argmin ,(0) (0) 5, (6), (1.2)
USS)

where Q1 = n 1Y g (Wi, 01)g1(Wi,01) — 3,(01)g,(61)" is the efficient weighting matrix with
some preliminary consistent estimator 51 In a linear instrumental variable (IV) example, Y =
X'0p + U where the IV Z; € R™ satisfies Ep[Z1U] = 0,,x1. The moments in hold with
g1(W,0) = Z1(Y — X'0) and 6 is uniquely identified if Ep[Z; X’] has full column rank. Under cer-
tain regularity conditions, it is well-known that 51 is consistent and achieves the lowest asymptotic
variance among GMM estimators based on the moments in , see Hansen (1982).

If one has additional moments
Ep[g"(W,0F)] = 0rx1 (1.3)

for some known function ¢g*(-) : W x ©—=R"", imposing them together with can further
reduce the asymptotic variance of the GMM estimator. However, if these additional moments are
misspecified in the sense that Ep[g*(W,0p)] # 0,+x1, imposing may result in inconsistent
estimation. The choice of moment conditions is routinely faced by empirical researchers. Take
the linear IV model for example. One typically starts with a large number of candidate IVs but
only has confidence that a small number of them are valid, denoted by Z;. The rest of them,
denoted by Z*, are valid only under certain economic hypothesis that yet to be tested. In this
example, ¢*(W,0) = Z*(Y — X'#). In contrast to the conservative estimator 01, an aggressive

estimator 0, always imposes (1.3) regardless of its validity. Let g2 (Wi, 0) = (g1 (W5, 0), g* (W4, 0)")

!The main theory of the paper can be easily extended to time series models with dependent data, as long as the
preliminary results in Lemma hold.

2For example, 6; could be the GMM estimator similar to 6; but with an identity weighting matrix, see in
the Appendix.



Figure 1: Finite Sample (n = 500) MSEs of the Pre-test and the Averaging GMM Estimators
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Note: “Pre-test(0.01)” and “Pre-test(0.05)” refer to the pre-test GMM estimator based on the J test statistic
ngs (/9\2)’(52)_1%(52) with nominal size 0.01 and 0.05 respectively. “Emp-opt” refers to the averaging GMM es-
timator with weight defined in of the paper. In this simulation, we set dp = cow where ¢g is in [0,1] and w is
a real vector. At each co, we consider 127 different values for w and report the largest finite sample MSEs of the

estimators. Details of the simulation design for this figure is provided in Subsection [6.1]

fori=1,...,n, and go(0) =n"1 > | ga(W;,0). The aggressive estimator 6, takes the form

0 = arg ming, (0)'(22) ~'75(0), (1.4)

0cO

where (s is constructed in the same way as 1 except that g1 (W;, 0) is replaced by go(W;, 9)
Because imposing Ep[¢* (W, 0Fr)] = 0,+x1 is a double-edged sword, a data-dependent decision
usually is made to choose between 51 and 52. To study such a decision and the subsequent estimator,
let
0r = Eplg*(W,0r)] € R (1.5)

The pre-testing approach tests the null hypothesis Hy : 6 = 0,+x1 and constructs an estimator
Opre = 1{Ty, > ca}b1 + 1{T}, < ca}02 (1.6)

for some test statistic T, with the critical value ¢, at the significance level a. One popular test is the

3See the first line of equations (E.13)) in the Supplemental Appendix for the definition of Q. In particular, Qs is
constructed using 61, the preliminary consistent estimator based on the valid moment conditions in 1) only.



J-test, see Hansen (1982), and ¢,, is the 1 —a quantile of the chi-squared distribution with degree of
freedom ro — dy where ro = r1 +r*. Because the power of this test against the fixed alternative is 1,
/H\pre equals 0, with probability 1 asymptotically (n — oo) for those fixed misspecified model where
O0p # 0p+x1. Thus, it seems that /O\pre is immune to moment misspecification. However, we care
about the finite-sample mean squared error (MSE) of gpre in practice and this standard pointwise
asymptotic analysis (dp is fixed and n — oo) provides a poor approximation to the formerﬁ To
see the comparison between @m and 51, the dashed line and the dashed-dotted line in Figure
plot the maximum finite-sample (n = 500) MSEs of gpre with a = 0.01 and 0.05 respectively, while
the MSE of /0\1 is normalized to 1 For some values of g, the MSE of gpre may be larger than
that of 51, sometimes by more than 50%. Note that the pre-test estimators exhibit multiple peaks
because the simulation design allows for multiple potentially misspecified moments and considers
two different ways of parametrizing dp. Given ¢y, the norm of dz may be different in the two
different parametrizations.

The goal of this paper is twofold. First, we propose a data-dependent averaging of 51 and @2
that takes the form

o~

Beo = (1 — Weo)01 + Weoba (1.7)

where we, € [0, 1] is a data-dependent weight specified in below. The subscript in we, is short
for empirical optimal because this weight is an empirical analog of an infeasible optimal weight
wy defined in below. We plot the finite-sample MSE of this averaging estimator as the solid
line in Figure [I} This averaging estimator is robust to misspecification in the sense that the solid
line is below 1 for all values of dp, in contrast to the bump in the dashed line that represents the
pre-test estimator. Second, we develop a uniform asymptotic theory to justify the finite-sample
robustness of this averaging estimator. We quantify the upper and lower bounds of the asymptotic
risk differences between the averaging estimator and the conservative estimator, and show that this
averaging estimator dominates the conservative estimator uniformly over a large class of models
with different degrees of misspecification in certain asymptotic senseﬁ The uniform dominance is
established under the truncated weighted loss function which is defined in belowﬂ Our
uniform dominance result relies on the asymptotic properties of the GMM estimators, therefore it

is weaker than the exact finite sample dominance result of the James-Stein estimator established

4The poor approximation of the pointwise asymptotics to the finite sample properties of the pre-test estimator
has been noted in Shibata (1986), Potscher (1991), Kabaila (1995, 1998) and Leeb and Potscher (2005, 2008), among
others.

5That is, the dashed line and the dashed-dotted line represent the ratios of the maximum MSEs of the two pre-test
estimators divided by the MSE of 6; respectively.

5The lower and upper bounds of asymptotic risk difference are defined in below.

"Truncation at a large number is needed for the asymptotic analysis of the risk of general estimator without
imposing stringent conditions such as uniform integrability.



in the Gaussian sampling models.

The rest of the paper is organized as follows. Section [2] discusses the literature related to our
paper. Section[3|defines the parameter space over which the uniform result is established and defines
uniform dominance. Section [ introduces the averaging weight. Section [5] provides an analytical
representation of the bounds of the asymptotic risk differences and applies it to show that the
averaging GMM estimator uniformly dominates the conservative estimator. Section [6] investigates
the finite sample performance of our averaging estimator using Monte Carlo simulations. Section [7]
concludes. Proof of the main results of the paper and additional simulation results are given in the
Appendix. Analysis of the pre-test estimator, extra simulation studies and proofs of some auxiliary
results are included in the Supplemental Appendix of the paper.

Notation. For any real matrix A, we use ||A|| to denote the Frobenius norm of A, that is || A|| =
(tr(A’A))'/? where tr(-) denotes the trace operator of square matrices. If A is a real symmetric
matrix, pmin(A) and pmax(A) denote the smallest and largest eigenvalues of A, respectively. For
any positive integers dy and da, I3, and 0Og4, x4, stand for the dy x d; identity matrix and d; x da
zero matrix, respectively. Let vec (-) denotes vectorization of a matrix and vech (-) denotes the half
vectorization of a symmetric matrix. Let R = (—o0, +00), Ry = [0,4+00), Ryo = RU {£o00} and
R, o = Ry U{+0oc}. For any positive integer d and any set S, S¢ denotes the Cartesian product of
d many sets: S1Xx --- x Sg with S; = S for j = 1,...,d. For any finite positive integer d and any
set S € R?, int(S) denotes the interior of S under the Euclidean norm. We use N to denote the set
of natural numbers and {p,} = {p, : » € N} denote a subsequence of {n},ecn. For any (possibly
random) positive sequences {a, }>2; and {b, }>> , an, = Op(by,) means that sup,,cy Pr (an /by, > ¢) —
0 as ¢ — 00; a,, = op(by,) means that for all € > 0, lim,,_,oc Pr (a, /b, > ¢) = 0. Let “—,” and “—p”
stand for convergence in probability and convergence in distribution, respectively. The notation

a = b means a is defined as b.

2 Related Literature

Our uniform dominance result is related to the Stein’s phenomenon (Stein, 1956) in parametric
models. The James-Stein (JS) estimator shrinks the maximum likelihood estimator (MLE) toward
zero and has been shown to dominate the MLE in exact normal sampling, see James and Stein
(1961). Green and Strawderman (1991) propose an averaging estimator in the Gaussian location
model which shrinks an unbiased estimator toward a biased estimator with a JS-type of weight,
and show that the averaging estimator dominates the unbiased estimator. Green and Strawderman

(1991) assume that the unbiased estimator is independent of the biased estimator, which is relaxed



in Kim and White (2001), Judge and Mittelhammer (2004) and Mittelhammer and Judge (2005) ][]
These papers propose averaging estimators which shrink asymptotically unbiased estimators toward
biased estimators in the semiparametric setting, and show that the averaging estimators based on
infeasible weights dominate the unbiased estimators in the Gaussian location models. Kim and
White (2001) show that the infeasible weight can be consistently estimated when the asymptotic
bias of the biased estimator is zero. Judge and Mittelhammer (2004) and Mittelhammer and Judge
(2005) provide approximators of the infeasible optimal weights and show that these approximators
can be consistently estimated. These estimators and our estimator are all linear combinations of
the unbiased estimator and the biased estimator. However even in the Gaussian location models,
the weights are different and their sufficient conditions and proofs for dominance are different, see
Appendix [A| for detailsm

Hansen (2016) considers the JS type averaging estimator in general parametric models and
shows the Stein-dominance result in a pointwise local asymptotic senseE Hansen (2017) proposes
an averaging estimator that combines the ordinary least squares (OLS) estimator and the two-
stage-least-squares (2SLS) estimator in linear IV models, and shows that the averaging estimator
has smaller local asymptotic risk than the OLS estimator. DiTraglia (2016) also studies the av-
eraging GMM estimator in the pointwise local asymptotic framework. The averaging weight of
his estimator is based on the focused moment selection criterion with a targeted parameter. The
simulation results in the paper show that this averaging estimator does not uniformly dominate
the conservative estimator. Many other frequentist model averaging estimators are studied in the
literature, including Buckland, Burnham, and Augustin (1997), Hjort and Claeskens (2003, 2006),
Hansen (2007), Claeskens and Carroll (2007), Hansen and Racine (2012), Cheng and Hansen (2015),
Lu and Su (2015), to name only a few.

Different from the aforementioned papers, our paper is the first to show global dominance

based on uniform asymptotic approximation@ This uniform analysis is similar to those studied

8We thank an anonymous referee who referred Green and Strawderman (1991) and Judge and Mittelhammer
(2004) to us.

9Judge and Mittelhammer (2007) propose an averaging estimator which combine different GMM estimators with
weights determined by the empirical likelihood method. However, the properties of this averaging estimator are not
fully investigated and no dominace results are established in this paper.

%Tn the Gaussian location model, our dominance results require dg > 4; Green and Stawderman (1991) requires
d¢ > 3 by imposing independence between the unbiased and the biased estimators; and Kim and White (2001), Judge
and Mittelhammer (2004) and Mittelhammer and Judge (2005) require dg > 5.

"For a given real vector d, the pointwise local asymptotic analysis considers a sequence of local DGPs {F.}, under
which §r, = dn~/?, and derives the asymptotic (truncated) risk of the averaging estimator under {Fy.},, for the
given d. Such analysis will produce a pointwise risk function (on d) for the averaging estimator. Evaluation of the
averaging estimator is then conducted using the pointwise local asymptotic risk function.

12T the uniform global asymptotic framework, one has to study the asymptotic behavior of the supermum and the
infimum of the finite sample risk of the averaging estimator, where the supermum and the infimum are taken over a
class of DGPs which include both the locally misspecified and many more severely misspecified DGPs. See Section



in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2011) for uniform
size control for inference in non-standard problems, but the present paper is for estimation rather
than inference and focuses on a misspecification issue that is not studied in these papers.

The uniform dominance property of the averaging estimator does not contradict the risk prop-
erties of the post-model-selection estimators found in Yang (2005) and Leeb and Pdétscher (2008).
Measured by the MSE, the post-model-selection estimator usually does better than the unrestricted
estimator in part of the parameter space and worse than the latter in other part of the parameter
space. One standard example is the Hodge’s estimator, whose scaled maximal MSE diverges to in-
finity with the growth of the sample size (see, e.g., Lehmann and Casella, 1998). Similar unbounded
risk results are established in Yang (2005) and Leeb and Potscher (2008) for post-model-selection
estimator based on consistent model selection procedures. Such estimators have unbounded (scaled)
maximal MSE because given the consistent model selection procedure: (i) there exist DGPs where
the restrictions to be tested/selected are (locally) misspecified; (ii) the model selection procedures
select these misspecified restrictions with high probabilities, converging to 1 asymptotically; (iii) the
restricted estimator has unbounded (scaled) MSE under these DGPSH In contrast, the empirical
optimal weight of our averaging estimator is based on an infeasible optimal weight that satisfies:
(i) when the aggressive/restricted GMM estimator has unbounded (scaled) MSE, the averaging
weight on it is small, converging to 0 asymptotically. The resulting averaging estimator has the
same asymptotic properties as the conservative GMM estimator; (ii) the Stein’s dominance result
applies in the asymptotic sense. Hence our averaging estimator is essentially different from the
post-model-selection estimator.

There is a large literature studying the validity of GMM moment conditions. Many methods
can be applied to detect the validity, including the over-identification tests (see, e.g., Sargan, 1958;
Hansen, 1982; and Eichenbaum, Hansen and Singleton 1988), the information criteria (see, e.g.,
Andrews, 1999; Andrews and Lu, 2003; and Hong, Preston and Shum, 2003), and the penalized
estimation methods (see, e.g., Liao, 2013; Cheng and Liao, 2014). Recently, misspecified moments
and their consequences are considered by Ashley (2009), Berkowitz, Caner, and Fang (2012), Conley,
Hansen, and Rossi (2012), Doko Tchatoka and Dufour (2008, 2014), Guggenberger (2012), Nevo
and Rosen (2012), Kolesar, Chetty, Friedman, Glaeser, Imbens (2014), Small (2007), Small, Cai,
Zhang, Kang (2015), among others. Moon and Schorfheide (2009) explore over-identifying moment

for more details.

13The post-model-selection estimator based on a conservative model selection procedure (e.g., hypothesis test
with fixed critical value or Akaike information criterion) typically do not have unbounded (scaled) maximal MSE.
However its asymptotic maximal MSE is not guaranteed to be less than or equal to the benchmark estimator (e.g.,
the conservative GMM estimator in the framework of this paper). The pre-test estimators in Figure [1| are good
examples, since they are based on the J-test with nominal size 0.01 and 0.05.



inequalities to reduce the MSE. This paper contributes to this literature by providing new uniform
results for potentially misspecified semiparametric models.

There is also a large literature studying adaptive estimation in nonparametric regression model
using model averaging; see Yang (2000, 2003, 2004), Leung and Barron (2006), and the references
therein. Since the unknown function can be written as a linear combination of (possibly infinitely
but countably many) basis functions, the nonparametric model may be well approximated by
parametric regression models in finite samples. These papers show that the averaging estimators
which combine OLS estimators from different parametric models with data dependent weights may
achieve the optimal convergence rate up to some logarithm factor. Our paper is different from
these papers since the parameter of interest in our paper is a finite dimensional real value, not
an unknown function, and the bias and variance trade-off of our averaging estimator is due to the
possibly misspecified moment conditions. Moreover, there is a benchmark estimator in our paper,
i.e., the conservative GMM estimator whose asymptotic properties are well-known. Our goal is to

propose an averaging estimator with uniformly smaller risk than the conservative estimator.

3 Parameter Space and Uniform Dominance

Let g2 j(w,0) (j = 1,...,72) denote the j-th component function of ga(w, ). We assume that
g2,(w,8) for j = 1,...,ry is twice continuously differentiable with respect to 6 for any w € W.

The first and second order derivatives of go(w, ) with respect to 6 are denoted by

9g2,1(w,0) 92921 (w,0)
96" 9600"
go0(w,0) = : and g2 gg(w,0) = : , (3.1)
892,7‘2 (w70) 8292,'r2 (w,@)
90" 9000"

respectivelyE Let F be a set of distribution functions on W. For & = 1 and 2, define the

expectation of the moment functions, the Jacobian matrix and the variance-covariance matrix as

Myr = Eplge(W,0r)],
Grr = Erlgre(W,0F)], and

)

Q;ﬁp = EF [gk(W, 9F)gk(W, HF)/] — Mkz,FM];,F (3.2)

for any F' € F respectively. The moments above exist by Assumption below.

1By definition, g1,0(w,0) and g1,00(w,0) are the leading 71 X d¢ and (ri1de) x d¢ submatrices of g2,¢(w,0) and
g2,00(w, 0), respectively.



Let
Qr(0) = Er[g2(W,0)]'Q; pEr[g2(W, 6)] (33)

for any # € ©, which denotes the population criterion of the GMM estimation in ([1.4). For any
0 € O, define BS(0) = {6* € © : [|0* — 0|] > €}. We consider the risk difference between two
estimators uniformly over F' € F, where F satisfies Assumptions below.

Assumption 3.1 The following conditions hold:
(i) for any F € F, Ep [g1(W,0F)] = 0,,x1 for some O € int(©);

i inf inf E W, 0 :
(ii) for any e > 0, }}“Ielfeeé?(elw) |EF [g1(W,0)] ] > 0;

(iii) for any F € F, there is 0}, € int(©) such that

e B . _
B el [Qr(0) — Qr(0%)] > 0 for any e > 0;

1G5 82, F

in Lk S A
(reF: >0} [1o2r]

(V) Opxx1 € int(As) where As = {0p : F € F}.

(iv) > 0 where 0y p = (01xr,,0%) and 7> 0 is a fived constant;

Assumptions [3.1} (i)-(ii) require that the true unknown parameter 65 is uniquely identified by
the moment conditions Ep [g1 (W, 0F)] = Oy, x1 for any DGP F € F. Assumption [3.1}(iii) implies
that for any F' € F, a pseudo true value 07 is identified by the unique minimizer of the population
GMM criterion Qr(0) under possible misspecification. Assumption(iv) requires that s p is not
orthogonal to 92_ };Gg, r, which rules out the special case that fr may be consistently estimable
even with severely misspecified moment conditions. Assumption (v) implies that the set of dis-
tribution functions F is rich such that it includes the distributions under which the extra moment
conditions are correctly specified, locally misspecified or severely misspecified. Uniform dominance
can be easily established if we only allow for correctly specified models or severely misspecified mod-
els, because the desired dominance results hold trivially following a pointwise analysis. Assumption
(v) ensures that the extra moment conditions may have different degrees of misspecification in

the parameter space.

Assumption 3.2 The following conditions hold:

(i) Forj=1,...,r2, g25(w,0) is twice continuously differentiable with respect to 0 for any w € W;
(i) sup Er [zgg (Ilg2W, O[> + [|g2,0(W, 0)[[*T7 + [|g2,00(W, 0)[[*T7) | < 00 for some ~ > 0;
(i) inf peF pmin(Q2,r) > 0;
(

iV) iIlfFe]—' pmin(G/LFGl,F) > 0.



Assumption 3.2} (i) requires that the moment functions are smooth. Assumption [3.2](ii) imposes
2+ finite moment conditions on the GMM moment functions and their first and second derivatives.
Assumptions [3.2}(iii) and [3.2}(iv) are important sufficient conditions for the local identification of
the unknown parameter in GMM with valid moment conditions.

