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We give a detailed classification of all rotationally symmetric figures of equilibrium 
corresponding to rotating liquid masses subject to surface tension. When the 
rotation rate is zero, these shapes were studied by Delaunay who found six different 
qualitative types of complete connected interfaces (spheres, cylinders, unduloids, 
nodoids, catenoids, and planes). We find twenty-six qualitatively different interfaces 
providing a complete picture of symmetric equilibrium shapes, some of which have 
been studied by other authors. In particular, combining our work with that of 
Beer, Chandrasekhar, Gulliver, Smith, and Ross, we conclude that every compact 
equilibrium is in either a smooth connected one parameter family of spheroids or a 
smooth connected one parameter family of tori (possibly immersed in either case).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that an immiscible liquid drop immersed completely in a homogeneous fluid and isolated 
from body forces (magnetic, gravitational, etc.) assumes, at rest, the shape of a sphere. This fact was 
observed by Joseph Plateau in the 1840s while conducting experiments with neutrally buoyant oil drops 
immersed in a solution of alcohol and water. Plateau observed that such an isolated drop may rigidly rotate 
and assume an axisymmetric shape [9]. Based on his observations Plateau also conjectured that toroidal 
equilibrium shapes exist and satisfy an appropriate mathematical equation.

In 1855, August Beer [1] derived a geometric equation modeling the shape of rotationally symmetric ro-
tating drops: The mean curvature of the boundary of the drop is a quadratic function of distance to the axis 
of rotation. Beer went on to study certain simply connected solutions of his equation. In 1914, Rayleigh [10]
obtained sufficient conditions to guarantee the existence of a toroidal solution. In his 1964 paper [3], Chan-
drasekhar considered the stability of Beer’s simply connected rotationally symmetric solutions.
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All the work mentioned above involves rotationally symmetric figures, but the geometric condition can 
also be applied to non-symmetric interfaces. Henry Wente [13] proved that every equilibrium rotating drop 
has a symmetry plane orthogonal to its axis of rotation, and later Rafael López [8] showed, under certain 
restrictions, that rotating bubbles must be axially symmetric. However, Brown and Scriven [2] obtained 
multi-lobed drop shapes numerically as bifurcations from the rotationally symmetric family. Two and three 
lobed shapes were produced experimentally in the low gravity environment of Spacelab by a group of 
researches from JPL [12]. A mathematical proof of existence for specific non-symmetric solutions of the 
modeling equation bifurcating from the rotationally symmetric solutions is not known. Kapouleas [7] has 
constructed non-symmetric solutions which share the symmetry of the surfaces obtained by Brown and 
Scriven but are far from the rotationally symmetric solutions. We note also that Wilkin-Smith [14] obtained 
an interesting existence result for solutions close to the sphere. These solutions may be non-symmetric, but 
the proof is non-constructive and apparently does not provide this information. The paper [14] also contains 
an extensive list of references related to rotating drops.

Plateau’s conjecture on the existence of toroidal solutions was unresolved until 1984, when Gulliver [4]
verified that toroidal rotating drops do indeed exist. Gulliver found a one parameter family of embedded 
tori each with convex cross section. Smith and Ross [11], following Gulliver, characterized all embedded 
toroidal figures of equilibrium. Hynd and McCuan showed in [6] the existence of infinitely many immersed 
toroidal solutions with figure-eight cross section.

Heine [5] has recently numerically computed non-symmetric toroidal shapes with many lobes. Like the 
shapes of Brown and Scriven, there is no rigorous mathematical proof that these shapes correspond to 
solutions of the modeling equation.

In this work, we classify all rotational figures of equilibrium. These include the classical rotating drops 
studied by Beer, Rayleigh, Chandrasekhar (spheroids), rotating bubbles, and toroidal drops. There are 
also unbounded solutions and additional immersed solutions which have received little attention in the 
literature but arise in modeling the interfaces of rotating liquid masses in contact with a rotating container; 
see Fig. 5. Our classification yields twenty-six qualitatively different shapes. We show that every compact 
rotational figure of equilibrium is a spheroid or toroidal figure and prove that all of these surfaces belong to 
two well-defined smooth one parameter families. We believe this work provides a complete picture for the 
rotationally symmetric equilibrium figures.

1.1. Summary of shapes

The complete list of qualitative types of rotational figures of equilibrium includes the Delaunay surfaces 
(for zero angular velocity) and the twenty-six surfaces we now describe. Perhaps the easiest way to describe 
the latter shapes is by comparison to the Delaunay surfaces shown in Fig. 1 and as deformations of surfaces 
in the family itself. We point out, in particular, the qualitative properties of the nodoid, having an immersed 
periodic meridian that loops toward the axis with no inflections, and the unduloid, having an embedded 
periodic meridian with one inflection in each half-period.

Circular cylinders (with the same axis as the axis of rotation) are possible solutions with both zero and 
nonzero angular velocity. These shapes of liquids in rotation are indistinguishable from the shapes of liquid 
cylinders at rest. Every possible radius is represented among the cylinders, and the orientation may be taken 
in either direction (to model liquid rotating within the cylinder or a cylinder enclosed by rotating liquid).

There are also solutions that are qualitatively the same as Delaunay unduloids; see Fig. 2(a). To denote 
the fact that these surfaces are analytically distinct from unduloids, we refer to them as unduloid type. In 
the case of zero angular velocity, i.e., the surfaces of Delaunay, the unduloids are often viewed as smooth 
deformations of cylinders under which necks and bulges appear. The unduloid type surfaces, for nonzero 
angular velocity, may also be viewed as deformations of cylindrical solutions.



J. Elms et al. / J. Math. Anal. Appl. 446 (2017) 201–232 203
Fig. 1. There is a two parameter family of Delaunay surfaces having six distinct qualitative types: cylinder, unduloid, sphere, 
nodoid, catenoid, plane. Each surface has constant mean curvature and is rotationally symmetric. We note that the cylinder may 
be smoothly deformed, within the family of Delaunay surfaces, to an unduloid by the introduction of periodic necks and bulges. 
Other deformations among these surfaces are possible as well.

Fig. 2. (a) Unduloid type, (b) breaking unduloid (horizontal tangent), (c) puzzle type (embedded), (d) puzzle type (immersed with 
the outer corrugations coming together along a circle of self-tangency), (e) puzzle type (immersed with a higher degree of immersion 
on the outer corrugations but with the inner corrugations still disjoint), (f) puzzle type (inner corrugations coming together along 
a circle of self-tangency), and (g) puzzle type (both inner and outer corrugations having a higher degrees of immersion).

It is not possible for a deformation through Delaunay unduloids to produce a meridian which does not 
project simply onto the axis of rotation. There are no such unduloids. Among the equilibria corresponding 
to nonzero angular velocity this is possible. Referring to the direction of the axis as vertical, we obtain de-
formations which resemble an unduloid but have a single horizontal tangent per half-period on the meridian 
(located at the inflection); see Fig. 2(b). These breaking unduloids further deform into surfaces each of which 
has two horizontal tangents per half period at points distinct from the single inflection; see Fig. 2(c). The 
resulting meridian is no longer a graph over the axis, and contains corrugations resembling those found on 
puzzle pieces; we term these surfaces puzzle unduloids. While initially embedded for deformations near the 
breaking unduloid, as one continues the deformation, the corrugations of the puzzle unduloids self-intersect 
as indicated in Fig. 2 (d–g). The degree of immersion increases until the difference in vertical height between 
consecutive vertical points on the meridian, later called the final vertical height of the half period, is zero. 
In this way, the periodic puzzle unduloids limit to a countable cover of an immersed figure-eight torus as 
shown in Fig. 7(a).

The deformation continues through the toroidal solutions to surfaces with fundamentally different qual-
itative properties. The meridians of these surfaces still have one inflection per half period, but contain 
immersed loops both toward and away from the axis. For deformations near the figure-eight torus, these 
binoids have a high degree of immersion. Continuing the deformation (which is possible) the loops sepa-
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Fig. 3. (a) Binoid, (b) cylindro-nodoid, (c) cylindro-antinodoid, (d) nodoid type, (e) antinodoid.

Fig. 4. Generalized spheroids: (a) oblate, (b) flat poled, (c) inflected, (d) pinched, (e) immersed, (f) infinite (half) bubble, (g) prolate 
spheroid.

rate until there are (on average) only two points of self-intersection per period as indicated on the left in 
Fig. 3(a).

The deformation continues with the loops spreading farther apart in the vertical direction until, in the 
limit, two surfaces of distinct qualitative type are obtained. One is asymptotic to a cylinder with a single 
loop facing inward—a cylindro-nodoid. Another is asymptotic to the same cylinder with a single loop facing 
outward—a cylindro-antinodoid. See Fig. 3(b) and (c).

