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LAGRANGIAN COORDINATES FOR THE STICKY PARTICLE
SYSTEM∗

RYAN HYND†

Abstract. The sticky particle system is a system of partial differential equations which assert
the conservation of mass and momentum of a collection of particles that interact only via inelastic
collisions. These equations arise in Zel’dovich’s theory for the formation of large scale structures in
the universe. We will show that this system of equations has a solution in one spatial dimension for
given initial conditions by generating a trajectory mapping in Lagrangian coordinates.
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1. Introduction. In this paper, we will study the sticky particle system (SPS)
in one spatial dimension {

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2) = 0.
(1.1)

These equations hold in R× (0,∞) and are typically supplemented with given initial
conditions

(1.2) ρ|t=0 = ρ0 and v|t=0 = v0.

The first equation listed in (1.1) expresses the conservation of mass, and the second
expresses the conservation of momentum. The unknowns are a pair ρ and v which
represent the respective mass density and velocity of a collection of particles that move
along the real line and interact via inelastic collisions. Likewise, ρ0 is the associated
initial mass distribution and v0 is the corresponding initial velocity.

The SPS first arose in cosmology in the study of galaxy formation. In particular,
Zel’dovich considered these equations in three spatial dimensions when he studied the
evolution of matter at low temperatures that wasn’t subject to pressure [11, 16]. To get
an idea of the physics involved, we will study a simple scenario in which finitely many
particles are constrained to move on the real line. We assume that these particles
move in straight line trajectories when they are not in contact; however, particles
undergo perfectly inelastic collisions once they collide. For example, if the particles
with masses m1, . . . ,mk > 0 have respective velocities v1, . . . , vk before a collision,
they will join to form a single particle of mass m1 + · · · + mk upon collision which
moves with velocity v chosen to satisfy

m1v1 + · · ·+mkvk = (m1 + · · ·+mk)v.

See Figure 1 for an example.
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Fig. 1. Three point masses m1,m2,m3 undergo a perfectly inelastic collision at time s. Here
v satisfies m1v1 + m2v2 + m3v3 = (m1 + m2 + m3)v. Also note that these masses are displayed
larger than points to emphasize that they are possibly distinct.

For each i ∈ {1, . . . , N} and t ≥ 0, we write γi(t) ∈ R for the position of mass mi

at time t, which could be by itself or part of a larger mass if it has already collided
with another particle. This specification allows us to associate trajectories γ1, . . . , γN :
[0,∞) → R that track the positions of the respective point masses m1, . . . ,mN . See
Figure 2 for a schematic diagram. It turns out that these trajectories have various
natural properties, including

γi(t) = γj(t), t ≥ s,

whenever γi(s) = γj(s).
Moreover, sticky particle trajectories can be used to generate a solution pair ρ

and v of the SPS. Indeed, we may define the function ρ = ρt which takes values in
the space of Borel measures on R via

(1.3) ρt =

N∑
i=1

miδγi(t), t ≥ 0.

Note that ρ is the mass distribution of the particles, as ρt(A) is the amount of mass
within the set A ⊂ R at time t ≥ 0. We can also set

(1.4) v(x, t) =

{
γ̇i(t+), x = γi(t),

0 otherwise.

We note that v : R× [0,∞)→ R is Borel measurable and v(γi(t), t) is the right-hand
slope of the particles located at position γi(t) at time t.

While ρ and v are not smooth functions, they turn out to satisfy the SPS in a
certain sense that we will specify below. As we expect the total mass to be conserved
for all times, we will assume that it is always equal to 1 for convenience. Consequently,
it will be natural for us to work with the space P(R) of Borel probability measures
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Fig. 2. Sticky particle trajectories γ1, . . . , γN : [0,∞) → R that track the positions of the
respective masses m1, . . . ,mN . Three trajectories γ1, γi, and γN corresponding to masses m1,mi,
and mN are shown in dashed line segments for emphasis.

on R. We recall this space has a natural topology: (µk)k∈N ⊂ P(R) converges to µ
narrowly provided

lim
k→∞

∫
R
gdµk =

∫
R
gdµ

for each bounded, continuous g : R→ R.

Definition 1.1. Suppose ρ0 ∈ P(R) and v0 : R→ R is continuous with∫
R
|v0|dρ0 <∞.

A narrowly continuous ρ : [0,∞) → P(R); t 7→ ρt and a Borel measurable v : R ×
[0,∞) → R is a weak solution pair of the SPS with the initial conditions (1.2) if the
following conditions hold:

(i) For each T > 0, ∫ T

0

∫
R
v2dρtdt <∞.

(ii) For each φ ∈ C∞c (R× [0,∞)),∫ ∞
0

∫
R
(∂tφ+ v∂xφ)dρtdt+

∫
R
φ(·, 0)dρ0 = 0.

(iii) For each φ ∈ C∞c (R× [0,∞)),∫ ∞
0

∫
R

(v∂tφ+ v2∂xφ)dρtdt+

∫
R
φ(·, 0)v0dρ0 = 0.

