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Introduction
At the simplest level, the physics of adhesion can be mod-
eled with perfectly inelastic collisions. Let us recall this
notion by considering the example of two point masses
in ℝ that each move with constant velocity until they col-
lide. To fix ideas, we assume these particles have respec-
tive masses 𝑚1,𝑚2 > 0 and velocities 𝑣1, 𝑣2 ∈ ℝ. Upon
colliding, these particles undergo a perfectly inelastic colli-
sion provided they merge to form a single particle of mass
𝑚1 +𝑚2 and the resulting particle travels with velocity 𝑣
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chosen to satisfy

𝑚1𝑣1 +𝑚2𝑣2 = (𝑚1 +𝑚2)𝑣.

Refer to Figure 1. Note in particular that mass andmomen-
tum are conserved during the collision. Moreover, this ex-
ample is easily generalized to any number of colliding par-
ticles.

It turns out that the elementary mechanics of perfectly
inelastic collisions can be used to model the evolution of
matter that is not subject to pressure. This observation is
usually attributed to Zel’dovich in his work on the early
stages of galaxy formation [18]. His theory was further
developed by other cosmologists who studied the role of
adhesion in the dynamics of large-scale structures in the
universe [7,10,15,16].

In this article, we will discuss some of the mathemat-
ics involved in Zel’dovich’s theory. A system of equations
which embodies the conservation ofmass andmomentum
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Figure 1. A perfectly inelastic collision between two
point masses in ℝ. Here 𝑥 denotes a variable on the
real line and 𝑡 denotes time. The particles are
sketched to be larger than points in order to
highlight the possibility that they may have different
masses. Further, the particle resulting from the
collision is sketched even larger to highlight that it is
more massive.

of interacting particles will play an important role. This sys-
tem also describes how to best move from one probability
distribution to another in the theory of optimalmass trans-
portation. First, we will build on our example above and
examine finite collections of point masses on the real line
that interact only via perfectly inelastic collisions.

Finitely Many Interacting Particles

Let us consider𝑁 particles on the real line that havemasses
𝑚1,… ,𝑚𝑁 ≥ 0. We suppose 𝑚1 + ⋯ + 𝑚𝑁 = 1 and
that these point masses move freely unless they collide.
When any sub-collection of these particles collide, they
will undergo a perfectly inelastic collision. We will write
𝛾1,… ,𝛾𝑁 ∶ [0,∞) → ℝ for the trajectories that are as-
sociated with the respective masses 𝑚1,… ,𝑚𝑁. That is,
𝛾𝑖(𝑡) is the location of pointmass𝑚𝑖 at time 𝑡 ≥ 0, which
could be by itself or part of a larger mass if it has collided
with other particles prior to time 𝑡. A schematic of the
graphs of 𝛾1,… ,𝛾𝑁 is displayed in Figure 2.

These sticky particle trajectories are continuous and piece-
wise linear, and they have two important properties. The
first is that they satisfy the inequality:

1
𝑡 |𝛾𝑖(𝑡) − 𝛾𝑗(𝑡)| ≤

1
𝑠 |𝛾𝑖(𝑠) − 𝛾𝑗(𝑠)| (1)

for all 𝑖, 𝑗 = 1,… ,𝑁 and 0 < 𝑠 ≤ 𝑡. Observe that this
inequality quantifies the fact that if two particles collide at
time 𝑠, they will remain stuck together for all times 𝑡 ≥ 𝑠.

x
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Figure 2. Sticky particle trajectories 𝛾1,… ,𝛾𝑁 in
ℝ× (0,∞) that track 𝑁 particles moving freely in ℝ
that only interact via perfectly inelastic collisions.
The corresponding masses 𝑚1,… ,𝑚𝑁 are drawn
with different sizes to indicate that they are not
assumed to be identical. The three dashed
trajectories 𝛾1, 𝛾𝑖, and 𝛾𝑁 emphasize that these
trajectories track 𝑚1,𝑚𝑖, and 𝑚𝑁, respectively.

The second feature is

∑
𝛾𝑖(𝑡)=𝛾𝑗(𝑡)

𝑚𝑖�̇�𝑖(𝑡−) = ⎛
⎝

∑
𝛾𝑖(𝑡)=𝛾𝑗(𝑡)

𝑚𝑖⎞
⎠
�̇�𝑗(𝑡+) (2)

for 𝑗 = 1,… ,𝑁 and 𝑡 > 0. Here �̇�𝑖(𝑡−) and �̇�𝑖(𝑡+) de-
note the limits from the left and right of the slope of 𝛾𝑖 at
𝑡, respectively; and each summation is over 𝑖 = 1,… ,𝑁
for which 𝛾𝑖(𝑡) = 𝛾𝑗(𝑡). We note that this identity en-
codes the conservation of momentum that occurs in be-
tween and during collisions. Both properties are discussed
in section 3 of [9].