The next assumption is on the nuisance parameters of the DGP F € F. Write
vp = (vee(Ga, ), vech(Qa,r)', 0F) (3.4)

for any F' € F. It is clear that vp includes the Jacobian matrix, the variance-covariance matrix,

and the measure of misspecification of the moment conditions Ep[g*(W,0F)] = 0,+x1. Let
Vp = (Vec(Ggyp)/,vech(Qg,F)') (3.5)

for any F' € F.

Assumption 3.3 The following conditions hold:

(i) For any F € F with §p = Op+x1, there exists a constant ep > 0 such that for any JER”
with 0 < ||6]| < ep, there is F € F with 0 = 5 and vz —vp| < C||8]|* for some K > 0;

(ii) The set A = {vp: F € F} is closed.

Assumption [3.3](i) requires that for any F € F such that Ep[ga(W,0)] = Oy« x1 is valid, there
are many DGPs F € F which are close to F. Here the closeness of any two DGPs F' and Fis
measured by the distance between vp and vz. Assumption (i) and (ii) are useful to derive the

exact expression of the asymptotic risk of the GMM estimator.

Example 3.1 (Linear IV Model) We study a linear IV model and provide a set of low-level
conditions that imply Assumptions[3.1} [3.2]and[3.3] The parameters of interest 6 are the coefficients
of the endogenous regressors X in

Y = X0y + U, (3.6)

with some valid IVs Z; € R™ and some potentially misspecified IVs Z* € R™" such that
EF* [U] = O, EF* [ZlU] = 0r1><1, and (37)

75 = Udy+ V, with Ep« [V] = 0p+x1 and Ep« [VU] = 0p*x1, (3.8)

where F* denotes the joint distribution of (X', Z1,V',U)’. In the reduced-form equation (3.8]), do

is a 7* x 1 real vector which characterizes the degree of misspecification. Let F* denote a class of

10



distributions containing F*, and let © and Ay denote the parameter spaces of 6y and dy respectively.
The joint distribution of W = (Y, Z1, Z*, X')" is denoted as F which is determined by 6y, dp and
F* through the linear equations in and .

For ease of discussion, we further assume that the random vector (X', Z{, V', U)’ follows the nor-
mal distribution with mean ¢ and variance-covariance matrix W. Under the normality assumption,
each distribution F™* corresponds to a pair of ¢ and W.

For notational simplicity, in Lemma below, for any finite dimensional random vectors a;

and az, let ¢q; = Ep~ laj] for j = 1,2, Tg 0, = Ep+[a1ab)], and Qg 0, = Ep+[a1a5] — ¢, ;2.

Lemma 3.1 Let F* denote the set of normal distributions which satisfies:

(1) pu =0, Tzju = Oy 51 and Ty = Oprxa;

(i) inf pr e 7 pmin(Tazy Tayz) > 0, suppecr« ||0]|*> < 00 and

0 < infpeecr+ pmin (V) < SUPpsc s Pmax (V) < 00;

(i11) inf pr e inf )51 >2) 6] T2z, T2 L Taiw — Taw)d — Taul| > 0 for some e > 0 that is small
enoughE

(iv) 6y € int(©) and O is compact and large enough such that the pseudo-true value 07 € int(@)m
(v) As = [c1,A,C1A] X -+ X [crx, A, Cr Al where {Cj,A7Cj,A}§*:1 is a set of finite constants with
A <0< Cja forj=1,...,r",

then Assumptions and[3.3 hold.

Condition (i) lists the moment conditions in and (3.8). The inequality in Condition (ii)
rules out DGPs under which ppin(I'z,'2,2) may be close to zero and (part of) the unknown
parameter 0 is weakly identified. Condition (ii) also requires that the mean of the random vector
(X', Z1,V',U)" is uniformly bounded and the eigenvalues of its variance-covariance matrix are
uniformly finite and bounded away from 0. Condition (iii) requires that the projection residual
of the vector I'y, on the subspace spanned by the matrix I‘mlf‘;glfzw —I'y, is bounded away
from zero. It is a sufficient condition for Assumption (iv), which ensures that the aggressive
estimator is inconsistent under severe misspecification. Condition (iv) is needed to derive the limit
of the aggressive estimator under misspecification. The compactness assumption of © is not needed
for the linear IV model. However, it is useful to verify Assumptions and [3.3] which do not

assume any special structure on the model. Condition (v) specifies that the parameter space of dy

is a product space.

15The constant ¢ depends on the infimum and supremum in Condition (ii) and it is given in l) in the Appendix.
Y6Specific restritions on © which ensures that 05 € int(0) are given in and Assumption (Vi) in the
Supplemental Appendix.

11



Lemma [3.1] provides simple conditions on 6y, dg and F* on which uniformity results are subse-

quently establishedm ]

Now we get back to the general set up. For a generic estimator 0 of 0, consider a weighted
quadratic loss function

0(,0) =n(0 — 0)Y(0—0), (3.9)

where T is a dy x dp pre-determined positive semi-definite matrix. For example, if T = I,
Er[£(0,0r)] is the MSE of 8. Tf T = (£1 5 — S ) ! where S (k = 1,2) is defined in (4.4), the
weighting matrix T rescales [ by the scale of variance reduction due to the additional moments. If
T = Ep[X;X]] for regressors X;, Ep [0(6,05)] is the MSE of X{@, an estimator of X/6.

Below we compare the averaging estimator 560 and the conservative estimator 51. We are

interested in the bounds of the truncated finite sample risk difference

RD, (00,01;¢) = inf EF[Q(@eo,HF) - 54(51,91?)] and

FeF
RDy(0e0,01:C) = sup Eplle (0co, 0r) — Lc(01,0r))], (3.10)
FeF
where
:(0,0r) = min{£(0,0r), ¢} (3.11)

denotes the truncated loss function with an arbitrary trimming parameter (. The truncated loss
function is employed to facilitate the asymptotic analysis of the bounds of the risk difference. The

finite-sample bounds in (3.10]) are approximated by

Asy@(@eoﬁl) = liminf liminf @n(ﬁeoﬁl;g) and

(—o0 n—oo

AsyRiD@eoﬁl) = limsup lim supRDn(/O\eo,gl;C), (3.12)
(—oo n—oo
which are called lower and upper bounds of the asymptotic risk difference respectively in this paper.
The averaging estimator 560 asymptotically uniformly dominates the conservative estimator 51 if

AsyRD (0o, 61) < 0 and AsyRD (6o, 1) < 0. (3.13)

The bounds of the asymptotic risk difference build the uniformity over F' € F into the definition

by taking inf pe 7 and sup p¢ 7 before lim inf,,_,, and lim sup,,_, ., respectively. Uniformity is crucial

17Similar results have been established in Section @ of the Supplemental Appendix for the linear IV model when
the normality assumption on (X', Z1, V', U)’ is relaxed. Section |E| of the Supplemental Appendix also provides proof
for Lemma with and without the normality assumption.
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for the asymptotic results to give a good approximation to their finite-sample counterparts. These
uniform bounds are different from pointwise results which are obtained under a fixed DGP. The
sequence of DGPs { F}, } along which the supremum or the infimum are approached often varies with
the sample sizeE Therefore, to determine the bounds of the asymptotic risk difference, one has to
derive the asymptotic distributions of these estimators under various sequences {F,,}. Under {F,},
the observations {W,, ;}7 ; form a triangular array. For notational simplicity, W, ; is abbreviated
to W; throughout the paper.
To study the bounds of asymptotic risk difference, we consider sequences of DGPs {F,,} such
that o, Satisﬁeﬁ
(i) n'/26p, —d e R or (i) |[n'/%65, || — co. (3.14)

Case (i) models mild misspecification, where 6p, is a n~1/2

-local deviation from 0,«x;. Case (ii)
includes the severe misspecification where |0, || is bounded away from 0 as well as the intermediate
case in which 6z, — 0 and ||n'/265,|| — co. To obtain a uniform approximation, all of these
sequences are necessary. Once we study the bounds of asymptotic risk difference along each of

these sequences, we show that we can glue them together to obtain the bounds of asymptotic risk

difference.

4 Averaging Weight

We start by deriving the joint asymptotic distribution of 51 and @2 under different degrees of
misspecification. We consider sequences of DGPs {F,} in F such that (i) n'/26p, — d € R"" or
\|n1/25FnH — oo; and (ii) Go,F,, Q2.F, and Ma f,, converges to Ga , Q2 p and Mp f for some F' € F.
o

For k = 1,2 and any F' € F, define
-1
e = = (GLrQkGrr)  Ghrh. (4.1)

Let Z5 p denote a zero mean normal random vector with variance-covariance matrix s  and

Z1 r denote its first 71 components.

8Tn the rest of the paper, we use {F,,} to denote {F}, € F:n=1,2,..}.

Y8ince F, € F, by Assumption (ii)7 the sequence r, in should satisfy ||0F, || < C for any n.

20The requirement on the convergence of Ga r,, Qo r, and Ms r, is not restrictive. Lemma in Appendix
[B] shows that the sequences Ga,r,, Q2 r, and Mz g, have subsequences that converge to Gz r, Q2. r and Mz p,
respectively, for some F' € F. The general result on the lower and upper bounds of the asymptotic risk difference,
Lemmain Appendix only requires to consider the subsequence {Fpn} such that GQ,Fpn7 Qg,ppn and Mz,Fpn
are convergent, where {p,} is a subsequence of {n}. The asymptotic properties of the GMM estimators established
in this section under the full sequence of DGPs {F;,} holds trivially for its subsequence.
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Lemma 4.1 Suppose Assumptions and hold. Consider any sequence of DGPs {F,} such
that vg, — vr = (vec(Ga.r), vech(Qq r)', 8%) for some F € F, and n*/*6g, — d for d € R
(a) If d € R™", then

n'/2(6y — 0p,) o S I rZir

”1/2(/9\2 —0F,) So,F Iy p (22,7 + do)

where dy = (015, d').
(b) If ||d|| = oo, then nY/2(6, — Or,) —p &1p and |20y — 05, )|| —p cc.

Given the joint asymptotic distribution of 0, and 52, it is straightforward to study g(w) =
(1- w)@l + whs if w is deterministic. Following Lemma (a),

n'2(@(w) — 0p,) —p Er(w) = (1 — w)ELp + wlop (4.2)

for n'/2§ r, — d, where d € R"". In Section [E| of the Supplemental Appendix, a simple calculation

shows that the asymptotic risk of g(w) is minimized at the infeasible optimal weight

tI‘(T (217}7 — 22,F>)

wh = : 7 (4.3)
dy <F2,F - F’{,F> T (Fz,F - FT,F> do + tr(Y (31,r — Eo.r))
where T is the matrix specified in the loss function,
-1
Shp = (G;C,FQ,;;G,“Q for k= 1,2 and T} = [Ty 7, Oy ] (4.4)

To gain some intuition, consider the case where T = I, such that the MSE of a(w) is minimized
at wy. In this case, the infeasible optimal weight w}. yields the ideal bias and variance trade off.
However, the bias depends on d, which cannot be consistently estimated. Hence, w} cannot be
consistently estimated. Our solution to this problem follows the popular approach in the literature
which replaces d by an estimator whose asymptotic distribution is centered at d, see Liu (2015)
and Charkhi, Claeskens, and Hansen (2016) for similar estimators in the least square estimation
and maximum likelihood estimation problems, respectively.

The empirical analog of w} is constructed as follows. First, for £ = 1 and 2, replace X, p by its
consistent estimator 3, = (@%Q;lék)_l where

Gr=n"""gro(Wi,01) and O =01 g (Wi, 01) gk (Wi, 01) — 51 (01)5 (01)" (4.5)
=1 =1

2IThe consistency of flk is proved in the proof of Lemma

14



Note that ék and ﬁk are based on the conservative GMM estimator 51. Hence they are consistent
regardless of the degree of misspecification of the moment conditions in ((1.3). Second, replace

(T, p — F’L )do by its asymptotically unbiased estimator nt/ 2(52 - 51) because
n1/2(§2 — 51) —D (]._‘Q’F — FT,F) (ZQ}F + do) s (46)

for dy = (01xs,,d')" and d € R"" following Lemma (a). Then the empirical optimal weight takes

the form N
T -3
I L €10 b)) B , (4.7)
n(02 — 91)/T(92 — 91) + tI‘(T(El — 22))
and the averaging GMM estimator takes the form
oo = (1 = Teo)01 + Teoba. (4.8)

Next we consider the asymptotic distribution of /H\eo under different degrees of misspecification.

Lemma 4.2 Suppose that Assumptions hold. Consider any sequence of DGPs {Fy,} such
that vg, — vr = (vec(Ga,r), vech(Qq r)’,8%) for some F € F, and n*/?6g, — d for d € R%,.

(a) If d € R™", then

tI‘(T(ELF — ZQ,F))
(Za,p + do)'(Co,p — T3 5) Y (To.p — T ) (22,7 + do) + tr(Y(S1,p — S2,1))

Weo —D WF =

and

1200 — O,) —p Ep = (1 —Wr)é1p + wréa F-
(b) If ||d|| = oo, then Geo —p 0 and n*/2(6ey — 05,) —p 1.5

To study the bounds of the asymptotic risk difference between /0\60 and 51, it is important to take
into account the data-dependent nature of w.,. Unlike f]l and f)g, the randomness in W, is non-
negligible in the mild misspecification case (a) of Lemma In consequence, 560 does not achieve
the same bounds of asymptotic risk difference as the ideal averaging estimator (1 — w})@l + w}b\g
does. Nevertheless, below we show that 5@0 is insured against potentially misspecified moments

because it uniformly dominates 0.

5 Bounds of Asymptotic Risk Difference under Misspecification

In this section, we study the bounds of the asymptotic risk difference defined in (3.12)). Note
that the asymptotic distributions of /9\1 and 560 in Lemma and only depend on d, G2 r and
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5 r. For notational convenience, define
hF,d = (d/,VeC(Ggyp)/, VeCh(QZF)/) (51)

for any F' € F and any d € R’;. For the mild misspecification case, define the parameter space of

hF,d as

H={hpqg:d€R" and F € F with 6p = Opx1} (5.2)

where dp is defined by (1.5 for a given F'.

Theorem 5.1 Suppose that Assumptions hold. The bounds of the asymptotic risk difference
satisfy

ASyRi(geOa/él) = max {sup [g<h)] 70} )
heH

MMM%@)ZHM&MMMQ}

heH

where g(h) = IE[E;;TEF — §inT§LF], &,r and Ep are given in Lemma and Lemma re-
spectively, and the expectation is taken under the joint normal distribution with mean zero and

variance-covariance matriz Qg p.

The upper (or lower) bound of the asymptotic risk difference is determined by the maximum be-
tween supy,c g [g(h)] and zero (or the minimum between infyc i [g(h)] and zero), where supy,c g [g(h)]
(or infpepr [g(R)]) is related to the mildly misspecified DGPs and the zero component is associated
with the severely misspecified DGPs. Since the GMM averaging estimator has the same asymp-
totic distribution as the conservative GMM estimator 51 under the severely misspecified DGPs,
their asymptotic risk difference is zero.

To show that /H\eo uniformly dominates /0\1 following , Theorem implies that it is suf-
ficient to show that infrep [g(h)] < 0 and sup,cg [g(h)] < 0. We can investigate infpepm g(h) and
sup,cp g(h) by simulating g(h). In practice, we replace Go p and s by their consistent esti-
mators and plot g(h) as a function of d. Even if the uniform dominance condition does not hold,
min {infrc g [g(h)], 0} and max {supy,cy [g(h)],0} quantify the most- and least-favorable scenarios

for the averaging estimator.

Theorem 5.2 Let Ap =Y (X1, p — Yo ) for any F € F. Suppose that Assumptions hold.
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If tr(Ar) > 0 and tr(Ar) > 4pmax(Ar) for any F € F with §p = 0, we have
AsyRD(8c,01) < 0 and AsyRD (6o, 61) = 0.

Thus, 560 uniformly dominates /6\1.

Theorem indicates that: (i) there exists €; < 0 and some finite integer n., such that the
minimum risk difference between e, and ) is less than & for any n larger than n,; (ii) for any
g9 > 0, there exists a finite integer n., such that the maximum risk difference between 560 and 51 is
less than €5 for any n larger than n.,. Pre-test estimators fail to satisfy both properties (i) and (ii)
above at the same time. Take the pre-test estimator based on the J-test for examplelﬂ and consider
three scenarios: (a) the critical value is fixed for any sample size; (b) the critical value diverges
to infinity; and (c) the critical value converges to zero. In the pointwise asymptotic framework,
the J-test based on the critical values in (a), (b) and (c) leads to inconsistent (but conservative)
model selection, consistent model selection and no model selection results respectively. The pre-test
estimator based on the J-test violates property (ii) in scenarios (a) and (b), and violates property
(i) in scenario (c).

Different from the finite-sample results for the JS estimator established for the Gaussian location
model, our comparison of the two estimators 560 and 51 is based on the asymptotic bounds of the risk
difference. For a given sample size n, we do not provide results on this asymptotic approximation
error, and therefore our results do not state how the finite-sample upper bound RiDn(/éeo,@l;C)
approaches to zero as n — oo and then ( — oo (e.g., from above or from below). For the Gaussian
location model, the asymptotically uniform dominance here is weaker than the classical finite-
sample results established for the JS estimator. However, the asymptotic results here apply to
general nonlinear econometric models with non-normal random variables |

To shed light on the sufficient conditions in Theorem|[5.2] let us consider a scenario similar to the
JS estimator: ¥ p = aiFIde, Yor = a%FIdQ, and T = I;,. In this case, the sufficient conditions
become o1 > 09 r and dy > 4. The first condition tr(Ap) > 0, which is reduced to o1 p > 02,F,
requires that the additional moments Er[¢g* (W, 0F)] = 0 are non-redundant in the sense that they
lead to a more efficient estimator of #r. The second condition tr(Ar) > 4pmax(Ar), which is
reduced to dy > 4, requires that we are interested in the total risk of several parameters rather
than that of a single one. In a more general case where X1  and ¥y r are not proportional to the

identity matrix, the sufficient conditions are reduced to 31 7 > 32 r and dy > 4 under the choice

223ee Section [F|in the Supplemental Appendix for definition and analysis of this estimator.
23In Section |A]of the Appendix, we show that the averaging GMM estimator has similar finite sample dominace
results in the Gaussian location model.
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T=1r— 22717)_1, which rescales @ by the variance reduction ¥1 r — X r. In a simple linear IV
model (Example 3.1) where Z; is independent of Z; ; and the regression error U; is homoskedastic

conditional on the IVs, X1 p > ¥ p requires that Ep-[ZX]] and Ep-[Z}Z}] both have full rank.

6 Simulation Studies

In this section, we investigate the finite sample performance of our averaging GMM estimator
in linear IV models. In addition to the empirical optimal weight w.,, we consider another averaging

estimator based on the JS type of weight. Define the positive part of the JS Weigh@

(6.1)

wrs =1 (1 ) = 2ol )
TL(QQ — Hl)lT(QQ — (91) +

where (z), = max{0,z} and A is the estimator of Ap using 3y for k = 1,2. In the simulation

_l’_
study of this paper, we consider an alternative averaging estimator with the restricted JS weight

WRrJs = (wWys) 4 - (6.2)

By construction, wyg < 1 and 0 < wg,js < 1. We compare the finite-sample (truncated and
untruncated) MSEs of our proposed averaging estimator with the empirical optimal weight, the JS-
type of averaging estimator with the restricted weight in , the conservative GMM estimator /0\1,
and the pre-test GMM estimator based on the J-test. The finite-sample MSE of the conservative
GMM estimator is normalized to 1. That is, we report the ratios of various MSEs to the MSE of
the conservative GMM estimator and call these ratios as relative MSEs. Three different simulation

designs are considered in this section.