Deformation through the cylindro-nodoid and cylindro-antinodoid is also possible, and each cylindro-
nodoid and cylindro-antinodoid is also a limit of surfaces distinct from the binoids discussed above. One 
family is of nodoid type, Fig. 3(d), and the other antinodoid, Fig. 3(e). As the names suggest, nodoid type 
surfaces are qualitatively the same as Delaunay nodoids, though analytically distinct; antinodoid surfaces 
have inflectionless immersed meridians, but the loops are facing away from the axis.

We turn next to surfaces having contact with the axis of rotation; see Fig. 4. One finds here the oblate 
(or concave) spheroids considered by Beer and Chandrasekhar, Fig. 4(a). The poles move together under 
deformation until an inflection point occurs on the axis—the flat poled spheroid, Fig. 4(b). Beyond this, 
the inflection moves off the axis and there are concave regions around the poles, Fig. 4(c). This family of 
inflected spheroids limits to a pinched spheroid, Fig. 4(d), which is tangentially immersed on the axis and 
bounds a solid three-dimensional torus. Next, there are immersed spheroids, Fig. 4(e). Again, taking a limit, 
we obtain two surfaces asymptotic to a cylinder. One is an infinitely long prolate bubble (rotating liquid 
on the outside) which crosses the axis at one point and is asymptotic to the cylinder, Fig. 4(f). The other 
is a cylindro-antinodoid, which type we have already mentioned. The remaining spheroids correspond to 
bubbles and are concave and prolate, Fig. 4(g).

It should be emphasized that while the compact embedded examples have received much more attention 
in previous studies, portions of all of these surfaces are required to model rotating liquids in contact with 
a rotating container. Complete surfaces with self-intersections, of course, are non-physical when taken as a 
whole, but embedded portions of these same surfaces do correspond to physical interfaces. Fig. 5 indicates 
in cross-section how a binoid liquid interface might appear in an annular container.
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Fig. 5. Cross-section of a rotating annular container partially filled with liquid. The interface is modeled by a portion of a binoid.

Fig. 6. (a) breaking nodoid (note the surface comes close to the axis but does not intersect it), (b) wobbleoid (inflections are 
not obvious in the graphic but are present), (c) breaking nodoid with higher degree of immersion, (d) breaking antinodoid, 
(e) antiwobbleoid (inflections are fairly obvious here), (f) cylindro-unduloid.

There is an additional family of distinct nodoid type surfaces. These may be distinguished from the ones 
mentioned above by the fact that the rotating liquids they model are considered to be on the opposite sides. 
These model the liquid inside the loops while the others model liquids outside the loops. In this family, 
additional deformations are possible.

One encounters here the appearance of an isolated inflection on the meridian. We call the corresponding 
surfaces breaking nodoids1 as shown in Fig. 6(a) and (c). The deformation continues into surfaces whose 
meridians have the topology of a nodoid, but lose the key feature of being inflectionless. They have two 
changes of concavity within each half period. These we term wobbleoids or inflected nodoids, Fig. 6(b). These 
may be deformed so that the degree of immersion increases as described above with the nonconcavity being 
preserved to obtain inflected tori in the limit. The family of nodoid type surfaces with liquid inside the 
loops also limits to Gulliver’s tori of convex cross section.

In each case, the deformation may be continued through the toroidal solutions. Passing through Gulliver’s 
tori, one obtains antinodoids. Again, these are distinct from the antinodoids mentioned previously by virtue 
of a change of orientation of the mean curvature. In addition, these antinodoids admit deformation into 
breaking and inflected antinodoids (or antiwobbleoids) which are topologically like an antinodoid but have 

1 Our use of the term “breaking” here has a different meaning than it did for unduloid type surfaces, where it indicated a 
horizontal tangent at an inflection on the meridian. For nodoid type surfaces “breaking” simply indicates the appearance of an 
inflection on the meridian.
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Fig. 7. (a) Immersed toroid (achtoid), (b) pinched spheroid (intersects the axis and may also be considered a spheroid), (c) nonconvex 
toroid, i.e., embedded toroid with nonconvex cross-section (note this surface comes very close to the axis but does not intersect it), 
(d) Gulliver toroid (convex cross-section). Between the family of nonconvex toroids and the Gulliver toroids, one finds the breaking 
toroids (not shown) which have convex cross-section and a pair of inflections on the meridian.

one or two inflections per half period respectively. A breaking antinodoid is shown in Fig. 6(d) and an 
antiwobbleoid is shown in Fig. 6(e). These surfaces may also be deformed into inflected tori.

It is also possible to have unduloid type surfaces with the liquid to the outside. These are qualitatively 
the same as the unduloid type surfaces discussed above, though they are analytically different and admit a 
new kind of deformation leading to the last distinct qualitative type. Namely, it is possible to increase the 
period of these surfaces in such a way that a single inner neck is preserved and the limit surface is asymptotic 
to a cylinder, Fig. 6(f). Such a surface will be called a cylindro-unduloid and is always contained within 
the cylinder to which it is tangent, having a unique point of minimum radius and exactly two inflections. 
It is not possible to preserve a single bulge of an unduloid type surface. Aside from the tori, the basic 
deformations we have described are indicated in Fig. 6.

Four of the five qualitatively different toroids are indicated in Fig. 7. Technically, the pinched spheroid 
is a topological sphere tamely immersed at the poles and bounding a solid topological torus.
The master list: These are the names of the twenty-six qualitative types of rotational figures of equilibrium: 
cylinder, unduloid type, breaking unduloid, puzzle type, immersed puzzle type, immersed toroid (achtoid), 
binoid, cylindro-nodoid, cylindro-antinodoid, nodoid type, antinodoid, oblate spheroid, flat poled spheroid, 
inflected spheroid, pinched spheroid, immersed spheroid, infinite bubble, prolate spheroid, breaking nodoid, 
wobbleoid/inflected nodoid, Gulliver toroid (convex cross-section), breaking toroid, nonconvex embedded 
toroid, breaking antinodoid, antiwobbleoid/inflected antinodoid, cylindro-unduloid.

We now proceed to explain how these surfaces arise analytically in terms of physical parameters and 
prove various analytic and geometric properties of the deformations described heuristically above. The 
organization of the paper is as follows: In section 2, we classify rotational spheroids and unbounded figures 
of equilibrium. In section 3, we refine our classification techniques by considering “terminal heights” and 
characterize all rotational tori of equilibrium. We would like to thank Sarah McCuan for her help with 
making the illustrations.

2. Initial classification

2.1. Energy of a rotating drop

If a volume V of liquid rigidly rotates, as described in the introduction, then we may take a frame of 
reference that rotates with the drop. With respect to this frame, the drop will be in apparent equilibrium. 
We assume the equilibrium shape minimizes an energy consisting of free surface energy and the potential 
energy associated with the centrifugal field ω2r. Explicitly we obtain

E = σ|S| − 1
2ρω

2
∫
V

r2, (1)

where σ is a material dependent surface tension, S is the boundary of V or the free surface, ρ is the density 
of the drop, ω is the angular velocity of rotation, and r is the distance to the axis of rotation. The expression 
(1) is determined only up to an additive constant.
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Fig. 8. Meridian curves and orientation.

Note that ρ is not the difference in densities of the two fluids, but we are assuming the outer fluid is not 
rotating, n.b., the assumption that the outer fluid is perfectly inviscid. Thus, in our chosen rotating frame 
the fluid exterior to the drop contributes centrifugal/potential energy to the system but also appears to 
rotate—adding kinetic energy of equal magnitude but opposite sign.

Under our assumptions, the observed interface provides a critical point for E with respect to volume 
preserving variations. It is well known that this is equivalent to providing a critical point for a modified 
energy

E� = σ|S| − 1
2ρω

2
∫
V

r2 + 2σ�|V| (2)

where � is an appropriately chosen constant. Determining how � must be chosen in terms of the physical 
parameters, and the volume of V in particular, is difficult—but important for experimental investigations. 
We do not address this question directly here but consider all possible axially symmetric critical surfaces 
for variational problems associated with energies of the form (2).

2.1.1. Two coordinate expressions for E
Every portion N of a smooth meridian curve generating a critical surface for (2) may be locally expressed 

as either a function u = u(r) of radial distance r from the axis or as a function y = y(x) of height x along 
the axis. See Fig. 8(a). The corresponding energy expressions, up to the positive multiplicative constant 
2πσ and additive terms independent of the interior of N , are given by

Er(u) =
∫ (

r
√

1 + u′ 2 − 4ar3u + 2�ru
)
dr (3)

and

Eh(y) =
∫ (

y
√

1 + y′ 2 − ay4 + �y2
)
dx (4)

where a = ρω2/(8σ).
These integrals should not be interpreted as indefinite, but are taken over the interval obtained by 

projecting N onto the axis of the respective independent variable. Furthermore, while these integrals do 
not represent the total energy of the system, a variation of N will result in the same change in one of these 
integrals (if it is well defined) as in the total energy.

