
Econometric Theory, 0, 2020, 1–30.
doi:10.1017/S0266466620000547

INSTRUMENTAL VARIABLE

ESTIMATION OF STRUCTURAL VAR

MODELS ROBUST TO POSSIBLE

NONSTATIONARITY*

XU CHENG

Department of Economics, University of Pennsylvania

XU HAN

Department of Economics and Finance, City University of Hong Kong

ATSUSHI INOUE

Department of Economics, Vanderbilt University

This paper considers the estimation of dynamic causal effects using a proxy structural

vector-autoregressive model with possibly nonstationary regressors. We provide

general conditions under which the asymptotic normal approximation remains valid.

In this case, the asymptotic variance depends on the persistence property of each

series. We further provide a consistent asymptotic covariance matrix estimator that

requires neither knowledge of the presistence properties of the variables nor pretests

for nonstationarity. The proposed consistent covariance matrix estimator is robust

and is easy to implement in practice. When all regressors are indeed stationary, the

method becomes the same as the standard procedure.

1. INTRODUCTION

To study the dynamic causal effects of macroeconomic shocks, it has become

increasingly popular to use external instruments (proxies) for the identification

and estimation of structural vector-autoregressive (SVAR) models, following

Stock and Watson (2012) and Mertens and Ravn (2013). These instruments are

constructed with information outside of the system, and their correlation with the

structural shocks is used for identification of dynamic casual effects—impulse

response functions (IRFs). Different from identification restrictions within the

SVAR system, these external instruments can be viewed as external sources of

variation that provide quasi experiments to identify causal effects (Stock and

Watson, 2018). These analytical frameworks typically assume that the external
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instruments, the structural shocks, and all the variables in the SVAR system are

stationary and conduct inference with stationary time series.

This paper is concerned with possible nonstationarity and its impact on the

external-instrument estimation of SVAR models (SVAR-IV), also known as proxy

SVARmodels. For example, Gertler and Karadi (2015) use the SVAR-IV approach

to estimate the dynamic causal effects of a monetary policy, where the base-

line SVAR model includes log industrial production, log consumer price index,

1-year government bond rate, and a credit spread. The first two variables are often

regarded as nonstationary. Vector autoregressions (VARs) with nonstationary pro-

cesses typically involve nonstandard inference (Park and Phillips, 1989a, 1989b;

Sims, Stock, and Watson, 1990; Toda and Phillips, 1993). This leads us to the

following questions. Is the standard inference still valid if we conduct the SVAR-

IV estimation directly with these possibly nonstationary time series as in Gertler

and Karadi (2015)? Do we need to first transform them to stationary time series

before the analysis?What if some variables are cointegrated with an unknown rank

and some variables are highly persistent but do not have exactly unit roots?

To answer the above questions, we provide several robust results for SVAR-IV

estimation with possible nonstationary variables in the VAR system. The system

may contain unit roots, local-to-unity processes, cointegration, or only stationary

variables (Phillips, 1987, 1988; Engle and Granger, 1987). These robust results

do not require knowing the persistence property of any series or knowing the

cointegrating relationship. Therefore, we avoid the pretest or postmodel-selection

bias (Leeb and Pötscher, 2005). Such bias could be particularly prominent in the

presence of local-to-unity variables (Elliott, 1998).

First, we show that the SVAR-IV estimator of the IRFs has an asymptotic normal

distribution as long as the system contains some stationary variables or cointegra-

tion, or its lag order is larger than one. The asymptotic variance, however, depends

on the persistence property, including the classification of stationary variables

and the cointegration relationship among nonstationary variables. Second, we

provide a consistent estimator of the asymptotic covariance matrix, without using

knowledge of the persistence property. Thus, the t andWald statistics based on this

consistent covariance estimator have standard asymptotic distributions. Third, we

show that the optimal weighting matrix under overidentification depends on the

persistence property. Nevertheless, we again provide a consistent estimator of the

optimal weighting matrix without using knowledge of the persistence property.We

maintain the assumption that the external instruments and the structural shocks are

stationary, which is well justified in relevant applications. We also assume that the

instruments are strong, and we do not allow for weak instruments as in Montiel

Olea, Stock, and Watson (2018).

The robust results in this paper stem from the fact that coefficient estimates of the

nonstationary regressors converge at a faster rate and its influence is asymptotically

negligible when compared to that from the stationary regressors. This phenomenon

has been studied and utilized extensively in the nonstationary VAR literature. Sims

et al. (1990) show that a normal approximation is valid in a VAR model with unit
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roots as long as the parameter of interest can be written as coefficients of stationary

regressors. Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) propose

to do standard inference in nonstationary VAR by adding extra lag variables. For

autoregressions with a unit root, Inoue and Kilian (2002) establish the validity

of the residual-based bootstrap by exploring the asymptotic normality of the least-

squares estimator of the slope parameter. Inoue andKilian (2019) consider uniform

inference on IRFs of autoregressive processes.

Our work contributes to the nonstationary VAR literature by obtaining the

asymptotic normality of structural IRFs estimated using external instruments.

The SVAR-IV estimation has a generated-regressor issue, where the unobserved

errors are replaced by the estimation residuals based on possibly nonstationary

regressors. We show that the generated-regressor issue has an impact on the

asymptotic distribution and leads to an optimal weighting matrix different from the

standard two-stage least-squares (2SLS) weighting matrix even in the conditional

homoskedastic context.

The present paper is also related to the literature about inference on structural

IRFs. Confidence bands for IRFs with exact unit roots and local-to-unity processes

are considered by Phillips (1998), Wright (2000), Gospodinov (2004), Pesavento

and Rossi (2007), and Mikusheva (2012), among others. Unlike the nonstandard

inference in these papers, inference based on the asymptotic normality is valid in

the present context. Although we focus on IRFs for a single horizon, our results

provide a basis for joint inference over multiple horizons considered by Inoue and

Kilian (2016) and Montiel Olea and Plagborg-Møller (2019).

The rest of the paper is organized as follows. Section 2 presents the structural

VAR model and the estimation procedure. Section 3 studies the asymptotic

distribution of the contemporaneous and dynamic IRFs based on the SVAR-IV

estimation. Section 4 provides a robust consistent covariance matrix estimator

without requiring knowledge of persistence properties. Section 5 proposes an

optimal weighting matrix and provides asymptotic results when the optimal

weighting matrix is used. Section 6 presents Monte Carlo simulation results, and

Section 7 concludes.

2. STRUCTURAL VAR AND ESTIMATION

In this section, we provide the structural VARmodel and the estimation procedure.

The estimation procedure is the same as the standard practice, where all variables

are assumed to be stationary. Let {Yt : t = −p+ 1, . . . ,T} be an r× 1 vector of

observed variables that follows a structural VAR model

Yt = d+
p∑

j=1

8jYt−j+ηt and ηt = Hεt, (2.1)

where8j is an r×r coefficient matrix for j= 1, . . . ,p, ηt is the reduced-form error,

εt = (ε1t, . . . ,εrt)
′ is the vector of structural shocks, and H is an r× r invertible
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matrix.1 Suppose the structural shock of interest is ειt for some ι = 1, . . . ,r. To

study the IRFs with respect to ειt, we study the estimation of the ιth column of H,

denoted by h = (h1, . . . ,hr)
′, with external instruments {Zt = (z1t, . . . ,zkt)

′ ∈ Rk :

t= 1, . . . ,T}. These external instruments are assumed to satisfy (i) E(Ztειt) = α 6=
0k and (ii) E(Ztεjt) = 0k for j 6= ι. Condition (i) ensures that the instruments are

relevant, and condition (ii) requires that the instruments are orthogonal to other

structural shocks. Under these conditions, the instruments satisfy

E(ηtZ
′
t) = E(HεtZ

′
t) = hα′ ∈ Rr×k. (2.2)

We need at least one instrument. The system is overidentified if k > 1.

We allow the series in Yt to display different degrees of persistence. From a

practical perspective, one does not have to know the persistence level of any series

to conduct the estimation and inference procedure proposed in this paper. For our

theoretical analysis, we write Yt = [Y ′
1t, Y

′
2t, Y

′
3t]

′ and assume that Y1t and Y2t
follow a local-to-unity vector process and may be cointegrated whereas Y3t follows

a stationary vector process, as specified in (3.1) below. Further assumptions on the

form of nonstationarity and other regularity conditions for the model are also given

in Section 3. The literature typically assumes that the shock of interest is the first

shock ε1t without loss of generality in a stationary VAR system. Here, we denote

the shock of interest by ειt to make it clear that it could be the shock associated

with either the nonstationary or the stationary series.

Given that α is unknown and α 6= 0, the moment conditions in (2.2) only

identify h up to a scale constant. We normalize the ιth element of h to be 1,

i.e., hι = 1. This normalization pins down the scale of the IRFs by standardizing

the contemporaneous effect of the target shock (e.g., an oil price shock) on the

corresponding variable (e.g., the oil price). In the existing literature, ε1t is often

assumed to be the structural shock of interest, and the first element of h is

normalized to be 1.

