Discussion of “Adapting to Misspecification” by Armstrong, Kline and Sun

Discussant: Xu Cheng

Northwestern Interactions Workshop
September 22, 2023
• A fast growing literature on estimation/inference under model misspecification

 – consider perturbations of a correctly specified model

 – robustness/efficiency under misspecified models
• This paper makes an important contribution on robustness and efficiency tradeoff with misspecified models

 - there exists an unrestricted Y_U estimator that is asy unbiased, e.g., valid instruments

 - an restricted estimator Y_R with asy bias $b \in B$
 e.g., add additional invalid instruments, $b = \sqrt{n}\mathbb{E}[ZU]$

 - misspecification brings in bias but reduces variance

 - b and B are both unknown
• Some existing results in similar setups and challenges

 – pre-test / post model selection estimator is bad (Leeb and Pötscher, 2005)
 – various data-dependent smooth average of Y_U and Y_R

 – e.g., Cheng, Liao, Shi (2019) derive the risk of the averaging estimator as a function of b and plug in its unbiased estimator

 – the key is to show uniform dominance – uniformly over $b \in [0, \infty)$, the averaging estimator always has smaller risk than the unrestricted estimator Y_U, for a vector of parameters

 – however, this James-Stein type shrinkage phenomenon does not work for a scalar parameter as in the present paper

• This paper studies a scalar parameter and the minimax risk
• The main challenge is $b \in B$ and the upper bound B is unknown

 – a creative solution based on adaptation regret: the price to pay without knowing B

 – if we know B, we can construct an estimator with min worst case risk $R^*(B)$

 – if we don’t know B, we obtain worst case risk $R_{max}(B, \delta)$ for the estimator δ

 – choose δ to minimize $\sup_B \frac{R_{max}(B, \delta)}{R^*(B)}$

 – near optimal by a multiplicative factor

 – convert to minimax estimation with scaled loss for easy computation

• Get back to comparison with Y_U, the paper has a very nice result on adaptation with a worst case risk upper bound
• Some other interesting questions that I have got on a setup with Y_U and Y_R
 – How about averaging more than two estimators?
 – The paper has an extension to multiple restricted estimators!
 – What if the baseline model is also misspecified, maybe to a less degree?
 – What if the baseline model does not provide sufficient identification?
The paper provides a great solution to the robustness and efficiency trade off

focus on the challenging case of a scalar parameter

introduce the idea of adaptive estimation to allow for unknown bound on the degree of misspecification

sophisticated computation method

empirical applications in a wide range of scenarios