6.1 Simulation Model 1

We consider a linear regression model with i.i.d. observed data
Wi = (}/u X17i, . ,X&i, Zl,i7 NN Z127i, Zii? NN Zg,i)/ for i = 1, ceey 1, (63)

where Y is the dependent variable, (X1, ..., Xs) are 6 endogenous regressors, (Z1,..., Z12) are 12

valid IVs, and (Z7, ..., Z§) are 6 potentially invalid IVs. The data are generated as follows. The

24This formula is a GMM analog of the generalized JS type shrinkage estimator in Hansen (2016) for parametric

-~ PS

models. The shrinkage scalar 7 is set to tr(A) — 2pmax(tr(A)) in a fashion similar to the original JS estimator.
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regression model is

6
Y = Zerj + u, (64)
j=1

where (61,...,06) is set to 2.5 X 11x¢ and X is generated by
X;=2"YZj+ Zjz6) + Zjp12 +¢j for j=1,....6. (6.5)

We first draw (Z1, ..., Z18,€1, - . -, €6, u*)" from normal distribution with mean zero and variance-

covariance matrix diag(ligx1s, X7x7) where

1 0.25 x1
Srr = 6x6 6x1 . (6.6)
0.25 x 1146 1
We consider two designs for generating the structural error w in (6.4). The first design (S1

hereafter) has non-Gaussian errors. Draw 7 from exponential distribution with mean 1 and 7 is

independent of (Z1,..., Z1s,€1,...,€6,u*). Generate the structural error
u=(u"+1n0)/2, (6.7)

where 79 is the demeaned version of 1 to ensure that the mean of u is zero. The second design (S2
hereafter) has normal error

u=u". (6.8)

The potentially invalid IVs are generated by
Z; = (1= )P Zja+ ci(e; +u), (6.9)

where ¢; € [0,1] for j =1,...,6. In this simulation study, we consider different DGPs by choosing

various values for ¢ = (cy, ..., cg) where ¢; € [0,1] for j =1,...,6. Therefore,

5¢j/8 under 1}

E|uZ!| =
[ ]] 5¢j/4 under 1@}

(6.10)

From the above expression, we see that Z; is a valid IV if ¢; is zero while increasing c; to 1 will
enlarge the correlation coefficient between Z7 and u and hence the endogeneity of Z7.

Given the sample size n, different DGPs of the simulated data {W; : i =1,...,n} are employed
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Figure 2: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure 3: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.

21



in the simulation study by changing the values of (c1,...,cg). We consider
cj = cowj for j=1,...,6 (6.11)

where ¢ is a scalar that takes values on the grid points between 0 and 1 with the grid length
0.02, and (w1, ..., ws) is parametrized in two different ways. In the first one, we set w; = 0 or 1 for
j=1,...,6 and rule out the case that w; = 0 for all j (since this is the same as the case which sets

cop = 0). In the second one, we consider the polar transformation and set

wp = sin(aq)sin(ag)sin(as) sin(ay) sin(as),
wj = cos(aj_1)sin(ey) x -+ x sin(as) for j =2,...,5,
wg = cos(as), (6.12)

where oy € {m/4, 3n/4, b /4, Tr/4} and o € {m/4, 3w /4} for j = 2,...,5. Therefore, there are
127 different values for (wi,...,ws) for each of the 51 different values of ¢y. For each DGP, we
consider sample size n = 50, 100, 250, 500, 1000 and use 10000 simulation repetitions.

Given the sample size and the value of ¢y, we report the minimum and the maximum of the
127 values of the finite sample relative MSEs for each estimator, and the weight w., in our aver-
aging estimator in the DGP with the maximum relative MSE. Given each sample size, the maxi-
mum/minimum finite sample relative MSE and the weight are plotted as functions of ¢, see Figure
for S1 and Figure 3| for S2. In each figure, the left three panels and the right three panels include
the results with sample size n = 100 and 500, respectively@ For each sample size, we also report
the upper bound and the lower bound of the finite sample relative MSEs (among all 127 x 51 DGPs)
of the averaging estimators and the pre-test estimator in Table

Our findings in the simulation designs S1 and S2 are summarized as follows. First, in both
Figure 2 and Figure 3| we see that the minimum relative MSE of the averaging GMM estimator 560
is smaller than 1 (which is the normalized finite sample MSE of the conservative GMM estimator 51)
for all ¢y considered in both simulation designs. The maximum relative MSE of 560 is smaller than

1 when ¢y is small and approaches 1 when cg is close to 1. Table [I| provides detailed information

25We only report the untruncated MSEs with n = 100 and n = 500 here. The untruncated MSEs in S1 and S2 with
n = 50, 250 and 1000 can be found in Figure [C:I] and Figure [C:2]in Section [C] of the Appendix, and the truncated
MSEs (¢ = 1000) in S1 and S2 with n = 50, 100, 250, 500 and 1000 can be found in Figure Figure Figure
[G4) and Figure in Section [G] of the Supplemental Appendix. The simulation results on truncated MSEs are very
similar to what we get without truncation. The maximum finite sample bias and finite sample variance for each co
are reported in Figure and Figure in Section El of the Appendix.

26The upper bound and the lower bound of the finite sample relative truncated MSEs are reported in Table in
Section @ of the Supplemental Appendix.
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Table 1: The Lower and Upper Bounds of the Finite Sample Relative MSEs

Design S1 Design S2 Design S3

Lower Upper Lower Upper Lower Upper

Ooe 0.5732 0.7968 0.6113 0.8980 0.9302 1.0012

n = 50 fjs  0.9755 0.9959 0.9776  0.9978 0.9995 1.0003
Opret  0.4424  0.9574 0.5057 1.0973 1.0324 1.4283

Ooe 0.5325 0.8789 0.5513 0.9781 0.9733 1.0040

n = 100 675 0.9208 0.9911 0.9202 0.9956 0.9996 1.0002
Opret  0.3586  1.1940 0.3937 1.3539 0.9990 1.4709

Ooe 0.5316  0.9587 0.5384 1.0118 0.9720 1.0079

n = 250 055 0.7591 0.9787 0.7506 0.9923 0.9999 1.0000
Opret  0.3360  1.5106 0.3598 1.6392 0.9753 1.4394

Ooe 0.5331 0.9846 0.5355 1.0112 0.9700 1.0096

n = 500 075 0.6443 0.9823 0.6359 0.9953 1.0000 1.0000
Opret  0.3368 1.6196 0.3495 1.6937 0.9562 1.4236

Ooe 0.5335 0.9934 0.5341 1.0082 0.9681 1.0119

n=1,000 655 0.5803 0.9890 0.5737 0.9978 1.0000 1.0000
Apret 0.3395 1.6433 0.3451 1.6864 0.9473 1.3953

>

Note: 1. 85 and épret denote the GMM averaging estimator based on the weight in and the pre-testing GMM
estimator based on J-test with nominal size 0.01 respectively; 2. the ”Upper” and ”Lower” refer to the upper bound
and the lower bound of the finite sample relative MSEs among all DGPs considered in the simulation design given
the sample size.

on the lower and upper bounds of the relative MSE of b\eo. In both simulation designs S1 and S2,
the lower bound stays far below 1 while the upper bound approaches 1 with increasing sample size.
These results are predicted by our theory because the key sufficient condition is satisfied in both
S1 and S2E] Second, the pre-test GMM estimator has non-shrinking maximum relative MSE in
S1 or S2, and therefore it fails to dominate the conservative GMM estimator 51 in the asymptotic
sense. For example, when n = 500, the pre-test GMM estimator in S1 has relative MSE above
1.5 when ¢g is between 0.2 and 0.4. From Table I, we see that the upper bound of its relative
MSE does not converge to 1 with increasing sample size. It stays around 1.61 and 1.69 in S1 and
S2 respectively, when the sample size is large (e.g., n = 500 or 1000). Third, comparing the two
averaging estimators, we find that the restricted JS estimator does not reduce the MSE as much
as the averaging estimator based on We,. Fourth, the weight W,, becomes close to zero when ¢q is
close to 1 for large n, which is clearly illustrated by the simulation with n = 500 in both S1 and
S2. Last, the maximum relative MSE of the pre-test GMM estimator may show multiple peaks in

2™t is easy to show that when 6 = 0 and Y is identity matrix, we have tr(Ap) = 4 and tr(Ar) — 4pmax(Ar) = 4/3
for S1 and tr(Ar) =8 and tr(Ar) — 4pmax(Ar) = 8/3 for S2.
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Figure |2 and Figure |3} because given ¢y the Euclidean norm of (¢1, ..., cg) may be different under

the two different parametrizations of (wi,...,ws). In the polar transformation, the Euclidean norm
of (c1,...,c6) is co. However, the Euclidean norm of (¢1,...,¢g) is co(wy + -+ -+ w6)1/2 in the other
design and it may take 5 different values when we set w; =0 or 1 for j = 1,...,6 and rule out the

case that w; = 0 for all j. This also explains the kinks of the weight w,, in the averaging estimator

associated with the maximum MSE.

6.2 Simulation Model 2

In this subsection, we investigate the finite sample properties of the pre-test GMM estimator
and the averaging GMM estimators when the key uniform dominance condition in Theorem
does not hold. In this simulation design, the structural equation takes the same form as with
(01,...,06) = 2.5 X 116, but the regressors X; (j = 1,...,6) are generated in a different way. We
draw i.i.d. random vectors (Z1, ..., Z13,€1, ...,€5,u) from normal distribution with mean zero and
variance-covariance matrix diag(l13x13, Z6x6), Where

Sy — Isx5 0.25 X 1541 ‘ (6.13)

0.25 X 1145 1
The observed data are W = (Y, Xu, ..., X¢, Z¢, Z7, Z8, 27, ..., Z% ), where (X1, ..., X5) are exogenous
regressors and X is an endogenous regressor, (X1, ..., X5, Zg, Z7, Zg) are valid IVs and (Z7, ..., Z%)

are potentially invalid IVs. The exogenous variables are generated by

-

X;=3"2(Z;j+ Zjt1+ Zj4s), for j =1,...,4,
X5 = 3_%(25 + Z1 + 213). (6.14)

The endogenous variable Xg is generated by

8 5
Xe=2""Y"Z;+1072> (Zjs +¢5). (6.15)
j=6 j=1

The potentially invalid IVs are generated by

Zr = (1— ) Zjps + cj(ej +u) for j = 1,...,5. (6.16)
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Note that the key sufficient condition in Theorem is not satisfied for this design?¥| We call the
simulation design in this subsection as S3.
Given the sample size n, we consider different DGPs of the simulated data {W; : i = 1,...,n}

by changing the values of (c1,...,c5). We consider the following parametrization
cj =cow; for j=1,...,5 (6.17)

where ¢q is a scalar that takes values on the grid points between 0 and 1 with the grid length 0.02,
(w1, ...,ws) is parametrized in two different ways. In the first one, we set w; =0or1lforj=1,...,5
and rule out the case that w; = 0 for all j (since this is the same as the case which sets ¢y = 0). In

the second one, we consider the polar transformation and set

w; = sin(aq)sin(ag) sin(as) sin(ay),
wj = cos(aj—1)sin(ey) x -+ X sin(ay) for j =2,...,4,
ws = cos(ay), (6.18)

where o € {n/4, 3n/4, 5w /4, Tn/4} and o € {7 /4, 3w /4} for j = 2,...,5. Therefore, there are 63
different values for (wy,...,ws) for each of the 51 different values of ¢y. For each DGP, we consider
sample size n = 50, 100, 250, 500, 1000 and use 10000 simulation repetitions.

Given the sample size and the value of ¢g, we report the minimum and maximum of the 63 values
of the finite sample relative MSEs for each estimator, and the weight w,, in our averaging estimator
in the DGP with maximum relative MSE. Given each sample size, the maximum/minimum finite
sample relative MSE and the weight are plotted as functions of ¢y, see Figure For each sample
size, the upper bound and the lower bound of the finite sample relative MSEs (among all 127 x 51
DGPs) of the averaging estimators and the pre-test estimator in this simulation design are also
reported in Table

Our findings in this simulation design are summarized as follows. First, compared to the con-
servative GMM estimator, the improvement of the pre-test GMM estimator or the averaging GMM
estimator is small even when all the IVs ZJ’.‘ (j =1,...,5) are valid. This is because there is only

one endogenous regressor and the improvement of using Z7 (j = 1,...,5) is mainly through the

28It is easy to show that, when 67 = 0, we have tr(Ar) = 0.4916 and tr(Ar) — 4pmax(Ar) = —1.4748 < 0.

29We only report the untruncated MSEs with n = 100 and n = 500 here. The untruncated MSEs in S3 with n = 50,
250 and 1000 can be found in Figure [C.3]in Section [C] of the Appendix, and the truncated MSEs (¢ = 1000) in S3
with n = 50, 100, 250, 500 and 1000 can be found in Figure and Figure in Section [G] of the Supplemental
Appendix. The simulation results on truncated MSEs are very similar to what we get without truncation. The
maximum finite sample bias and finite sample variance for each cg are reported in Figure [C.6] in Section [C] of the
Appendix.
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Figure 4: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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estimation of its coefficient. Second, both the pre-test GMM estimator and our averaging GMM
estimator fail to dominate the conservative GMM estimator. However, the overall performance of
the averaging GMM estimator is better than the pre-test GMM estimator. For example, when the
sample size is 500, the maximum MSE of the pre-test GMM estimator is 1.4 times of that of the
conservative GMM estimator. In contrast, the maximum MSE of our averaging GMM estimator is
only slightly higher than (1.01 times of) that of the conservative GMM estimator. Third, the MSE
of the JS-type averaging estimator is identical to the conservative GMM estimator even when all
the IVs Z7 (j =1,...,5) are valid. Therefore, this estimator performs the same as the conservative
GMM estimator. Fourth, as ¢y goes to 1, the weight w,, goes to zero for large sample size, which
is well illustrated by the simulation with n = 500. Last, the maximum MSE of the pre-test GMM
estimator and the weight w., in our averaging estimator may show multiple peaks for the same

reason explained in the previous subsection.

7 Conclusion

This paper studies the averaging GMM estimator that combines the conservative estimator
and the aggressive estimator with a data-dependent weight. The averaging weight is the sample
analog of an optimal non-random weight. We provide a sufficient class of drifting DGPs under
which the pointwise asymptotic results combine to yield uniform approximations to the finite-
sample risk difference between two estimators. Using this asymptotic approximation, we show that
the proposed averaging GMM estimator uniformly dominates the conservative GMM estimator for
quadratic loss functions such as the mean square errors.

Inference based on the averaging estimator is an interesting and challenging problem. As pointed
out in Pétscher (2006), the finite sample density of the averaging estimator can not be consistently
estimated, which implies that directly applying an estimator of the finite-sample density may not
yield uniformly valid inference. In addition to the uniform validity, a desirable confidence set
should have smaller volume than that obtained from the conservative moments alone. We leave

the inference issue to future investigation.
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Appendix

A TIllustration in Gaussian Location Model

This section shows that in a Gaussian location model, the averaging GMM estimator dominates
the conservative GMM estimator in finite samples, i.e., it exhibits the JS phenomenon.

Suppose that we have one observation (X', Y’)’ from the normal distribution

X 0 )
~ N , 0 ng (Al)
Y 0+d

where o2

is a known positive value, 6 and d are k x 1 vectors, and Iy is a 2k x 2k identity matrix
(k> 3). It is clear that dg = k in model (A.1). We are interested in estimating 6.
Green and Strawderman (1991) consider the same model defined in (A.1l). They propose the

following JS-type of estimator

7'0'2

X VyE-1)

Oas = X — X-Y) (A.2)
where 7 is a real constant in (0,2(k — 2)). Apparently, the above estimator Ocs is an averag-
ing estimator which combines an unbiased estimator X with a biased estimator Y with weight
702 || X — Y| "2 on the biased estimator. Green and Strawderman (1991) show that when k > 3,
g has smaller MSE than the unbiased estimator X (which is the MLE of ) for any 6 € R* any
d € R* and any o2 > 0, and hence it uniformly dominates the MLE of 6.

Kim and White (2001), Judge and Mittelhammer (2004) and Mittelhammer and Judge (2005)
propose averaging estimators which shrink the (asymptotic) unbiased estimator toward the biased
estimator in semiparametric regression models. These papers show the dominance of the averaging
estimator over the (asymptotic) unbiased estimator in the Gaussian location models using the joint
normal distribution of the unbiased and biased estimators. In these papers, X and Y are the
unbiased and biased estimators respectively with general variance-covariance matrix that allows

for correlation between X and Y. The averaging estimator proposed in Kim and White (2001) is

EKW:X—<c1+(X_Y)C,2(X_Y)>(X—Y) (A.3)

where ¢; and ¢z constants. When k& > 5, Kim and White (2001) show that there exist optimal values

for ¢; and ¢y such that gKW dominates the unbiased estimator X. In the semiparametric setting,
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they show that these optimal values can be consistently estimated when E[Y] = 6. In Judge and
Mittelhammer (2004) and Mittelhammer and Judge (2005), the averaging estimator takes the same
form as 5@5 in except 702 is replaced by a constant. They show that when k > 5, there exists
an optimal constant under which their averaging estimator dominates the unbiased estimator X.
They provide an approximator of the infeasible constant and show that the approximator can be
consistently estimated.

We next consider our averaging GMM estimator. Let T be the k& x k identity matrix. The
conservative GMM estimator 51 = X has risk o?tr(YI;) = 0?k. On the other hand, the aggressive
GMM estimator is 6y = (X +Y)/2, which has risk 62k/2 + ||d||* /4. The empirical optimal weight

defined in (4.7)) becomes
2ko?

%o’ + (X — V) (X —Y)’

(A.4)

Weo =

which together with the conservative and aggressive GMM estimators leads to the averaging GMM

estimator
Oop = X — o™ (X -Y) (A.5)
o 2ko? + (X —Y)(X —Y) ‘ '

From 1) and (j we see that both EGS and /6’\60 shrink the same unbiased estimator X to the

same biased estimator Y but with different weights.

Lemma A.1 When k > 4, the averaging estimator /0\60 defined in satisfies
E 1180 — 0117 = 1161 — 61%) <0 (A.6)

for any @ € R¥, any d € R¥ and any o > 0.

The inequality shows that the risk of the averaging GMM estimator is strictly smaller
than that of the conservative GMM estimator if k > 4, for any § € R*, any d € R¥ and any o2 > 0,
and hence it uniformly dominates the MLE of §. The condition on k for the uniform dominance
result of our averaging estimator is slightly stronger than the condition for Green and Strawderman
(1991)’s estimator. The proof of Lemma is given in Sectionof the Supplemental Appendix. It
is different from the proof for that in Green and Strawderman (1991) and Judge and Mittelhammer
(2004) because the two averaging estimators are different. But this proof is analogous to the proof

of Theorem for the general case. Thus we put it in the Supplemental Appendix.

29



B Proof of Results in Section 4] and Section [5l

In Lemma [3.1] define

= min ]‘—‘l'Z FZ xT min \y i
¢ = i {pmin(ezaz), pmin ()}
= max (¥) | -
Cp = max {[|¢]", pmax (¥)}
Ca = sup |6 (B.1)
00E€EAS
Let
Ciw =2(dg+ 12+ 1)Cp, ¢y p = min{l, 6127} and C p = Ci (2+ 01/2) (B.2)

Then, in Lemma (iii), the constant € is given by
€ =cxpC, ) KON (B.3)

i.e., we require the condition to hold on a set bounded away from 0 by €. The details of the proofs

are given in Section [D] of the Supplemental Appendix.

B.1 Proof of the Results in Section [4]

Let py,(g2(W,0)) = n=1/237"  (g2(W;,0) —Ep, [g2(W;,0)]). In the rest of the Appendix, we use

C to denote a generic fixed positive finite constant which does not depend on any F' € F or n.