It can be shown that the pair ρ and v specified in (1.3) and (1.4) is indeed a weak
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solution pair with initial mass

ρ0 =

N∑
i=1

miδγi(0)

and initial velocity v0 : R→ R chosen to satisfy

v0(γi(0)) = γ̇i(0+)

for i = 1, . . . , N . A challenging problem is to show that there is a solution for a general
set of initial conditions. This was first accomplished by E, Rykov, and Sinai [8], who
identified a variational principle for the SPS. Around the same the time, Brenier and
Grenier established a general existence theory by reinterpreting the SPS as a single
scalar conservation law [4]. These two approaches appeared to be distinct until they
were merged and extended upon by Natile and Savaré [13]; see also Cavalletti, Sedjro,
and Westdickenberg’s paper [5] for a refinement of [13]. In addition, we mention that
these approaches are relevant to the dynamics of collections of sticky particles with
more general pairwise interactions as discussed in [3, 10, 14, 15].

In this work, we will consider Lagrangian coordinates for the SPS as motivated
by a probabilistic approach introduced by Dermoune [6]. This involves finding an
absolutely continuous mapping X : [0,∞)→ L2(ρ0) which satisfies the sticky particle
flow equation

(1.5) Ẋ(t) = Eρ0 [v0|X(t)] a.e. t ≥ 0

and initial condition

(1.6) X(0) = idR

ρ0 almost everywhere. Here Eρ0 [v0|X(t)] is the conditional expectation of v0 : R→ R
with respect to ρ0 given X(t). In particular, we are asserting that (1.5) is the natural
condition for collections of particles that move freely on the real line and undergo
perfectly inelastic collisions when they meet. We note that Dermoune considered a
more general setup involving an abstract probability space and showed the existence
of a solution for a given initial condition. With regard to his formulation, we content
ourselves with the specific probability space (R,B(R), ρ0), where B(R) is the Borel
sigma algebra on R.

We will also use the notation

X(t) : R→ R; y 7→ X(y, t)

when we wish to emphasize spatial dependence. Here X(y, t) denotes the position of
the particle at time t which started at position y. In particular, we will show that we
can design a weak solution pair ρ and v of the SPS with

Ẋ(t) = v(X(t), t) a.e. t ≥ 0.

In this sense, X is a Lagrangian coordinate. Our main theorem is as follows.

Theorem 1.2. Suppose ρ0 ∈ P(R) with∫
R
x2dρ0(x) <∞

and v0 : R → R absolutely continuous. There is a solution X of the sticky particle
flow equation (1.5) which satisfies the initial condition (1.6) and has the following
properties:
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(i) For Lebesgue almost every t, s ≥ 0 with s ≤ t,∫
R

1

2
Ẋ(t)2dρ0 ≤

∫
R

1

2
Ẋ(s)2dρ0 ≤

∫
R

1

2
v20dρ0.

(ii) For t ≥ 0 and y, z ∈ supp(ρ0) with y ≤ z,

0 ≤ X(z, t)−X(y, t) ≤ z − y + t

∫ z

y

|v′0(x)|dx.

(iii) For each 0 < s ≤ t and y, z ∈ supp(ρ0),

1

t
|X(y, t)−X(z, t)| ≤ 1

s
|X(y, s)−X(z, s)|.

Remark 1.3. Since v0 : R→ R is absolutely continuous, it grows at most linearly
on R. As a result,

∫
R v

2
0dρ0 < ∞. We also remind the reader that the support of ρ0

is defined by

supp(ρ0) := {y ∈ R : ρ0((y − δ, y + δ)) > 0 for all δ > 0}.

A corollary of the above theorem is that there exists a weak solution of the SPS
for given initial conditions. We emphasize that the following result has already been
proven or follows from previous efforts such as [4, 8, 13]. Our goal is to verify this
claim through proving Theorem 1.2 and in particular to give a more thorough analysis
of (1.5) than was done in [6].

Corollary 1.4. Suppose ρ0 ∈ P(R) with∫
R
x2dρ0(x) <∞

and v0 : R → R absolutely continuous. There is a weak solution pair ρ and v of the
SPS with initial conditions (1.2):

(i) For Lebesgue almost every t, s ≥ 0 with s ≤ t,∫
R

1

2
v(x, t)2dρt(x) ≤

∫
R

1

2
v(x, s)2dρs(x) ≤

∫
R

1

2
v0(x)2dρ0(x).

(ii) For Lebesgue almost every t ∈ (0,∞),

(1.7) (v(x, t)− v(y, t))(x− y) ≤ 1

t
(x− y)2

for ρt almost every x, y ∈ R.

We will prove this corollary at the end of this paper, right after verifying Theorem
1.2. This paper is organized as follows. First, we will briefly discuss the preliminary
material needed in our study and make some observations on sticky particle trajec-
tories. Then we will verify that solutions of the sticky particle flow equation (1.5)
which are associated with sticky particle trajectories are compact in a certain sense.
Finally, we will show that we can always find a subsequence of these particular types
of solutions that converges to a general solution.