Since the total mass of this physical system is conserved,
it makes sense for us to consider the space𝒫(ℝ) of (Borel)
probability measures on ℝ. We can then regard the mass
distribution of particles as themap𝜌 ∶ [0,∞) → 𝒫(ℝ); 𝑡 ↦
𝜌𝑡, where

𝜌𝑡 ∶=
𝑁
∑
𝑖=1

𝑚𝑖𝛿𝛾𝑖(𝑡). (3)

Here 𝛿𝑧 is the Dirac measure at 𝑧 ∈ ℝ. That is,

𝛿𝑧(𝐴) = {1, 𝑧 ∈ 𝐴
0, 𝑧 ∉ 𝐴

for𝐴 ⊂ ℝ. As a result,𝜌𝑡(𝐴) is the fraction ofmass within
𝐴 at time 𝑡. A corresponding velocity is a (Borel) function
𝑣 ∶ ℝ× [0,∞) → ℝ for which

𝑣(𝑥, 𝑡) = �̇�𝑖(𝑡+) when 𝑥 = 𝛾𝑖(𝑡). (4)
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The Sticky Particle System (SPS)

As it turns out, the mass distribution 𝜌 defined in (3) and
velocity 𝑣 specified in (4) satisfy

∫
∞

0
∫
ℝ
(𝜕𝑡𝜙+𝑣𝜕𝑥𝜙)𝑑𝜌𝑡𝑑𝑡 +∫

ℝ
𝜙(⋅, 0)𝑑𝜌0 = 0 (5)

and

∫
∞

0
∫
ℝ
(𝜕𝑡𝜙+𝑣𝜕𝑥𝜙)𝑣𝑑𝜌𝑡𝑑𝑡 +∫

ℝ
𝜙(⋅, 0)𝑣0𝑑𝜌0 = 0

(6)
for each smooth 𝜙 ∶ ℝ× [0,∞) → ℝ with compact sup-
port. Here

𝜌0 =
𝑁
∑
𝑖=1

𝑚𝑖𝛿𝛾𝑖(0) (7)

is the initial mass distribution and 𝑣0 ∶ ℝ → ℝ is any
function such that 𝑣0(𝛾𝑖(0)) = �̇�𝑖(0) for 𝑖 = 1,… ,𝑁.
We note that the averaging property (2) is an important
ingredient in the derivation of (6).

We interpret (5) and (6) to mean that the pair 𝜌 and 𝑣
is a solution of the conservation of mass equation

𝜕𝑡𝜌+ 𝜕𝑥(𝜌𝑣) = 0 (8)

and the conservation of momentum equation

𝜕𝑡(𝜌𝑣) + 𝜕𝑥(𝜌𝑣2) = 0 (9)

in ℝ× (0,∞), respectively, that satisfies the initial condi-
tions

𝜌|𝑡=0 = 𝜌0 and 𝑣|𝑡=0 = 𝑣0. (10)

The partial differential equations (8) and (9) together are
known as the sticky particle system (SPS), and they describe
the dynamics of one dimensional matter that is not sub-
ject to pressure. Our notion of solution is consistent in
the sense that if the pair 𝜌 and 𝑣 were a conventional so-
lution, we could multiply the equations (8) and (9) by 𝜙
and integrate by parts to derive (5) and (6), respectively.
We will also say that 𝜌 and 𝑣 is a solution pair of the SPS
on ℝ × (0,𝜏) with initial conditions (10) provided (5)
and (6) hold for all 𝜙 that are supported in ℝ× [0,𝜏).

We now know that we can always find a solution of the
SPSwhen the initialmass density arises from a finite collec-
tion of point masses and is specifically of the form (7). We
would like to extend these considerations to general initial
mass distributions 𝜌0 ∈ 𝒫(ℝ). Our goal is to prescribe
the mass distribution and velocity at time 0 and then use
the SPS to describe the evolution of the mass distribution
and velocity at all later times. We will make a few observa-
tions before further exploring this fundamental existence
question.