Lemma B.1 Suppose that Assumption . (ii) holds and © is compact. Then we have

(i) supgee [[92(0) — Er, [92(Wi, O)]]| = 0p(1);

(ii) supgee [t D1y 92(Wi, 0)g2 (Wi, 0) — B, [92(Ws, 0) g2 (Wi, 6)']|| = op(1);
(iif) supgee || 21t 92.0(Wi, 0) — Er, [92,6(Wi, 0)]|| = 0p(1)

(iv) pn(g2(W,0)) is stochastic equicontinuous over 6 € ©;

(

v) @, 1 1 (2(W. 01,)) =0 N(Oryr. ).
Proof of Lemma See Lemma 11.3-11.5 of Andrews and Cheng (2013). =

Define Mk’p(e) = EF [gk(I/V, 9)], Gk,F(Q) = ]EF [gkyg(W,H)] and Q;@F(G) :Varp [gk(VV, 9)], for
any F' € F, for any § € © and for k = 1,2. The next lemma shows that M r(-), G2 r(-) and

2 p(-) are Lipschitz continuous uniformly over F' € F.

Lemma B.2 Under Assumptions[3.9 (i)-(ii), for any F € F and any 61,0 € O, we have:
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(i) [[M2,r(01) — Mo p(02)|| < C'|61 — O2]|;
(ii) [|G2,r(01) — G2,r(02)]| < C|01 — 02||;
(iii) ||Q2,7(01) — Qo2 p(62)]| < C |61 — 62

Proof of Lemma is included in Section [E] of the Supplemental Appendix.

Lemma B.3 Suppose that Assumptions [3.1] (i)-(ii) and [3.2 (i)-(ii) hold. Then for any sequence
of DGPs {F,}, we have
01— 0p, = 0p(1) and Oz = a5, + 0p(1), (B.4)

where 51 s a preliminary estimator defined as

B, = argmin 5, (0)'7, (0) (B.5)
0cO

and Q0 is defined in of the Supplemental Appendix.

Proof of Lemma is included in Section [E] of the Supplemental Appendix.

Lemma B.4 Suppose that Assumptions|[3.1]. (i)-(ii) and[3.4 hold. Then for any sequence of DGPs
{F,}, we have
0201 — 0r,) = T1p, (91 (W.0F,)) + 0p(1). (B.6)

-1
where Ty g, pin(91(W; 05,)) = = (G5, Ok, G1m, ) G, Ok, = Op(1).
Proof of Lemma [B4] is included in Section [E] of the Supplemental Appendix.

Lemma B.5 Suppose that Assumptions[3.1] (iii) and [3.9 (i)-(iii) hold. Then for any sequence of
DGPs {F,}, we have
6y — 03 = 0,(1). (B.7)

Proof of Lemma, is included in Section [E] of the Supplemental Appendix.

Lemma B.6 Suppose that Assumptions[3.1] (i)-(ii) and [3.3, (i)-(iii) hold. Consider any sequence
of DGPs {F,} such that 0, = o(1). Then we have

By — 05, = o0p(1). (B.8)
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If we further have Assumption . (iv), then

0120y~ O5,) = (Ta.m, + 0p(1)) { n92(W, 0,)) + 028, } + 0,(1), (B.9)
’ -1 -1 -1 Y
where FQyFn = — ( 2,FnQ2,FnG2,Fn> GQ,FnQQ,Fn and (527}7” = (01><7“175Fn) .

Proof of Lemma is included in Section [E] of the Supplemental Appendix.

Lemma B.7 Under Assumptions[3.2 (ii) and (3.3 (ii), for any sequence of DGPs {F, } with F,, €
F where {pn} is a subsequence of {n}, there is a subsequence {p},} of {pn} such that vg . (0F,.) —

vr(0F) as p;, — oo, where F' € F.

Proof of Lemma B.7] Recall that A = {vp : F € F}. By Assumptions [3.2}(ii) and 3.3} (ii), A is
compact. Hence for any sequence {vp, (0p, )} in A, it has a convergent subsequence {v F. (0F,.)}

such that vg . (0, ) = vr(0F) as p;, — oo, where F' € F. =

Lemma B.8 Suppose that Assumptions . (i)-(ii) and hold. Consider any sequence of DGPs

nt such that vp, — UVfp for some F'€ F, and n P — ora e . en
F, h that T, f F e F, and n'?6p, — d ford € R™". Th

n'/2(0, - 0p,) . S\ I'vrZip
n/2(03 - 0p,) So,F Iy p (29,7 + do)

>
I

where dy = (01xr,,d')".

Proof of Lemma In the proof, we use
Gaor, = Gop and Qo g, — Qo p (B.10)

for some F € F, which is assumed in the lemma. Under Assumptions [3.1}(i)-(ii) and for the
sequence of DGPs {F,,} considered in the lemma, we can apply Lemma and Lemma to
deduce that

/29, _p r W, 0
nt/#(6, £,) _ 1, k(g1 (W, 0F,)) +0p(1), (B.11)

n'/2(0y - 0r,) (T2, + 0p(1)) {1n(92(W. OF,)) + /202 F, }
where 62,1, = (01x7,,0% ). By (B.10) and Assumption we have

Fl,Fn = Fl,F + 0(1) and F2,Fn = F27F -+ 0(1) (B.12)
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-1
where I'y, p = — (GZ; FQ;;Gk,F> G;FQ;}F for k =1, 2. Collecting the results in Lemma [B.1}(v),
(B.11) and (B.12), and then applying the continuous mapping theorem (CMT), we have

1/2 ’9‘ By I*
n*/=(01 ) N 1,F

N D (Z2,F + do), (B.13)
n'/2(0y — 0F,) Ty p

where Zop ~ N(0pyx1,Q2.7), It p = (T'1,7,04,x+) and dy = (01xs,,d")’. The claimed result
follows from 1' and the definitions of I'] p and Zo p. =

Proof of Lemma The claimed result in Part (a) has been proved in Lemma
We next consider the case that n'/26p, — d with ||d|| = co. Note that the results in and

(B.12)) do not depend on ||d|| < oo or ||d|| = cc. Using (B.6)), (B.12), Lemma[B.1}(v) and the CMT,

we have

”1/2@1 —0r,) »p 1, r21F. (B.14)

To study the properties of f, we have to consider two separate scenarios: (1) 6, = o(1); and

(2) 107, || > cs for some ¢5 > 0. In scenario (1), Assumption Lemma [B.1}(v) and Lemma
imply that
n'2(02 = 0r,) = (T2, + 0p(1))n'/ %55, + Op(1). (B.15)

By Assumption (iv) and ||n1/25Fn|| — 00,
ndp Ty g o r, 0, > C*ndly Op, — o0 (B.16)

which together with 1} implies that Hn1/2(§2 —0r,)|| —=p oc.
Finally, we consider the scenario (2) where ||dg,|| > ¢5. By Assumption [3.1] (iv),

1G5, 5, Y 1, 0, || > C7H[0p, || > esC (B.17)
for any n. As 0F is the minimizer of QF, (0), it has the following first order condition

Odgx1 = G2, (05,)' % 1, Mok, (0F,), (B.18)
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which implies that

05,05, = Gor,(08,)Q p Mar, (08,) — o, (07,)' Q5 1, Ma,F, (0F,)
= [Gar,(0F,) — Gor, (0%,)] Q5 Mo F, (0F,)
+Go 1, (05, p, [Ma,r, (07,) — Ma,r, (0F,)] - (B.19)

By Lemma the Cauchy-Schwarz inequality and Assumption (ii)—(iii), we have

H [Ga.r, (05,) — Ga.p, (05,)] 5, Mo p, (05,

< ||Gor (08,) — G (07| HQ;},HMZFH(HFn) ‘ <C|0r, 03|, (B.20)
where C is a fixed constant. Similarly, we have
|Ger, 07,95, [Mar, (05,) = Mo, (6]
< ||Mar, (08,) = Mo, (0,)|| |25k, Go.r 05, | < C 105, — 65, |- (B.21)

Combining the results in (B.19), (B.20)) and (B.21)), and using the triangle inequality, we have
10F, — 0%, || > ¢sC (B.22)

for some fixed constant C. Using 6y = 0% +o0p(1) (which is proved in Lemma D and the triangle

inequality, we obtain

[0 - or, = [|6%, — 0r. ]| (1 + 0p(1)), (B.23)

> {1182~ 03,1 = 1105, — 0. |

which together with 1} implies that n'/ 2||§2 —0F,|| —p co. This finishes the proof. m

Lemma B.9 (a) I'] pdo = Og,x1; (b) I'] pQ2 pI'Y = E1 p; (¢) [T p Qo pl' p = B2 p; (d) Do pQ2 p1Y =

Yo F.

Proof of Lemma [B.9]is included in Section [E] of the Supplemental Appendix.

B.2 Proof of the Results in Section [5

We first present some generic results on the bounds of asymptotic risk difference between two

estimators under some high-level conditions. Then we apply these generic results to the two specific
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estimators we consider in this paper: /9\60 and 51. The proof uses the subsequence techniques used
to show the asymptotic size of a test in Andrews, Cheng, and Guggenberger (2011) but we adapt
the proof and notations to the current setup and extend results from test to estimators.

Recall that hpg = (d', vec(Ga ), vech(Qo r)') and vp = (vec(Go,r)’, vech(Qy )’) for any F' € F
and any d € R’.. We have defined

H={hpg:d€R" and F € F with 6p = Oprx1} (B.24)

where dp is defined by ((1.5)) for a given F'. Define
H: = {hpg:dec R, with ||d|| =00 and F € F}. (B.25)

Let dj, = r* 4+ dgra + (12 + 1)r2/2. It is clear that hp g is a dj-dimensional vector.

Condition B.1 (i) For any sequence of DGPs {F}, } with F,, € F where {p,} is a subsequence
of {n}, there exists a subsequence {p;} of {pn} and some F' € F such that vg,. — vp as p;, — oo;
(ii) My, r(0) = 0p,x1 has a unique solution at 0 € © for any F € F;

(iii) Mo p(-) is uniform equicontinuous over F € F;

(iv) for any subsequence {pn} of {n}tnen, if (pn)l/QéFpn —d for d € R”,, and vE, — VF, then
nlgglo Eppn [64(5, ann )] = R((hF,d) and nll_)rglo Eppn [ﬁc(a, prn )] = E((hF,d)

where R¢(hpq) and EC(hF,d) are some non-negative functions that are bounded from above by C for
any F € F and any d € R ;

(v) for any F € F with §p = 0p+x1, there exists a constant ep > 0 such that for any 5 €R™ with
0<||d]| < ep, there is F € F with 0p =0 and ||vF - 05| < C||8]|F for some k > 0;

(vi) for any hpq € H3, and h, 7€ H,, we have
Re(hpa) = Re(hyg) and Re(hpa) = Be(hy 2)

for any ¢ > 0.

Condition (1) requires that for any sequence of {vp, }, it has a convergent subsequence
{vaz} with limit being vp for some F' € F. This condition is verified under Assumptions |3.2}(ii)
and [3.3] (ii) in Lemma Condition [B.1}(ii) is the unique identification condition of f which
holds under Assumptions [3.1}(i)-(ii). Condition [B.1](iii) holds under Assumption [3.2](ii) by Lemma
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Condition (iv) is a key assumption to derive an explicit upper bound of asymptotic risk.
This condition can be verified by using Lemma [£.1] as we shall show in the proof of Theorem [5.1]
Condition (V) enables us to show that the upper bound we derived for the asymptotic risk is
also a lower bound. This condition is assumed in Assumption [3.3](i). Condition [B.1}(vi), in our
context, requires that the asymptotic (truncated) risk of 0 (or 8) under the subsequences of DGPs
{Fp, } satisfying the restrictions in Condition (iv) are identical whenever (p,)/28 F,, — d with
||d|] = oco. Condition is verified in the proof of Theorem [5.1| below.

Lemma B.10 Under Conditions[B.1].(i) - [B.1] (iv), we have

AsyRC(a) < max {sup R¢(h), sup Rc(h)} , (B.26)
heH heH?,

where AsyRC(g) = limsupsuppcr Ep [54(/9\, 0r)].

n—oo

Proof of Lemma Let {F,} be a sequence such that

limsupEp, [EC(/Q\, 0F,)] = limsup <sup EF[EC(@, HF)]> = AsyRC(b\). (B.27)

n—00 n—oo \FEF

Such a sequence always exists by the definition of supremum. The sequence {Ep, [¢¢ (@, 0p,)):n>1}
may not converge. However, by the definition of limsup, there exists a subsequence of {n},cn, say

{pn}, such that {Ef, [Q(@, 0, )]: n > 1} converges and
nlLII;OEFpn [ﬁg(a, GFPn )] = AsyRC(G). (B.28)

Below we show that for any subsequence {p,} of {n}nen such that {Ep, [Q(@, 0r, ): n > 1} is

convergent, there exists a subsequence {p}} of {p,} such that

nan;OEsz [Q(@, 9}%)] = R¢(h) for some h € H or HY. (B.29)

Because limy o0 Ep . [c(0,0p,. )] = limy o0 B, [c(0,0F,, )], which combined with (B.28) and
(B.29) implies that

AsyRC(g) = R¢(h) for some h € H or H. (B.30)

The desired result in (B.26)) follows immediately by (B.30)).
To show that there exists a subsequence {p};} of {p,} such that (B.29) holds, it suffices to show

that for any sequence {F,,} and any subsequence {p,} of {n},ecn, there exists a subsequence {p}}
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of {p,} for which we have
(pfl)l/Qész — d for d € R”, and UF,. — UF (B.31)
for some F € F. If holds, then we can use Condition [B.1](iv) to deduce that
lim Ep, [6(0,05,,)] = Re(hpa) (B.32)

for the sequence of DGPs {F: } that satisfies 1’ As d € R

o, we have either ||d|| < oo or

||d|| = oco. In the first case, ||d||] < oo together with (p;;)l/gépp; — d and dp,, — 6p (which is
implied by U, — vr) implies that §p = 0,+x1, which implies that hry € H by the definition of
H. In the second case, hrpq € H3 by the definition of HY . We have proved that hg4 in
belongs either to H or H}, which together with proves .

Finally, we show that for any sequence {F),} and any subsequence {p,} of {n},cn, there ex-

ists a subsequence {p}} of {p,} for which (B.31)) holds. Let 6y, ; denote the j-th component

of §,, and p1, = p, for any n > 1. For j = 1, either (a) limsup,_, |p1',/n25pj,mj < 00; or
(b) limsup,, |p]1-7/7125pj7n7j\ = oo. If (a) holds, then for some subsequence {pjt1,} of {pjn},
pjl'ﬁ,n(Sij,n,j — d; for some d; € R. If (b) holds, then for some subsequence {pj+1,} of {p;n},
1/2

ij’ndij’n,j — 00 or —oo. As r* is a fixed positive integer, we can apply the same arguments
successively for j = 1,...,r* to obtain a subsequence {p,+} of {p,} such that (p,«*,n)l/Q(SpM,n —
d € R7.. By Condition (i), we know that there exists a subsequence {p};} of {p,,} such that
vpx — vp for some F' € F, which finishes the proof of (B.31). m

Lemma B.11 Suppose that Condition [B.1(v) holds. Then (i) for any hpq € H, there exists a
sequence of DGPs {F,} with F, € F such that

n1/2(5Fn — d, GQ,Fn — G27F and Q2,Fn — QQ,F; (B.33)
(i1) for any hpqg € HY,, there exists a sequence of DGPs {F,} with F,, € F such that
Hn1/25pn|| — 00, G2,Fn — G27F, QZ,Fn — QZF and 5Fn — 0p. (B.34)

Proof of Lemma (i) By the definition of H, we have dp = 0,+x1 for any F such that
hpa € H. Let N., be the smallest n such that ||d||n~/? < ep. By Condition (V), for any
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n > N, we can find a DGP F,, such that
6p, =n Y%d and |[vp, —vp|| < n 20| d||F (B.35)

For any n < N, such that ||d|| n~Y2 > ep, welet F, = F. The desired properties in (B.33) holds
under the constructed sequence of DGPs {F},} by (B.35|), because C' is a fixed constant and x > 0.
(ii) For any hrgq € HJ,, we have either p = 0,-x1 or |[0p|| > 0. We first consider the case

that 0p = 0+x1. Let 1% denote the r* x 1 vector of ones. Let N, be the smallest n such that
n~Y4(*)Y/2 < ep. By Condition (v), for any n > N., we can find a DGP F,, such that

g, =n VM uyy and |[op, —Tp|| < Cn T A )2 (B.36)

For any n < N, such that n_1/4(7“*)1/2 > ep, we let F,, = F. The desired properties in
holds under the constructed sequence of DGPs {F},} by , because C is a fixed constant and
k > 0. When ||dp|| > 0, we define a trivial sequence of DGPs {F,,} as F,, = F for any n. It is clear
that holds trivially in this case. m

Lemma B.12 Under Condition[B.1], we have

AsyRC(/é) = max {sup R¢(h), sup Re(h) (B.37)

heH heHZ, }

Proof of Lemma In view of the upper bound in (B.26) in Lemma it is sufficient to
show that

Asng(b\) > max {sup R¢(h), sup Rc(h)} . (B.38)
heH heHz,

First, we note that for any hqp = (d’,vec(Go,r)’,vech(Q2 r)’) € H, there exists a sequence
{F,, € F :n > 1} such that

nY25p — deR" and vy, — vp (B.39)

by Lemma (i). The sequence Ef, [¢, (5, 0F, )] may not be convergent, but there exists a subse-
quence {p,} of n such that Eg, [{, (5, 0r,, )] is convergent and

lim Ex, [0(6,0F, )] = limsupEg, [£(8, 0F, )]. (B.40)

n—00 n—o0
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As {p,} is a subsequence of {n},ecn, by
(pn)1/25ppn —~deR” and vp, — vp. (B.41)
By Condition [B.1}(iv), we have that
lim Er, [0, 05,,)] = Re(hra), (B.42)
which combined with and the definition of AsyR (5) gives
AsyRC(/é) = limsup sup Ep [64(/9\, 0r)] > limsupEr, [((0,05, )] = R¢(hp,q). (B.43)
n—oo FEF n—00

Second, consider any hgp = (d',vec(Ga r)',vech(Qa r)') € Hi. By Lemma [B.11](ii), there
exists a sequence of DGPs {F,,} such that

|n265, || = oo and vp, — vp. (B.44)

Using the same arguments in proving (B.40) to (B.42)), we can show that for some subsequence

{pn} of {n}neN,

|p}/25Fan — oo and vy, — vF (B.45)
and
lim supE ., [£(9, 0, )] = im Ep, [0, 05,,)] = R¢(hp.a)- (B.46)
n—00 n—00

for [|d|| = oo by Conditions ﬂ(w) By the definition of AsyR, (A) and 1)

Asng(a) = limsup sup Ep [Ec(g, 0r)] > limsupEr, [€(6, 05, )] = Re(hpa)- (B.47)

n—oo FeF n—o0

Combining the results in (B.43]) and (B.47)), we immediately get (B.37)). m

Lemma B.13 Under Conditions . (i) - . (iv), the upper and lower bounds of the asymptotic

risk difference between 0 and 0 satisfy

{—o0 heH heH?

o0

AsyRD(6,6) < lim (max {sup [Rc(h) — Rc(h)] , sup [Rc(h) — Ec(h)] }) ,  (B.48)

AsyRD(8,8) > Jim (min{ inf [Rc(h)—ég(h)],hérg;o [Rdh)—édh)]}), (B.49)

39



where

E [min {?FTEF,CH ;o ldll < o0

R¢(h) = E[min {&] Y& p,C}] and Re(h) =
o E [min {& 216 7.}, lld] = o0

for any h e HUHZ,.