2.1.2. Euler–Lagrange equations
The Euler–Lagrange equations associated to (3) and (4) are

(
ru′√

′2

)′

+ 4ar3 − 2�r = 0 (5)

1 + u
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and
(

yy′√
1 + y′ 2

)′

−
√

1 + y′ 2 + 4ay3 − 2�y = 0. (6)

Each of these equations expresses the fact that the mean curvature H of the interface is a quadratic function 
of distance to the axis. In each case, the mean curvature is measured with respect to the “upward” normal; 
see Fig. 8(b), where the upward normal in (r, u) coordinates is shown, and Fig. 8(c), where the upward 
normal in (x, y) coordinates is shown. In either case the mean curvature is given by

2H = −4ar2 + 2�. (7)

The equation for the reflection of a solution across the r axis is obtained by switching the signs of both a
and � in equation (5) or leaving them unchanged in equation (6).

2.2. Graphs over the radius; u = u(r)

We may integrate (5) to obtain

u′(r)√
1 + u′(r)2

= −ar3 + �r + c

r
(8)

where c is a constant of integration. Solutions of (8) depend, up to a vertical translation, on three parameters 
(a, �, c). For nontrivial rotation, the parameter a may be eliminated by scaling. Indeed, if u = u(r) is a 
solution of (8) corresponding to parameters (a, �, c), then

r �→ 3
√
au

(
r
3
√
a

)
(9)

satisfies the same equation with parameters (1, �/ 3
√
a, 3

√
ac). Thus up to a dilation of space, we may set 

a = 1 and consider solutions of (8) depending on two parameters (�, c).
Setting a = 1 and

v(r) = −r3 + �r + c

r
,

the equation (8) becomes simply

sinψ = v, (10)

where ψ is the inclination angle the curve r �→ (r, u(r)) makes with the positive r-axis. It follows that the 
meridians of rotational figures of equilibrium correspond to parameter values (�, c) for which

{r > 0 : −1 ≤ v(r) ≤ 1} �= ∅. (11)

Moreover, qualitative properties of such a meridian can be deduced directly from (10) or, equivalently, from 
the intersection of the graph of v = v(r) with the horizontal strip Σ = {(r, t) : −1 ≤ t ≤ 1}.

Fig. 9(a) indicates the relations between three plots of v(r) and the strip Σ. The first curve, determined by 
the pair (�, c) = (0, −3 3

√
2/8 −1/5), does not intersect the strip and, thus, does not correspond to a solution. 

The second curve, determined by the pair (�, c) = (0, −3 3
√

2/8), is tangent to the strip and corresponds to a 
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Fig. 9. On the left (a) we have shaded the strip Σ and indicated three plots of v for various values of � and c. The lowest curve does 
not intersect the strip and therefore does not correspond to a rotational figure of equilibrium. The next curve is tangent to the strip 
determining a unique radius for a circular cylindrical solution with negative mean curvature, i.e., liquid on the inside, which is a 
rotational figure of equilibrium for a particular collection of physical parameters. The last curve intersects the strip determining an 
interval (r1, R) along the radial axis. In the middle (b), we have taken this meridian curve and plotted the corresponding solution 
u = u(r) for r1 ≤ r ≤ R above it. Finally, on the right (c) we have combined the plots of v and u; the vertical axis, in this 
case, represents different values for the plot of v (in thick gray) and the plot of u (in black). This particular meridian solution 
is of unduloid type, sharing the qualitative properties of a Delaunay unduloid. In the classification of solutions given below, the 
(�, c) parameter space is divided into three “quadrants” in rough analogy with the standard coordinate quadrants of a plane, but 
determined by changes in qualitative properties of solutions. The cylindrical surface is among the cylinders along the curve IIIa in 
Fig. 13. The unduloid type surface is in region IIIA of Fig. 13.

Fig. 10. (a) breaking unduloid (� = 2
√
−c), (b) puzzle unduloid (2√−c < � < �1(c)), (c) cylindro-nodoid, cylinder, and cylindro-

antinodoid (� = �1(c)) (d) nodoid-type and antinodoid (�1(c) < �). Here again, we have plotted v = sinψ in thick gray and a 
portion of the solution profile u = u(r) in black. The transition values � = �1(c) and � = 2

√
−c for the parameter � are discussed 

below. In particular, the value � = �1(c) is defined in Proposition 2.1.

circular cylinder of radius r = 3
√

2/2 according to Lemma 2.1 and Proposition 2.1 below. The third curve, 
determined by the pair (0, −3 3

√
2/8 + 1/5), corresponds to a solution u = u(r) as indicated in Fig. 9(b).

Notice the initial inclination of the meridian is ψ = −π/2 when the radial value is a minimum r1; the 
inclination increases to a negative maximum (an inflection on the meridian) and then decreases back to 
ψ = −π/2 at a maximum radial value R. It will be shown that this meridian extends periodically and 
shares the qualitative features of a Delaunay unduloid as indicated in Theorem 2.1 below.

In order to represent the various meridian types compactly and indicate certain qualitative properties, 
we have found it convenient to plot the graphs of v = v(r) and u = u(r) on the same axes as indicated in 
Fig. 9(c). It should be noted that the vertical axis in this case is playing a dual role, and the same scales 
are not always used for the two graphs. These observations provide a means for an initial classification of 
surfaces. Representative cases of the information encoded in these combined inclination/solution graphs are 
also indicated in Fig. 10.

We consider first the case of right circular cylinders. The following result follows directly from substitution 
in equation (7).
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Lemma 2.1. Assume (�, c) ∈ R
2 and there is some r1 > 0 such that

|v(r1)| = 1 and v′(r1) = 0.

Then associated to the parameter point (�, c) is a (solution) cylinder with radius r1.

For typical parameter points (�, c) corresponding to solution surfaces, the preimage in (11) contains an 
interval for which |v| = 1 at the endpoints. The following result characterizes these surfaces.

Theorem 2.1. Assume (�, c) ∈ R
2 and there are r1, R > 0 such that v(r) ∈ (−1, 1) for r ∈ (r1, R) with 

|v(r1)| = |v(R)| = 1. If

v′(r1) �= 0 and v′(R) �= 0, (12)

then associated to (�, c) is a smooth complete surface of revolution with meridian

∪k∈Z [{(r, u(r) + 2hk) : r1 ≤ r ≤ R} ∪ {(r,−u(r) + 2hk) : r1 ≤ r ≤ R}] . (13)

The function u is given by

u(r) =
r∫

r1

v(t)√
1 − v(t)2

dt, r1 ≤ r ≤ R (14)

and h = u(R).

Proof. The function u is finite valued and continuous as v has simple roots at r1 and R. It follows that the 
set defined in (13) is a continuous curve. We will verify that this curve is in fact smooth. Since u ∈ C∞(r1, R)
and the curve is periodic by construction, we need only check the points (r1, 0) and (R, h). The argument 
in each case is similar: Let us assume, without loss of generality, that v(r1) = 1. In view of (14), u′ > 0 on 
an interval (r1, r1 + δ] for δ > 0 chosen sufficiently small. Consequently, u restricted to [r1, r1 + δ] has an 
inverse y+ : [0, ε] → [r1, r1 + δ] for some ε > 0. Note that y+(0) = r1, y′+(0) = 0 and y+ satisfies (6), that is,

y′′(x)
(1 + y′(x)2)3/2

− 1
y(x)

√
1 + y′(x)2

= −4y(x)2 + 2� (15)

on (0, ε). On the other hand, the function y−(x) := y+(−x) defined for x ∈ [−ε, 0] satisfies y−(0) = r1, 
y′−(0) = 0 and satisfies (15) on (−ε, 0). Moreover, y− is the inverse of −u restricted to [r1, r1 + δ].

Substituting y = y+ in (15) and sending x → 0+ gives

y′′+(0+) − 1
r1

= −4r2
1 + 2�.

Likewise, if we substitute y = y− in (15) and send x → 0−, we get

y′′−(0+) − 1
r1

= −4r2
1 + 2�.

Therefore, the function

y(x) :=
{
y−(x), −ε ≤ x ≤ 0
y (x), 0 ≤ x ≤ ε
+
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is C2 on (−ε, ε) and solves the ODE (15). As a result, y is smooth in some neighborhood of 0 which proves 
the claim. �

The surfaces described in the above theorem are periodic with half period

h =
R∫

r1

v(t)√
1 − v(t)2

dt.

Observe that h is a function of the parameters (�, c). A detailed discussion of h is given in the following 
section. Values (�, c) for which h vanishes are of particular note; these correspond to rotational tori of 
equilibrium.

The next class of surfaces we consider occur when one of the conditions in (12) fails. In this case, the 
associated parameters correspond to solutions that are asymptotic to cylinders (in addition to the cylinders 
described in Lemma 2.1).