The Method of Characteristics
The SPS always has a solution for a given initial mass dis-
tribution 𝜌0 ∈ 𝒫(ℝ) provided that the initial velocity 𝑣0
is continuous and nondecreasing. In this case, the trajec-
tories 𝑡 ↦ 𝑥 + 𝑡𝑣0(𝑥) and 𝑡 ↦ 𝑦 + 𝑡𝑣0(𝑦) do not coin-
cide for distinct 𝑥,𝑦 ∈ ℝ since the function idℝ + 𝑡𝑣0 is
increasing. As a result, the initial mass distribution is sim-
ply translated along linear trajectories that do not intersect.
With this observation, we define 𝜌𝑡 by

∫
ℝ
𝑔(𝑦)𝑑𝜌𝑡(𝑦) ∶= ∫

ℝ
𝑔(𝑥 + 𝑡𝑣0(𝑥))𝑑𝜌0(𝑥)

for each 𝑔 belonging to the space 𝐶𝑏(ℝ) of bounded con-
tinuous functions on ℝ. This definition can be written
more concisely as

𝜌𝑡 ∶= (idℝ + 𝑡𝑣0)#𝜌0, 𝑡 ≥ 0. (11)

Since the trajectories are linear, any velocity 𝑣 ∶ ℝ ×
[0,∞) → ℝ associated with 𝜌 must satisfy

𝑣(𝑥 + 𝑡𝑣0(𝑥), 𝑡) = 𝑣0(𝑥), 𝑥 ∈ ℝ, 𝑡 ∈ [0,∞)
as shown in Figure 3. That is,

𝑣(⋅, 𝑡) ∶= 𝑣0 ∘ (idℝ + 𝑡𝑣0)−1. (12)

We leave it as an exercise to check that the pair 𝜌 and 𝑣 is
indeed a solution of SPS with initial conditions 𝜌0 and 𝑣0.

Figure 3. The evolution of the mass 𝜌0 with
nondecreasing initial velocity 𝑣0 at time 𝑡 ≥ 0. The
purple shape is a schematic of the mass distribution
of 𝜌0; the blue shape is a schematic of the evolved
mass 𝜌𝑡; the dashed lines represent the linear
trajectories which do not cross. The initial velocity of
the particle starting at 𝑥 is 𝑣0(𝑥); its velocity 𝑣 at
position 𝑥 + 𝑡𝑣0(𝑥) and time 𝑡 is also equal to 𝑣0(𝑥).

When 𝑣0 isn’t nondecreasing, we can sometimes build
on this example to obtain a solution of the SPS on ℝ ×
(0,𝜏) for some 𝜏 > 0 and sufficiently small. In particular,
if idℝ + 𝑡𝑣0 is increasing for each 𝑡 ∈ [0,𝜏), 𝜌 defined
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in (11) and 𝑣 specified in (12) is a solution pair of the SPS
on ℝ× (0,𝜏) with initial conditions 𝜌0 and 𝑣0.

Optimal Mass Transportation on the Real Line

Figure 4. A function 𝑇 that transports mass in a
measure preserving way from a distribution 𝜇 (in
purple) which represents a pile of sand to another
distribution 𝜎 (in green) representing a hole to be
filled.

In a 1781memoir [12], Monge famously asked: how do
you best move a given pile of sand to fill up a given hole of
the same total volume? We will model the sand and hole
as measures belonging to

𝒫2(ℝ) ∶= {𝜇 ∈ 𝒫(ℝ) ∶ ∫
ℝ
𝑥2𝑑𝜇(𝑥) < ∞}

and consider the following version ofMonge’s problem on
the real line. For given 𝜇,𝜎 ∈ 𝒫2(ℝ), find 𝑇 ∶ ℝ → ℝ
that minimizes the total cost of transportation

∫
ℝ
(𝑥 − 𝑇(𝑥))2𝑑𝜇(𝑥)

among all 𝑇 satisfying the measure preserving constraint
𝑇#𝜇 = 𝜎. This means

∫
ℝ
𝑔(𝑦)𝑑𝜎(𝑦) = ∫

ℝ
𝑔(𝑇(𝑥))𝑑𝜇(𝑥)

for each𝑔 ∈ 𝐶𝑏(ℝ) or equivalently that𝜎(𝐵) = 𝜇(𝑇−1(𝐵))
for each 𝐵 ⊂ ℝ. Refer to Figure 4.

It turns out that if 𝜇 does not charge mass to points, our
version of Monge’s problem has a solution given by a non-
decreasing function 𝑇∗ ∶ ℝ → ℝ. In particular, this func-
tion is known as the monotone rearrangement of 𝜇 onto
𝜎 and it can be written rather explicitly in terms of the dis-
tribution functions of 𝜇 and 𝜎 (as detailed in section 2.2
of [17]). Using this optimal 𝑇∗, McCann introduced the
displacement interpolation between 𝜇 and 𝜎 as

𝜌𝑡 = ((1 − 𝑡)idℝ + 𝑡𝑇∗)#𝜇

for 0 ≤ 𝑡 ≤ 1 [11]. Note that 𝜌0 = 𝜇, 𝜌1 = 𝜎, and
(1 − 𝑡)idℝ + 𝑡𝑇∗ = idℝ + 𝑡(𝑇∗ − idℝ) is an increasing
function for 0 ≤ 𝑡 < 1.