Proof of Lemma [B.13l Define

Re(H H) = max{:gg [Rc(h) —R’C(h)} s [Rc(h) —Eg(h)} } (B.50)
R.(H,H%) = min { inf [Rg(h) - Ec(h)} inf [Rg(h) - Ec(h)} } (B.51)

By the definition of AsyRT(@, 5), to show 1} it is sufficient to show that for any ¢ > 0

n—oo FeF

which can be proved using the same arguments in the proof of Lemmam (but replacing £, ([9\, 0r)
and R¢(h) by €c(0,0r) — £c(0,0r) and Re(h) — Re(h) respectively). Similarly by the definition of
Asy@(@, 6), for (B.49) it is sufficient to show that for any ¢ > 0

liminf inf Ep[¢c(6,0r) — £c(0,0F)] > Re(H, HE,), (B.53)

n—oo FeF

which can be proved using the same arguments in the proof of Lemma (but replacing lim sup,,,
supper, Le(0,0r) and Re(h) by limint,, infrer, £e(0,0F) — £e(0,0F) and Re(h) — R¢(h) respec-
tively). m

Lemma B.14 Under Condition [B.1], the upper and lower bounds of the asymptotic risk difference

between 0 and 0 have the following representations:

AsyRD(0,0) = lim (max{sup [Rg(h)—ﬁg(h)], sup [Rg(h)ég(h)]}), (B.54)

¢(—o0 heH heHZ,

AsyRD(,0) = Jim, (min{ inf [Rc(h)—éc(h)],hierggo [Rdh)—ﬁdh)]}). (B.55)
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Proof of Lemma By Lemma [B.T3] it is sufficient to show that

lim sup sup Ep[lc (0, 0r) — €c(0,0r)] > Re(H,HL), (B.56)
n—oo FeF
lanigf;rgtﬂip[ﬁg(ﬁ,@p)—EC(G,GF)] < EC(H7H00)7 (B.57)

for any ¢ > 0. can be proved using the same arguments in the proof of Lemma by
replacing EC(/G\, 0r) and R¢(h) by 44(5, 0r) — EC(E, Or) and R¢(h) — ﬁc(h) respectively. Similarly,
(B.57) can be proved using the same arguments in the proof of Lemma by replacing lim sup,,,
SUpper, U¢ (@, 0r) and R¢(h) by liminf,,, infper, £¢ (5, Or)—L¢ (6,07) and Rg(h)—ég(h) respectively.

Lemma B.15 Under Assumptions|3.4 (ii) and[3.3 (iv), we have

sup E[({LFT{LF)Q] < C and sup E[(E}TEF)Q] <C. (B.58)
heH heH

Lemma B.16 Letg:(h) =E min{E}TEF, ¢} — min {517FT§17F, CH . Under Assumptions. (1)
and[3.3 (iv), we have

Jimsup lge(h) = g(h)[] =0 (B.59)
—© heH

where supy,cy [lg(h)]] < C.

Proof of Theorem [5.1. The proof consists of two steps. The first step is to apply Lemma,

to show (B.60]) and (B.61)) below, and the second step is to apply Lemma to show (B.75)) and

(B.76)) below.
In the first step, we apply Lemma with 0 = /9\50 and 0 = 51 to show that

AsyRT(@eo,gl) = lim max {Sup [g¢(h)] ,O} and (B.60)
(=00 heH

0co,61) = lim miny i : B.61

AsyRDB.r0) = Jimn min{ i ()] 0 (B.61)

To prove (B.60) and (B.61]), we now verify Condition under Assumptions Condition
(i) is verified by Lemma under Assumptions [3.2}(ii) and [3.3](ii). Condition [B.1](ii) is
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implied by Assumptions [3.1](i) and [3.1}(ii). Condition (iii) is implied by Assumptions [3.2](i)-
(ii) as a result of Lemma Condition [B.1}(v) is assumed in Assumption [3.3] (ii). We next verify

Conditions (iv) and [B.I] (vi).

Consider any sequence of DGPs {F},, } with
(pn)l/Qéppn —dforde Rg and vg, — vp (B.62)

for some F' € F, where {p,} is a subsequence of {n},ey. First, we consider the case that d € R"".

By Lemma [4.1](a) and [£.2](a),
(pa)2(01 — 0r,,) —p €1p and (pn) > (0o — O, ) —p Ep (B.63)
which combined with the continuous mapping theorem implies that
U01,05,,) —p & pYér and €@, 0F,,) —p EpYEp. (B.64)

Since T is positive semi-definite, fi Y&, r and E,FTEF are both non-negative. The function f:(z) =
min {x, (} is a bounded continuous function for x > 0. By (B.64]) and the Portmanteau Lemma
(see Lemma 2.2 in van der Vaart (1998)),

Er, [(c(8co,0F,, )] — E [min{E}TEF, ¢} and Ep, [6c(61,05,,)] — E [min{¢] zT& r, C}] . (B.65)
Second, we consider the case that ||d|| = co. Then under Lemma [4.1](b) and [4.2}(b),
(pn)/2(01 — 0r,,) —p &1,F and (Pn)? (B0 — 0r, ) =D &1,F- (B.66)
Using the same arguments in showing , we get

Eg,, [0¢ (0o, 0r,,)] = E [min{&; Y& r,C}] and Ef,, [€c(61, 0F,,)] = E [min{&] x Y& p, (Y-
(B.67)
Define

Emin{SpTEp, ¢}, |d] < o0

Re¢(hpa) = E [min{¢] zT& p,¢}] and Re(hpa) = E[min{g' Yé o |ld|| = oo
1,F +SLF, ’ =

. (B.68)
Collecting the results in (B.65) and (B.67), we deduce that under the sequence of DGPs {F), }
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satisfying (B.62]),
Er, [lc(0co, OF,, )] = Re(hra) and Eg, [6c(61,0r, )] = Re(hra), (B.69)

where R¢(hpq) and ﬁg(h F.4) are non-negative and bounded from above by ¢ for any d € R, and
any F € F. This verifies Condition [B.1] (iv).

By definition, Eg(hﬂd) in does not depend on d for any F. Moreover, for any d and d
with ||d|| = oo and ||d|| = oo, by the definition of Re(hgq) in (B.69),

R¢(hpa) = E [min{&} p Y& p, C}] = Re(hy 3)- (B.70)

Hence, Condition [B.1}(vi) is also verified.
We next apply Lemma to get (B.60) and (B.61) above. By (B.68|),

Re(h) — Re(h) = Elmin{€x Y€, (}] — Elmin{¢] z Y& p, ¢} for any h € H (B.71)
and

R¢(h) — ﬁc(h) =E [min{&; p Y& r, ¢} — E [min{&] p Y& F, ¢} =0 for any h e HY,.  (B.72)

By Lemma [B.14] (B.71)) and (B.72)), we have

AsyRT(@eo,al) = Cli_)rgO max {22}3 [Rc(h) - Rg(h)} ,hsel;ﬁ [Rg(h) - Rc(h)} }

— lim max {sup E [min{€p0Ep, ¢} — min{¢] pT¢,m, C} ,0} (B.73)
(—o0 heH ’

and

AsyRD(0,0,0,) = Jim, min{ inf [Rc(h) - ég(h)] ., inf [Rg(h) - zfzg(h)}}

= lim min { inf E [min{ﬂ;TEF, ¢} —min{&] pT& F, C}] ,O} , (B.74)
heH ’

(—o0

which proves (B.60|) and (B.61]).
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In the second step, we show that

<1£go max {21612 [9¢(R)] ,0} = max {21612 [g(h)] ,O} , and (B.75)
Clggo min {hlg]f{ [9¢(h)] ,O} = min {;%21{1 [g(h)] ,O} (B.76)

By Lemma [B.16]
Jim, sup l9¢(h)] = sup lg(h)] and lim_inf [gc(h)] = inf [g(h)], (B.77)

where supjcy [g(h)] and infrep [g(h)] are finite real numbers. Let f(z) = max(z,0) and f(z) =
min(z, 0). It is clear that f(z) and f(z) are continuos function on R. The asserted results in (B.75)

and 1' follow by l) and the continuity of f(z) and f(z). =

Proof of Theorem For any F' € F, define
Bp = (Ly,p = I1 p)T(Top — 7 p) and Dp = (T p — I p)'TT] p. (B.78)

Recall that we have defined Ap = T (X1 r — X2 ) in Theorem By the definition of &5,

E[€pYEp] = tr(YE1,p) + 2tr(Ap) Jip + tr(Ap) 2 Jo,p (B.79)
where
J _E Zél’Q’FDFZd,Q,F and J. _F Z(/LQ,FBFZd,Q,F (B 8())
M 2l pBrZasr + t1(Ap) 2F (22 pBrZaz.r + r(Ap))? ‘

We provide a upper bound for J; r defined in (B.80)). Define a function

T

() x'Bpx + tr(Ar)

for any € R™. (B.81)

Its derivative is
377(3?)' . 1 2B /

_ I, — vx
ox @'Bpz +tr(Ar)""?  (2/Bpx + tr(Ap))?

(B.82)

Then Jip = E[n(Z242,r) DrZ42r]. Note that DpZ49 p = DpZs r by construction because the
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last 7* columns of T'} - are zeros. Applying Lemma yields

tr (DFQZF) =tr ((FZF - T,F),TFT,FQQ,F)
= tr(T (T} pQo,rl% o — T7 Qo pT] 1))
= tI‘(T (227}7 - EI,F)) = —tI‘(AF). (B83)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1981),

on(Z !
Jl,F =K (n(Zd,Z,F)/DFZd,Q,F) =E |:tI' (WDFQ2’F>:| . (B84)

Plugging (B.81)-(B.83)) into (B.84), we have

tr (DpQs F) tr (BFZd,Z,FZCILQ’FDFQZF)
e = B e iy | 2 2
| 242, pBrZagr +tr(Ar) (ZQ2FBFZd,2,F+tr(AF))
[ _tr(A ] 2 wDpQs pBrpZ
= Bz zr( Flt Ap | 2" e A Bs)
| “d,2,FPFZd2,F T WAR) | (Z&727FBFZd72,F +tr(AF))
where the second equality is by (B.83). By definition and Lemma
—Z40 p D rBrZia p
= —Zyop(Tor =17 p)TT] Qo p(Dop =T ) T (Do p — T p)Zaz2 F
= Zop(Tor —T1p)Y(E1r — Yo )Y (T2 r — 17 p)Za2F
< Pmax(YYH(S1p = Do p) YY) (2o p(Top — T p) T(Cap — T 1) Za2.r)
= pmax(Ar)Z49 pBrZaar, (B.86)

where the last equality is by pmaX(Tl/z(ELF — 2271:)'1"1/2) = pmax(Y(X1,F — X2 r)). Combining the
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results in (B.85)) and (B.86)), we get

—tI‘(AF)

+ 2E
; 2
_Zd727FBFZd,2,F +tr(Ap) | (Z&}Q,FBFZCLQ,F + tr(AF))

—tr(Ap)
20 rBrZasr + tr(Ap)

(200, BrZas.p + 10(A)] s (AF) = t1(AF) pmas(Ar)

JLp<E pax(AF)Z o pBrZa2,F

+ 2E 2
(ZQ’Q’FBFZM,F + tf(AF))
2 Ap) —tr(A 2 Ap)tr(A
) = pmg(ZF) r(t };4) _E pmax( F) I'( F) 5 (B87)
d,2,F F£d2 F + I'( F) (Z:j’Q,FBFZvavF + tr(AF))
Next, note that
Z, ., =BrZ
o =E pETAR
‘ZC/LQ’FBFZCI,ZF + tr(AF)‘
| ZhapBrZaar +tr(Ap) — tr(Ap)
= 2
’ZC'LQ’FBFZd,ZF + tl"(AF)’
1 tI‘(AF)
_E|_ & - (B.88)
Zd,z,FBFZdQvF +tr(Arp) ‘Zé727FBFZd,2,F + tr(AF)‘

Combining (B.79), (B.87)), (B-88)) and the definition of g(h) (in Theorem [5.1]), we obtain that

g(hd’p) = QtY(AF)JLF + tr(AF)QJZF

2pmax(AF) — tI“(AF) 2tI‘(AF),0max(AF)
<2tr(Ap) | E | 5 2
249, rBr2azr + t1(Ar) ‘Zc’l 0. rBFZaor + tr(AF)‘
1 tI‘(AF)
+tr(A)? [ E -
2&727FBFZd,2,F +tr(Ar) ‘Z(/i o pBFZa2F + tr(AF)‘2

tr(Ap)? (4pmax (Ar) + tr(AF))
2
‘ZQQFBFZM,F + tT(AF)‘

tr(Ar) (4pmax(Ar) — tr(Ar))
2}y pBrZaar + u(Ap)

(B.89)

For all Go and Qy such that h = (d, vec(G2)’, vech(€2)") € H, we have G2 = Gop and Qg =
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Qy  for some F' € F by the definition of H. If tr(Ar) > 0, then pmax(Ar) > 0 and thus the
second term in the right-hand side of the last equality of will be negative. If in addition
tr(Ap) > 4pmax(Ar), then the first term in the right-hand side of the last equality of will
be non-negative. As a result, when tr(Ar) > 0 and 4pmax(Ar) — tr(Ar) < 0 for VF € F, we have
supperlg(h)] < 0. This combined with Theorem [5.1| implies the results of this theorem. m

C Supplementary Simulation Results
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Figure C.1: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.2: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.3: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.4: Finite Sample Biases and Variances in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.5: Finite Sample Biases and Variances in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure C.6: Finite Sample Biases and Variances in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Supplemental Appendix of

“An Averaging GMM Estimator Robust to Misspecification”
Xu Cheng, Zhipeng Liao, Ruoyao Shi

In this supplemental appendix, we present supporting materials for Cheng, Liao and Shi (2018)
(cited as CLS hereafter in this Appendix):

e Section [D] provides primitive conditions for Assumptions -2 and [3.3] and the proof of
Lemma [3.1] of CLS.

e Section [Ef provides the proof of (4.3 in Section 4| and the proof of some Lemmas in Appendix
of CLS. The proof of Lemma in Appendix [A] of CLS is also included in this section.

e Section [F] studies the bounds of asymptotic risk difference of the pre-test GMM estimator.

e Section [G] contains simulation results under the truncated risk for the simulation designs in
Section [6] of CLS.

e Section [H includes extra simulation studies.

D Primitive Conditions for Assumptions [3.1], and and
Proof of Lemma [3.7] of CLS

In this section, we provide primitive conditions for Assumption Assumptions and [3.3]in
the linear IV model presented in Example 3.1 of CLS.

We first provide a set of sufficient conditions without imposing the normal distribution assump-
tion on (X', Z1,V',U) in Lemma Then, we impose the normality assumptions and show that
these conditions can be simplified to those in Lemma of CLS under normality.

For ease of notations, we define I', ,,2 = Ep+[Z1V'U?], Q.,.,u2 = Ep+[Z1Z]U?] and Q2 =
Ep«[VV'U?). The Jacobian matrices are

, —Ep[Z; X
GI,F = —EF[ZlX] and G27F = (D.l)
—Ep[Z*X]
Let Zy = (Z}, Z*)’. The variance-covariance matrix of the moment conditions is
Qor =Ep[Z2Z5(Y — X'00)%] — Ep[(Y — X'00) Z2]Er[(Y — X'00) Z5). (D.2)

By definition, € r is the leading r1 x r; submatrix of Qs F.



Let F' denote the joint distribution of W = (Y, 2], Z*,X’) induced by 6y, dp and F*. By
definition, we can write

_lem Qzlz1u2 QZ,].T,F

Or = Quubo, Go,r = b r = (D.3)
_50Fuac - va Q2,7"1,F QQ,TT‘,F
where
QZ,lr,F = leu3 56 + le'uuQ = Ql2,r1,F7 and
QQJ-T’F = Qu2u25056 + 50Fu3v + Fvu356 + Qppu2- (D.4)

Therefore, the parameter vy defined in (3.4)) depends on F' through F* and dg, and its dependence
on F* is through v, g+, where

Q2025 Qs vee(T,2)  vee(Tyz ), vee(Ty, )’ vech(Q,, 4, 02)’,
Vg fx = . (D.5)
vec(T,,3) , vec(I,, pu2)s vee(Tys, )’ vech(€Qy,2)

Define
P2max = Max{Sup pmax(Q2,r), SUP pmax(G2,rGY p)},
FeF FeF
P2,min = min{}relf}_pmin(QZF)y}Iéf_;__pmin(GZFG,Q,F)}a
Cw = sup Ep[|(X',Z},V',U)||?] and Ca = sup ||6o*. (D.6)
F*eF* S0EAS

In the proof of Lemmabelow, we show that po max < 00 (see (D.14) and (D.18)). Moreover, we
have p2 min > 0, Cy < 00 and Ca < oo by Assumptions [D. 2} (iii), [D. 1} (ii) and [D. 1] (vii) respectively.
Define
* — ~1/2
BS, = {0 R [|0] > prminfymaxCa ) (D.7)

Let ©g be a non-empty set in R% . Define
Bo, = {0 € R% : |0 — || < pifninpgmaxCAC%/ for any 6y € O¢}. (D.8)

Let {¢j A, Cj,A}g; be a set of finite constants. We next provide the low-level sufficient conditions

for Assumptions and

Assumption D.1 The following conditions hold:
(i) EF*[V] = 0, EF*[U] = 0, EF* [ZlU] = 07"1><1 and EF*[VU] = 0r*><1 f07’ any F* e .7:*,'
(i) sup Ep[[|X|[*7 + || Z1]|*T + ||V ||*TY + U®] < 0o for some v > 0;

F*eF*

(iii) Firélf]__ Ep[U?] >0, Firelgr Pmin(Taz,Tzy2) > 0 and I;Ielf}_ Pmin(Q2,F) > 0;

2



iv) fnf éé%fc [ G S it

( leu:s — quH > 0,‘
(v) the set {v* = F* € F*} is closed;

(

(

Uz = Taw)6 + Tz Q00
vi) 6y € ©g, Be, C int(O) and O is compact;

vii) As = [e1.a, Cra] X -+ X [epe A, Cpx A] where cja <0< Cya forj=1,...,7%

Lemma D.1 Suppose that {W;}; | are i.i.d. and generated by the linear model (@) and @) m
CLS. Then under Assumption F satisfies Assumptions and [3:3]

For the linear IV model, Lemma provides simple conditions on 6y, §y and F* on which

uniformity results are subsequently established.
Proof of Lemma By Assumption [D.1](i) and the definition of G1 r,

Er [1(W,0)] = Ep<[Z1(U — X'(6 — 60))] = G1,r(6 — b0), (D.9)

which together with Assumption [D.1}(iii) implies that 6y = 6y and hence Ep [g1(W,0F)] = 0y, x1.
Also 0p € int(©) holds by 0p = 6y and Assumption [D.1}(vi). This verifies Assumption [3.1](i).
By for any 0 € © with ||§ — 0p|| > ¢ and any F € F
[Ex [ (WOl = pyie (G1r G, 16 61 > epy (GG r) (D-10)

min min
which combined with Assumption (iii) and G1,p = —I", p. implies that

£ inf |[Ep[g(W,0)]] > 0. D.11
b g inf B g1 (W, 6)]] (D.11)

This verifies Assumption [3.1] (ii).
Next, we show Assumption(iii). Let Zy = (Z1,Z*)'. By the Lyapunov inequality, Assump-

tions (ii) and [D - (vii)

sup Er||Z2[]] < S Ep-([|Z1]]°] +2 sup Ep-[||V]’]
FeF F*eF*
+2 sup ||6]|? sup Ep-[U?] < oo. (D.12)
SoEAs FreF*