2. Preliminaries. In this section, we will briefly outline some of the notation
and review the few technical preliminaries needed for our study.
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2.1. Convergence of probability measures. We will denote P(Rd) as the
space of Borel probability measures on Rd and write Cb(Rd) for the space of bounded
continuous functions on Rd. As noted in the introduction, P(Rd) is endowed with a
natural topology defined as follows. A sequence (µk)k∈N ⊂ P(Rd) converges to µ in
P(Rd) narrowly provided

(2.1) lim
k→∞

∫
Rd

gdµk =

∫
Rd

gdµ

for each g ∈ Cb(Rd). It turns out that this topology can be metrized by a metric of
the form

(2.2) d(µ, ν) :=

∞∑
j=1

1

2j

∣∣∣∣∫
Rd

hjdµ−
∫
Rd

hjdν

∣∣∣∣ , µ, ν ∈ P(Rd).

Here each hj : Rd → R satisfies ‖hj‖∞ ≤ 1 and Lip(hj) ≤ 1 (Remark 5.1.1 of [1]).
Moreover, (P(Rd),d) is a complete metric space.

It will be useful for us to know when a sequence of measures in P(Rd) has a
narrowly convergent subsequence. Prokhorov’s theorem asserts that (µk)k∈N ⊂ P(Rd)
has a narrowly convergent subsequence if and only if there is ϕ : Rd → [0,∞] with
compact sublevel sets for which

(2.3) sup
k∈N

∫
Rd

ϕdµk <∞

(Theorem 5.1.3 of [1]). It will also be convenient to know when (2.1) holds for un-
bounded g. It turns out that if g : Rd → R is continuous and |g| is uniformly
integrable with respect to (µk)k∈N, then (2.1) holds. That is, a continuous g satisfies
(2.1) provided

lim
R→∞

∫
|g|≥R

|g|dµk = 0

uniformly in k ∈ N (Lemma 5.1.7 of [1]).
We will also need the following lemma.

Lemma 2.1. Suppose (gk)k∈N is a sequence of continuous functions on Rd which
converges locally uniformly to g and (µk)k∈N ⊂ P(Rd) converges narrowly to µ. Fur-
ther assume there is h : Rd → [0,∞) with compact sublevel sets, which is uniformly
integrable with respect to (µk)k∈N and satisfies

(2.4) |gk| ≤ h

for each k ∈ N. Then

(2.5) lim
k→∞

∫
Rd

gkdµk =

∫
Rd

gdµ.

Proof. Fix ε > 0 and choose R > 0 so large that∫
h≥R

hdµk ≤ ε

4

for all k ∈ N. In view of (2.4), |g| ≤ h. Thus, |g| is uniformly integrable with respect
to (µk)k∈N and so there is N ∈ N such that∣∣∣∣∫

Rd

gdµk −
∫
Rd

gdµ

∣∣∣∣ < ε

2
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for all k ≥ N .
It follows that∣∣∣∣∫

Rd

gkdµk −
∫
Rd

gdµ

∣∣∣∣ =

∣∣∣∣∫
Rd

(gk − g)dµk +

∫
Rd

gdµk −
∫
Rd

gdµ

∣∣∣∣
≤
∫
Rd

|gk − g|dµk +
ε

2

=

∫
h≤R
|gk − g|dµk +

∫
h≥R
|gk − g|dµk +

ε

2

≤
∫
h≤R
|gk − g|dµk + 2

∫
h≥R

hdµk +
ε

2

≤
∫
h≤R
|gk − g|dµk + ε

for k ≥ N . As {h ≤ R} is compact and gk → g uniformly on {h ≤ R},

lim sup
k→∞

∣∣∣∣∫
Rd

gkdµk −
∫
Rd

gdµ

∣∣∣∣ ≤ ε.
We conclude (2.5), as ε > 0 is arbitrary.

2.2. The push-forward. For a Borel map f : Rd → Rn and µ ∈ P(Rd), we
define the push-forward of µ through f as the probability measure f#µ ∈ P(Rn)
which satisfies ∫

Rn

g(y)d(f#µ)(y) =

∫
Rd

g(f(x))dµ(x)

for each g ∈ Cb(Rn). We also note

f#µ(A) = µ(f−1(A))

for Borel A ⊂ Rn.

Remark 2.2. (i) We will be primarily interested in the dimensions d, n ∈ {1, 2}.
(ii) We could have easily presented our remarks involving the convergence of proba-
bility measures and the push-forward in terms of complete, separable metric spaces
instead of focusing on Euclidean spaces.

2.3. Conditional expectation. Suppose µ ∈ P(R), g ∈ L2(µ), and Y : R→ R
is Borel measurable. A conditional expectation of g with respect to µ given Y is an
L2(µ) function Eµ[g|Y ] which satisfies

(2.6)

∫
R
Eµ[g|Y ] h(Y )dµ =

∫
R
g h(Y )dµ

for all Borel h : R→ R with

(2.7)

∫
R
h(Y )2dµ <∞

and
Eµ[g|Y ] = f(Y ) µ a.e.

for some Borel f : R→ R which satisfies (2.7) (with f replacing h).
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The existence of a conditional expectation follows from a simple application
of the Radon–Nikodym theorem, and it is also not hard to show that conditional
expectations are uniquely determined up to a null set for µ. Moreover, choosing
h(Y ) = Eµ[g|Y ] in (2.6) and using the Cauchy–Schwarz inequality gives

(2.8)

∫
R
Eµ[g|Y ]2dµ ≤

∫
R
g2dµ.