Removing the constant 1 from h, we define the parameter

θ = [h1, . . . ,hι−1,hι+1, . . . ,hr]
′ ∈ Rr−1. (2.3)

Using hι = 1, (2.2) is equivalent to the moment conditions

E[(η−ι,t − θηι,t)⊗ Zt] = 0 ∈ R(r−1)k, (2.4)

where ηι,t is the ιth element of ηt and η−ι,t = [η1,t, . . . ,ηι−1,t,ηι+1,t, . . . ,ηr,t]
′ is the

rest of ηt with ηι,t removed. Below we study the estimation of θ based on the

moments in (2.4).

Because ηt is unobserved, we estimate the VAR model in (2.1) by OLS and use

the residual η̃t = (̃η1t, . . . ,η̃rt)
′ to construct the sample moment conditions. Let η̃−ι,t

and η̃−ι,t denote the counterparts of η−ι,t and ηι,t, respectively. We estimate θ by

1We focus on the model without a linear time trend. The presence of a linear time trend does not change our results

qualitatively, however.
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minimizing the generalized method of moments (GMM) criterion

QT(θ) = gT(θ)′WTgT(θ), where

gT(θ) =
1

T

T∑

t=1

[(̃η−ι,t − θη̃ι,t)⊗ Zt] (2.5)

andWT is the weighting matrix. The first order condition gives the GMM estimator

θ̂ =
(
ATWTA

′
T

)−1
ATWTGT, where

AT = Ir−1 ⊗
(
T−1

T∑

t=1

η̃ι,tZ
′
t

)
and GT = T−1

T∑

t=1

(̃η−ι,t ⊗ Zt). (2.6)

If WT = Ir−1 ⊗ (T−1
∑T

t=1ZtZ
′
t)

−1, θ̂ is the equation-by-equation 2SLS estimator.

We provide the optimal weighting matrix in Section 5 below.

3. ASYMPTOTIC RESULTS

We assume that Yt in the structural VAR model (2.1) is generated by the following

reduced-form representation. The structural model defines the IRFs, whereas the

reduced-form representation makes it clear that the system can allow for both

(near) unit roots and cointegration. We also impose further assumptions on the

reduced-form model. The reduced-form representation is

Yt = c+Y∗
t ,

Y∗
1t =

(
Ir1 +

1

T
C

)
Y∗
1,t−1 +u1t ∈ Rr1,

Y∗
2t = QY∗

1t +u2t ∈ Rr2,

Y∗
3t = u3t ∈ Rr3,

9(L)ut = et, (3.1)

where c = [c′1,c
′
2,c

′
3]

′, Yt = [Y ′
t1,Y

′
t2,Y

′
t3]

′, Y∗
t = [Y∗′

1t,Y
∗′
2t,Y

∗′
3t ]

′, C is an r1 × r1
diagonal matrix with nonpositive diagonal elements,Q is an r2×r1 matrix,9(L) =
Ir −91L−·· ·−9p−1L

p−1 is a (p−1)th-order lag polynomial, ut = [u′
1t,u

′
2t,u

′
3t]

′,

and et = [e′1t,e
′
2t,e

′
3t]

′.2,3

2In practice, variables in the structural model could be a rotation of those in the reduced-form model (3.1), because

(3.1) is just one way to specify a cointegrating relationship. In addition, we could include additional stationary

variables Y∗
3,t−1 and Y

∗
2,t−1 −QY∗

1,t−1 in (3.1). A rotation of the cointegrating system and adding stationary variables

in (3.1) do not change results in the paper. The reduced-form model (3.1) is sufficient to show that the effects of unit

roots and cointegration are both negligible in the presence of any stationary components.

3We assume that r2 = 0 if r1 = 0 and that Q does not have a row of zeros. If r1 = 0 and r2 = 0, we specify 9(L) as

a pth-order polynomial.
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We also assume that Zt follows a linear process

Zt = µZ +4(L)vt, where 4(L) =
∞∑

j=0

4jL
j. (3.2)

Assumption LP.

(i) The roots of 9(L) are all outside the unit circle.

(ii) 40 = Ik, 4(1) has full rank,
∑∞

j=0 j
2||4j||2 < ∞.

(iii) et = [e′t,v
′
t]

′ is an i.i.d. (r+ k) × 1 vector with mean zero, E(ete
′
t) = 6 is

positive definite, fourth moments of et are finite, and et is homoskedastic

conditional on vt.

We show in the Appendix that the model in (3.1) can be rearranged and written

in an error correction form:

1Yt = A1(Y1,t−1 − c1)+A2 +A3Dt +ηt, (3.3)

where Y1,t−1 is the nonstationary lag,

Dt = [(Y2,t−1 − c2 −Q(Y1,t−1 − c1))
′,(Y3,t−1 − c3)

′,1Y ′
t−1, . . . ,1Y

′
t−p+1]

′ ∈ Rrp−r1

(3.4)

is a collection of all zero-mean stationary lags, A1,A2, and A3 are coefficient

matrices, and

ηt = Pet for P=



Ir1 0 0

Q Ir2 0

0 0 Ir3


 . (3.5)

Let

xt = [(Y1,t−1 − c1)
′,1,D′

t]
′ (3.6)

denote the regressors in (3.3). An intercept is included in (3.3) so that the regressors

in (3.3) and the regressors in (2.1) have a one-to-one transformation, given in

(3.15) below. This equivalent representation implies that the least-squares residual

η̃t obtained from the VARmodel in (2.1) is numerically equivalent to that obtained

from regressing 1Yt on xt. The model in (2.1) is used for practical estimation to

obtain the residual, whereas the model in (3.3) is used for theoretical analysis of

the estimator.

Note that (3.5) shows the link between the reduced-form error ηt in (2.1) and the

innovation et in (3.1). The following assumption formulates the link between the

structural shock εt and reduced-form error ηt and provides the condition to ensure

the instrument validity and instrument relevance. These conditions are also dis-

cussed in Section 2 when the instruments are introduced for the estimationmethod.

Assumption IV. The structural shock εt is linked to the reducedform error ηt =
Pet by the linear transformation

ηt = Hεt
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for some nonsingular matrix H and

E(Ztε
′
t) = [0k×(ι−1),α,0k×(r−ι)],

where α 6= 0k.

Assumption LP and εt = H−1Pet imply that E(εt|Zt−1,Zt−2, . . .) = 0, i.e., the

structural shock is uncorrelated with the lags of instruments. This implication

is consistent with the structural VAR literature, where the structural shocks are

unpredictable conditional on the historical information. In addition, we allow Zt to

be correlated with lags of εt. By the linear process for Zt and Assumption LP, we

can obtain

E[Ztε
′
t−s] = E[(µZ +4(L)vt)ε

′
t−s] = 4sE[vt−sε

′
t−s],

which can take nonzero value if 4s 6= 0 for s> 0.

We have the following weak convergence results following Phillips and Solo

(1992).

LEMMA 1. Suppose Assumption LP holds. Then,

(i)

T

− 1
2
∑[sT]

t=1 et

T− 1
2
∑[sT]

t=1 vt


⇒

[
Be(s)

Bv(s)

]
= 61/2

[
We(s)

Wv(s)

]
,

where We(s) and Wv(s) are r × 1 and k× 1 standard Brownian motions,

respectively, and they are independent of each other.

(ii) T− 1
2
∑[sT]

t=1 ut ⇒ Bu(s) = [9(1)]−1Be(s).

(iii) T− 1
2
∑[sT]

t=1 ηt ⇒ Bη(s) = PBe(s).

(iv) T− 1
2
∑[sT]

t=1 (Zt −µZ) ⇒ Bz(s) = 4(1)Bv(s).

Define

ŴDD = lim
T→∞

E(DtD
′
t),

ŴDZ = lim
T→∞

E[Dt(Zt −µZ)
′],

ŴZZ = E[(Zt −µZ)(Zt −µZ)
′], Ŵ = [ŴDZ : ŴDD],

ŴηZ = E(ηι,tZ
′
t), 31Z =

∞∑

h=1

E(u1,tZ
′
t+h),

γ = E(ηt ⊗ Zt),

6η = E[ηtη
′
t],

� =

[
6η ⊗ ŴDD 6η ⊗ ŴDZ

6η ⊗ Ŵ′
DZ 6η ⊗ ŴZZ −γ γ ′

]
. (3.7)
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In some of these definitions, we have T → ∞ built-in, because Dt is a triangular

array due to the local-to-unity process.

Assumption R1.

(i) Dt in (3.4) is nonempty, i.e., r2 > 0, or r3 > 0, or p> 1.

(ii) The matrices Ŵ,ŴηZ,� all have full rank.

Assumption R1(i) is a key condition for the results in the paper. It ensures that

the IRFs depend on some stationary regressors Dt that can only be estimated at

the n
1
2 rate. For this condition to hold, we provide three sufficient conditions: (i)

there is a cointegrating relationship, i.e., r2 > 0; (ii) a subvector of yt is stationary,

i.e., r3 > 0; and (iii) the lag order of the VAR model is greater than 1, i.e., p > 1.

Assumption R1(ii) provides regularity conditions that some covariance matrices

are full rank. The matrix ŴηZ being full rank means that Zt and ηι,t are correlated,

which holds if the (ι,ι)th element of H is nonzero and Assumption IV holds with

α 6= 0k.