Figure 5. The optimal transportation function 𝑇∗

that rearranges 𝜇 onto 𝜎 shown with the
displacement interpolation 𝜌𝑡 between 𝜇 and 𝜎 for
some 𝑡 ∈ [0, 1]. Here 𝑦 = (1 − 𝑡)𝑥 + 𝑡𝑇∗(𝑥), and
we emphasize that mass is optimally transported
along the linear trajectories between the support of
𝜇 and the support of 𝜎.

If 𝑇∗ is additionally continuous, we can set

𝑣(⋅, 𝑡) = (𝑇∗ − idℝ) ∘ ((1 − 𝑡)idℝ + 𝑡𝑇∗)−1

for 𝑡 ∈ [0, 1) . In view of (11) and (12), the pair 𝜌 ∶ 𝑡 ↦
𝜌𝑡 and 𝑣 is a solution of the SPS onℝ×(0, 1) with initial
conditions 𝜌0 = 𝜇 and 𝑣0 = 𝑇∗ − idℝ. This solution
corresponds to intersection-less trajectories and it means
that mass is optimally transferred from the support of 𝜇
to the support of 𝜎 along straight lines. See Figure 5.

The square root of the minimal cost in Monge’s prob-
lem is related to a quantity known as the Wasserstein dis-
tance

𝑊2(𝜇,𝜎) ∶= inf
𝜋

(∫
ℝ×ℝ

(𝑥 − 𝑦)2𝑑𝜋(𝑥,𝑦))
1/2

between 𝜇 and 𝜎. Here the infimum is taken over (Borel)
probability measures 𝜋 on ℝ×ℝ satisfying

𝜋(𝐴×ℝ) = 𝜇(𝐴) and 𝜋(ℝ×𝐴) = 𝜎(𝐴)
for each 𝐴 ⊂ ℝ. We note that the Wasserstein space
(𝒫2(ℝ),𝑊2) is a complete, separable metric space.

In the case that 𝜇 does not charge mass to points, the
displacement interpolation 𝜌 between 𝜇 and 𝜎 satisfies

𝑊2(𝜌𝑡, 𝜌𝑠) = (𝑡 − 𝑠)𝑊2(𝜇,𝜎), 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.
As a result, 𝜌 is a constant speed geodesic. These ideas
extend to general 𝜇 ∈ 𝒫(ℝ) which may charge mass to
points. Indeed, the Benamou-Brenier formula [1] and the
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computations performed on action minimizing paths in
the Wasserstein space by Gangbo, Nguyen, and Tudorascu
[6] together imply that all constant speed geodesics in the
Wasserstein space correspond to solutions of the SPS.

Solution for Given Initial Conditions
Now let us return to the initial value problem for the SPS,
which is posed as follows.

Initial value problem: For a given 𝜌0 ∈ 𝒫(ℝ) and 𝑣0 ∈
𝐶𝑏(ℝ), find𝜌 ∶ [0,∞) → 𝒫(ℝ) and 𝑣 ∶ ℝ×[0,∞) → ℝ
that satisfy (5) and (6).

The existence of a solution to this initial value prob-
lem was first established by Weinan, Rykov, and Sinai [5]
and by Brenier and Grenier [2] using novel methods based
on Hamilton-Jacobi equations and conservations laws, re-
spectively. Natile and Savaré [13] subsequently extended
and merged both of these approaches by employing a flow
in Lagrangian variables. We also mention that Dermoune
[4] solved this problem using probabilistic techniques.

All of these approaches rely on the fact that convex com-
binations of Diracmeasures are dense in𝒫(ℝ). That is, for
a given 𝜌0 ∈ 𝒫(ℝ), there is a sequence (𝜌𝑘

0)𝑘∈ℕ such that
each 𝜌𝑘

0 is of the form (7) and

∫
ℝ
𝑔(𝑥)𝑑𝜌0(𝑥) = lim

𝑘→∞
∫
ℝ
𝑔(𝑥)𝑑𝜌𝑘

0(𝑥)

for each 𝑔 ∈ 𝐶𝑏(ℝ). Recall that when the initial mass dis-
tribution is of the form (7), we can solve the initial value
problem using sticky particle trajectories. Therefore, for a
given initial velocity 𝑣0 ∈ 𝐶𝑏(ℝ) and 𝑘 ∈ ℕ, we can find
a solution pair𝜌𝑘 and𝑣𝑘 of the SPS with initial conditions

𝜌𝑘|𝑡=0 = 𝜌𝑘
0 and 𝑣𝑘|𝑡=0 = 𝑣0.