Finally, we recall that conditional expectation has the “tower property,” which asserts

(2.9) Eµ[Eµ[g|Y ]|e(Y )] = Eµ[g|e(Y )]

for any Borel e : R→ R.

3. Sticky particle trajectories. We will now study the sticky particle tra-
jectories mentioned in the introduction. To this end, we will fix m1, . . . ,mN > 0
with

N∑
i=1

mi = 1,

distinct x1, . . . , xN ∈ R, and v1, . . . , vN ∈ R throughout this section. These quantities
represent the respective masses, initial positions, and initial velocities of a collection
of particles that will move freely and undergo perfectly inelastic collisions when they
collide. We will ultimately argue that we can always associate a collection of sticky
particle trajectories γ1, . . . , γN to this initial data that has the necessary features in
order to build a weak solution pair of the SPS out of them.

3.1. Basic properties. We will first note that sticky particle trajectories exist.
In the following proposition, we will use the notation

f(t±) = lim
h→0±

f(t+ h)

for the right f(t+) and left f(t−) limits of f at t, respectively. However, we will omit
a proof of the following proposition, as we have already justified this claim in a related
work (Proposition 2.1 in [12]).

Proposition 3.1. There are continuous, piecewise linear paths

γ1, . . . , γN : [0,∞)→ R

with the following properties:
(i) For i = 1, . . . , N ,

γi(0) = xi and γ̇i(0+) = vi.

(ii) For i, j = 1, . . . , N , 0 ≤ s ≤ t and γi(s) = γj(s) imply

γi(t) = γj(t).

(iii) If t > 0, {i1, . . . , ik} ⊂ {1, . . . , N}, and

γi1(t) = · · · = γik(t) 6= γi(t)

for i 6∈ {i1, . . . , ik}, then

γ̇ij (t+) =
mi1 γ̇i1(t−) + · · ·+mik γ̇ik(t−)

mi1 + · · ·+mik

for j = 1, . . . , k.
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Remark 3.2. Since γi is piecewise linear, the limits γ̇i(t+) and γ̇i(t−) exist. More-
over, they can be computed as follows:

γ̇i(t±) = lim
h→0±

γi(t+ h)− γi(t)
h

.

We also note that property (iii) implies a more general averaging property, which
is stated below. This is the main tool that can be used to show that ρ and v defined
in (1.3) and (1.4) constitute a weak solution pair of the SPS. We will omit the proof
of this fact, as we have verified it in earlier work (Proposition 2.5 in [12]).

Corollary 3.3. For g : R→ R and 0 ≤ s ≤ t,

N∑
i=1

mig(γi(t))γ̇i(t+) =

N∑
i=1

mig(γi(t))γ̇i(s+).

3.2. Two estimates. We will now derive some estimates on γi(t) − γj(t) in
terms of the given initial data. We will start with an elementary lemma.

Lemma 3.4. Suppose T > 0, and suppose y : [0, T )→ R is continuous and piece-
wise linear. Further assume

(3.1) ẏ(t+) ≤ ẏ(t−)

for each t ∈ (0, T ). Then

(3.2) y(t) ≤ y(0) + tẏ(0+)

for t ∈ [0, T ).

Proof. Choose times 0 = t0 < · · · < tn = T such that y is linear on each of the
intervals (0, t1), . . . , (tn−1, T ). For φ ∈ C∞c (0, T ), we integrate by parts and compute∫ T

0

φ̈(t)y(t)dt =

n−1∑
i=1

φ(ti) (ẏ(ti+)− ẏ(ti−)) +

n−1∑
i=1

∫ ti+1

ti

φ(t)ÿ(t)dt

=

n−1∑
i=1

φ(ti) (ẏ(ti+)− ẏ(ti−)) .

Thus,

(3.3)

∫ T

0

φ̈(t)y(t)dt ≤ 0

for φ ≥ 0.
Now let η ∈ C∞c (R) be a standard mollifier. That is,

η(z) = η(−z) ≥ 0,∫
R ηdz = 1,

supp(η) ⊂ [−1, 1].

Set

ηε :=
1

ε
η
( ·
ε

)
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and define

yε(s) =

∫ T

0

ηε(s− t)y(t)dt

for s ∈ (ε, T − ε) and 0 < ε < T . Observe that yε is smooth and ηε(s− ·) ∈ C∞c (0, T )
for s ∈ (ε, T − ε). By (3.3),

ÿε(s) =

∫ T

0

η̈ε(s− t)y(t)dt ≤ 0.