By (D.19), the Holder inequality, the Lyapunov inequality and Assumption [D.1](ii),

sup [|Ga,r|l = sup [[Er[ZoX']|| < sup (Er[||Z2][*)"? sup (Ep-[||X|)"/? < oo, (D.13)
FeF FeF FeFr FxeF*

which together with the definition of G r and the Cauchy-Schwarz inequality implies that

sup || Gy, pGa,r|| < oo. (D.14)
FeF



Similarly by the Cauchy-Schwarz inequality, the Lyapunov inequality, Assumptions (ii) and
[D.1(vii), we have

sup Ep(||Z2||'] = sup Ep[(|Z1]]” +[|Z*]*)?)
FeFr FeF

IN

2 sup Ep-[||Z1]]] + 2 sup Ep[|| 27|
F*eF* FeF

VI

IN

2 sup Ep[||Z1]|"] +8 sup Ep|

F*Ef* F*EJ_‘*

+8 sup ||do||* sup Ep-[U* < oo. (D.15)
LSS FxeF*

By (D.19), (D.15), Assumption [D.1](ii), the Lyapunov inequality and the Holder inequality, we

have

sup HEF[Z2Z§(Y — X'0p)?] H
FeF

< EUI;EEF[HZzW(Y — X"6)%
S
< sup(Ep[||Z2[['])"/? sup (Bp-[U*))"? < oo, (D.16)
FeF F*eF*
and
sup [|[EF[(Y — X'00)Zo]|| < sup (Ep[]|Z2]|*])/? sup (Ep-[U%)"? < oc. (D.17)
FeF FeF F*eF*

By the definition of €y , the triangle inequality, the Cauchy-Schwarz inequality and the results in

and (D19

sup [|Q pl| < oo. (D.18)
FeF

We then show that 0}, € int(©). By the triangle inequality, the Cauchy-Schwarz inequality and
the Holder inequality,

[G2,rll < [[Taz || 4 0l ITzull + [[Tall
< Ep[IXIPD Y2 Ep [ 20| P
+ 1oll B (1| X[*]) /2 (B [UZ]) /2
+(E e[| XDV e[|V
< Cw(2+CY?), (D.19)

for any F' € F, where Cyy < oo by Assumptions (ii) and (vii). Since Gb p = (G} p, Gl )
where G« p = —00Ep+[UX'] — Ep«[VX'], we have

GIQ’FG%F = Gll,FGl,F + G;‘*7FGT’*,F7 (D.QO)



which implies that for any F' € F,
Pmin(Go, pGo,r) > pmin(G1 pG1F). (D.21)
To show Assumption [3.1] (iii), we write

Qr(0) = Er[Za(Y — X'0)Q; pEr[Zo(Y — X))
= 0'GY 1 1 Ga p0 + 20'Gh 1 . Cp + CpQy 1O, (D.22)

Where Cr = Ep[Z2Y]. Since G} ALy FGQF is non-singular by D 18 , ) and Assumption
(111) Qr(0) is minimized at 0} = —(G’2 #S »Gop)TLGY ALy FCF for any F € F. Therefore,

2
187 = 00l* = ||(Gh 25 5Ga.r) TGl p U LB (220

2
pmax(QZ F) , 1 , .
T Phin(GY G ) F [UZ5) Qy pG2,rGh ¢y pEr [25U]

pr2nax(QQ7F)pmax(G/2 FGQ F)
B pr2nin(927F)pi11n(G,2 FG2 )
S pifninpg,maxCACW (D23)

= 8ol

for any F € F. By Assumption [D.1}(vi), 0}, € int(©). Moreover for any € © with ||0 — 07| > ¢,

Qr(0) —Qr(0F) > puin(GopQs pGar) |10 — 07
> & puin(Gh, p Q5 G, r)
> & i (Q2,7) pmin (G, pGa,p), (D.24)

which together with (D.18), (D.21)) and Assumption [D.1](iii) implies that

;gffgeggfe;) [Qr(0) — Qr(0F)] > 0. (D.25)

This verifies Assumption [3.1 (iii).
Next, we verify Assumption (iv). Let 952? = (Qoprr — Q4 FQ:ZWQQQJT,F)A, where



Qo 1 p and Qg . p are defined in (D.4]). Then

/ —1
2,78 pO2,F

—Q Q
= _(szlarxv+rxu56) Z121Iu2 o Qg?IQT)Quu(SO
/r.*
= Quu[(Ten QL T, s = Tou)0h + Tamy Q0 T, e — T JO0D5
- uu[( TZ21°% 5 202 z1ud ;tu) 0+ 2105 22 z1ou? xv] 2,F ©0
= Quudh SR 00(Tae 0L oTorus — Do)
_ 22
+Quu(rmzl QZ112,1u2rz1'uu2 - I‘CE'U)Q(Q,F)&L

(D.26)

by the formula of the inverse of partitioned matrix. For any dyp € As with ||dp|| > 0, we have

()00 (P BN 1 P
(p05750)  (pmax(Q5P))2 009~ CaP5 ma

and
22 22 22
_ Q500 sl R

S 50 =
’ (S6(Q)200)1/2 T Prmax (85(Q7)260)1/2

where the last inequality in (D.27)) and the inequality in (D.28) are due to

22 _ _
Prnin (25°7) 2 punin (g 1) = P b

and

22 — -
pmax(Qg7F)) < pmaX(QQ}‘> = 102,r1nin'

Therefore, for any F' € F with d3 p = Qs (01511, 95)" and ||o|| > 0,

(22)
eyl /22 1 27 %
|G eahtor]| 5000 | (Ton 0L T e — Tov) 5 2
_ 02 F

(|62, 7| B 60|

+(Fx21 Qz_llzlu2 leu3 - Fﬂ’?u)
22 - LV
1 5692,F)5O (s, Qzllzlu2rzlvu2 B va)ﬁ
= (02225 \1/2 S
P2,max (50(QQ,F) 50) ‘|‘(sz1 ;lzlu2rzlu3 - FUCU)
- 1 1 (Fzzl Q;llzlu2rz1vu2 - FI’U)SO
P2,max ||5OH ‘|‘(sz1 Q;IZNJQI‘ZIUS - qu)

(D.27)

(D.28)

(D.29)

where 50 = Qg??éo / 569&??50 and the inequality is by (D.28). By (D.28) and the definition of By,




go € By,. Therefore, 1} implies that

|6t r 05 ko0 oo L T, e — D)0
—— inf 6] Fona 2y Lz = L) (D.30)
H(;Q,FH " P2,max deBg, (szl Qz_ = u2rz1u3 — Pg;u)
Collecting the results in (D.18) and (D.30) and then applying Assumption [D.1}(iv), we get
|G2r0zk0ar]|
nf >0 (D.31)
(Fer:jopl>0y  [|02rll

which shows Assumption 3.1} (iv) with 7 = 1.

Assumption [3.1}(v) is implied by Assumption [D.1}(vii). This finishes the verification of As-
sumption [3.1]

To verify Assumption note that go(W,0) = Zo(U — X' (6 — 6p)), g20(W,0) = —Z>X" and
92,00(W,0) = 0(r,44)xd,- Therefore, Assumption (1) holds automatically. Moreover Assumption
(ii) is implied by Assumption [D.1}(ii) and the assumption that © is bounded. Assumptions
[3-2{(iii)-(iv) follow from Assumption [D.1] (iii).

We next verify Assumption By definition,

vp = (vec(Ga,r)', vech(Qa,r)’, 6F) . (D.32)

Let A, = {v, p+ : F* € F*}. From the expressions in (D.3), we see that A = {vp: F € F} is the
image of A, x Ay under a continuous mapping. By Assumption [D.1](ii) and the Holder inequality,
A, is bounded which together with Assumption (V) implies that A, is compact. Since Ay is
also a compact set by Assumption (Vii), we know that A, x Ag is compact. Therefore, A is
compact and hence closed. This verifies Assumption [3. ()

Let ep = QuuCA where cA = min {m1nJ<T* lcjals
5 €R™ with 0 < H(SH < ep, there is F € F such that

55 =5, 11Gy s — Gopll < Culldp][/* and ||, f — Qo.pl| < Coll3]|* (D.33)

for some fixed constants Cy and Cs. This verifies Assumption [3.3] (i) with k= 1/4.

First if & = 0,+x1, then we set F to be F which is induced by do, 90 and F* with g = 0, x1.
By definition G27F = Gar, QZF =l r and 5ﬁ =0p = 09y, =0 = § which implies that (D.33
holds.

Second consider any & € R™ with 0 < |[d]] < ep. Define 8y = 6Q;L. Since ||8|| < ep and
er = Quuca,

180l = 1169211 = 110119250 < ea, (D.34)

which combined with the definition of As implies that go € As. Let F be the joint distribution



induced by g(), 6o and F*. By the definition of F, we have FeF. Moreover,
55 = 00Quu =0 (D.35)
which verifies the equality in (D.33)). By definition,

—Ep[Z1 X’ —Ep[Z1 X’
G, == ~ E [ ! ] and GQ,F = F [ ! ] (D.36)
—00Ep-[UX'] — Ep« [V X'] —Ep[VX']

which together with the Cauchy-Schwarz inequality and the Holder inequality implies that

1Gy 7 — Garll = BB X < ol (B 1X] )12
= 1180l 42! B [1X 1] 116082l M. (D.37)
By Assumption [D.1] (ii),
sup Ep:[||X||?] < 0o and  sup Qyuy < 00 (D.38)
FreF* FreF*

which together with (D.34), (D.37) and the definition of 0 implies that

1G5 = Garll < Clld][M%, (D.39)

where C = 0314 sup pe e 7 (Ep= [[| X [12]) Y2 sup s ¢ 7+ Q! is finite.
To show the last inequality in (D.33), note that by definition 6z = 6y = 0 and hence

Ez[Z121(Y — X'05)?] = Ep+[2121U°] = Ep[Z1 Z1(Y — X'0p)?). (D.40)
Under ﬁ,
E(2127(Y — X'05)?] = Bp-[Z1(Udo + V) U?| = Bpe [U3 21130 + B [U2 2, V7, (D.41)
and
Ez[Z*Z*(Y — X'05)°]

= Ep-[(Ubo+ V)(Udy + V)'U?
= Ep-[UY000y + 80Ep+[U3V'] + Ep:[U3V]3y + Ep- [U2VV]. (D.42)



Under F,
Er[Z1Z7(Y — X'0F)%] = Ep<[U*Z,V'] and Ep[Z*Z¥(Y — X'0F)%] = Ep<[U?VV'].  (D.43)

Collecting the results in (D.40), (D.41)), (D.42) and (D.43), and applying the triangle inequality,
we get

|Ez[Z225(Y — X'05)%] — Ep[Z2Z5(Y — X'0p)?]||
< HEF [U%ﬂ%“ n HEF [Uﬂ&%‘

+ HSO]EF* [U3V’]H + HEF* w3vIs| . (D.44)
By Assumption (ii) and the Lyapunov inequality
sup Ep-[|U]°] < oo, sup Ep[||Z1]["] <ocand sup Ep-[|[V]["] < oo. (D.45)
F*E‘F* F*GF* F*ef*
By the Holder inequality,
[Ep- 32| < Ep (U122 PIER-[U7)2
< EBp[[UPYY?Ep-[||Z2][*DV (B - (UM
= QU ER[UP)Y(Ep- (|| Z0]|*]) ™. (D.46)
Similarly, we can show that
[Es- [0V < Qi Ep- U2 Ep-[IVIDY (D.47)
and
Ep[UY] < (Bp[UHEp-[U)Y? = QY2 sup (Ep-[US])Y/2. (D.48)

FreF

Let Ca,0 = suppec - {(Ep-[| U *[(Ep-[[|Z1]|*])* + Ep-[[[VI*]) /4] + (Ep- [U°])"/?}. Combining
the results in (D.44]), (D.46)), (D.47) and (D.48), and applying the Cauchy-Schwarz inequality, we
get

|Ez[Z225(Y — X'07)%] — Ep|Z2Z5(Y — X'0p)?||
3C2,0QM[00]| + Ca,0241 |00 |
= (3C2,0|[00][>* + Co0][d0| /)M 50|14 < Canl[8]|V/* (D.49)

IN

where Cy; = 0270(302/4 + 02/4), the second inequality is by 1D and the definition of 5. By

(D.45)), Assumption (ii) and the definition of ca,

0271 < oQ. (D.50)



Next note that

Erl201 ) Ep[Zo(Y — X'0p)] = Er-[Z1U] (D.51)

EA[Zo(Y —X'0:)]=|
r r 6()Quu Or*xl

which implies that

Ez[Zo(Y — X'05)Ex[Z5(Y — X'05)]
—Ep[Z2(Y — X'0p)|Ep[Z5(Y — X'0F))

~/

Orl XT1 Quu,F*IE:F* [Zl U]50
SoEp+ [ 2 U] Qe 500002,

Quu

~1
Ep |71 U](SO‘

+ Quu

BB+ [21U]|| + 2,130l
2080 [Er+ [Z00]]| + 92,30l
(203180l P/ @[ 202D V2 + QU Bl BV < ConlBI* (D52)

IN N IA

where Cho = supF*EP{2Q%4(EF*[ Z1||2])1/2ci/4 + 9%102/4}, the second inequality is by the
Cauchy-Schwarz inequality, the third inequality is by the Holder inequality. By Assumption(ii)
and the definition of ca,

Cop < 00. (D.53)

By the definition of Qy r in (D.2)), we can use the triangle inequality and the results in (D.49)) and

(D.52)) to deduce that
2, 7 = 92| < Callfl (D.54)

where Cy = Cy1 + C22 and Cy < oo by (D.50) and (D.53)), which proves the second inequality in
(D-33). This verifies Assumption [3.3] (i) with k = 1/4. m

Proof of Lemma Next, we apply Lemma to prove Lemma in the paper. For
convenience, the conditions of Lemma [3.1] are stated here. The proof verifies the conditions of
Lemma with the following conditions in a Gaussian model. Let F* denote the set of normal
distributions which satisfies:
(1) Oy =0, leu = 0y x1 and I'yy = Oprx1;
(ii) inf prers pmin(Tazy Tayz) > 0, SUppecz+ ||6]]? < 00 and
0 < infpecrs pmin (V) < SUPprcr+ Pmax (V) < 005
(iil) infpeers infy s >ey 6]~ |(Taz, T2 L Taiw — Taw)d — Tyl > 0 for some & > 0 that is small
enough (where ¢ is given in in the Appendix of CLS);
(iv) Oy € int(©) and © is compact and large enough such that the pseudo-true value 6*(F') € int(0);
(v) As = [c1.a,Cra] X -+ X [ep= A, Cpx A] where {cj,AchA};*:l is a set of finite constants with
cA<0<Cjaforj=1,...,r"

Specifically, we assume that condition (ii) of Lemma holds with some constants ¢, and C),
such that ¢, < pmin(Tzzaiz)s |92 < Cp and ¢, < prmin (¥) < pmax (V) < C,; condition (iii) of

10



Lemma [B.1] holds with

infsepe [[0] 71 | (Tozy DoL Tayo — Tao)d — D] | > cr (D.55)

TZ1+ z121

for some positive constant cp and
B = {5 € R 1|3 > ., CoACR), (D.56)

where
Ciow =2(dg + 12+ 1)C), ¢4 p = min{l, 612)} and C , = C’f’w(2 + 01/2)2 (D.57)

and Ca = Supg,en, 1802

Assumption [D. (i) holds under Condition (i) of Lemma [3.1] Since (X', Z{,V’,U)" is a normal
random vector, Assumption (ii) holds by HqﬁHQ < C, and pmax (V) < Cp. By pmin (¥) > ¢, and
¢y = 0, we have Ep«[U?] > ¢, for any F* € F* and hence inf prc 7« Ep«[U?] > 0. Let F denote the
distribution of W induced by F* with mean ¢ and variance-covariance matrix W. By definition,
Gir = —Ep-[Z1X'] =T,,;. Therefore,

inf per Pmin(G/LFGl,F) > cp > 0 (D.58)
holds by pmin(IgzT22) > ¢, > 0 for any F* € F*. Since I';;y, = 0p,x1 and I'y, = 0,5 for any

F* € F*, U is independent with respect to (Z], V')’ under the normality assumption. Therefore,
by Condition (i) of Lemma

Quul—‘zlzl Quurzlv
Q2’F - / 2 !
Quul™y 202,608) + Quulvo
/
_ Quu Qz1z1 Qzu) + Quu d)zl szl + Orl X1 0;1 Xr* (D59)
szl vi d)v ¢v Or* X711 2Quu5056

which implies that pmin(Q2,r) > pinn(\ll) where F' is the distribution of W induced by F* with
mean ¢ and variance-covariance matrix W. Since pmin(¥) > ¢, > 0, we have

infper pmin(Q2,F) > Cg > 0. (D.60)

This finishes the proof of Assumption [D.1}(iii).
By (D.59), Conditions (ii) and (v) of Lemma [3.1]

;u?__pmax(QZ,F) < P (©) + Pmax (W) 1811 + 20510 (V)Ca < 205 (1 + Ca). (D.61)
S
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By (D.19) in the proof of Lemma
1Ga,pll < 2C,(dg + 12+ 1)(2 + CY?)

which implies that

sup pina (G pGo p) < 4C2(dg + 2+ 1)2(2 + CY%)2. (D.62)
€
By (D.58) and (D.60),
min {}Ielg__pmin(QZF)v}Ielg__pmin(Gé,FGlF)} > min{l,c%}. (D.63)
By (D61) and (D69,
max { SUP Pmax(22,7), sup pmaX(G’27FG27F)} < 403((19 + 19 + 1)2(2 + 03/2)2, (D.64)
Fer FeFr

defined in (|D.7). Moreover, by ¢, = 0, the normality assumption and the independence between U

From (D.63), 1) the definitions of ¢, p, Cs, and BY ,, we have By, C BYy , where By, is
D

and (Z1,V'), we have Q, , 2 = Quul'z2, T2 = Qual'z0 and T, 3 = 0, x1, which implies that

||(FzZ1Q;1i1u2szu2 — D)6 + FzmQ;ﬁzlwrzWS — Daul|
= ‘|<Fx21F;;l1le21v - va)5 - qu| ’ (D65)

Assumption (iv) follows by By, C BY . and Condition (iii) of the lemma.
We next show that Assumption [D.1}(v) holds. Define

Quu, vee(Tys, ) vee(Tyy), vee(Tey)',

o vec(T'4,0), vech(T 2, 2, ), vech(Tyy )
Under Condition (i) of Lemma and the normality assumption, T'yz,2 = 3Q2,, T3 = Oryx1,
Fpus = Opexcty Qpz02 = Qual'zizy, Topwz = Qual’ze and Q2 = Q4 'y, Therefore to verify
Assumption [D.1}(v), it is sufficient to show that the set {7, p- : F* € F*} is compact because the
set {vy p= 1 F* € F*} is the image of the set {U, p+ : F* € F*} under a continuous mapping. Let
{(¢n, ¥n)}, be a convergent sequence where (¢y,, ¥,,) satisfies Conditions (i)-(iii) of Lemma [3.1] for
any n. Let ¢ and ¥ denote the limits of ¢, and V¥,, under the Euclidean norm respectively. We
first show that Conditions (i)-(iii) of Lemma hold for (¢, V). Since Gun =0, I'sjun = 0 x1
and I'yyn = 0p+x1 for any n, we have ’ggu =0, I';,u = 0, x1 and fvu = 0,+x1 which shows that
(¢, ) satisfies Condition (i) of Lemma Since ¢p, — ¢ and ||pn? < C, for any n, we have
p]12 < C,. By the convergence of (¢, ¥y), I'pzyn — T,.,. Since the roots of a polynomial

12



continuously depends on its coefficients, we have

pmin(raczl,nF;;ZLn) — pmin(raczlr,le)a pmln(\pn) — pmin(lp) and Pmax (‘I/n) — pmax(qj)

which together with the assumption that I, , and U, satisfy Condition (ii) of Lemma implies
that

Cp < pmin(f:czlf/zzl) and Cp < pmin(\l") < pmax(‘ll) < C'p-

This shows that Condition (ii) of Lemma holds for (5, \TI) For any § € By » Dy the triangle
inequality, the Cauchy-Schwarz inequality and ||d]| > CZCID—QC&l(l +Ca)7 1271

18] [|(Tazy T2,5, Tayo — Taw)d — Dol

TZ1+ 2121

1617 [[(Tazr, T5L nTevom — Tavn)d — Daunl|

TZ1n™ 2121,M

~Taa T2 Toro = Doz by Ll avnnll

TZ1+ 2121 TZ1,n" z2121,M

—[|Tss = Tavnll = 2C5Ca(1+ Ca), | ITaun — T

v

which together with the convergence of (¢n, ¥;,) and Conditions (ii)-(iii) of Lemma [3.1]implies that

18] (T, T2,5 Taro — Taw)d — Dol

TZ1+ 2121

> cr— ||f f‘_l fzw -I F_l sz,nH

TzZ1+ 2121 TZ1,n" z2121,M

_wav - PJ:U,nH - 2O§OA(1 + CA)C;2||qu,n - fa:u”
for any n. Let n go to infinity, we get

||5||_1 ||(f:rz1fz_1£;1fz1v - f:m;)(s - f:pu“ > cr
for any § € BS. This shows that Condition (iii) of Lemma also holds for (¢, ¥). Hence the set
of (¢, ) which satisfies Conditions (i)-(iii) of Lemma is closed. By Conditions (i)-(ii) of the
Lemma, we know that this set is compact because it is also bounded. Let F* denote the normal
distribution with mean ¢ and variance-covariance matrix W. Then v, p+ is the image of (¢, V)
under a continuous mapping, which implies that {v, g+ : ' € F*} is compact. Therefore the set
{vsp+ : F* € F*} is compact and hence closed. This proves Assumption [D.1}(v).
Assumption [D.1](vi) is used to show that 6 € int(©) and 0} € int(O) for any F € F. By
fr = 0 and Condition (iv) of Lemma 3.1 we have 0 € int(©) and 67, € int(©).
Finally, Assumption [D.1}(vii) is the same as Condition (v) of Lemma |
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E Proof of Some Auxiliary Results in Sections 4] and [5] of CLS

Proof of Lemma (i) Let g2,;(w, ) denote the j-th (j = 1,...,7r2) component of ga(w,6).
By the mean value expansion,

92,5(w,01) — go.j(w,0) = go jo(w,01.2)(61 — 62) (E.1)

forany j =1,...,7r9, where 51,2 is some vector between 6 and 6. By 1) and the Cauchy-Schwarz
inequality

Ex [g2,(w, 01) — ga.,(w,00)]| < Er [gug ngw,e)u} 161 — 6] (E.2)
(S

for any j =1,...,72. By (E.2)), we deduce that

|Map(6)) — Mor(®)] < /FoEr [gug lgno (W, ew] 161 — 6
c
< Cua/r2 |61 — 62 (E.3)

for any F' € F, where Cyr1 = supper Er [supgeg [|92,0(W,0)||] and Cir1 < oo by Assumption
3.2\ (ii). This immediately proves the claim in (i). The claim in (ii) follows by similar argument
and its proof is omitted.