Theorem 2.2. Assume (�, c) ∈ R
2 and that there are r1, R > 0 such that v(r) ∈ (−1, 1) for r ∈ (r1, R) with 

|v(r1)| = |v(R)| = 1. If

v′(r1) �= 0 and v′(R) = 0,

then associated to (�, c) is a smooth complete surface of revolution with profile

{(r, u(r)) : r1 ≤ r < R} ∪ {(r,−u(r)) : r1 ≤ r < R} . (16)

The function u is given by

u(r) =
r∫

r1

v(t)√
1 − v(t)2

dt, r1 ≤ r < R.

This surface of revolution is asymptotic to a cylinder with radius R.

Remark 2.1. A similar conclusion follows if we assume v′(r1) = 0 and v′(R) �= 0.

Proof. We can argue as in the previous assertion to verify that the curve (16) corresponds to a smooth 
meridian curve. Therefore, we focus on verifying u(r) tends to infinity as r tends to R from below. Again, 
we may assume v(R) = 1 as the alternative case is similar.

Choose ε > 0 sufficiently small, so that v ∈ [1/2, 1] on [R− ε, R]. Note for r ∈ [R− ε, R]
r∫

R−ε

v(t)√
1 − v(t)2

dt =
r∫

R−ε

v(t)√
1 + v(t)

1√
1 − v(t)

dt

≥
r∫

R−ε

1/2√
2

1√
1 − v(t)

dt

= 1
2
√

2

r∫
R−ε

1√
1 − v(t)

dt. (17)

Expanding 1 − v in a Taylor series about R, we get
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1 − v(r) = −1
2v

′′(R)(r −R)2 + o(r −R)2 (18)

as r → R.
Since v < 1 on (r1, R), (18) implies v′′(R) ≤ 0. In particular, for ε chosen small enough

1 − v(r) ≤
(
−1

2v
′′(R) + 1

)
(R− r)2, R− ε ≤ r < R.

Combining this inequality with (17) gives

r∫
R−ε

v(t)√
1 − v(t)2

dt ≥ 1
2
√

(2 − v′′(R))

r∫
R−ε

1
R− t

dt

= 1
2
√

(2 − v′′(R))
ln

(
ε

R− r

)

for r ∈ [R− ε, R). Thus,

lim
r→R−

r∫
R−ε

v(t)√
1 − v(t)2

dt = +∞.

As a result, limr→R− u(r) = +∞. �
The only surfaces to which the general results above do not apply directly arise when c = 0. In this case 

v is a cubic polynomial that always has a root at r = 0. When we have additionally that � < 3/ 3
√

4, then 
|v(R)| = 1 always has a unique positive root R; one finds v(R) = −1 and v′(R) < 0, so there is a unique 
solution which models a compact rotating drop (liquid inside). This one parameter family of rotational 
figures of equilibrium includes the family of spheroids studied by Rayleigh, Beer, and Chandrasekhar. See 
Fig. 11. When � ≥ 3/ 3

√
4, the equation |v(R)| = 1 has multiple solutions; some of these solutions satisfy 

v(R) = 1 and correspond to bubbles (liquid outside). The arguments we have presented above, with minor 
modifications, yield the following result.

Corollary 2.1. Assume c = 0, � ∈ R, and that there is some R > 0 such that v(r) ∈ (−1, 1) for r ∈ [0, R)
with |v(R)| = 1. If v′(R) �= 0, then associated to � is a smooth compact surface of revolution with profile

{(r, u(r) − u(R)) : 0 ≤ r ≤ R} ∪ {(r,−u(r) + u(R)) : 0 ≤ r ≤ R} .

The function u is given by

u(r) =
r∫

0

v(t)√
1 − v(t)2

dt, 0 ≤ r ≤ R.

Alternatively, if v′(R) = 0, then associated to � is a smooth complete surface of revolution with profile

{(r, u(r)) : 0 ≤ r < R}

In this case, the integral representation given above holds for 0 ≤ r < R with limr↗R u(r) = +∞ and the 
surface is asymptotic to a cylinder from within. See, for example, Fig. 4(f).
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Fig. 11. The process of pinching spheroids. In this case c = 0; 0 < � < 3/ 3
√

4. (a–c) indicate physical embedded drops for increasing 
� while (d) has become immersed.

Fig. 12. Transition curves in (�, c) parameter space. The curve � = �−1(c) is a curve representing cylinders (liquid inside) and the 
only non-existence curve; there are no surfaces corresponding to � < �−1. In addition, � = �−1(c) is also a boundary of unduloid 
type solutions (liquid inside). The curve � = 2

√
−c represents breaking of the profile in these “unduloid” type solutions in which 

the meridians cease to be graphs. The curve � = �1(c) denotes a limiting transition associated with the appearance of cylinders 
(liquid outside) accompanied by various other solutions depending particularly on the sign of c. The curve � =

√
12c separates 

meridians of “nodoid” type with no inflections (0 < c < 3/16 and � <
√

12c) from those with two inflections per half period. The 
solutions for 0 < c < 3/16 and � =

√
12c have a single inflection per half period, but no change of concavity, and are termed 

breaking nodoid (or antinodoid) type. Finally, the curve � = μ1(c) denotes another appearance of cylinders (liquid outside) and 
the extinction of a second unduloid type family (liquid outside). See also Fig. 13 below.

Using the results above along with a straightforward analysis of the rational function v = v(r), one finds 
the initial collection of curves, indicated in Fig. 12. These curves generally correspond to qualitative changes 
of solutions. There is a secondary collection of curves, associated primarily with changes in the degree of 
immersion. The most important of these is the torus curve h = 0 indicated in Fig. 17. It is possible, as 
discussed briefly below, to determine the precise degree of immersion for solutions near the solid curves of 
Fig. 12 and Fig. 13. These curves represent the parameter points (�, c) for which the equation |v(r)| = 1 has 
a root of multiplicity two and, thus, where cylinders occur. The cylinder curves are determined explicitly 
and we now summarize their properties.

Proposition 2.1. Let (�, c) ∈ R
2. The equations

|v(r)| = 1, v′(r) = 0

have a positive solution r if and only if one of the following hold:

(i) c < 0 and

� = �−1(c) := 3t2 + c

t2
,

where t is the unique positive solution of 2t4 + t + 2c = 0;
(ii) c ≤ 3/16 and

� = �1(c) := 3t2 + c

t2
,

where t is the largest positive solution of 2t4 − t + 2c = 0;
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Fig. 13. First pass through parameter space. In this illustration we have inset plots of v = sinψ and u = u(r) in the (�, c) parameter 
space to illustrate various solutions. The axes of the insets are not labeled except for the two in the lower left corner in which the 
strip {(r, t) : −1 ≤ t ≤ 1} is also shaded. The normal pointing out of the liquid is indicated for cylinders.

(iii) 0 < c ≤ 3/16 and

� = μ1(c) := 3t2 + c

t2
,

where t is the smallest positive solution 2t4 − t + 2c = 0.

The first cylinder curve determined by � = �−1(c) is concave and asymptotic to the negative �-axis. Each 
solution corresponds only to a cylinder, and there are no solutions for � < �−1(c). This is the only boundary 
for nonexistence in the (�, c) parameter plane.

Since we refer to an explicit value associated with the first cylinder curve, we record that expression here. 
For c < 0, the function v = v(r) is concave and attains a unique maximum at some rmax = rmax(�, c). In 
fact,

rmax =

√
� +

√
�2 − 12c
6 > 0. (19)

The first cylinder curve � = �−1 may also be expressed as a level set {(�, c) : v(rmax) = −1}.
The second cylinder curve has a corner at (�, c) = (3/2, 3/16) and is asymptotic to the positive �-axis. The 

portion determined by � = �1(c) is concave while the portion � = μ1(c) is convex. Each point corresponds 
to a surface asymptotic to a cylinder.
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Parameters not belonging to those curves correspond to surfaces that are either periodic (and possibly 
toroidal) or are in the spheroid family.

The two dashed curves in Fig. 12 follow from a similar elementary analysis. Their explicit expressions 
are even simpler: � = 2

√
−c for c < 0 and � =

√
12c for 0 < c < 3/16, which correspond to the appearance 

of critical points and inflections in the meridian respectively.
Fig. 13 represents visually the qualitative distinctions which are determined by our initial classification. 

We recall that a discussion of how to interpret the insets in this figure is given above. In Fig. 9(c) the 
function v is plotted in thick gray along with the corresponding meridian for (�, c) in a region adjoining 
the first cylinder curve. The sign of v matches the sign of u′ and hence the monotonicity of the meridian 
given by u = u(r) is known: The solution u decreases from u(r1) = 0 to u(R) < 0 with a single inflection 
corresponding to r = R as indicated. Theorem 2.1 applies, and the meridian is of unduloid type.

Some regions are left ambiguous as indicated by quotation marks because this initial classification does 
not provide some necessary information on the value of the half period h = u(R). The relative height of 
an inflectionless loop (“nodoid type” or “antinodoid”) is known in all cases where v = v(r) is concave or 
convex on the interval of definition. This follows from the convexity-height lemma of [6], which we also state 
(Lemma 3.2) and refine in the next section. This eliminates the ambiguity of the quotation marks in the 
upper left region II (nodoid type) and the lower right region IV (nodoid and antinodoid type).