Therefore, yε is concave on (ε, T − ε) for any 0 < ε < T . It is routine to check that
yε(t) → y(t) for each t ∈ (0, T ). As a result, y is concave on [0, T ) and we conclude
(3.2).

The main application of Lemma 3.4 is the following proposition. It will later
provide us with a modulus of continuity estimate for solutions of (1.5).

Proposition 3.5. Suppose i, j ∈ {1, . . . , N}, xi ≥ xj, and t ≥ 0. Then

(3.4) 0 ≤ γi(t)− γj(t) ≤ xi − xj + t

n−1∑
`=1

|vk`+1
− vk` |,

where k1, . . . , kn ∈ {1, . . . , N} are chosen so that

xj = xk1 < · · · < xkn = xi.

Proof. 1. We suppose x1 ≤ · · · ≤ xN so that γ1 ≤ · · · ≤ γN . With this assump-
tion, it suffices to show

(3.5) γi+1(t)− γi(t) ≤ xi+1 − xi + t|vi+1 − vi|

for t ≥ 0. Because if j, k ∈ {1, . . . , N} with k > j, then

γk(t)− γj(t) =

k−1∑
i=j

(γi+1(t)− γi(t))

≤
k−1∑
i=j

(xi+1 − xi + t|vi+1 − vi|)

= xk − xj + t

k−1∑
i=j

|vi+1 − vi|.

With the goal of verifying (3.5) in mind, we fix i ∈ {1, . . . , N} and define

T := inf{t ≥ 0 : γi+1(t)− γi(t) = 0}.

In order to prove (3.5), it then suffices to show

(3.6) γi+1(t)− γi(t) ≤ xi+1 − xi + t(vi+1 − vi), t ∈ [0, T ].

We will do this by applying the previous lemma to

y(t) := γi+1(t)− γi(t), t ∈ [0, T ).
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We already know that y is continuous and piecewise linear. Let us now focus on
showing

(3.7) γ̇i+1(s+) ≤ γ̇i+1(s−).

2. Observe that if γi+1 does not have a first intersection time at s ∈ (0, T ), then
γi+1 is linear near s and so

γ̇i+1(s) = γ̇i+1(s+) = γ̇i+1(s−).

Alternatively, if γi+1 has a first intersection time at s, there are trajectories γi+2, . . . ,
γi+r (some r ≥ 2) such that

γi+1(s) = γi+2(s) = · · · = γi+r(s)

and

(3.8) γ̇i+j(s+) =
mi+1γ̇i+1(s−) + · · ·+mi+rγ̇i+r(s−)

mi+1 + · · ·+mi+r
,

j = 1, . . . , r. Recall part (iii) of Proposition 3.1.
Also observe that since γi+1 ≤ γi+j for j = 2, . . . , r,

γi+1(s+ h)− γi+1(s)

h
≥ γi+j(s+ h)− γi+j(s)

h

for all h < 0 and close enough to 0. It follows from Remark 3.2 that

γ̇i+1(s−) ≥ γ̇i+j(s−).

In view of (3.8),

γ̇i+1(s+) ≤ mi+1γ̇i+1(s−) + · · ·+mi+rγ̇i+1(s−)

mi+1 + · · ·+mi+r
= γ̇i+1(s−),

which is (3.7). A similar argument gives

(3.9) γ̇i(s+) ≥ γ̇i(s−)

for each s ∈ (0, T ). Combining (3.7) and (3.9),

ẏ(s+) = γ̇i+1(s+)− γ̇i(s+) ≤ γ̇i+1(s−)− γ̇i(s−) = ẏ(s−)

for all s ∈ (0, T ). We then conclude (3.6) by appealing to Lemma 3.4.

Remark 3.6. We can infer from the proof of Proposition 3.5 that if x1 ≤ · · · ≤ xN
and v1 ≤ · · · ≤ vN , then (3.4) can be improved to

0 ≤ γi(t)− γj(t) ≤ xi − xj + t|vi − vj |

for i ≥ j and t ≥ 0. However, if v1, . . . , vN are not nondecreasing, then this estimate
fails to be true. To see this, let us consider the example of three particles, each with
mass equal to 1/3, and with respective initial positions

x1 = 0, x2 = 1, x3 = 2
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Fig. 3. Three sticky particle trajectories γ1, γ2, γ3 : [0,∞) → R in which |γ1(t) − γ3(t)| >
|x3 − x1|+ t|v3 − v1| for t > 1.

and the initial velocities
v1 = 1, v2 = 0, v3 = 1.

The corresponding sticky particle trajectories for γ1 and γ3 are

γ1(t) =

{
t, 0 ≤ t ≤ 1,

1 + 1
2 (t− 1), t ≥ 1,

and γ3(t) = 2 + t. Observe that for t > 1

γ3(t)− γ1(t) = 2 + t−
(

1 +
1

2
(t− 1)

)
= 2 +

1

2
(t− 1)

> 2

= x3 − x1 + t|v3 − v1|.

See Figure 3.

We call the following assertion the quantitative sticky particle property, as it quan-
tifies part (ii) of Proposition 3.1.