Let Jc(s) denote an r1 ×1 vector Ornstein–Uhlenbeck process such that

dJc(s) = CJc(s)ds+dBu,1(s), (3.8)

where Bu,1(s) is the first r1 ×1 subvector of Bu(s). Let

ϒT =

[
T

1
2 Ir1 0

0 Ipr−r1+1

]
. (3.9)

The following results follow from Phillips (1987) and Phillips and Solo (1992).

LEMMA 2. Suppose Assumptions LP and R1 hold. Then,

(a)

T−1

T∑

t=1

ϒ−1
T xtx

′
tϒ

−1
T →d V =




∫ 1

0
Jc(s)Jc(s)

′ds
∫ 1

0
Jc(s)ds 0

∫ 1

0
Jc(s)

′ds 1 0

0 0 ŴDD


 .

(b)



T−1
∑T

t=1Y
∗
1,t−1(Zt −µZ)

′

T−1
∑T

t=1(Zt −µZ)
′

T−1
∑T

t=1Dt(Zt −µZ)
′

T−1
∑T

t=1 (Zt −µZ)(Zt −µZ)
′




→d




∫ 1

0
Jc(s)Bz(s)

′ +31Z

01×k

ŴDZ

ŴZZ



.

(c)

[
T− 3

2
∑T

t=1Y
∗
1,t−1

T−1
∑T

t=1Y
∗
1,t−1η

′
t

]
→d

[ ∫ 1

0
Jc(s)ds

∫ 1

0
Jc(s)dBη(s)

′

]
.
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(d)

T− 1
2

T∑

t=1

(
ηt ⊗Dt

ηt ⊗ (Zt −µZ)−E[ηt ⊗ (Zt −µZ)]

)
→d

(
ξD

ξZ

)
∼ N (0,�) .

Let Sθ be an (r−1)× r matrix such that

Sθηt = η−ι,t − θηι,t. (3.10)

By definition, it takes the form

Sθ = [Ir−1(1 : ι−1) : −θ : Ir−1(ι : r−1)], (3.11)

where Ir−1(1 : ι − 1) collects the first (ι − 1) columns of Ir−1 and Ir−1(ι : r− 1)

collects the last (r− ι) matrix of Ir−1.

THEOREM 1. Suppose Assumptions LP, IV, and R1 hold and WT →p W. Then,

(a)

T
1
2
(
θ̂ − θ

)
→d

(
AWA′)−1

AW · [−
(
Sθ ⊗K

)
ξD+

(
Sθ ⊗ Ik

)
ξZ],

where A = Ir−1 ⊗ ŴηZ and K = Ŵ′
DZŴ

−1
DD.

(b) The optimal choice of the weighting matrix is V−1, where

V = B�B′ and B = [−Sθ ⊗K : Sθ ⊗ Ik].

Because ŴDZ is nonzero in general, replacing η with η̃ affects the asymptotic

distribution of θ̂ .

Next, we study the asymptotic distribution of the IRFs.We start with the moving

average (MA) coefficients 2s in the vector moving average (VMA) representation

of (2.1), i.e.,

Yt = d+ηt +
∞∑

s=1

2sηt−s. (3.12)

By definition, 2s = Ir for s = 0. Define the companion matrix for the VAR

presentation in (2.1) as

F =




81 · · · 8p−1 8p

Ir · · · 0 0

... · · ·
...

...

0 · · · Ir 0



. (3.13)

Then,2s =M
′
F
s
M forM′ = [Ir,0, . . . ,0].We estimate2s by 2̃s =M

′
F̃
s
M, where

F̃ is defined analogously to F but with8j for j= 1, . . . ,p replaced by their ordinary

least-squares (OLS) estimator 8̃j based on (2.1).
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To derive the distribution of 2̃s, we first define a matrix L that transforms the

regressors in (2.1), denoted by Xt, to those in (3.3), denoted by xt, i.e.,

xt ≡



Y1,t−1 − c1

1

Dt


= L




1

Yt−1

...

Yt−p




≡ LXt. (3.14)

By the definition of Dt in (3.4), we have

L =




−c1 Ir1 0 0 0 · · · 0

1 0 0 0 0 · · · 0

Qc1 − c2 −Q Ir2 0 0 · · · 0

−c3 0 0 Ir3 0 · · · 0

0

Ir1 0 0

0 Ir2 0

0 0 Ir3

−Ir · · · 0

...
...

...
...

...
...

...

0 0 0 0 0 Ir −Ir




. (3.15)

Note thatL is an invertible square matrix that provides a one-to-one transformation

between xt and Xt. Because the VAR model in (2.1) can be equivalently written as

in (3.3), the OLS estimators of the coefficients in (2.1) and those in (3.3) satisfy

[̃
d : 8̃1 − Ir : 8̃2 : · · · : 8̃p

]
=
[̃
A1 : Ã2 : Ã3

]
L. (3.16)

Thus, we can study the distribution of 2̃s using the equivalent representation in

(3.3) and the asymptotic results in Lemma 2.

Define

L =




−Q 0 Ir1 0 0 · · · 0

Ir2 0 0 Ir2 0 · · · 0

0 Ir3 0 0 Ir3 · · · 0

...
...

...
...

...
...

...

0 0 0 0 0 0 −Ir




, (3.17)



IV ESTIMATION OF SVAR MODELS 11

which is an rp× (rp− r1) lower-right submatrix of L′ used in the transformation

above. Define

R =
s−1∑

i=0

2s−1−i⊗
(
M

′
F
i′) and J = LŴ−1

DD. (3.18)

Assumption R2. The matrixR has full rank.

Assumption R2 is the typical rank condition necessary for frequentist inference

on IRFs obtained from the VAR slope parameters. It rules out the problem pointed

out by Benkwitz et al. (2000), for example.

THEOREM 2. Suppose Assumptions LP, IV, and R1–R2 hold. Then, for s≥ 1,

T
1
2 vec(2̃′

s−2′
s) →d R(Ir ⊗J )ξD.

Next, we consider the asymptotic distribution of the IRFs. For a fixed horizon

s≥ 1, the IRF is defined as

βs =
∂Yt+s

∂ει,t

= 2sh= 2sSι

[
1

θ

]
, (3.19)

where

Sι ≡



0 Iι−1 0

1 0 0

0 0 Ir−ι


 ∈ Rr×r (3.20)

rearranges the elements of (1,θ ′)′ such that it becomes h. Let Sι denote the last

r−1 columns of Sι. The estimator of βs is

β̂s = 2̃ŝh= 2̃sSι

[
1

θ̂

]
. (3.21)

Define

G1s = 2sSι

[
AWA′]−1

AW[−Sθ ⊗K : Sθ ⊗ Ik],

G2s =
[
(Ir ⊗ h′)R(Ir ⊗J ) : 0r×rk

]
. (3.22)

Assumption R3. G1s+G2s has rank r.

Assumption R3 is the rank condition for the delta method. It is similar to

Assumption R2 and rules out the Benkwitz et al. (2000) problem.

THEOREM 3. Suppose that Assumptions LP, IV, and R1–R3 hold and WT →p

W, then

T
1
2 (β̂s−βs) →d N(0,(G1s+G2s)�(G1s+G2s)

′).
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In the asymptotic distribution in Theorem 3, the first part associated with G1s

comes from the estimation of the contemporaneous IRF ĥ, whose random elements

are θ̂, and the second part associated with G2s comes from the estimation of the

MA parameter 2̃s for the dynamic response.

Constructing the asymptotic variance of β̂s using sample analogs of G1s, G2s,

and � requires one to distinguish stationary and nonstationary series in Yt and

specify the cointegrating relationship among the nonstationary series. To see this,

note that K, J , and � by definition are all constructed with Dt defined in (3.4).

Using model selection procedures or pretests to specify Dt may result in model

selection errors and undesirable consequences for subsequent inference. Below

we provide a consistent covariance matrix estimator that avoids this specification

problem.

4. CONSISTENT COVARIANCE MATRIX ESTIMATOR

In this section, we propose a robust consistent estimator of the asymptotic variance

of β̂s. The key feature is that it does not require knowing the persistence property of

any series or any cointegrating relationship. It is constructed with the whole vector

Yt in the VAR system, instead of the stationary regressors only. We show that it is

consistent under all different forms of nonstationarity allowed in this paper.

In the estimation of the covariance matrix, the main challenge comes from the

estimation of K, J , and �, all of which are defined with the stationary regressors

only. Without distinguishing the stationary regressors from the nonstationary ones,

we use Xt = [1,Yt−1, . . . ,Yt−p]
′ and propose to estimate K and J , respectively, by

K̂ = Ŵ̂ZXŴ̂
−1
XX and Ĵ = S2Ŵ̂

−1
XX, where

Ŵ̂XX =
1

T

T∑

t=1

XtX
′
t,

Ŵ̂ZX =
1

T

T∑

t=1

(Zt −ZT)X
′
t, ZT =

1

T

T∑

t=1

Zt, (4.1)

and S2 = [0rp×1 : Irp] is a selector matrix. Lemma 3 below shows that some proper

rotation with the matrix L and rescaling using the matrix ϒT lead to the limits of

K̂ and Ĵ that contain K and J as subvectors, respectively.