This initial classification, furthermore, determines precisely the qualitative type of all solutions on and 
in neighborhoods of the cylinder curves and on the dashed curve in the fourth quadrant.

As mentioned above, the toroid curve of Fig. 17 is not indicated in Fig. 13. Certain qualitative distinctions 
are also omitted from Fig. 13 due to space limitations. Of particular note are the following: The torus curve 
separates the portion IIc of the “breaking nodoid” curve into breaking nodoids (on the left) and breaking 
antinodoids (on the right). The antiwobbleoids (or inflected antinodoids) are not shown and are to the 
right of the torus curve in region II. The immersed spheroids correspond to a segment on the axis between 
the torus curve and the second cylinder curve; the left endpoint corresponds to the pinched spheroid. The 
binoids are not shown and are to the right of the torus curve in region III. Finally, there are five kinds of 
toroids which occur in obvious succession along the torus curve. The analysis of the torus curve itself is 
addressed in the following section.

3. Terminal heights

As described above, the terminal heights h = u(R) distinguish between nodoid type surfaces and antin-
odoid type surfaces with zero values corresponding to toroidal solutions. Given the continuity of the terminal 
height h with respect to � and c, one concludes, as in [6], that a transition involving toroidal solutions must 
take place along each parameter line c = constant. In the next section, we provide a proof of the required 
continuity and show the transition must take place in a well-defined, relatively narrow strip.

We begin with some preliminary results (including the fundamental continuity result) and auxiliary 
results of independent interest for the geometric dependence of surfaces (including unduloid type) on the 
parameters � and c.

3.1. Continuity

Let r = r1 and R denote specified simple roots of polynomial equations with coefficients depending on 
the parameters � and c and corresponding to one qualitative type of solution in a region of the (�, c)-plane 
as described above. Then

h =
R∫

v(t)√
1 − v(t)2

dt
r
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represents the corresponding terminal height, and h = h(�, c) is a well-defined continuous function in that 
region of the (�, c)-plane. Though this assertion is often quoted (even in our own paper [6]), we are unaware 
of a detailed proof in the literature. We will need a somewhat more general version below, so we provide a 
proof here.

Lemma 3.1. Let Q ⊂ R
2 be an open and bounded region. Let r and R denote positive continuous functions 

on Q satisfying r < R. If f : (0, ∞) ×Q → R is locally Lipschitz continuous and satisfies

√
(t− r)(R− t) f(t, q) ≤ M (20)

for q ∈ Q, r(q) < t < R(q), and some constant M , then

w(q) :=
R(q)∫
r(q)

f(t, q) dt

is continuous on Q.

Proof. Let ε > 0 and let q0 ∈ Q be fixed. We first claim that for δ > 0 small enough,
∣∣∣∣∣∣∣
r(q)+δ∫
r(q)

f(t, q) dt

∣∣∣∣∣∣∣ <
ε

8 for |q − q0| < δ. (21)

To see this, note first that for all δ small enough, owing to the continuity of R− r at q0, we will have

R(q) − r(q) − δ >
R(q0) − r(q0)

2 .

It may also be assumed, without loss of generality, that we have in addition to (20)

M ≥ 1√
R(q) − r(q)

≥ 1
2
√

R(q0) − r(q0)
for |q − q0| < δ.

Then ∣∣∣∣∣∣∣
r(q)+δ∫
r(q)

f(t, q) dt

∣∣∣∣∣∣∣ ≤
r(q)+δ∫
r(q)

M√
(t− r)(R− t)

dt

≤
r(q)+δ∫
r(q)

4M2√
t− r(q)

dt

= 8M2
√
δ.

If we further require 
√
δ < ε/(64M2), the claim is established. Similarly, for all δ small enough, we will have

∣∣∣∣∣∣∣
R(q)∫

f(t, q) dt

∣∣∣∣∣∣∣ <
ε

8 for |q − q0| < δ. (22)

R(q)−δ
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In particular, we may take δ0 > 0 small enough so that (21) and (22) hold for 0 < δ < δ0. Moreover, for 
0 < δ < δ0

|w(q) − w(q0)| =

∣∣∣∣∣∣∣
R(q)∫
r(q)

f(t, q) dt−
R(q0)∫
r(q0)

f(t, q0) dt

∣∣∣∣∣∣∣
≤ ε

2 +

∣∣∣∣∣∣∣
R(q)−δ0∫
r(q)+δ0

f(t, q) dt−
R(q0)−2δ0∫
r(q0)+2δ0

f(t, q) dt

∣∣∣∣∣∣∣ .

When δ is sufficiently small and |q − q0| < δ, we will also have

r(q) + δ0 < r(q0) + 2δ0 < R(q0) − 2δ0 < R(q) − δ0.

Thus,

|w(q) − w(q0)| ≤
3ε
4 +

∣∣∣∣∣∣∣
R(q0)−2δ0∫
r(q0)+2δ0

[f(t, q) − f(t, q0)] dt

∣∣∣∣∣∣∣
≤ 3ε

4 +
R(q0)−2δ0∫
r(q0)+2δ0

|f(t, q) − f(t, q0)| dt.

Since

{(t, q) : r(q0) + 2δ0 < t < R(q0) − 2δ0, |q − q0| < δ}

is fixed and compactly contained in Q, there is some Λ > 0 so that

|f(t, q) − f(t, q0)| ≤ Λ|q − q0| < Λδ.

Finally for |q − q0| < δ small enough

|w(q) − w(q0)| <
3ε
4 + (R(q0) − r(q0))Λδ < ε. �

3.2. Limiting values

Having established the continuity of the terminal height as a function of the parameters � and c, we now 
consider the limiting values as the parameters approach the initial transition curves. We begin with unduloid 
type surfaces for parameters approaching the first cylinder curve. As a particular cylinder (liquid outside) 
is approached, a characteristic length for the period of the unduloid type surfaces may be extracted.

Theorem 3.1. For c < 0 and �−1(c) < � < �1(c), the “unduloid” type solutions satisfy

lim
�↘�−1(c)

h(�, c) = −π

√
r3

2(3r4 − c) ,

where r is the unique positive root of the equation 2r4 + r + 2c = 0.
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Proof. Let r1 denote the smallest solution of v(r) = −1. Let rmax denote the value given in (19). Note that, 
in the limit under consideration, the values of r1, rmax, and R all limit to a value r satisfying the quartic 
equation given in the statement of the theorem. For the unduloid type surfaces in question we have

h =
rmax∫
r1

v(t)√
1 − v(t)2

dt +
R∫

rmax

v(t)√
1 − v(t)2

dt

= (rmax − r)
1∫

0

v(rmax + (r1 − rmax)τ)√
1 − v(rmax + (r1 − rmax)τ)2

dτ

+ (R− rmax)
1∫

0

v(rmax + (R− rmax)τ)√
1 − v(rmax + (R− rmax)τ)2

dτ

where we have used the change of variables τ = (t − rmax)/(r1 − rmax) in the first integral and τ =
(t − rmax)/(R− rmax) in the second.

Let us consider the first integral. A calculation shows

1 + v(rmax + (r1 − rmax)τ) = (r1 − rmax)2(1 − τ2)f(r1, rmax, τ)

where

f(r1, rmax, τ) = r1 + 2rmax − c

r1rmax(rmax + (r1 − rmax)τ)

+ r1 − rmax

1 + τ

(
τ2 − c

r1r2
max(rmax + (r1 − rmax)τ)

)
.

Observe that f(r1, rmax, τ) converges uniformly in τ as � ↘ �−1(c) to the constant

f(r, r, τ) = 3r − c

r3 = −1
2v

′′(r)

where r = r(c) is the common limiting value given in the statement of the theorem. Thus, an elementary 
application of the dominated convergence theorem yields

lim
�↘�−1(c)

rmax∫
r1

v(t)√
1 − v(t)2

dt = − 1√
2f(r, r, τ)

sin−1(τ)∣∣1
τ=0

= −π

2

√
r3

2(3r4 − c) .

Similar reasoning gives the same value for limit of the second integral. �
We next consider limits of the terminal heights for solutions corresponding to parameters approaching 

the second cylinder curve � = �1(c) for c < 3/16.

Theorem 3.2. For c < 0 and �−1(c) < � < �1(c) “unduloid” type solutions satisfy

lim
�↗�1(c)

h(�, c) = +∞.

For c < 0 and � > �1(c) “nodoid” and “antinodoid” type solutions satisfy
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lim
�↘�1(c)

h(�, c) = +∞.

For c = 0 and � < �1(0) “immersed drop” solutions satisfy

lim
�↗�1(0)

h(�, 0) = +∞.

For c = 0 and � < �1(0) and � > �1(0) “concave bubble” and “antinodoid” type solutions satisfy

lim
�↘�1(0)

h(�, 0) = +∞.