Proposition 3.7. For each i, j = 1, . . . , N and 0 < s ≤ t,

1

t
|γi(t)− γj(t)| ≤

1

s
|γi(s)− γj(s)|.

We will see that this proposition is a simple consequence of the following lemma.

Lemma 3.8. Suppose T > 0, and suppose y : [0, T ) → [0,∞) is continuous and
piecewise linear. Further assume

(3.10) ẏ(t+) ≤ ẏ(t−)
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for each t ∈ (0, T ). Then

1

t
y(t) ≤ 1

s
y(s)

for 0 < s ≤ t < T .

Proof. Let 0 < t0 < · · · < tn < T be such that y is linear on each of the intervals
(0, t1), . . . , (tn, T ). It then suffices to show

u(t) :=
y(t)

t
, t ∈ (0, T ),

is nonincreasing on each of these intervals. First observe

u̇(t+) =
ẏ(t+)

t
− y(t)

t2

≤ ẏ(t−)

t
− y(t)

t2

= u̇(t−)

for each t > 0 by (3.10). Also note

ÿ(t) = tü(t) + 2u̇(t) = 0

for t ∈ (0, T ) \ {t1, . . . , tn}. Consequently,

(3.11)
d

dt

(
u̇(t)t2

)
= t (ü(t)t+ 2u̇(t)) = 0

for t ∈ (0, T ) \ {t1, . . . , tn}.
As y is nonnegative,

u̇(t) ≤ ẏ(t)

t
for t ∈ (0, T ) \ {t1, . . . , tn}. As a result,

lim sup
s→0+

{
u̇(s)s2

}
≤ lim sup

s→0+
{ẏ(s)s} = ẏ(0+)0 = 0.

In view of (3.11),
u̇(t)t2 = lim sup

s→0+

{
u̇(s)s2

}
≤ 0

for t ∈ (0, t1). Therefore, u̇(t) ≤ 0 for t ∈ (0, t1).
So far, we have shown that u is nonincreasing on t ∈ (0, t1], which gives

u̇(t1−) ≤ 0.

And by (3.11),

u̇(t)t2 ≤ u̇(t1+)t21

≤ u̇(t1−)t21

≤ 0

for t ∈ (t1, t2). Thus, u is nonincreasing on [t1, t2] and

u̇(t2−) ≤ 0.

Repeating this argument on [t2, t3], [t3, t4], . . . , [tn, T ), we find u is nonincreasing on
(0, T ).
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Proof of Proposition 3.7. Without loss of generality, we may suppose γ1 ≤ · · · ≤
γN . Then it suffices to show

(3.12)
1

t
(γi+1(t)− γi(t)) ≤

1

s
(γi+1(s)− γi(s))

for each i = 1, . . . , N − 1 and 0 < s ≤ t <∞. In this case, we would have for k > j

1

t
(γk(t)− γj(t)) =

k−1∑
i=j

1

t
(γi+1(t)− γi(t))

≤
k−1∑
i=j

1

s
(γi+1(s)− γi(s))

=
1

s
(γk(s)− γj(s)).

As for (3.12), we fix i ∈ {1, . . . , N − 1} and set

y(t) := γi+1(t)− γi(t), t ∈ [0, T ).

Here
T := inf{t ≥ 0 : y(t) = 0}.

Observe that y : [0, T )→ [0,∞) is piecewise linear. Further, the proof of Proposition
3.5 gives

ẏ(t+) ≤ ẏ(t−).

By Lemma 3.8,

1

t
(γi+1(t)− γi(t)) =

1

t
y(t) ≤ 1

s
y(s) =

1

s
(γi+1(s)− γi(s))

for 0 < s ≤ t < T . Since γi+1(τ)− γi(τ) = 0 for all τ ≥ T , we conclude (3.12) for all
0 < s ≤ t <∞.

Corollary 3.9. For each 0 < s ≤ t, there is ft,s : R→ R such that

γi(t) = ft,s(γi(s))

for i = 1, . . . , N and

(3.13) |ft,s(x)− ft,s(y)| ≤ t

s
|x− y|

for x, y ∈ R.

Proof. Since the number of distinct elements of {γ1(τ), . . . , γN (τ)} is nonincreas-
ing in τ ≥ 0, the function

gt,s : {γ1(s), . . . , γN (s)} → {γ1(t), . . . , γN (t)}; γi(s) 7→ γi(t)

is well defined by part (ii) of Proposition 3.1. Further, γi(t) = gt,s(γi(s)) for i =
1, . . . , N . By Proposition 3.7, gt,s satisfies (3.13) for x, y ∈ {γ1(s), . . . , γN (s)}. We
can then extend gt,s to all of R to obtain ft,s. For example, we can take

ft,s(x) = inf

{
gt,s(γi(s)) +

t

s
|x− γi(s)| : i = 1, . . . , N

}
.
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3.3. A trajectory map. Let us define

X : {x1, . . . , xN} × [0,∞)→ R; (xi, t) 7→ γi(t).