Using K̂ and Ĵ , we construct

Ĝ1s = 2̃sSι(ATWTA
′
T)

−1ATWT [−Sθ̂ ⊗ K̂ : Sθ̂ ⊗ Ik],

Ĝ2s =
[
(Ir ⊗ ĥ′)R̂

(
Ir ⊗ Ĵ

)
: 0r×rk

]
, (4.2)

where Sθ̂ and ĥ are defined as Sθ and h with θ replaced by θ̂ , respectively,

R̂ =
∑s−1

i=0 2̃s−1−i ⊗ (M′
F̃
i′), and F̃ is defined as F with 81, . . . ,8p replaced by

8̃1, . . . ,8̃p.
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Let

P =

[
Ir ⊗L

−1ϒT 0

0 Irk

]
. (4.3)

LEMMA 3. Suppose Assumptions LP, IV, and R1 hold. Then,

K̂L
−1ϒT → p [0k×(r1+1) :K],

ĴL
−1ϒT → p [0rp×(r1+1) : J ],

and

Ĝ1sP → p2sSι(AWA′)−1AW[−Sθ ⊗ [0k×(r1+1) :K] : Sθ ⊗ Ik],

Ĝ2sP → p

[
(Ir ⊗ h′)R

(
Ir ⊗ [0rp×(r1+1) : J ]

)
: 0r×rk

]
.

The limits of Ĝ1sP and Ĝ2sP are analogous to G1s and G2s but with K and J

augmented with r1+1 columns of zeros in the front. This shows that even if we do

not knowwhich series are nonstationary, their effects are asymptotically negligible

after the rotation and rescaling by the matrix P.

Next, we consider estimation of the covariance �. Using Xt,Zt, and η̃t, we

propose to estimate � by

�̂ =

[
6̂η ⊗ Ŵ̂XX 6̂η ⊗ Ŵ̂′

ZX

6̂η ⊗ Ŵ̂ZX 6̂η ⊗ Ŵ̂ZZ − γ̂ γ̂ ′

]
, (4.4)

where

6̂η = T−1

T∑

t=1

η̃tη̃
′
t,

Ŵ̂ZZ =
1

T

T∑

t=1

(Zt −ZT)(Zt −ZT)
′,

γ̂ = T−1

T∑

t=1

η̃t ⊗ Zt. (4.5)

Define

γxZ =

[
0(r1+1)×k

ŴDZ

]
. (4.6)

LEMMA 4. Suppose Assumptions LP, IV, and R1 hold. Then,

P
−1�̂P

−1′ →d

[
6η ⊗V 6η ⊗ γxZ

6η ⊗ γ ′
xZ 6η ⊗ ŴZZ −γ γ ′

]
.
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Comparing the limit of P−1�̂P
−1′ and�, we see thatV and γxZ contain ŴDD and

ŴDZ as submatrices. Theorem 4 below shows that the covariance matrix estimator

is consistent, because the extra r1 +1 columns of zeros in Lemma 3 reduce V and

γxZ to ŴDD and ŴDZ, respectively.

THEOREM 4. Suppose Assumptions LP, IV, and R1 hold and WT →p W. Then,

(Ĝ1s+ Ĝ2s)�̂(Ĝ1s+ Ĝ2s)
′ →p (G1s+G2s)�(G1s+G2s)

′.

5. OPTIMAL GMM ESTIMATION

Following Theorem 1(b), the optimal GMM estimation uses the weighting matrix

WT = V̂−1, where V̂ is a consistent estimator of V = B�B′. Note that because

of the generated regressor, the optimal weighting matrix is different from the

weightingmatrix implicit for the 2SLS estimator even in the absence of conditional

heteroskedasticity.

We estimate V by

V̂ = B̂�̂B̂′, where B̂ = [−Sθ̃ ⊗ K̂ : Sθ̃ ⊗ Ik], (5.1)

where θ̃ is a preliminary consistent estimator of θ . The consistency of V̂ follows

from the same arguments used to show Theorem 4.

Let θ̂o denote the two-step GMM estimator. In the first step, we use either

I(r−1)k or Ir−1⊗ (T−1
∑T

t=1ZtZ
′
t)

−1 as the weighting matrix and compute the GMM

estimator θ̃ following (2.6). In the second step, we compute V̂ with θ̃ and obtain the

GMM estimator θ̂o with weighting matrix V̂−1. Let β̂o
s denote the IRF calculated

with θ̂o.

The following theorem summarizes the properties of the optimal GMM estima-

tor.

THEOREM 5. Suppose Assumptions LP, IV, R1–R3 hold. Then,

(a) V̂ →p V .

(b) T
1
2 (θ̂o− θ) →d N(0,

[
AV−1A′]−1

).

(c) T
1
2 (β̂o

s −βs) →d N(0,(Go
1s+G2s)�(Go

1s+G2s)
′), where Go

1s is defined as G1s

but with W replaced with V−1.

The asymptotic covariance of θ̂o can be consistently estimated with A and V

replaced by AT and V̂, respectively. The asymptotic covariance of β̂o
s can be

consistently estimated following Theorem 4 withWT replaced by V̂−1.

The t statistic and theWald statistic based on the consistent covariance estimator

have asymptotic normal and chi-square distribution, respectively.

Finally, it is worth mentioning that although all the results are robust to the

presence of nonstationary time series, neither the estimators nor their consistent

covariance estimators require practitioners to specify which series are stationary.
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The robustness condition holds as long as Yt contains stationary or cointegrated

regressors or the VAR order is larger than one.

6. SIMULATIONS

To study the finite-sample performance of inference based on the asymptotic

distributions derived above, we consider the following data-generating processes

(DGPs):

ut = 91ut−1 +92ut−2 + et, (6.1)

where ut = [u1t,u2t,u3t]
′ ∈ R3, 91 = 0.5I3,

92 =




0 0 0.2

0 0.2 0

0.2 0 0


, (6.2)

and et ∼ N(0,I3) is i.i.d. over t. The matrix 92 allows for spillover effects between

u1t and u3t. We generate y∗1t, y
∗
2t, and y

∗
3t using two DGPs below.

DGP1: y∗2t is cointegrated with y∗1t.

y∗1t =
(
1−

C1

T

)
y∗1t−1 +u1t,

y∗2t = 2y∗1t +u2t,

y∗3t = u3t, (6.3)

so y∗1t, y
∗
2t, and y

∗
3t correspond to Y∗

1t, Y
∗
2t, and Y

∗
3t in (3.1), respectively. The model

under DGP1 contains only one root equal or close to unity. We set the drift

parameter C1 ∈ [0, −2, −5, −10] following Stock (1991).

DGP2: y∗2t is not cointegrated with y∗1t.

y∗1t = y∗1t−1 +u1t,

y∗2t =
(
1−

C2

T

)
y∗2t−1 +u2t,

y∗3t = u3t. (6.4)

We set C2 ∈ [−2, −5, −10, −0.5T]. For C2 = −2, −5, or −10, the model under

DGP2 has one unit root and a local-to-unity root. ForC2 = −0.5T , y∗2t is stationary,

and the model has only one unit root.

Given y∗t , we generate the observed data Yt = c+ y∗t , where y
∗
t = [y∗1t,y

∗
2t,y

∗
3t]

′

and c= [1,0.5, −1]′. The reduced-form errors are given by

ηt = Pet, where P=



1 0 0

2 1 0

0 0 1


 (6.5)
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for DGP1 and P = I3 for DGP2 following the derivation of P in (A.2). Next, we

specify the matrix H. Since ηt = Hεt, et ∼ N(0,I3), and they are i.i.d. over t, the

normalization E(εtε
′
t) = I3 implies E(ηtη

′
t) = PP′ = HH′. We set H equal to the

positive definite square root ofPP′. GivenH and ηt, we can obtain the true values of

the structural shocks by computing εt =H−1ηt. Finally, we generate the instrument

Zjt that is correlated with the ιth structural shock at time t by

Zjt =
√
1−a2wjt +aειt + ε3t−1 for j= 1, . . . ,k,

where wjt’s are i.i.d. standard normal random variables, and a is set equal to√
2/2 so that the correlation between Zjt and ειt is equal to 0.5. The instruments

are correlated with the lags of the structural shock, so ŴZD is not zero and the

estimation uncertainty in η̂ affects the asymptotic distribution of θ̂ . We set k = 2

in the simulation.

With the observed data Yt, we run an OLS estimation to fit a VAR(3) model with

an intercept. TheMA coefficients 2̃s are computed using these OLS estimates. The

residuals η̃t and the instruments are used for the estimation of θ . We implement

a two-step GMM estimation. In the first step, we obtain a consistent estimator of

θ using the weighting matrix Ir ⊗ (T−1
∑T

t=1ZtZ
′
t)

−1. Then, we reestimate θ using

the optimal weighting matrix V̂−1, with V̂ given by (5.1). The confidence intervals

for the structural IRFs are computed based on the asymptotic normal distribution

in Theorem 5 and the proposed consistent estimator of the covariance matrix. Our

inferential results do not require knowledge about the cointegrating relationship or

the (non)stationarity of a particular series.