For 0 < c < 3/16 and � < �1(c) “wobbleoid” solutions satisfy

lim
�↗�1(c)

h(�, c) = +∞.

For 0 < c < 3/16 and �1(c) < � < μ1(c) “unduloid” and “antinodoid” type solutions satisfy

lim
�↘�1(c)

h(�, c) = +∞.

In summary, this theorem asserts that for c < 3/16 all terminal heights tend to positive infinity as �
approaches �1(c). The result follows from the limiting arguments in [6] or from straightforward modifications 
of those arguments; we omit the details.

We next turn to the characteristic height associated with unduloid type solutions corresponding to 
parameters close to the other portion of the second cylinder curve.

Theorem 3.3. For 0 < c < 3/16 and �1(c) < � < μ1(c) “unduloid” solutions satisfy

lim
�↗μ1(c)

h(�, c) = π

√
r3

2(c− 3r4) ,

where r is the smaller positive root of the equation 2r4 − r + 2c = 0.

The proof is a straightforward modification of that given above for Theorem 3.1.
Finally, we consider solutions corresponding to parameters with |�| tending to infinity.

Theorem 3.4. For c < 0 and � > �1(c) “nodoid” and “antinodoid” type solutions satisfy

lim
�↗∞

h(�, c) = 0.

For c = 0 and � < �1(0) “spheroid” type solutions satisfy

lim
�↘−∞

h(�, 0) = 0.

For c = 0 and � > �1(0) “concave bubble” and “antinodoid” type solutions satisfy

lim
�↗∞

h(�, 0) = 0.

For c > 0 “nodoid” type solutions satisfy
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lim
�↘−∞

h(�, c) = 0.

For c > 0 “antinodoid” type solutions satisfy

lim
�↗∞

h(�, c) = 0.

In summary, as |�| tends to infinity all terminal heights tend to zero.

Proof. We give a proof for the “nodoid” type solutions with c < 0 and � > �1(c). In this case, we have 
v = v(t) is concave with a unique zero at t = t1. As above,

h =
R∫

r1

v(t)√
1 − v(t)2

dt =
t1∫

r1

v(t)√
1 − v(t)2

dt +
R∫

t1

v(t)√
1 − v(t)2

dt.

Moreover,

v(t) ≤ 0, r1 ≤ t ≤ t1

and

v(t) ≤ 1 + v′(R)(t−R), t1 ≤ t ≤ R.

Consequently,

t1∫
r1

v(t)√
1 − v(t)2

dt ≤ 0

and

R∫
t1

v(t)√
1 − v(t)2

dt ≤
√

1 − (Rv′(R))2)
v′(R) ≤ 1

v′(R) .

Thus,

0 ≤ h(�, c) ≤ 1
v′(R)

where the left inequality follows from Lemma 3.2 below.
Differentiating v(R) = 1 with respect to � gives

∂R

∂�
= − R

v′(R) < 0.

Since R > 0, the limit of R as � → ∞ exists and is nonnegative. By rewriting v(R) = 1 as

−R4

�
+ R2 + c

�
= R

�
,

we may easily conclude R → 0 as � → ∞. As v′(R) = −3R2 + � − c/R2 → +∞, as � → ∞, we also have

lim
�→∞

h(�, c) = 0. �
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3.3. Preliminary torus estimates

Lemma 3.1 was used along with results on the sign of h in [6] to show the existence of at least one 
toroidal solution for each c ∈ R. The main tool used in that paper to obtain results on the sign of h was 
the following:

Lemma 3.2 (General convexity-height lemma for rotational surfaces). Assume 0 < r < R and v : [r, R] →
[−1, 1] is continuous and decreasing with v(r) = 1 and v(R) = −1. If v is convex, then

h =
R∫
r

v√
1 − v2

dr < 0.

Similarly, if v is concave, then h > 0.

One simple application of the convexity-height lemma is the following: Each point in the region

A = {(�, c) : �1(c) < � < μ1(c), 0 < c < 3/16} (23)

corresponds to two solutions. One of these is known to be of unduloid type with v = sinψ > 0. The other 
has v = sinψ concave so that the convexity-height lemma applies, we know h > 0, and the solution is of 
anti-nodoid type.

It also follows from the convexity-height lemma that each solution corresponding to c > 0 and

� ≤ −2
√

c

3 − 4

√
3
c

is of nodoid type (h < 0), and any non-cylindrical solution corresponding to c > 0 and

� ≥ max
{
−2

√
c

3 + 4

√
3
c
, μ1(c)

}

is of anti-nodoid type (h > 0). Our convention is that the maximum above is equal to −2
√
c/3 + 4

√
3/c

when μ1(c) is not defined. We now wish to sharpen this result.

Lemma 3.3. If c > 0 and � ≤ −2
√
c/3, then h < 0 and the corresponding surface is of nodoid type.

Proof. Following the first part of the proof of the convexity-height lemma from [6], we let t0 denote the 
unique root of v(t) = sinψ(t) = 0 and use the change of variables

v(τ) = −v(t) (24)

on the interval [t0, R]. We thus obtain

h =
t0∫
r

(
1 − v′(t)

v′(τ)

)
v(t)√

1 − v(t)2
dt

where τ = τ(t) is defined implicitly by (24).



222 J. Elms et al. / J. Math. Anal. Appl. 446 (2017) 201–232
Since u′ = v/
√

1 − v2 > 0 on (r, t0), it is enough to show

v′(t) < v′(τ) < 0 for r < t < t0. (25)

Equivalently, we wish to show

f(t, �) = v′(τ) − v′(t)

is nonnegative for r ≤ t ≤ t0 with strict inequality at some point. In fact, we will show this quantity is 
strictly positive unless � = −2

√
c/3 and t = t0.

There is also a unique positive root of v′′(t) = 0 which we denote by t1. The conditions c > 0 and 
� ≤ −2

√
c/3 imply that

v(t) = −t3 + �t + c

t

is monotone decreasing and convex for r < t < t1 = 4
√
c/3 and v(t1) ≤ 0. It follows that t0 ≤ t1, in 

particular.
Observe that f(t0, �) = 0, and

f(t, �) = (τ2 − t2)
(
−3 + c

τ2t2

)
(26)

= 3(τ2 − t2)
τ2t2

(a + τt)(a− τt), (27)

where a = t21 =
√
c/3 ≤ −�/2.

Since the first factors in (27) are positive for r ≤ t < t0, it is enough to show

δ(t, �) = a− τt

is nonnegative for r ≤ t ≤ t0 and positive somewhere. Note that δ(t0, �) = a − t20 ≥ 0 with strict inequality 
unless � = −2a.

From the equation (24) defining τ = τ(t, �), we find

τt = − v′(t)
v′(τ) ,

and

(τ + t)
(
τ2 − τt + t2 − �− c

τt

)
= 0.

In particular,

� + c

τt
= τ2 − τt + t2. (28)

On the other hand,

δt = − 1
v′(τ) [τv′(τ) − tv′(t)]

= − 1
v′(τ) (τ − t)

[
−3(τ2 + τt + t2) + � + c

τt

]
.
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Fig. 14. Preliminary estimates locating the toroidal solutions.

Substituting from (28), we find

δt = 2
v′(τ) (τ − t)(τ + t)2.

Recall that v′(τ) < 0 and 0 < r ≤ t ≤ t0 ≤ τ . Thus, δt ≤ 0 with equality only for t = t0. It follows that 
δt ≤ 0 and f(t, �) ≥ f(t0, �) ≥ 0 with strict inequality except when � = −2

√
c/3 and t = t0 = t1. �

According to the results in this section, we understand the sign of the terminal heights for c > 0 except 
in a relatively narrow strip containing the toroidal solutions. See Fig. 14.

3.4. Toroidal solutions

We now prove a conjecture formally appearing in [6] and building on past results of Gulliver [4] and Ross 
and Smith [11].

Theorem 3.5. There is a single C1 curve in the (�, c) plane consisting of all solutions of the equation

h(�, c) = 0. (29)

In particular, the rotational tori of equilibrium comprise a one parameter family of shapes.

Our approach relies on various properties of the function h and its derivatives away from parameter 
values (�, c) for which |v| = | sinψ| = 1 has double roots. We have already shown that h is continuous at 
such points in Lemma 3.1. In order to prove the conjecture, we will first need to strengthen this regularity 
assertion.

Lemma 3.4. Assume r0 = r0(�0, c0) and R0 = R0(�0, c0) are simple zeros of the equation |v(t)| = 1 and 
|v(t)| < 1 for r0 < t < R0. Then the integral

h =
R∫
r

u′(t) dt

is a C1 function of � and c in some open set about (�0, c0).