For each t ≥ 0, we will also set

X(t) : {x1, . . . , xN} → R;xi 7→ γi(t)

so that
X(t)(xi) = X(xi, t) = γi(t)

for i = 1, . . . , N . This is a trajectory map associated with the sticky particle trajec-
tories γ1, . . . , γN .

We will translate the properties we derived above for sticky particle trajectories
in terms of X and argue that X is a solution of the sticky particle flow equation (1.5).
To this end, we set

(3.14) ρ0 :=

N∑
i=1

miδxi

and choose v0 : R→ R absolutely continuous with

v0(xi) = vi

for i = 1, . . . , N .

Proposition 3.10. The function X has the following properties:
(i) X(0) = idR and

Ẋ(t) = Eρ0 [v0|X(t)]

for all but finitely many t ≥ 0. Both equalities hold on the support of ρ0.
(ii) For every t, s ≥ 0 with s ≤ t,∫

R

1

2
Ẋ(t+)2dρ0 ≤

∫
R

1

2
Ẋ(s+)2dρ0 ≤

∫
R

1

2
v20dρ0.

(iii) X : [0,∞)→ L2(ρ0); t 7→ X(t) is Lipschitz continuous.
(iv) For t ≥ 0 and y, z ∈ supp(ρ0) with y ≤ z,

0 ≤ X(z, t)−X(y, t) ≤ z − y + t

∫ z

y

|v′0(x)|dx.

(v) For each 0 < s ≤ t and y, z ∈ supp(ρ0),

1

t
|X(y, t)−X(z, t)| ≤ 1

s
|X(y, s)−X(z, s)|.

(vi) For each 0 < s ≤ t, there is a function ft,s : R → R which satisfies the
Lipschitz condition (3.13) and

X(y, t) = ft,s(X(y, s))

for y ∈ supp(ρ0).
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Proof. Part (i): As X(xi, 0) = xi, it is clear that we have

X(0) = idR

on the support of ρ0. Furthermore, Corollary 3.3 implies that if g : R→ R and s ≤ t,
then ∫

R
g(X(t))Ẋ(t+)dρ0 =

N∑
i=1

mig(γi(t))γ̇i(t+)

=

N∑
i=1

mig(γi(t))γ̇i(s+)

=

∫
R
g(X(t))Ẋ(s+)dρ0.

In particular, ∫
R
g(X(t))Ẋ(t)dρ0 =

∫
R
g(X(t))v0dρ0

for all but finitely many t ≥ 0. Also recall that

Ẋ(t+) = v(X(t), t)

on the support of ρ0 for t ≥ 0, where v is defined as in (1.4). It follows that Ẋ(t) =
Eρ0 [v0|X(t)] for all but finitely many t ≥ 0.

Parts (ii) and (iii): Our proof of (i) also shows

Ẋ(t+) = Eρ0 [Ẋ(s+)|X(t)]

and
Ẋ(s+) = Eρ0 [v0|X(s)]

for 0 ≤ s ≤ t. So part (ii) follows from inequality (2.8). Moreover, for s ≤ t,

(3.15)

∫
R
(X(t)−X(s))2dρ0 ≤ (t− s)

∫ t

s

∫
R
Ẋ(τ)2dρ0dτ ≤ (t− s)2

∫
R
v20dρ0.

Therefore, X : [0,∞)→ L2(ρ0) is Lipschitz continuous.
Part (iv): By part (ii) of Proposition 3.1, X(·, t) is nondecreasing on the support

of ρ0. In view of Proposition 3.5, we also have

0 ≤ X(xi, t)−X(xj , t) ≤ xi − xj + t

n−1∑
`=1

|v0(xk`+1
)− v0(xk`)|

for xi ≥ xj . Here k1, . . . , kn ∈ {1, . . . , N} are chosen so that

xj = xk1 < · · · < xkn = xi.

Since v0 is absolutely continuous,

n−1∑
`=1

|v0(xk`+1
)− v0(xk`)| ≤

n−1∑
`=1

∫ xk`+1

xk`

|v′0(x)|dx =

∫ xi

xj

|v′0(x)|dx.

We conclude part (iv).
Parts (v) and (vi): Part (v) follows from Proposition 3.7 and part (vi) is due to

Corollary 3.9.
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Remark 3.11. As v0 : R→ R is absolutely continuous,

ω(r) := sup

{∫ b

a

|v′0(x)|dx : 0 ≤ b− a ≤ r

}

tends to 0 as r → 0+. It is also easy to check that ω is nondecreasing and sublin-
ear, which implies that ω(r) grows at most linearly in r. By part (iv) of the above
proposition,

(3.16) |X(y, t)−X(z, t)| ≤ |y − z|+ tω(|y − z|)

for y, z belonging to the support of ρ0. Therefore, X(t) is uniformly continuous on the
support of ρ0. So we may extend X(t) to obtain a uniformly continuous function on
R which satisfies (3.16) and agrees with X(t) on the support of ρ0. Consequently, we
will identify X(t) with this extension and consider X(t) to be a uniformly continuous
function on R.