Tables 1A–1C and 2A–2C report the finite-sample coverage rates of confidence

intervals for DGP1 andDGP2, respectively. The nominal level is 95%. The number

of simulation replications is 5,000. The notation “-” denotes that the corresponding

contemporaneous IRF is normalized to be one. Under DGP1, the coverage rates

of confidence intervals of the IRFs to a shock in εjt for j= 1,2,3 are summarized

by Tables 1A, 1B, and 1C, respectively. The three rows associated with the same

value of C1 in Tables 1A–1C report the results for Y1t, Y2t, and Y3t, respectively.

The results in Tables 1A–1C show several patterns. First, the coverage rates

are close to the nominal level for short horizons. Even in small samples with

T = 200, for example, the effective coverage rates of the confidence intervals

are always between 93.4% and 94.7% for horizon s = 0 and between 91.8% and

94.6% for horizon s= 2. Second, as the horizon increases, the effective coverage

rates decrease. This is not surprising, because (1) the estimators 2̃s based on the

unrestricted OLS estimation are inconsistent for long horizons and for horizons s

proportional to T its limiting distribution is also nonstandard in the presence of

roots equal or close to unity (Phillips, 1998; Gospodinov, 2004; Pesavento and

Rossi, 2007)4 and (2) the asymptotic normal approximation based on the Delta

4In this paper, our asymptotic theory is based on the assumption that the horizon s is a fixed number as T → ∞.

Phillips (1998) studies the asymptotic properties of the IRFs under the alternative asymptotic setup, where s could

grow as fast as T and the roots of the VAR model are unity or near unity.
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Table 1A. Coverage rates of the 95% level confidence intervals under DGP1.

A shock in ε1t

IRFs at horizon s for T = 200 IRFs at horizon s for T = 500

C1 0 1 2 3 6 9 12 0 1 2 3 6 9 12

– 93.2 91.9 90.7 86.2 81.2 75.3 – 95.1 94.0 93.8 91.9 90.2 87.5

0 94.0 94.5 93.4 91.9 87.0 81.5 75.6 94.2 95.0 94.8 94.4 92.4 90.5 87.8

94.7 94.4 94.0 94.0 88.0 82.3 79.1 95.7 94.7 94.8 94.9 92.0 88.3 83.1

– 94.1 92.9 91.0 86.8 81.6 76.7 – 94.7 94.0 93.5 91.4 89.2 86.6

−2 93.4 94.3 93.8 92.4 87.7 81.9 76.9 94.8 94.9 94.7 94.2 91.9 89.6 86.9

94.4 94.5 94.1 94.2 89.3 86.2 84.6 94.6 95.0 94.6 94.4 91.4 88.8 86.3

– 94.2 92.8 91.8 88.7 85.5 81.3 – 94.2 94.1 93.7 92.4 90.7 88.7

−5 94.5 94.4 93.9 92.6 89.4 85.7 81.5 94.5 94.9 94.7 94.1 92.5 90.9 88.9

94.7 94.2 94.6 94.2 90.6 89.0 89.4 95.6 95.0 94.9 94.9 92.7 91.1 89.6

– 93.9 93.0 92.7 90.1 87.1 83.9 – 95.0 94.7 94.0 92.8 91.1 89.0

−10 93.6 94.2 94.0 93.7 90.6 87.6 84.4 94.2 95.0 95.3 94.3 93.2 91.2 89.2

94.7 94.1 94.5 93.9 92.2 91.9 91.9 95.2 94.5 94.6 94.5 92.8 91.7 91.5

Table 1B. Coverage rates of the 95% level confidence intervals under DGP1.

A shock in ε2t

IRFs at horizon s for T = 200 IRFs at horizon s for T = 500

C1 0 1 2 3 6 9 12 0 1 2 3 6 9 12

94.4 94.1 92.7 91.2 87.2 81.7 76.2 94.1 94.4 94.2 93.9 92.1 90.0 86.8

0 – 93.4 91.8 90.0 86.5 81.3 76.2 – 94.0 93.7 93.1 91.7 89.7 86.6

94.4 94.3 94.1 93.2 86.8 81.9 78.7 95.6 94.9 95.1 94.2 91.5 87.5 82.6

93.9 93.8 93.0 91.4 87.9 82.9 78.0 94.8 94.9 93.9 93.3 91.7 89.6 87.2

−2 – 93.6 92.1 90.6 87.5 82.7 77.9 – 94.6 93.6 93.1 91.3 89.5 87.3

94.1 94.8 94.6 93.9 88.5 85.8 85.2 95.5 95.2 95.5 94.7 91.4 88.4 85.4

93.9 93.9 93.3 91.6 88.0 84.4 80.6 94.8 94.8 94.2 94.4 93.0 91.6 89.7

−5 – 93.6 92.1 90.6 87.4 84.3 80.5 – 94.9 94.3 94.0 92.6 91.4 89.6

94.4 94.2 94.4 93.5 89.5 88.7 88.7 94.5 94.2 94.9 94.7 92.9 91.6 89.9

94.6 94.3 93.5 92.5 90.0 87.6 84.9 94.3 94.5 94.3 94.4 93.3 92.0 90.0

−10 – 94.2 93.2 91.5 89.4 86.7 84.5 – 94.6 94.1 94.1 93.2 91.9 89.9

94.6 94.3 94.6 93.4 91.7 91.5 92.2 94.6 94.5 95.2 94.8 92.9 92.2 91.7

method can perform poorly in small samples even in stationary VARs since the

IRFs are highly nonlinear functions of the VAR coefficients (Kilian, 1999). Finally,

the effective coverage rates are improving as the sample size increases, which

confirms our asymptotic theory.
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Table 1C. Coverage rates of the 95% level confidence intervals under DGP1.

A shock in ε3t

IRFs at horizon s for T = 200 IRFs at horizon s for T = 500

C1 0 1 2 3 6 9 12 0 1 2 3 6 9 12

94.3 93.7 93.6 93.1 92.2 88.6 84.6 94.6 95.2 95.4 95.0 94.4 93.3 92.0

0 93.7 93.5 93.1 93.0 91.9 88.5 84.8 94.7 95.1 95.6 95.1 94.4 93.3 92.0

– 94.0 92.7 92.1 88.7 78.6 76.6 – 94.6 94.2 93.6 91.5 85.1 79.1

94.5 93.5 93.8 93.7 92.1 89.7 86.1 94.4 94.7 95.0 94.9 94.5 93.2 91.7

−2 93.9 93.8 93.8 93.7 92.0 89.7 86.0 94.3 94.3 94.6 94.8 94.6 93.2 91.6

– 93.1 92.6 92.6 90.8 81.9 82.7 – 94.7 93.8 93.8 91.6 85.6 81.3

94.0 93.8 94.0 93.3 92.3 89.7 86.3 94.9 94.7 94.7 94.4 94.3 94.0 92.8

−5 93.7 94.0 93.6 93.4 92.6 89.7 86.1 94.7 94.4 94.5 94.1 94.3 94.0 92.9

– 93.5 93.1 92.7 91.2 84.6 87.2 – 94.6 93.5 93.4 93.0 88.6 85.6

94.1 93.7 94.1 93.9 92.9 90.9 87.4 94.8 94.6 94.4 94.6 94.5 93.6 92.3

−10 94.6 94.0 94.2 94.3 92.9 90.8 87.5 95.1 94.6 94.3 94.7 94.7 93.6 92.3

– 93.7 92.8 92.6 91.2 87.2 90.1 – 93.9 94.7 94.1 92.1 87.7 86.8

Table 2A. Coverage rates of the 95% level confidence intervals under DGP2.

A shock in ε1t

IRFs at horizon s for T = 200 IRFs at horizon s for T = 500

C2 0 1 2 3 6 9 12 0 1 2 3 6 9 12

– 90.9 86.0 82.1 69.5 58.8 51.9 – 93.2 91.0 89.3 82.9 76.3 70.0

−2 94.5 93.4 93.5 93.1 91.8 89.7 86.8 94.0 94.1 93.8 93.8 93.4 93.1 92.3

94.3 94.3 93.9 91.7 71.5 71.1 73.6 94.5 94.9 94.3 93.6 80.2 73.9 72.8

– 91.4 87.0 82.9 71.8 61.7 54.2 – 93.2 91.7 90.2 84.8 78.1 71.4

−5 94.0 93.6 93.3 93.3 92.8 90.3 87.7 94.6 94.0 93.8 93.9 93.8 93.1 92.4

94.1 94.1 93.3 91.9 72.0 72.5 75.1 94.4 94.4 94.0 93.5 81.6 77.4 76.0

– 91.6 87.8 84.2 73.7 64.8 57.0 – 93.6 92.4 91.0 85.4 78.9 72.7

−10 95.1 94.7 94.4 94.0 93.3 91.9 89.9 94.7 94.7 94.6 94.6 94.4 94.1 93.3

94.6 93.9 93.3 92.2 73.9 73.5 76.1 95.0 94.6 94.9 93.6 81.5 76.5 75.5

– 91.7 88.8 86.0 76.9 68.1 60.9 – 93.7 92.5 91.2 86.1 80.8 76.4

−0.5T 94.5 94.3 93.9 94.1 94.4 94.1 93.2 94.9 94.5 94.5 94.9 94.6 95.0 94.6

94.3 94.0 94.2 92.1 77.7 77.2 77.6 94.6 94.5 94.4 93.8 83.7 79.9 78.5

The main patterns in Tables 2A–2C are similar to those in Tables 1A–1C.