Proof. Changing variables in the integral by setting t = (1 − s)r + sR gives

h = (R− r)
1∫
u′((1 − s)r + sR) ds.
0
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By direct calculation

∂h

∂�
= ∂(R− r)

∂�

1∫
0

u′((1 − s)r + sR) ds + (R− r)
1∫

0

∂

∂�
u′((1 − s)r + sR) ds

= 1
(R− r)

∂(R− r)
∂�

h + (R− r)
1∫

0

g(s)
(1 − v((1 − s)r + sR))2)3/2

ds, (30)

where

g(s) =
(

(1 − s)∂r
∂�

+ s
∂R

∂�

)
v′((1 − s)r + sR) + (1 − s)r + sR.

We also have

| sinψ(t)| = |v(t)| = 1

for t = r, R, so that

v′(r)∂r
∂�

+ r = v′(R)∂R
∂�

+ R = 0.

Therefore,

g(s) = (1 − s)r
(

1 − v′((1 − s)r + sR)
v′(r)

)
+ sR

(
1 − v′((1 − s)r + sR)

v′(R)

)
.

By L’Hôpital’s rule

lim
s→0

g(s)
1 − v((1 − s)r + sR))2 = 1

2v(r)v′(r)2v′(R)

{
rv′(R)v′′(r) − Rv′(r)

R− r
[v′(R) − v′(r)]

}
,

and

lim
s→1

g(s)
1 − v((1 − s)r + sR))2 = 1

2v(r)v′(r)v′(R)2

{
Rv′(r)v′′(R) − rv′(R)

R− r
[v′(R) − v′(r)]

}
.

Since these limits are finite, we see the integral in (30) satisfies the hypotheses of Lemma 3.1.
Consequently, the integral in the expression for ∂h/∂� is well defined and continuous. The same is true 

for ∂h/∂c by very similar reasoning and the conclusion follows. �
3.5. Toroidal solutions with c ≤ 0

We now study solutions of (29) in the half-plane c ≤ 0. Our main assertion is the following:

Proposition 3.1. For every c ≤ 0, there is a unique value �∗(c) such that

h(�∗(c), c) = 0.

Moreover, c �→ �∗(c) is a decreasing C1 function for −∞ < c < 0.
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Fig. 15. The region T .

It is routine to verify that v(rmax) ≤ 0 for � ≤ 2
√
−c. This implies, using Lemma 3.2,

h(2
√
−c, c) < 0 (31)

for c ≤ 0. In particular, there are no pairs (�, c) with c ≤ 0 and �−1(c) ≤ � ≤ 2
√
−c corresponding to toroidal 

solutions. Similarly, there are no pairs corresponding to toroidal solutions with c ≤ 0 and � ≥ �1(c). See 
Lemma 4 of [6].

On the other hand,

lim
�↗�1(c)

h(�, c) = +∞.

This is also shown in [6].
Accordingly, we restrict attention to the set

T = {(�, c) : 2
√
−c < � < �1(c), c ≤ 0}

indicated in Fig. 15. For each (�, c) ∈ T , the function v = sinψ has exactly two positive simple zeros 
0 < t0 < t1 < R and a unique maximum at rmax ∈ (t0, t1). Also, note that r and R are C1 in the interior 
of T , and so h is C1 in the interior of T by Lemma 3.4.

Lemma 3.5. Assume (�, c) ∈ T . Then

∂h

∂�
= −

∫
[r,R]\[t0,t1]

(
t

v′(t)

)′
u′(t) dt +

t1∫
t0

t

(1 − v(t)2)3/2
dt (32)

and

∂h

∂c
= −

∫
[r,R]\[t0,t1]

(
1

tv′(t)

)′
u′(t) dt +

t1∫
t0

1
t(1 − v(t)2)3/2

dt. (33)

Proof. Since

u′′(t)
(1 + u′(t)2)3/2

= v′(t), t ∈ (r,R),

it follows that u′ is strictly increasing on (r, rmax) and strictly decreasing on (rmax, R). Let w = (u′)−1 be 
the inverse of u′ restricted to (r, rmax) Note that u′′(w)w′ = 1. Thus, introducing the variable ξ = u′(t), we 
find
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t0∫
r

u′(t) dt =
0∫

−∞

ξw′(ξ) dξ.

Similarly

R∫
t1

u′(t) dt =
−∞∫
0

ξw′(ξ) dξ

where w denotes the inverse of u′ restricted to (rmax, R).
In either change of variables,

v(w) = ξ√
1 + ξ2

,

and it follows that

∂w

∂�
= − w

v′(w) .

Thus

∂

∂�

0∫
−∞

ξw′(ξ) dξ =
0∫

−∞

ξ
∂2w

∂�∂ξ
dξ

= −
0∫

−∞

ξ
∂

∂ξ

(
w

v′(w)

)
dξ

= −
t0∫
r

(
t

v′(t)

)′
u′(t) dt.

Likewise, we find

∂

∂�

−∞∫
0

ξw′(ξ) dξ = −
R∫

t1

(
t

v′(t)

)′
u′(t) dt.

Differentiating the equation

u′
√

1 + u′ 2
= v

with respect to � gives

∂u′

∂�
= t(1 + u′ 2)3/2 = t

(1 − v2)3/2
.

Since u′(t0) = u′(t1) = 0,
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∂

∂�

t1∫
t0

u′(t) dt = u′(t1)
∂t1
∂�

− u′(t0)
∂t0
∂�

+
t1∫

t0

t

(1 − v(t)2)3/2
dt

=
t1∫

t0

t

(1 − v(t)2)3/2
dt.

Finally, writing

h =
t0∫
r

u′(t) dt +
t1∫

t0

u′(t) dt +
R∫

t1

u′(t) dt,

we have

∂h

∂�
= −

t0∫
r

(
t

v′(t)

)′
u′(t) dt +

t1∫
t0

t

(1 − v(t)2)3/2
dt−

R∫
t1

(
t

v′(t)

)′
u′(t) dt

which is (32).
Formula (33) is obtained similarly once we compute

∂w

∂c
= − 1

wv′(w) , and ∂u′

∂c
= 1

t(1 − v2)3/2
. �

Proof of Proposition 3.1. Observe that

−
(

t

v′(t)

)′
= − t2(3t4 + �t2 − 3c)

(−3t4 + �t2 − c)2 < 0

since � > 0 and c ≤ 0. As u′(t) < 0 for t ∈ [r, R] \ [t0, t1], we have ∂h(�, c)/∂� > 0 by formula (32).
In view of (31), we may conclude that for each c ≤ 0 there is a unique number �∗ = �∗(c) such that 

h(�∗(c), c) = 0 as asserted.
Next notice that

−
(

1
tv′(t)

)′
= −9t4 + �t2 + c

(−3t4 + �t2 − c)2 .

Since u′(t) < 0 for t ∈ [r, R] \ [t0, t1], it follows that tv = −t4 + �t2 + c < 0 on [r, R] \ [t0, t1]. In turn,

−9t4 + �t2 + c < −t4 + �t2 + c < 0

on these same intervals. Hence,

−
(

1
tv′(t)

)′
u′(t) > 0

on [r, R] \ [t0, t1] and consequently, ∂h/∂c > 0 by formula (33).
It is now immediate that c �→ �∗(c) is C1 and decreasing. Indeed differentiating the equation h(�∗(c), c) = 0

gives

(�∗)′(c) = −∂h(�∗(c), c)
∂c

/
∂h(�∗(c), c)

∂�
< 0. �
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3.6. Toroidal solutions with c > 0

We now consider solutions (�, c) of h(�, c) = 0 for c > 0. The arguments above for c ≤ 0 do not easily 
extend to this case. Instead, we turn to an alternative pair of parameters introduced by Smith and Ross [11].

We have shown that all solutions with c > 0 lie within the strip

{(�, c) : −2
√

c/3 < � < min{−2
√

c/3 + 4
√

3/c, �1(c)}, c ≥ 0}

with the usual convention that the minimum reverts to defined quantities. More generally, with Ā denoting 
the closure of the set defined in (23), we consider the complement

S = {(�, c) : c > 0} \ Ā.

For (�, c) ∈ S, the equation |v| = 1 has only simple roots. In fact the equations

{
v(r1) = −r3

1 + �r1 + c
r1

= +1
v(R) = −R3 + �R + c

R = −1

have unique solutions r1 and R with r1 < R. In particular, h ∈ C1(S). Moreover, we can express � and c
uniquely in terms of r1 and R

{
� = r2

1 + R2 − 1
R−r1

c = r1R
R−r1

− (r1R)2
. (34)

In particular, this implies that we may use r1 and R as parameters for h when (�, c) ∈ S.
Expressing v in terms of r1 and R allows us to write

p(t) := tv(t) = (t2 − r2
1)(R2 − t2) − t2 − r1R

R− r1
.

And further changing variables to t = Rs

p(Rs) = R4(s2 − (r1/R)2)(1 − s2) −R
s2 − (r1/R)
1 − (r1/R)

= R

{
μ(s2 − λ2)(1 − s2) − s2 − λ

1 − λ

}

= Rq(s)

where

λ := r1
R
, μ := R3

and

q(s) := μ(s2 − λ2)(1 − s2) − s2 − λ

1 − λ
.