(iii) By the mean value expansion,

92,51 (w, 01)927J’2 (w’ 01) — 92,51 (wv 92)927j2 (wv 02)
= [92,j1,9(w,51,2)92,j2 (w,01,2) + g2, (wa§1,2)92,j2,0(w751,2)} (61 — 02) (E.4)

for any ji,j52 = 1,...,7r2, where 51,2 is some vector between 6; and 62 and may take different values
from the 6012 in 1) By 1) the triangle inequality and the Cauchy-Schwarz inequality

IEF (92,5, (W, 01)g2,5, (w, 01) — g2.j, (w, 02) g2 5, (w, 02)]|

oy [gug lo2(W,0)] 1\92,9<W,9>|@ 101 — )
S

IN

IN

Er [supng(W,e)rz T lgao(W, W)] 16, — 0o (£:5)
0cO

for any ji,jo = 1,...,7re, where the second inequality is by the simple inequality that |ab] <

(a® +b*)/2. By (E.5)

|Er [g92(W, 01)g2(W, 01)" — ga(W, 62)g2(W, 6a)'] |

roEp zug(ng(W O* + llg2.0(W, 0)|1%)| 1161 — 2]
(S

r2C 2 |01 — 02| (E.6)

IN

N
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for any F' € F, where Cjr2 = supper Ep |:Sup0€e(Hg2(VV, N>+ llg2.0(W, 9)\\2)} and Chr2 < oo by
Assumption (ii). Using the triangle inequality, and the inequality in (E.2)), we deduce that

|EF [927]'1 (’LU, 01)]EF [927]'2 (’LU, 01)] —Ep [92,j1 (wv 92)]EF [92,j2 (wv 92)”
[EF[g2.5: (w, 01) = 92,5, (w, 62)|Ep[ga 5, (w, 61)]|
+ ‘EF[92J1 (wv 92)]EF[92J2 (wv 92) — 92,5, (w7 91)”

25 [sup a(0V.0) ] Er [sup lozaW. 0] 101~ 2] (E.7)
6co 0O

IN

IN

for any jlaj? = ]-a <oy T2 By "
|Er[g2(w, 01)]Er[g2(w,01)] — Eplga(w, 02)]Er[ga(w, 02)']|| < r2Chrs (|61 — 62| (E.8)
for any F' € F, where Cyr3 = 2supper Er [supgee ||g2(W, 0)[]] EF [supgee [lg2,0(W, 8)]|]] and Chs 3 <
0o by Assumption [3.2} (ii).
By the definition of Q3 (), the triangle inequality and the results in (E.6|) and (E.8))

[1€202,7(01) — Q2,r(02)|| < r2(Crrz + O ) |61 — 02, (E.9)

which immediately proves the claim in (iii). m

Proof of Lemma By Lemma [B.1] (i),
92(0) = Ma,i, (0) + | 07" Y go(Wi, 0) = Mo, (0) | = Moy, (8) + 0p(1), (E.10)
i=1

uniformly over 6 € ©. As g1 (W, 6) is a subvector of go(W,0), by (E.10) and Assumption (ii),
91(0)'9,(0) = M, (0) M,r, (6) + 0p(1) (E.11)

uniformly over # € ©. By Assumptions (i)—(ii) and F, € F, My p,(0) M g, (0) is uniquely
minimized at 0, , which together with the uniform convergence in (E.11)) implies that

01 — 05, — 0. (E.12)

To show the consistency of (s, note that

Qo = n'> ga(Wi,01)ga(Wi, 01) — Go(01)72 (1)’

=1
= Ep,[92(W,01)g2(W,01)] — Mo, (61) Mo, (61) + 0,(1)
= QQ,Fn(el) -+ Op(l) = QZFn + Op(l), (E.13)

15



where the first equality is by the definition of Qy, the second equality holds by (E.10), Lemma
B.1](ii) and Assumption [3.2}(ii), the third equality follows from the definition of Q3 g, (f), and the
last equality holds by Lemma (iii) and (E.12)). This shows the consistency of Qy. m

In the rest of the Supplemental Appendix, we use C denote a generic fixed positive finite
constant whose value does not depend on F' or n.
Proof of Lemma As g,(0) is a subvector of gy(#), and € ,, is a submatrix of Qs ,, using

(E.10), (E.13) and Assumptions [3.2](ii)-(iii), we have
91(0) (1) '91(0) = M1F, (0)'Y; fp, Ma,, (0) + 0p(1), (E.14)
uniformly over ©. By Assumptions [3.2} (ii)-(iii),

which together with Assumptions (i)—(ii) implies that M g, (6) Ql_}:an, 7, (0) is uniquely min-
imized at O,. By the standard arguments for the consistency of an extremum estimator, we have

51 — an = Op(l). (E.lﬁ)
Using (E.16), Lemma [B.1}(iv) and Assumption [3.2](ii), we have

~

91(61) = 91(0r,) + [Ml,Fn (61) — Ml,Fn(an):| + 0,(n1/?)

= 51(05,) +[G1.r,(0,) + 0p(1)] (61 — 0r,) + 0p(n~"7%). (E.17)
Similarly,
n! 291,.9(”@,51) = G5, (61) + 0p(1) = G g, + 0p(1), (E.18)
i=1

where the first equality follows from Lemma [B.1] (iii) and the second equality follows by (E.16) and
Lemma (ii). From the first order condition for the GMM estimator 6, we deduce that

0= [nlzgl,a(Wual)] () "'g,(61)
=1
= (G115, 0k, +0p(1) [32(05,) + (G1,5, +0p(1) (@1 — 05, ) + 0p(n~1/2)] (E19)

where the second equality follows from Assumptions [3.2}(ii)-(iii), (E.13), (E.17) and (E.18). By
(E.19), Ep, [g1(W,0F,)] = 0 and Assumption

n'2(01 = 0r,) = (T1,k, + 0p(1) (91 (W, 05,)) + 0p(1). (E.20)
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By Assumptions [3.2{ and Lemma (v), 'y r, = O(1) and py,(g1(W,0F,)) = 0p(1), which together
with (E.20]) implies that

nY2(01 — 0r,) = T1,pin(91(W, 01,)) + Op(1),
where I' g, ptn (91(W, 0F,)) = Op(1). This finishes the proof. m
Proof of Lemma By , and Assumptions (ii)—(iii), we have
92(0) (Q2) 7'92(0) = Mo F, (0)'% 1, Mo, (9) + 0p(1) = QF,(9) + 0,(1) (E.21)
uniformly over ©. By Assumption (iii), QF, (0) is uniquely minimized at 67, . The consistency

result 52 —0F, —p 0 follows from standard arguments for the consistency of an extremum estimator.
|

Proof of Lemma By the definition of 52,

~

32(02) (22)7192(02) < G2(0r,) (22) 152 (0F, ), (E.22)

which implies that
192(02)1* < pmax (D2) ppoin(Q2) 15205, 17 - (E.23)

By and Assumptions [3.2] (ii)-(iii),
C™' < pmin(D2) < pmax(R) < C (E.24)
with probability approaching 1. By Lemma B.1}(i), My F, (0, ) = 0y, x1 and 05, = o(1),
192051 = 0p(1) (E.25)

which combined with (E.23)) and (E.24) implies that

[192(62)]] = 0p(1). (E.26)
Moreover, by ([E.26), Lemma [B.1](i) and the triangle inequality,
|| M2, 7, (02)[] < [[92(02) — M2, (02)[] + [[92(62)[| = 0p(1) (E.27)

which immediately implies that

1M1, (02)]| = 0p(1). (E.28)
The first result in Lemma [B.6 follows by (E.28) and the unique identification of 5, maintained by
Assumptions [3.1} (i)-(ii).

17



Using 6 — 0F, = op(1), Lemma (iv) and Assumption (ii)7 we have

?2(52) = g5(0F,) + [M2,Fn (52) - MQ,Fn(an)} + op(n_1/2)
92(05,) + [Gar, (05,) + 0p(1)] (B2 — O,) + 0p(n /). (E.29)

Similarly,

nt ZQz,e(Wz’ﬁz) = Go., (02) + 0p(1) = Go., (0r,) + 0p(1), (E.30)
i=1
where the first equality follows from Lemma, (iii) and the second equality follows by 0o —0 F, =

0p(1) and Lemma (ii). From the first order condition for the GMM estimator 0, we deduce
that

n !
0= n_lzgz,a(Wi,QQ)] (2)'g0(62)
i1

= (Gl %, + 0p(1)) [308,) + (G, +0,(1) (B2 — b5,) + 0p(n /)] (E31)

where the second equality follows from Assumptions [3.2](ii)-(iii), (E.13), (E.29) and (E.30). By
(E.31) and Assumption

n%(0 — 0r,) = (Tao,p, + 0p(1)) {Mn(gz(W 0p,)) +n*Ep, [g2(W, 9&)]} + op(1), (E.32)

—1
_ / —1 ! -1
where T, = = (Gl O3k Gop, ) Gl Ok,

Proof for the claim in equation (4.3)).
Consider the case n'/25p, — d € R”". By Lemma

nl/? [/H\(w) — an] — n1/2(/051 —0p) +w [n1/2(§2 —Op) — n1/2(’051 —0r)
=p I rZaor +wlor —T1F)Zapr, (E.33)

where Z; 9 r has the same distribution as Zs r + do. This implies that

~

0(0(w)) = n [nw) - an]'T [00() = 05| = Ar(w) (E.34)
where

Ar(w) = 200 p TV p YT pZaar + 2020 p(Tar — 17 p) YT p 242 F
w2}y p(Top — T3 p) Y (Cop — T} p) Za2.r.
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Now we consider E[Ar(w)] using the equalities in Lemma below. First,
E[Zz/i,ZFFTfFTFT,FZd,Z,F] =tr(YX p) (E.35)
because I'1 242 p =T'1 p 21 F and FLFE[ZLFZLF]F/LF = X by definition. Second,
E (25 r(Tor —T7 ) YT] pZa2,F]
= tr(YT} #E [Za2,rZ40 5] (T2 r —T1 p))

= tr(YT} f [dody + Qo,r] (P2 — T 1))

=tr(Y(Zor — Z1.p)), (E.36)
where the last equality holds by Lemma [B.9] Third,
E [242,p(T2r —T] p) T(Cor — T p)Z42,F]
= tr(T(To,r — 7 p) [dody + Qo,r] (Por — T3 1))
= daFé’FTFQ,FdO — tr(T(EQ’F — EI,F)) (E37)
by Lemma Combining the results in (E.35)-(E.37), we obtain

E[)\F(w)] = tI‘(TELF) — 2wtr (T (El,F — 227F>)
+w? [yl p YT pdo + tr (Y (S1,r — So.r))] - (E.38)

Note that d6F’2,FTF27FdO =dy(Typ — ]_—U{’F),T(FQ’F — I“LF)do because I'] pdy = 0g,. It is clear that
the optimal weight w}, in (4.3]) minimizes the quadratic function of w in (E.38)). m

Proof of Lemma By construction, I'f pdyo = 0g4,x1. For ease of notation, we write Qs p
and G F as

Q Qe G
QQVF = b b and GQVF = L . (E39)
Qe p Qe p rF
To prove part (b), we have
Qrp Qe
I pQ2 rl] p = [T'1,7, 04y xr+] ' T'1,7, 0dyxr]
Q1”*1,F Qr*,F
—1
— Ty p QT = ( Q,FQ;}GLF> =S5 (E.40)
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To show part (c), note that
—1
FT,FQQ,FFIQ,F = - [Fl,Fa Od@X’r*] QQ,FQE}?GQ,F (GIQ,FQQ_;"GQ,F)
-1 -1
= T1pGrr (GhrQkGor) = (GhrQ5kGar)  =ar (E.41)

because —I'1 pG1,F = Ig,xd,- Part (d) follows from the definition of I'; p. m

Proof of Lemma We first prove the consistency of @k, @k and f)k for k =1,2. By Lemma
we have 1 = 0, + 0,(1). Using the same arguments in showing 1j we can show that

Qo = Qo p, + 0p(1) = Qo 1+ 0,(1), (E.42)

where the second equality is by the assumption of the lemma that vp, — vp for some F' € F. As
Q) is a submatrix of {3, by 1) we have

Q) = Vg, +0,(1) = Q4 0,(1). (E.43)

By the consistency of 51 and the same arguments used to show 1) we have

nt Z@,a(Wu@l) = Gar, (0R,) + 0op(1) = Ga.r + 0p(1), (E.44)
i=1

where the second equality is by 1’ which is assumed in the lemma. As n=1 3" | 9179(W@-,§1) is
a submatrix of n=1 S\ gy o(W;, 01), by (E.44) we have

nY " g1e(Wi, 01) = Gup, (0r,) + 0p(1) = G1p + 0p(1). (E.45)
=1

From Assumption (IE.42|), (IE.43|), (IE.44|) and 1' we see that ﬁk and @k are consistent
estimators of Q  and Gy, p respectively for k = 1,2. By the Slutsky theorem and Assumption 3.2}

we know that Ek is a consistent estimator of ¥ p for k =1, 2.

In the case where n'/2§ F, — d € R the desired result follows from Lemma the consistency
of il,p and 227}7‘, and the CMT. In the case where |]n1/2<5pn\| — 00, Weo —p 0 because n1/2]|§2 —
§1|| —p 00 and

n2(@p0 — 05, ) = 020 — 05, ) + Beon*(05 — 61)

n'/2(6y — 6y)tr [T(fh - i\32)}

= n%(0, — Op,) + ] —p b (E.46)

TL(/Q\Q — 51)’T(§2 —@1) +tr [T(il — 22)
by Lemma [
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Proof of Lemma By definition,
€ pYép = 21 ;T p YT p20F = 21020 p YT pQ) 2 2: (E.A7)

where Z; ~ N(0,,, I, xr,). By Assumptions 3.2} (ii) and 3.2(iv), and the fact that T is a fixed

matrix,

Sup pmax(Q/ 711 pYT1rQ7) < C. (E.48)
FeF
By (E.43),
1/2 1/2
sup E[(€] pX61,r)7] < Sup 0 T, IO PO DBI(Z1 217 €30C (B.49)
S €

where the second inequality is by E[(Z]21)?] < 3r; +71(r1 — 1) = r} + 2r; which is implied by
the assumption that Z; is a ri-dimensional standard normal random vector. The first inequality
of this lemma follows as the upper bound in does not depend on F.
For any F' € F, define
Bp = (Top —T1 p) Y (T2 r — T p).

By the Cauchy-Schwarz inequality and the simple inequality |ab| < (a?+4b?)/2 (for any real numbers
a and b),

R . B
EpYepr < 2(Z0o p UV YT} p 240 p +@h 2o pBrZaar)
= 2(2] T p YT 215 + W32, pBrZagr) (E.50)

where the equality is by I'] zdo = 04,1 (which is proved in Lemma. By (E.50)) and the simple
inequality (a + b)? < 2(a® 4 b?) (for any real numbers a and b),

(EpYER)? < 8(21 o1 pYT1p 21 p)? + 8(@5 200 p BrZasr)*. (E.51)

By the first inequality of this lemma, we have sup,cy E[({LFT&,FV] < C. Hence by 1' to
show the second inequality of this lemma, it is sufficient to prove that

sup E[(@} 2y, 7BrZasr)’] < C. (E.52)
€

Recall that we have defined Ap =T (X1 — X2 ) in Theorem By the definition,

(tr(AF))*Z} o pBrZao,r
(242 rBrZa2r + tr(Ap))?
tr(Ar) 29 pBr2aar
2&727FBFZd,2,F +tr(Ap) Z&727FBFZ,1,2’F +tr(Ap)

—2 ~/
WFZd,Q,FBFZd,2,F =

= tr(Ap) (E.53)
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By Lemma 2.1 in Cheng and Liao (2015), tr(Ap) > 0 for any ' € F. This together with
Z! o pBrZq2r > 0 implies that

tr(Ar) <1and - CtarBrZaer (E.54)
20 pBrZasr +tr(Ap) — 2o pBrZagr +tr(AF)
By (E.54) and tr(Ap) > 0,
W2y pBrZagr < tr(Ap) = tr(YEy ) — tr(TEg p), (E.55)

where the equality is by Ap = Y(Z1 7 — X2 r). By (E.55) and the simple inequality (a + b)? <
2(a” + v?),
Bl 2 p B Zag,r)?) < 20X 0)? + 2(6r(Ts,5))°. (E.56)
By Assumptions [3.2](ii) and [3.2}(iv),
Pmin(G;c,FQl:}Gk,F) > pmin(QI;})pmin<G;¢,FGk7F> = Pmin(ij,FGk,F)/pmaX(Qk,F) > c! (E.57)
for any F' € F and for k =1,2. By (E.57)) and the definition of ¥ p (k = 1,2),

pmax(zka) = pr;iln( %,FQ];,}V‘G]%F) <C (E'58)

for any F € F. As T and X p are positive definite symmetric matrix, by the standard trace
inequality (tr(AB) < tr(A)pmax(B) for Hermitian matrices A > 0 and B > 0),

tr(Y3g, ) < tr(Y)pmax(Xk,r) < C for k=1,2, (E.59)

for any F' € F. Collecting the results in (E.56) and (E.59)), we immediately get (E.52)). This finishes
the proof. m

Proof of Lemma [B.16l First note that
min{z,(} —z = (( —x)[{z > (}. (E.60)
Hence we have

sup [E [min{€; YEr, ¢} — EpTEr ||
heH

sup E [|¢ - €5 YEr| {ERTER > ¢}

heH
Csup B [H{ERTER > (] + sup B [ TERH{CT > (EpTER) Y]
heH heH

IN

IN

IN

27! sup E [(€0ER)?] < 20¢7! (E.61)
heH
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where the first inequality is by the Jensen’s inequality, the second inequality is by the Markov

inequality, the third inequality is by the monotonicity of expectation and the last inequality is by

Lemma Using the same arguments, we can show that

sup |E [min{¢] p Y& p, ¢} — & pYé1r]| < 20¢7"
heH

(E.62)

Collecting the results in (E.61)) and (E.62)), and applying the triangle inequality, we deduce that

sup [lgc(h) — g(h)]] < 4CCT.