Compared to the results under DGP1, the effective coverage rates in Tables 2A–

2C tend to have larger downward biases, especially for shocks to ε1t and ε2t with

C2 ∈ {−2, − 5, − 10}. This could be caused by the fact that the system under
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Table 2B. Coverage rates of the 95% level confidence intervals under DGP2.

A shock in ε2t

IRFs at horizon s for T = 200 IRFs at horizon s for T = 500

C2 0 1 2 3 6 9 12 0 1 2 3 6 9 12

94.1 94.0 93.2 92.9 91.1 90.0 88.0 94.3 94.4 93.7 93.7 93.4 92.9 91.8

−2 – 91.3 87.2 84.0 74.8 65.7 58.2 – 93.1 91.3 90.2 85.8 80.1 73.9

94.0 93.8 93.0 93.2 92.8 90.5 90.5 95.2 94.4 94.6 94.7 94.6 93.4 91.6

93.9 94.1 93.7 92.9 91.8 89.8 88.1 94.5 94.5 94.9 94.4 93.8 93.3 92.1

−5 – 91.9 89.0 86.7 78.2 70.1 63.6 – 94.4 92.9 91.8 87.7 82.6 77.2

94.3 93.4 93.4 93.4 92.9 91.3 91.3 94.7 94.7 94.4 94.6 94.4 92.8 91.6

94.4 94.0 93.4 92.9 91.9 90.2 88.8 94.8 95.1 94.4 94.1 93.9 93.3 92.5

−10 – 92.5 90.1 88.0 79.5 72.6 68.7 – 94.4 93.7 92.4 88.8 84.5 80.0

94.4 93.7 94.0 94.2 93.4 91.7 92.5 95.1 94.3 94.4 94.2 94.3 93.2 92.1

94.5 93.9 93.7 93.6 93.3 93.3 93.8 94.9 94.5 95.0 95.1 94.7 94.0 94.0

−0.5T – 93.6 91.4 88.1 86.9 85.0 82.4 – 93.4 93.7 91.8 91.3 90.6 88.0

94.4 94.6 93.9 93.9 94.1 96.8 99.4 94.3 94.8 94.8 94.6 94.4 94.9 97.2

Table 2C. Coverage rates of the 95% level confidence intervals under DGP2.

A shock in ε3t

IRFs at horizon s for T = 200 IRFs at horizon s for T = 500

C2 0 1 2 3 6 9 12 0 1 2 3 6 9 12

94.4 93.6 93.5 93.0 89.8 85.4 79.7 94.5 94.5 94.8 94.7 93.4 91.0 88.8

−2 93.8 94.0 94.0 93.2 93.3 93.4 93.9 95.3 95.0 94.7 94.5 94.2 94.0 94.0

– 92.1 91.2 89.9 85.9 75.2 81.1 – 94.3 93.3 92.7 89.1 80.2 74.3

94.0 93.8 93.4 93.0 89.7 85.4 79.9 94.7 94.8 94.5 94.3 93.7 92.3 89.9

−5 94.4 94.0 93.8 93.5 94.0 94.4 95.3 94.3 94.3 94.2 94.4 94.6 94.8 94.8

– 92.8 91.4 90.4 85.7 75.3 82.7 – 94.5 93.1 92.3 90.5 82.5 77.7

93.8 93.6 93.6 93.3 90.5 86.7 82.0 94.8 94.7 94.1 94.3 93.8 92.1 90.4

−10 93.8 93.8 93.5 93.8 93.9 94.4 95.4 94.7 94.7 94.5 94.6 94.6 94.8 94.9

– 92.9 91.5 90.3 87.1 77.8 83.8 – 93.9 94.3 93.4 89.5 81.5 76.8

94.5 93.6 93.3 93.4 92.0 89.1 85.0 94.6 94.6 94.4 94.3 93.7 92.4 90.9

−0.5T 94.8 94.5 94.4 93.0 93.6 97.8 99.1 94.6 94.7 94.5 93.8 94.6 96.1 98.1

– 92.9 93.1 92.7 89.2 81.1 82.1 – 94.4 93.7 93.5 91.8 85.5 80.2

DGP2 has an additional root near unity in comparison to DGP1 for C2 ∈ {−2, −5,

− 10}. Under DGP2, the asymptotic distribution tends to require larger samples

to generate good approximations. Additional simulation results (not included in
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Table 2A–2C) confirm that the effective coverage rates are much closer to the

nominal level under DGP2 for all IRFs with s≤ 12 when T increases to 5,000.

7. CONCLUSION

This paper shows that for proxy SVAR, standard asymptotic normal inference

remains valid under a general form of nonstationarity in the VAR system. In the

presence of stationary regressors, cointegration relationships, or more than one

lag variables in the VAR, the estimation error from the nonstationary component

is asymptotically negligible. The asymptotic variance of the IRF only depends

on the stationary component, but a consistent covariance matrix estimator is

available even without knowing which series are stationary. This robust and simple

covariance matrix estimator is particularly appealing for practical applications.

The robustness result is rather general by allowing for local-to-unity processes.

However, the theoretical result is not uniform over the entire parameter space

of the roots of the autoregressive model, as those studied in (Mikusheva 2007,

2012) (2007, 2012), Andrews and Guggenberger (2010), and Phillips (2014).

Establishing uniform inference for the SVAR-IV estimation is an interesting

direction for future research.

APPENDIX

Below we first establish the link between (2.1) and (3.1) and show the representation in

(3.3). Following (3.1), we can write

1Yt =M(Yt−1 − c)+P9(L)−1et, where (A.1)

M =




T−1C 0 0

Q
(
Ir1 +T−1C

)
−Ir2 0

0 0 −Ir3


 and

P=




Ir1 0 0

Q Ir2 0

0 0 Ir3


 . (A.2)

Multiplying both sides of (A.1) by P9(L)P−1, we obtain

P9(L)P−11Yt = P9(L)P−1M(Yt−1 − c)+Pet. (A.3)

Define π1 = 91+·· ·+9p−1, π2 = 92+·· ·+9p−1, . . . , and πp−1 = 9p−1. We can write

9(L) = 1−91L−·· ·−9p−1L
p−1

= 9(1)+π1(1−L)+π2(L−L2)+·· ·+πp−1(L
p−2 −Lp−1). (A.4)
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Plugging (A.4) in (A.3), we obtain

P
[
1−91L−·· ·−9p−1L

p−1
]
P−11Yt (A.5)

= P
[
9(1)+π1(1−L)+π2(L−L2)+·· ·+πp−1(L

p−2 −Lp−1)
]
P−1M(Yt−1 − c)+Pet,

and a rearrangement gives

1Yt = P9(1)P−1M(Yt−1 − c)+ (A.6)

(P91P
−1 +Pπ1P

−1M)1Yt−1 +·· ·+ (P9p−1P
−1 +Pπp−1P

−1M)1Yt−p+1 +Pet.

Define

5(L) = 51 +52L+·· ·+5p−1L
p−2, (A.7)

where51 =P91P
−1+Pπ1P

−1M, . . . ,5p−1 =P9p−1P
−1+Pπp−1P

−1M. Then, we can

write the model as

1Yt = (P9(1)P−1M)(Yt−1 − c)+5(L)1Yt−1 +ηt, where ηt = Pet. (A.8)

Transforming (A.8) leads to the link between (2.1) and (3.1)

Yt = −P9(1)P−1Mc+ (P9(1)P−1M+ Ir)Yt−1 +5(L)1Yt−1 +ηt,

Yt = d+81Yt−1 +·· ·+8pYt−p+ηt, (A.9)

where

d = −P9(1)P−1Mc,

81 = (P9(1)P−1M+ Ir)+51,

8i = 5i−5i−1, i= 2, . . . ,p−1,

8p = −5p−1. (A.10)

Next, we derive (3.3). Using the definition ofM andDt, (A.8) can be equivalently written as

1Yt = Axt+ηt

= A1(Y1,t−1 − c1)+A2 +A3Dt+ηt, (A.11)

where

A= [A1 : A2 : A3], xt = [(Y1,t−1 − c1)
′,1,D′

t]
′,

A1 = P9(1)P−1




T−1C

T−1QC

0


,A2 =




0

0

0




A3 =


P9(1)P−1




0 0

−Ir2 0

0 −Ir3


,51, . . . ,5p−1


 . (A.12)

Proof of Lemma 1. The results follow from Thm. 3.4 of Phillips and Solo (1992).