In particular, using the change of variables t = Rs in the integral defining h gives
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h = μ1/3
1∫

λ

q(s)√
s2 − q(s)2

ds.

Notice that the mapping (x, y) �→ (x/y, y3) is a smooth bijection of {(x, y) : 0 < x < y} onto (0, 1) ×(0, ∞). 
Thus, we may use λ and μ as parameters for h when (�, c) ∈ S. Moreover, using (34) we can write (�, c)
explicitly in terms of (λ, μ):

{
� = (1 + λ2)μ2/3 − 1

1−λμ
−1/3

c = λ
1−λμ

1/3 − λ2μ4/3
. (35)

Some properties of the map (λ, μ) �→ (�, c) we will quote later are detailed below. Also see Fig. 16 for 
reference.

Lemma 3.6. Define (�, c) as in (35) and fix λ ∈ (0, 1).

(i) μ �→ �(λ, μ) is strictly increasing.
(ii) limμ→0+ �(λ, μ) = −∞.
(iii) limμ→(λ(1−λ))−1 �(λ, μ) = (λ(1 − λ))−2/3 − (λ(1 − λ))1/3 ≥ �1(0) = 3/41/3.
(iv) c(λ, μ) > 0 implies μ < (λ(1 − λ))−1. We also have for (λ, μ) such that (�, c) ∈ S:
(v) μ < (2λ(1 − λ)2)−1, and
(vi) λ �→ c(λ, μ) is strictly increasing.

Proof. We only prove (v) as the assertions (i)–(iv) are simple to prove and (vi) follows from (v). If (�, c) ∈ S, 
then v′(r1) < 0; a routine computation shows v′(r1) < 0 is equivalent to (v).

The main reason for changing parameters as we have described above is indicated by the following 
monotonicity lemma which was established by Smith and Ross (see Lemma 3.2 and the appendix of [11]).

Proposition 3.2. For each λ ∈ (0, 1):

(i) (0, ∞) � μ �→ h(λ, μ) is increasing;
(ii) there are values 0 < μ ≤ μ < λ/(1 − λ) such that

h(λ, μ) ≤ 0 and h(λ, μ) ≥ 0;

(iii) there is a unique value μ = μ∗(λ) such that h has a zero along the curve μ �→ (�(λ, μ), c(λ, μ)) ∈ S.

We have established that all solutions of (29) for c ≤ 0 are in one-to-one correspondence with the points 
on the parameterized curve (−∞, 0] � c �→ (�∗(c), c) and that all solutions of (29) for c > 0 are in one-to-one 
correspondence with the points on the parameterized curve (0, 1) � λ �→ (�(λ, μ∗(λ)), c(λ, μ∗(λ))). According 
to Lemma 3 of [4], limλ→0+(�(λ, μ∗(λ)), c(λ, μ∗(λ))) = (�∗(0), 0). Consequently, these curves must meet at 
(�∗(0), 0) to form a single continuous curve.

All that remains is to show this curve is C1 across c = 0. To this end, we establish that h is C1 near 
(�∗(0), 0). While this fact is not a corollary of Lemma 3.4 (since it turns out that r is not C1 across the line 
c = 0), we will make use of the expressions for the derivatives of h computed in the proof of Lemma 3.4.

Lemma 3.7. The terminal height h is a C1 function of � and c in a neighborhood of (�∗(0), 0).

Proof. Let D denote an open disk centered at (�∗(0), 0) of a radius chosen so small that D does not 
intersect the curves � = �−1(c) and � = �1(c). First we show that r and R are continuous on D. Recall that 
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Fig. 16. Curves μ �→ (�(λ, μ), c(λ, μ)) for various λ ∈ (0, 1).

on D ∩ {c < 0}, r = r(�, c) and R = R(�, c) are defined as the smaller and larger, positive solutions of the 
equation

v(t) = −t3 + �t + c

t
= −1,

respectively. Likewise, for D ∩ {c > 0} r(�, c) is defined as the unique solution of

v(t) = −t3 + �t + c

t
= +1

and R(�, c) is defined again as the unique solution of v(t) = −1. On D ∩ {c = 0}, we define r(�, 0) = 0 and 
R(�, 0) to be the unique positive solution of the cubic equation

−ρ3 + �ρ = −1. (36)

Implicit differentiation of the equation v(r) = −1 in c gives ∂r/∂c = −1/(rv′(r)) < 0 and ∂R/∂c =
−1/(Rv′(R)) > 0 on D ∩ {c < 0}. As a result, the limits limc↗0 r = ρ0 and limc↗0 R = ρ1 exist; clearly 
0 ≤ ρ0 < ρ1. If ρ0 > 0, then we may pass to the limit in v(ρ0) = −1 to conclude ρ0 satisfies the cubic (36). 
However, this equation must also be satisfied by ρ1 > ρ0. As this cubic can only have one positive solution, 
it must be that ρ0 = 0 and ρ1 = ρ.

Similarly, the limit limc↘0 r = �0 exists and must be zero. If �0 > 0 then passing to the limit as c ↘ 0
in v(r) = +1 gives that �0 satisfies

−ρ3 + �ρ = +1.

As � < �1(0), the above cubic has no positive solution. Therefore, �0 = 0 as claimed and limc→0 r = 0. It is 
easy to see we may also deduce that r tends to zero provided (�, c) ∈ D tends to a point on D ∩ {c = 0}. 
Hence, r is continuous on D. Likewise, we can conclude R is also continuous on D.

Now let us study the derivatives of r and R across c = 0. From implicit differentiation and the fact that 
R tends to ρ > 0 when c tends to 0, we can conclude that R ∈ C1(D). As for r, we explicitly compute for 
c �= 0

∂r

∂�
= r2

4r3 − 2�r + c
|c|

and

∂r

∂c
= 1

4r3 − 2�r + c .

|c|
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By our comments above, we see that ∂r∂� tends to 0 for (�, c) tending to any point on D ∩ {c = 0}. Hence, 
∂r
∂� is continuous across c = 0. Conversely, ∂r∂c tends to −1 for (�, c) ∈ D ∩ {c < 0} tending to any point on 
D ∩ {c = 0}; and ∂r∂c tends to +1 for (�, c) ∈ D ∩ {c > 0} tending to any point on D ∩ {c = 0}.

As in Lemma 3.4, we compute

∂h

∂c
= ∂(R− r)

∂c

1∫
0

u′((1 − s)r + sR) ds+

(R− r)
1∫

0

(
(1 − s)∂r∂c + s∂R

∂c

)
v′((1 − s)r + sR) + 1

(1−s)r+sR

(1 − v((1 − s)r + sR)2)3/2
ds. (37)

Allowing (�, c) ∈ D ∩ {c < 0} to tend to a point on D ∩ {c = 0} in (37) gives

Q− =
(
∂R

∂c
+ 1

) 1∫
0

u′(sR) ds+

R

1∫
0

(
−(1 − s) + s∂R

∂c

)
v′(sR) + 1

sR

(1 − v(sR)2)3/2
ds;

and letting (�, c) ∈ D ∩ {c > 0} to tend to a point on D ∩ {c = 0} in (37) gives

Q+ =
(
∂R

∂c
− 1

) 1∫
0

u′(sR) ds+

R

1∫
0

(
(1 − s) + s∂R

∂c

)
v′(sR) + 1

sR

(1 − v(sR)2)3/2
ds.

Notice

R

2
(
Q− −Q+) = R

1∫
0

u′(sR) ds−R2
1∫

0

(1 − s)v′(sR)
(1 − v(sR)2)3/2

ds

=
R∫

0

u′(t) dt−
R∫

0

(R− t)v′(t)
(1 − v(t)2)3/2

dt

=
R∫

0

u′(t) dt−
R∫

0

(R− t)u′′(t) dt

=
R∫

0

u′(t) dt−

⎡
⎣ (R− t)u′(t)|R0 −

R∫
0

d

dt
(R− t)u′(t) dt

⎤
⎦

=
R∫

0

u′(t) dt−

⎡
⎣−Ru′(0) +

R∫
0

u′(t) dt

⎤
⎦

= 0.
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Fig. 17. The curve h(�, c) = 0.

Hence, ∂h/∂c is continuous across D ∩ {c = 0} and by Lemma 3.4, it is also continuous on D. An easier 
argument (simply employing formula (30)) can be made to show ∂h/∂� is also continuous on D. �

In the proof of Proposition 3.1, we showed

∂h(�∗(0), 0)
∂�

> 0.

By Lemma 3.7, h is continuously differentiable in a neighborhood of (�∗(0), 0). Consequently, the curve of 
solutions of h(�, c) = 0 must be C1 across c = 0 by the implicit function theorem. As mentioned above, this 
is the final detail needed in the proof of Theorem 3.5.

We emphasize that while we have established the existence of a well-defined torus curve, we have not 
shown this curve is a graph � = �∗(c) for all values of c as shown in Fig. 17, though numerical computations 
indicate that this is the case.
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