The claimed result of this lemma follows by (E.63) as C' is a fixed constant.
By the triangle inequality, the Jensen’s inequality and Lemma

sup lg(h)] = sup [BEYEr — & TE1r])
heH

< sup E[gFrgF] + Sup E[§) pYé,r] < C
heH

which finishes the proof of the lemma. m

Proof of Lemma By definition

E (|00 — 6112 —E [|16: - 61?]
204 . 1 _ 02 —_pY _
= |Gt (v 7] s o 00 1

Let

(X —0)(Y - X)
[2ka2 T (Y - X)(Y — X)

JlEE :|andJ2:]E

|:(2k‘02 + (Y - X)(Y — X))?

(Y - X)(Y - X) }.

Let X* =07 1(X —0), Y* =

1Y —0) and Z* = (X*,Y*)". Then we can write

"Y — X)
= E
5 [% )WXJ
B E X*/ X*) B E Z*/Dlz*
- 2k + (Y X*)(Y* = X*) - 2k + Z* Do Z*
where
—I; 0 I —1
D, = bk and Dy = F F
I, 0 —I Iy
Note that

E [D12*Z"D}]| = D,
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by definition and the Gaussian assumption. Let n(x) = z/(2'Dox + 2k). Its derivative is

on(x) 1 2 ,
= I, — D . E.69
oz 2' Doz + 2k " (2! Doz + 2k)2 20 ( )

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1981),

Ji = E(n(Z*)D1Z*) =E [tr <an(8Z*)/Dl>}

_F tI‘(Dl) tr DQZ*Z*,_Dl)
2k + Z¥' Dy Z* (2k + Z*' Dy Z*)?
[ - Z¥ DDy Z*
S R S 10>
| 2k + Z*' Dy Z* | (2k + Z*' Dy Z*)?
[ —k | Z¥ Do Z*
= E|———|+2E
_2]€+Z*/DQZ*_ + |: 2k+Z*/D2Z*)2:|
u ok .
= FBE|— E.
| 2k + Z*' Dy Z* | TE |:(2k+Z*/DQZ*)2:| (E.70)
where the fourth equality follows from
=1 I
DDy = = —Ds. (E.71)
Iy —Iy
Moreover,
20ty - X)(Y - X
K20, = E k2o ( )'( )
(2ko? + (Y — X)(Y — X))?
]{72 2 k3 2
= E|l———+——| —E E.72
[Zk—i-Z*’DgZ*] [(2k+Z*’D2Z*)Q] ( )
which together with (E.70)) implies that
E 1180 - 61| — E [118: - 61?]
— 2 3 2
_ 2R 2k(2—k)+ k7| o2 2k° + 8k
2k + Z¥ Dy Z* (2k + Z*' Do Z*)?
k(4 —k) 2k2(k + 4)
2 2
E|l———F—| —0°E . E.
7 [% + Z*’DQZ*} 7 [(% + 2Dy Z%)?2 (E-73)

The asserted result follows from the fact that D is positive semi-definite and the second term on
the right-hand side of the second equality of (E.73)) is always negative. m
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F Asymptotic Risk of the Pre-test GMM Estimator

In this section, we establish similar results in Theorem for the pre-test GMM estimator
based on the J-test statistic. The pre-test estimator is defined as

/épre = ]-{Jn > Ca}/él + 1{Jn < Ca}b\Za (Fl)

where J, = ng, (/9\2)’(5\22)_1% (52) and ¢, is the 100(1 — a)th quantile of the chi-squared distribution
with degree of freedom ro — dy.

Theorem F.1 Suppose that Assumptions hold. The bounds of the asymptotic risk differ-
ence satisfy

AsyRD By, B1) = min { it [0, (1)]0}.

Asy (Do, Br) = ma {sup l9p(h)] ,o} ,
heH

where g,(h) = IE[E;FTE]J’F — & p Y81 F] and & r is defined in below.

Proof of Theorem The two equalities and inequalities in the theorem follow by the same
arguments in the proof of Theorem with Lemma for 6., replaced by Lemma for Opre,
Lemma replaced by Lemma [F.2] and Lemma [B.16 replaced by Lemma [F.3] Its proof is hence
omitted. m

By Definition,

E, rYE, 5] = ElZ)o ;1 p YT pZa2r) + 2E@p r 25 (Do — T p) YT} pZa2 r)
+E[w§,FZ&,2,F(F2,F — 5 )T (Top —T7 ) Za2.F)
= tr(Y¥y,r) 4+ 2EEp,rZy 9 p(Tor — I7 £) YT} £ 242.F)
+E[@; 20 p(Cor = T5 p)' T (Cor — T 7) Zao,r] (F.2)

The asymptotic risk of the pre-test estimator gp in Figure 2 is simulated based on the formula in

).
The following lemma provides the asymptotic distribution of the pre-test GMM estimator under
various sequence of DGPs, which is used to show Theorem [F.1]

Lemma F.1 Suppose that Assumptions hold. Consider {F,} such that vp, — v for some
FeF.
(a) If n'/26p, — d for some d € R™", then

Jn =D Jo(har) = (227 + do) Lp(Z2 p + do),
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~1
where Ly = 92_11[7 — QQ_}GZF (Gé,Fﬁi%GQ,F) G’QFQZ_}, and dy = (01xr,,d"), and
" Opre — 0r,) b & p = (1 = Tpp)€1p + Tppbo,r (F.3)

where Wy, p = 1{Joo(ha,r) < ca}.

(b) If ||n*/26k,|| — oo, then @y —p 0 and n1/2(§pre —0r,) =D &,F-
Proof of Lemma (a) By Assumption [3.2}(ii), (E-29) and (E.32),

G2(02) = GolOr,) + [Gor, (0,) + 0p(1)] (B2 — 0,) + 0,(n~/?)
92(05,) + G2,5, T2, 1, G2 (0F,) + 0p(n/?)
= (In, + G2, T2,,)92(08,) + 0p(n~"7?), (F.4)

which implies that
Jn = 1Ggs(0F,) LF,g2(0r,) + 0p(1) (F.5)

where Ly, = 92_}% - 92_,11%G2,Fn (G/Q Fnﬂg,}?nGZFn)_lGé,FnQQ_}n'
By n1/25Fn — d and Lemma (V)v

n X0, 125, (0F,) = Q5 1 in(g2(W, 0F,)) + Q5 20205, —p 2405 2 do (F.6)
where df, = (01x,,,d') and Z is a 3 x 1 standard normal random vector. By vp, — vp, (F.5), (F.6)

and the CMT,
Jn —D (22,F + dO),LF(ZQ’F + do). (F7)

Recall that Lemma[£.1] (a) implies that
n'/2(01 — 0p,) —p &.p and 0203 — 05,) —p &, (F.8)
which together with (F.7)) and the CMT implies that

n'2Ope —0p,) = 1{Jy>catn?(0) —0p,) + 1{J, < ca}n'/?(02 — 0p,)

= (1 =Wpr)&1r + Wprér, (F.9)
which finishes the proof of the claim in (a).

(b) There are two cases to consider: (i) ||6g, || > C~Y; and (ii) ||6g, || — 0. We first consider
case (i). Asg;(02) is a subvector of gy (62),

Jn = 155(02) (Q2)'G,(02)

2). (F.10)



By (B.22)) and (B.23]) in the Appendix of CLS

H@Q —0p, || > C~! with probability approaching 1, (F.11)

which together with Assumption [3.1](ii) and Lemma [B.1] (i) implies that
91(02) = Mip(B2) + 0p(1) > C (F.12)
with probability approaching 1. By (E.42) and Assumption (ii), we have

pmax(ﬁg) < C with probability approaching 1. (F.13)

Combining the results in (F.10), (F.12) and (F.13)), we deduce that

Jn > nC~! with probability approaching 1, (F.14)
which immediately implies that
Gpp=1{Jn <ca} =0 (F.15)

with probability approaching 1, as ¢, is a fixed constant. By Lemma (b), (F.15) and the
assumption that © is bounded, we have

n'2Ope —0p,) = HJp>ca}n?01 — 0p,) + 1{Jn < ca}n'/?(05 — 0p,)
= 1{J > catn'?(0, — 05,) + 0,(1) =p &1p (F.16)

where the convergence in distribution is by the CMT.
We next consider the case that ||6x, || — 0 and ||n!/265, || — oc. In the proof of Lemma we
have shown that 63 — 0F, = 0p(1), and that lj and 1} hold in this case. It is clear that

07‘1><1

n'%g5(0r,) = 1n(92(W, 0r,) + (F.17)
nl/Qé‘Fn
which implies that
n§2<9Fn),Lan2(6Fn) - [/’Ln(g2(W7 HF’VL)]/LF’IL [,U/n(QQ(W an)]
+2 ( Orxr,  n/200 )LFn [1n(g2(W, 0F, )]
/
+( O1><7‘1 n1/2(5an )LFn ( Ol><r1 n1/25},n ) . (F18)
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By Lemma [B.1](v) and Assumptions [3.2} (ii)-(iii),
[t (92(W, 0, )" L, [11n (g2 (W, 0F, )] = Op(1). (F.19)
In order to bound the third term in (F.18) from below, we shall show that for any dy = (01xs,,d’)’

for d € R™ with ||d|| =1,
dyLg,dy > C™1 (F.20)

By definition, Lg, has dyp many zero eigenvalues and ry — dg many of eigenvalues of ones. The
matrix Ga f, contains the dg many eigenvectors of the zero eigenvalues of L, , because

LFnGan = Opyxq, and pmin(Gé,FnGZFn) > c. (F.?l)

Let G| F, denote the orthogonal complement of G r, with G'L, r,G1F, = Ir,—d,- Then we have

G G 0
1,F, o+ 1,L,F, 4y — rx1 (F.22)

G+ F, Gy 1R, d

)

for some constant vectors a; € R% and ay € R™27%. As pmin(G’L FnGl, F) > C~! by Assumption
[3:2] we have
ay = —(G' p,G1r,) " G g, G1,1 R, 02 (F.23)

and
(Gre 15y — Gro 5, (G g, Grp,) P GhLE, G, L, a2 = d. (F.24)

Let Hp, = Gy 15, — Gr 5, (G, G11) " G, G1LF, - BY pmin(GY p, G1p,) 2 CF, Assump-
tions (ii), (F.24) and the Cauchy-Schwarz inequality,

ld|* = ayHp, H, as < C |laz|® (F.25)
which together with ||d|| = 1 implies that
|ag]|* > C~. (F.26)
Using , and , we deduce that

doLr,do = (Gor,a1+ Gl p,a2) LE,(Gor,a1 + G F,a2)
= ayG'| g Lp,G1 F,a0 = az||* > C71 (F.27)

which proves (F.20). By (F.20)),
!/
(Oere 02265 )L, ((Orer, 02265, ) = C'nllon, | (F.28)
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which together with n||dz, ||> — oo implies that

( O1xry n1/2(5%n )LFn ( O1xr, n1/26}$n )l — 00. (F.29)

Collecting the results in (F.18]), (F.19) and (F.19]),and by the Cauchy-Schwarz inequality, we deduce
that ng,(0r,) Lr,G2(0F,) —p 00, which together with (F.5)) implies that

In —p 0. (F.30)
Using the same arguments in showing (F.16)), we deduce that
22 Opre — OF,) =D E1,p- (F.31)

This finishes the proof. m

Lemma F.2 Under Assumptions|3.4, we have

sup E[(€,, pYE, )% < C. (F.32)
heH

Proof of Lemma By the same arguments in showing (E.51)), we have
(g;,FTEp,F)Q < 8(Z] pI) pXT1p 21 p)° + 8(@), p 20 pBrZaa,r)’. (F.33)

By the first inequality in 1) in the Appendix of CLS, we have sup;cy E[(fi’FT&’F}Q] < C.
Hence by (F.33)), to show the inequality in (F.32]), it is sufficient to prove that

sup B[(@} pZg0 pBrZas,r)?] < C. (F.34)
heH
By definition,
Wp,F = I{Joo(hd,p) < Ca} = I{ZélQ,FLFZd,Q,F < Ca}. (F.35)

By the simple inequality (a + b)? > a?/2 — 2b2,
(2 +do) Lp(z+do) > dyLpdy/2 — 22’ Lz (F.36)
for any z € R, which together with Assumption and implies that
(z+ do) Lr(z + do) > ||d||* /C = 22'Lpz > ||d||* /O = C ||| (F.37)
Under Assumption |Br|| < C for any F' € F which together with the simple inequality
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(a+b)? < 2(a® + b*) implies that
(2 +do)' Br(z + do) < 2C(|ld||* + ||=[|*) (F.38)
for any z € R. Collecting the results in (F.36)) and (F.38), we get

I{(z+do) Lr(z +do) < ca}2'Bpz
2CI{[[d]|* < caC + C?||2|*}(IdII* + ||2II)
20(caC + (C*+1) ||2]%) (F.39)

which implies that

sup E[(@; p 2} pBrZa2,r)’]

heH
< 4C%E[(caC + (C? +1)Z pZo 1))
< Clea +E[(25 p201)7)) = Cla + 3p2ax(Q)12). (F.40)

This finishes the proof. m

Lemma F.3 Let g,¢c(h) = E [min{E;FTEp’F, C} —min{&; Y& p, (Y| Under Assumptions

we have

lim sup [|gpc(h) — gp(h)[] =0 (F.41)
(=0 he H

where supye [lg5()] < C.
Proof of Lemma The proof follows the same arguments of the proof of Lemma with
the second inequality in (B.58)) in the Appendix of CLS replaced by (F.32). m

G Simulation Results on Truncated Risk for Section
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Figure G.1: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated
MSE is ¢ = 1000.
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Figure G.2: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated
MSE is ¢ = 1000.
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Figure G.3: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S3
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ¢ = 1000.
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Figure G.4: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S1
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ¢ = 1000.
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Figure G.5: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S2
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ¢ = 1000.
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Figure G.6: Finite Sample Truncated MSEs of the Pre-test and Averaging GMM Estimators in S3

1 1I\Ilin of TMSEs (n = 1000)

- Min of TMSEs (n = 50) 1 1Min of TMSEs (n = 250)
' ' - - - Pre-test(0.01)
PRERY Emp-opt
S \ 1.05 1.05 Rest-JS
14t - N
N~ Soo N /"
~ - 1 P e 1 pea
1 = /
—— " | 0% 095¢
0.9 0.9 0.9
0 0.5 1 0 0.5 1 0 05 1
o Co o
Max of TMSEs (n = 50) Max of TMSEs (n = 250) Max of TMSEs (n = 1000)
o = = = Pre-test(0.01)
14 )’ oo 14 ,"‘ 14 : Emp-opt
’ ~< IRRA) " Rest-JS
’ N PR "
12 1 12t \ 12H
L/ 1 N '
1 N : '
1 1% ~ 1>
0.8 0.8 0.8
0 0.5 1 0 0.5 1 0 0.5 1
o Co [«
Weight (n = 50) Weight (n = 250) Weight (n = 1000)
—————- 0.95-quantile
median
—————- 0.05-quantile
0.5 1
Co

Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated

MSE is ¢ = 1000.
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Table G.1: The Lower and Upper Bounds of the Finite Sample Relative Truncated MSEs

Design S1 Design S2 Design S3

Lower Upper Lower Upper Lower Upper

Ooe 0.5732  0.7968 0.6113 0.8980 0.9694 1.0012

n = 50 a]s 0.9755 0.9959 0.9776  0.9978 0.9995 1.0003
@Wt 0.4424 0.9574 0.5057 1.0973 1.0324 1.4283

Ooe 0.5325 0.8789 0.5513 0.9781 0.9733 1.0040

n = 100 /Q\Js 0.9208 0.9911 0.9202 0.9956 0.9996 1.0002
gpret 0.3586 1.1940 0.3937 1.3539 0.9990 1.4709

Boe 0.5316  0.9587 0.5384 1.0118 0.9720 1.0079

n = 250 an 0.7591 0.9787 0.7506 0.9923 0.9999 1.0000
5pret 0.3360 1.5106 0.3598 1.6392 0.9753 1.4394

Ooe 0.5331 0.9846 0.5355 1.0112 0.9700 1.0096

n = 500 /éJS 0.6443 0.9823 0.6359 0.9953 1.0000 1.0000
Epm 0.3368 1.6196 0.3495 1.6937 0.9562 1.4236

Ooe 0.5335 0.9934 0.5341 1.0082 0.9681 1.0119

n = 1,000 /G\JS 0.5803 0.9890 0.5737 0.9978 1.0000 1.0000
/épret 0.3395 1.6433 0.3451 1.6864 0.9473  1.3953

Note: 1. 85 and épmg denote the GMM averaging estimator based on the weight in and the pre-testing GMM
estimator based on J-test with nominal size 0.01 respectively; 2. the " Upper” and ” Lower” refer to the upper bound
and the lower bound of the finite sample relative MSEs among all DGPs considered in the simulation design given
the sample size.
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H Simulation under the Student-t Distribution

In this subsection, we report the simulation results on the finite sample properties of the pre-test
and averaging GMM estimators, when the residual term « in the structure equation of CLS
is a student-t random variable with degree of freedom 2. The simulation design is the same as the
one in Subsection except that we generate the structural error v in the following way

u*

((nf +n3)/2)4/2

where 7; and 172 are independent standard normal random variables which are independent with
respect to (Z1, ..., Z18,€1, - - - , €6, u*)m We call this simulation design as S4.

The finite sample untruncated and truncated MSEs are reported in Figures [H.] - It is
interesting to see that in this simulation design, both the pre-test GMM estimator and the averaging
GMM estimator have smaller finite sample MSEs than the conservative GMM estimator. The main
reason for this phenomenon is that the residual term u in the structural equation is Student-t with
degree of freedom 2, which implies that u has infinite variance and hence the conservative GMM
estimator has large variance in finite samples. When the extra IVs Z;f (j=1,...,6) are used in the
GMM estimation, the finite sample variances of the GMM estimator is greatly reduced. Therefore,
the finite samples biases of the pre-testing GMM estimator and the averaging GMM estimator
introduced by the extra IVs Z7 (j = 1,...,6) are more than offset by the reduced finite sample
variances, which enables both estimator have smaller finite sample MSEs.

30In this design, the structural error u does not enter the possibly invalid IVs (6.4). Therefore the IVs and the
regressors are normally distributed. We thank an anonymous who suggested this simulation design.
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Figure H.1: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure H.2: Finite Sample MSEs of the Pre-test and Averaging GMM Estimators in S4
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refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

Co

15
1
[ — p—— e\
0.5
0 — N
0 0.5 1
Co
Max of MSEs (n = 250)
1.5
1
Mo A~ AAAN A~
0.5 e
N el
0 0.5 1

Min of MSEs (n = 250)

Co

estimators based on the restricted James-Stein weight, respectively.
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Figure H.3: Finite Sample Biases and Variances in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively.
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Figure H.4: Finite Sample TMSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated MSE
is ¢ = 1000.
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Figure H.5: Finite Sample TMSEs of the Pre-test and Averaging GMM Estimators in S4
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”

refers to the averaging GMM estimator based on the empirical optimal weight;

“Rest-JS” refers to the averaging

estimators based on the restricted James-Stein weight, respectively. The truncation parameter for the truncated
MSE is ¢ = 1000.
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