The summability condition for the linear processes is satisfied by Assumption LP(i) and

LP(ii). �
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Proof of Lemma 2. Parts (a)–(c) follow from the convergence of the near unit root

process in Phillips (1987) and the convergence of linear processes as in Phillips and Solo

(1992).

Part (d) applies the CLT for second moments of linear processes as in Thm. 3.8 of

Phillips and Solo (1992). The limiting covariance matrix of the asymptotic distribution is∑∞
j=−∞ �j, where

�j =

[
�DD,j �DZ,j

�ZD,j �ZZ,j

]
,

�DD,j = lim
T→∞

E
[(

ηt⊗Dt
)(

ηt−j⊗Dt−j
)′]

,

�DZ,j = lim
T→∞

E
[(

ηt⊗Dt
)(

ηt−j⊗
(
Zt−j−µZ

)
−γ

)′]
,

�ZD,j = lim
T→∞

E
[(

ηt⊗
(
Zt−µZ

)
−γ

)(
ηt−j⊗Dt−j

)′]
,

�ZZ,j = E
[(

ηt⊗
(
Zt−µZ

)
−γ

)(
ηt−j⊗

(
Zt−j−µZ

)
−γ

)′]
. (A.13)

Below, we show �j = 0 for j 6= 0 and �0 = �.

Let Ft−1 denote the information set at t− 1 generated by {ηt−1,Zt−1,ηt−2,Zt−2, . . .}.
Note that in the VAR model, Dt is a function of ηt−1 and its lags. Because ηt and Zt are

both linear processes and the errors are i.i.d., by Assumption LP, we have (i) E[ηt|Ft−1] =
0, and E[ηt ⊗ Zt|Ft−1] = γT and E[ηtη

′
t|Ft−1] = 6η are constant for any T, and (ii)

limT→∞E[ηt ⊗ Zt|Ft−1] = γ and E[ηtη
′
t|Ft−1] = 6η. Therefore, all the autocovariances

�j with j 6= 0 are zero by the law of iterated expectations (LIE).

For j= 0, we show �0 = �, i.e., the matrix has the Kronecker product structure. To this

end, note that

�DD,0 = E
[(

ηtη
′
t

)
⊗
(
DtD

′
t

)]

= E
[
E
(
ηtη

′
t|Ft−1

)
⊗
(
DtD

′
t

)]
= 6η ⊗ ŴDD, (A.14)

by LIE and E
(
ηtη

′
t|Ft−1

)
= 6η. Next,

�DZ,0 = lim
T→∞

E
[(

ηtη
′
t

)
⊗DtZ

′
t

]

= lim
T→∞

E
[
E
(
ηtη

′
t|Ft−1,vt

)
⊗
(
DtZ

′
t

)]

= 6η ⊗ ŴDZ, (A.15)

because ηt = Pet and et is homoskedastic conditional on Ft−1 and vt. We have �ZD,0 =
�′
DZ,0. Finally,

�ZZ,0 = lim
T→∞

E
[
ηtη

′
t⊗
(
Zt−µZ

)
(Zt−µZ)′

]
−γ γ ′

= lim
T→∞

E
[
E
(
ηtη

′
t|Ft−1,vt

)
⊗
(
Zt−µZ

)(
Zt−µZ

)′]−γ γ ′

= 6η ⊗ ŴZZ −γ γ ′. (A.16)

�
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Proof of Theorem 1. Applying the formula for θ̂ in (2.6), we have

T
1
2
(
θ̂ − θ

)
=
(
ATWTA

′
T

)−1
ATWTB, where

AT = Ir−1 ⊗
(
T−1

T∑

t=1

η̃ι,tZ
′
t

)
and

B= T− 1
2

[ T∑

t=1

η̃−ι,t⊗ Zt−
(
Ir−1 ⊗

T∑

t=1

Ztη̃ι,t

)
θ

]

= T− 1
2

T∑

t=1

(
η̃−ι,t− θη̃ι,t

)
⊗ Zt

= T− 1
2

T∑

t=1

(
Sθ η̃t

)
⊗ (Zt−µZ), (A.17)

where the second last equality uses (Ir−1 ⊗ Ztη̃ι,t)θ = θη̃ι,t ⊗ Zt because η̃ι,t is a scalar,

and the last equality holds because Sθηt = η−ι,t− θηι,t and the fitted model (2.1) includes

an intercept and thus the OLS residuals have a sample mean equal to 0.

To study the asymptotic distribution of B, note that

B= B1 +B2, where

B1 = T− 1
2

T∑

t=1

(
Sθηt

)
⊗ (Zt−µZ),

B2 = T− 1
2

T∑

t=1

[
Sθ (̃ηt−ηt)

]
⊗ (Zt−µZ). (A.18)

In B1, note that E
[
Sθηt⊗ (Zt−µZ)

]
= 0 following the moment condition for the estimation

of θ and E[ηt] = 0. Then, it follows from Lemma 2(d) that

B1 = T− 1
2

T∑

t=1

{(
Sθηt

)
⊗ (Zt−µZ)−E

[(
Sθηt

)
⊗ (Zt−µZ)

]}

=
(
Sθ ⊗ Ik

){
T−1/2

T∑

t=1

ηt⊗ (Zt−µZ)−E
[
ηt⊗ (Zt−µZ)

]}

→ d

(
Sθ ⊗ Ik

)
ξZ . (A.19)

Let X denote the matrix of xt and η denote the vector of ηt. To study the distribution of

B2, note that

B2 = T− 1
2

T∑

t=1

[Sθ (̃ηt−ηt)]⊗ (Zt−µZ)

= T− 1
2

T∑

t=1

−[Sθη′X(X′X)−1xt]⊗ (Zt−µZ)
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= T− 1
2

T∑

t=1

−[Sθη′Xϒ−1
T (ϒ−1

T X′Xϒ−1
T )−1ϒ−1

T xt]⊗ (Zt−µZ)

= T− 1
2

T∑

t=1

−vec((Zt−µZ)x′tϒ
−1
T (ϒ−1

T X′Xϒ−1
T )−1ϒ−1

T X′ηS′
θ )

= −vec[(T−1(Z−ℓTµ′
Z)′Xϒ−1

T )(T−1ϒ−1
T X′Xϒ−1

T )−1(T−1/2ϒ−1
T X′ηS′

θ )],

(A.20)

where the second equality follows from the least-squares estimation of ηt, ϒT in the third

equality is defined in (3.9), the fourth equality uses vec(AXB) = (B′ ⊗A)vec(X) for column

vectorization, and ℓT denotes the (T−p)×1 vector of ones. In the last equality above, the

first term satisfies

T−1(Z−ℓTµ′
Z)′Xϒ−1

T

=
[
T− 3

2

T∑

t=1

(Zt−µZ)Y∗′
1t−1 : T

−1
T∑

t=1

(Zt−µZ) : T−1
T∑

t=1

(Zt−µZ)D′
t

]

→ p
[
0k×(r1+1),Ŵ

′
DZ

]
(A.21)

by Lemma 2(b). Using the block diagonality of V in Lemma 2(a), we can reduce A.20 to

− vec[Ŵ′
DZ ·ŴDD−1 · (T− 1

2

T∑

t=1

Dtη
′
t)S

′
θ ]+op(1)

= −
(
Sθ ⊗

[
Ŵ′
DZ ·ŴDD−1

])
vec[T− 1

2

T∑

t=1

Dtη
′
t]+op(1)

= −
(
Sθ ⊗

[
Ŵ′
DZ ·ŴDD−1

])
T− 1

2

T∑

t=1

ηt⊗Dt+op(1)

→ d −
(
Sθ ⊗K

)
ξD, (A.22)

where both equalities use vec(AXB) = (B′ ⊗ A)vec(X) for column vectorization and the

convergence follows from Lemma 2(d).

To derive the limit of AT , we have

T−1
T∑

t=1

η̃ι,tZ
′
t = T−1

T∑

t=1

ηι,tZ
′
t +T−1

T∑

t=1

(
η̃ι,t−ηι,t

)
Z′
t

→ p E(ηι,tZ
′
t), (A.23)

where T−1∑T
t=1

(
η̃ι,t−ηι,t

)
Z′
t →p 0 follows from arguments similar to those used to study

B2. Hence,

AT →p A = Ir−1 ⊗ E(ηι,tZ
′
t). (A.24)

Under Assumption R1, V is a full rank matrix and thus is invertible. The optimal choice of

the weighting matrix follows from standard arguments for GMM estimators. �
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Proof of Theorem2. Because the s-step-aheadVMAcoefficientmatrix is given by2s =
M′FsM, we have

d2s =
s−1∑

i=0

M
′
F
s−1−idFFiM

=
s−1∑

i=0

M
′
F
s−1−i

M[d81 · · · d8p]F
i
M

=
s−1∑

i=0

2s−1−i[d81 · · · d8p]F
i
M

=
s−1∑

i=0

2s−1−i[dd d81 · · · d8p]S
′
2F

i
M (A.25)

and

vec(d2′
s) =

s−1∑

i=0

[
2s−1−i⊗

(
M

′
F
i′)]vec(S2[dd d81 · · · d8p]

′), (A.26)

where S2 = [0rp×1 : Irp] is the selector matrix that removes the first row.