It turns out that we can send 𝑘 → ∞ along a subse-
quence to obtain a solution pair 𝜌 and 𝑣 of the SPS with
the desired initial mass distribution 𝜌0 and velocity 𝑣0 [9].
The two key features which allow for this type of compact-
ness are as follows. The first is

(𝑣𝑘(𝑥, 𝑡) − 𝑣𝑘(𝑦, 𝑡))(𝑥 − 𝑦) ≤ 1
𝑡 (𝑥 − 𝑦)2 (13)

for each 𝑡 > 0 and 𝑥,𝑦 in the support of𝜌𝑘
𝑡 ; this inequality

follows directly from (1). The second feature is

∫
ℝ

1
2(𝑣

𝑘(𝑥, 𝑡))2𝑑𝜌𝑘
𝑡 (𝑥) ≤ ∫

ℝ

1
2(𝑣0(𝑥))2𝑑𝜌𝑘

0(𝑥)

for 𝑡 ≥ 0, which can be derived from (2) using Jensen’s
inequality. This solution pair 𝜌 and 𝑣 will also satisfy a
version of inequality (13), and Huang and Wang showed
that it is the unique solution pair of the SPS for given initial
conditions with this property [8].

Instability in Higher Dimensions

Many of the ideas that we have discussed so far apply to
sticky particle dynamics in ℝ𝑑. However, there is a funda-
mental difference between the associated dynamics when
𝑑 = 1 and when 𝑑 > 1. To see this disparity, let us con-
sider a perfectly inelastic collision of two point masses in
ℝ2. We will suppose these particles have masses𝑚1,𝑚2 >
0 and move with constant velocity 𝑣1, 𝑣2 ∈ ℝ2, respec-
tively. When they collide, they form a single particle of
mass 𝑚1 +𝑚2 that has constant velocity 𝑣 given by

𝑚1𝑣1 +𝑚2𝑣2 = (𝑚1 +𝑚2)𝑣

as shown in Figure 6a.
Let’s further assume that these particles are not restricted

to move on the same line. In this case, we can replace 𝑣2
with 𝑤 ∈ ℝ2 so that the particles initially located at the
same positions with respective masses 𝑚1,𝑚2 and veloci-
ties 𝑣1,𝑤 do not collide. Moreover, our choice in 𝑤 can
be made so that 𝑣2 and 𝑤 are as close as we desire; see Fig-
ure 6b. As 𝑤 tends to 𝑣2, the nonintersecting trajectories
in ℝ2 × [0,∞) associated with the particles in Figure 6b
tend to two lines that intersect and not the piecewise linear
trajectories that describe the perfectly inelastic collision in
Figure 6a.

This type of sensitivity to small changes in initial condi-
tions poses a challenge to understanding the evolution of
the mass distribution and velocity of a collection of parti-
cles in space that interact primarily through inelastic col-
lisions. Specifically, it prevents us from using the approx-
imation method we discussed for 𝑑 = 1 to construct a
solution pair 𝜌 and 𝑣 of the conservation of mass equa-
tion

𝜕𝑡𝜌+∇ ⋅ (𝜌𝑣) = 0

and the conservation of momentum equation

𝜕𝑡(𝜌𝑣) +∇ ⋅ (𝜌𝑣⊗ 𝑣) = 0

inℝ𝑑×(0,∞) for a given initialmass distribution𝜌|𝑡=0 =
𝜌0 and velocity 𝑣|𝑡=0 = 𝑣0 when 𝑑 > 1. While there
have been a few notable works on this higher dimensional
initial value problem [3, 14], we believe this topic is still
primed for mathematical innovation. Of course we hope
that any new ideas which arise in the study of sticky par-
ticles dynamics in space will also provide us with a better
grasp on Zel’dovich’s model for the origin of galaxies.
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Figure 6. (a) A perfectly inelastic collision between
two particles in the plane with masses 𝑚1,𝑚2 and
initial velocities 𝑣1, 𝑣2, respectively. The velocities
are indicated with arrows and the corresponding
paths are indicated with dashed line segments. (b)
An initial velocity 𝑤 ≠ 𝑣2 for the particle with mass
𝑚2 which is selected so that the particles do not
collide.
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