Recall that L is defined in (3.15) such that

xt =




Y1,t−1 − c1

1

Y2,t−1 − c2 −Q(Y1,t−1 − c1)

Y3,t−1 − c3

1Yt−1

...

1Yt−p+1




= L




1

Yt−1

Yt−2

...

Yt−p




= LXt, (A.27)

which is a transformation between regressors in the model in (2.1) and the regressors in

its equivalent representation in (3.3). For the OLS estimators, this implies that the OLS

regression coefficients of the model in (2.1) and the OLS coefficients of that in (3.3) satisfy
[̃
d : 8̃1 − Ir : 8̃2, . . . , 8̃p

]
=
[̃
A1 : Ã2 : Ã3

]
L. (A.28)

It follows from (A.26) and (A.28) that

T
1
2 vec(2̃′

s−2′
s)

= Rvec

(
S2L

′T
1
2 (

T∑

t=p+1

xtx
′
t)

−1
T∑

t=p+1

xtη
′
t

)
+op(1)

= Rvec

(
S2L

′ϒ−1
T (T−1

T∑

t=p+1

ϒ−1
T xtx

′
tϒ

−1
T )−1ϒ−1

T T− 1
2

T∑

t=p+1

xtη
′
t

)
+op(1). (A.29)

Because V is block-diagonal consisting of the (r1 +1)× (r1 +1) upper-left submatrix and

the (rp− r1)× (rp− r1) lower-right submatrix, ϒ−1
T = diag(0r1×r1,Irp−r1+1)+o(1), and
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the (r1 +1)st column of S2L
′ consists of zeros. Thus,

S2L
′ϒ−1
T (T−1

T∑

t=1

ϒ−1
T xtx

′
tϒ

−1
T )−1ϒ−1

T T− 1
2

T∑

t=1

xtη
′
t

= LŴ−1
DDT

− 1
2

T∑

t=1

Dtη
′
t+op(1), (A.30)

where L is the rp× (rp− r1) lower-right submatrix of L′ defined in (3.17) and it has full

rank by construction.

Combining (A.29) and (A.30) yields

T
1
2 vec(2̃′

s−2′
s) = R

[
Ir ⊗ (LŴ−1

DD)
]
vec

(
T− 1

2

T∑

t=p+1

Dtη
′
t

)
+op(1)

→ d R
[
Ir ⊗J

]
ξD. (A.31)

�

Proof of Theorem 3. For s≥ 1,

T
1
2 (β̂s−βs) = 2̃sT

1
2 (̂h−h)+T

1
2 (2̃s−2s)h

= 2̃sT
1
2 (̂h−h)+ (Ir ⊗ h′)T

1
2 vec(2̃′

s−2′
s). (A.32)

The first term in (A.32) can be rewritten as

2̃sT
1
2 (̂h−h) = 2sT

1
2 Sι

[
0

θ̂ − θ

]
+op(1)

= 2sSιT
1
2 (θ̂ − θ)+op(1)

→d 2sSι

[
AWA′]−1

AW · [−Sθ ⊗K : Sθ ⊗ Ik]

[
ξD

ξZ

]
, (A.33)

where Sι denotes the last r−1 columns of Sι, and the convergence follows from Theorem

1.

By Theorem 2, the second term in (A.32) can be rewritten as

(Ir ⊗ h′)T
1
2 vec(2̃′

s−2′
s) →d (Ir ⊗ h′)R

[
Ir ⊗J

]
ξD. (A.34)

Thus, combining (A.33) and (A.34) yields Theorem 3. �

Proof of Lemma 3. The estimator K̂ satisfies

K̂L
−1ϒT

= Ŵ̂ZXŴ̂XXL
−1ϒT

=
( T∑

t=p+1

(Zt−ZT )x′tϒ
−1
T

)( T∑

t=p+1

ϒ−1
T xtx

′
tϒ

−1
T

)−1
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=
(
T−1

T∑

t=p+1

(Zt−µZ)x′tϒ
−1
T

)(
T−1

T∑

t=p+1

ϒ−1
T xtx

′
tϒ

−1
T

)−1

+op(1)

→ p [0k×(r1+1) : Ŵ
′
DZŴ−1

DD] = [0k×(r1+1) :K], (A.35)

where the first equality holds by definition, the second equality follows from xt = LXt by

(A.27), and the third equality uses

[
T− 3

2

T∑

t=1

(ZT −µZ)Y∗′
1t−1 : T

−1
T∑

t=1

(ZT −µZ) : T−1
T∑

t=1

(ZT −µZ)D′
t

]
= op(1),

(A.36)

which further follows fromLemma 2(b) and 2(c), and the convergence in probability follows

from Lemma 2(a) and 2(b), in particular the block-diagonal structure of V in Lemma 2(a).

The estimator Ĵ satisfies that

ĴL
−1ϒT

= S2Ŵ̂
−1
XXL

−1ϒT

= S2L
′ϒ−1
T

(
T−1

T∑

t=1

ϒ−1
T xtx

′
tϒ

−1
T

)−1

→ p [0rp×(r1+1) : LŴ−1
DD] = [0rp×(r1+1) : J ], (A.37)

where the first equality holds by definition, the second equality uses xt = LXt, and the

convergence in probability follows from Lemma 2(a), becauseV is block-diagonal, the first

r1 diagonal elements ofϒ−1
T are o(1), the (r1+1)th column of S2L

′ is 0, and the remaining

columns of S2L
′ are denoted by L by definition.

Given the definition of P, (A.35), (A.37), the consistency of θ̂ , and the continuous

mapping theorem give

Ĝ1sP →p 2sSι(AWA′)−1AW[−Sθ ⊗ [0k×(r1+1) :K] : Sθ ⊗ Ik], (A.38)

Ĝ2sP →p
[
(Ir ⊗ h′)R

(
Ir ⊗ [0rp×(r1+1) : J ]

)
: 0r×rk

]
. (A.39)

�

Proof of Lemma 4. Note that

P
−1�̂P

−1′

=


 6̂η ⊗

[
T−1∑T

t=1ϒ−1
T xtx

′
tϒ

−1
T

]
6̂η ⊗

[
T−1∑T

t=1ϒ−1
T xt(Zt−ZT )′

]

6̂η ⊗
[
T−1∑T

t=1(Zt−ZT )x′tϒ
−1
T

]
6̂η ⊗

[
T−1∑T

t=1(Zt−ZT )(Zt−ZT )′
]
− γ̂ γ̂ ′


,

(A.40)
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where all Xt is transformed to ϒ−1
T xt and Zt. Let β̂T = (

∑T
t=1 xtx

′
t)

−1∑T
t=1 xt1Y

′
t denote

the OLS regression coefficients that yield the residual η̃t. Note that

1 = −ϒT (β̂T −β) = −


T−1

T∑

t=1

ϒ−1
T xtx

′
tϒ

−1
T




−1

T−1
T∑

t=1

ϒ−1
T xtη

′
t = Op(T

− 1
2 )

(A.41)

by Lemma 2(a), 2(c), and 2(d). To investigate 6̂η, note that

η̃tη̃
′
t = (ηt− (β̂T −β)′xt)(ηt− (β̂T −β)′xt)′

= ηtη
′
t−1′ϒ−1

T xtη
′
t−ηtx

′
tϒ

−1
T 1′ +1′ϒ−1

T xtx
′
tϒ

−1
T 1′. (A.42)

Applying (A.42) to 6̂η, we obtain

6̂η =
1

T

T∑

t=1

ηtη
′
t−1′ 1

T

T∑

t=1

ϒ−1
T xtη

′
t−

1

T

T∑

t=1

ηtx
′
tϒ

−1
T 1′ −1′ 1

T

T∑

t=1

ϒ−1
T xtx

′
tϒ

−1
T 1

→ p 6η (A.43)

by Lemma 2(a), 2(c), and 2(d) and (A.41).

To study the upper-right submatrix of (A.40), note that

1

T

T∑

t=1

ϒ−1
T xt(Zt−ZT )′ →p

[
0k×(r1+1),Ŵ

′
DZ

]′
(A.44)

following (A.21) and Lemma 2.

Finally, the first moment satisfies

γ̂ −γ =
1

T

T∑

t=1

η̃t⊗ Zt−γ

=
( 1
T

T∑

t=1

ηt⊗ Zt−γ
)
−1′

(
1

T

T∑

t=1

ϒ−1
T xt⊗ Zt

)

= Op(T
− 1

2 ) (A.45)

by Lemma 2(d) and (A.41).

The desirable result follows from (A.40), (A.43), (A.44), (A.45), and Lemma 2(a) and

2(b). �

Proof of Theorem 4. Combining Lemmas 3 and 4, the zero matrices in the limit of

(Ĝ1s + Ĝ2s)P and its transpose reduce V and γxZ in the limit of P
−1�̂P

−1′ to their

submatrices ŴDD and ŴDZ , respectively. This removes all nondeterministic elements in V

and γxZ , and the consistency result follows immediately. �

Proof of Theorem 5. Part (a) follows from the arguments used for Theorem 4. Parts (b)

and (c) follow from Theorems 1 and 3. �
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