Remark 3.12. The reader may wonder whether the estimate

|X(z, t)−X(y, t)| ≤ |z − y|+ t|v0(y)− v0(z)|

holds for each y, z belonging to the support of ρ0. As we argued in Remark 3.6, such
an estimate is only guaranteed to hold when v0 is nonincreasing.

4. Existence theory. Our goal in this section is to prove Theorem 1.2. So we
will assume throughout that ρ0 ∈ P(R) with∫

R
x2dρ0(x) <∞

and v0 : R→ R absolutely continuous. We will also select a sequence (ρk0)k∈N ⊂ P(R)
in which each ρk0 is of the form (3.14), ρk0 → ρ0 narrowly, and

(4.1) lim
k→∞

∫
R
x2dρk0(x) =

∫
R
x2dρ0(x)

(see [2] for a short proof of how this can be done). In view of Proposition 3.10, there
is a mapping

Xk : R× [0,∞)→ R

which satisfies the sticky particle flow equation (1.5) and the initial condition (1.6)
with ρk0 replacing ρ0. In this section, we will show (Xk)k∈N has a subsequence that
converges in various senses to a solution of the sticky particle flow equation (1.5)
which satisfies the initial condition (1.6) for the given ρ0. Then we will finally show
how to use this solution to design a solution of the SPS (1.1) that fulfills the initial
conditions (1.2).

4.1. Compactness. Theorem 1.2 will follow from two compactness lemmas for
the sequence (Xk)k∈N. The first asserts that Xk(t) has a subsequence which converges
in a strong sense for each t ≥ 0.

Lemma 4.1. There are a subsequence (Xkj )j∈N and a Lipschitz continuous map-
ping X : [0,∞)→ L2(ρ0); t 7→ X(t) such that

(4.2) lim
j→∞

∫
R
h(idR, X

kj (t))dρ
kj
0 =

∫
R
h(idR, X(t))dρ0
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for each t ≥ 0 and continuous h : R2 → R with

sup
(x,y)∈R2

|h(x, y)|
1 + x2 + y2

<∞.

Moreover, X has the following properties:
(i) For y, z ∈ supp(ρ0) with y ≤ z and t ≥ 0,

0 ≤ X(z, t)−X(y, t) ≤ z − y + t

∫ z

y

|v′0(x)|dx.

(ii) For y, z ∈ supp(ρ0) and 0 < s ≤ t,

1

t
|X(y, t)−X(z, t)| ≤ 1

s
|X(y, s)−X(z, s)|.

(iii) For each 0 < s ≤ t, there is a function ft,s : R→ R which satisfies (3.13) and

(4.3) X(y, t) = ft,s(X(y, s))

for y ∈ supp(ρ0).

Proof. Step 1: “narrow” convergence. Inequality (3.15) implies(∫
R
Xk(t)2dρk0

)1/2

≤
(∫

R
(Xk(t)−Xk(0))2dρk0

)1/2

+

(∫
R
Xk(0)2dρk0

)1/2

≤ t
(∫

R
v20dρ

k
0

)1/2

+

(∫
R
x2dρk0

)1/2

.

As v0 is uniformly continuous on R, v0 grows at most linearly. Combining with (4.1),
we find

(4.4)

(∫
R
Xk(t)2dρk0

)1/2

≤ A(1 + t)

for some constant A > 0 independent of k ∈ N and for each t ≥ 0. For k ∈ N, we also
define σk : [0,∞)→ P(R2); t 7→ σkt via the formula

σkt := (idR, X
k(t))#ρ

k
0 .

Note that (4.1) and (4.4) give

(4.5) sup
k∈N

∫∫
R2

(x2 + y2)dσkt (x, y) <∞

for each t ≥ 0. By criterion (2.3), (σkt )k∈N is narrowly precompact for each t ≥ 0.
Also observe that for h ∈ C1(R2) and s ≤ t∫∫
R2

h(x, y)dσk
t (x, y)−

∫∫
R2

h(x, y)dσk
s (x, y) =

∫
R
h(idR, X

k(t))dρk0 −
∫
R
h(idR, X

k(s))dρk0

=

∫
R
[h(idR, X

k(t))− h(idR, X
k(s))]dρk0

=

∫
R

∫ t

s

∂yh(idR, X
k(τ))Ẋk(τ)dτdρk0
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=

∫ t

s

∫
R
∂yh(idR, X

k(τ))Ẋk(τ)dρk0dτ

≤ Lip(h)

∫ t

s

(∫
R
|Ẋk(τ)|dρk0

)
dτ

≤ Lip(h)(t− s)
∫
R
|v0|dρk0

≤ CLip(h)(t− s)

for some constant C independent of k ∈ N. By mollifying h, it is routine to show∣∣∣∣∫∫
R2

h(x, y)dσkt (x, y)−
∫∫

R2

h(x, y)dσks (x, y)

∣∣∣∣ ≤ CLip(h)(t− s)

for Lipschitz continuous h : R2 → R.
Using the metric defined in (2.2), which metrizes the narrow topology on P(R2),

we additionally have

d(σkt , σ
k
s ) ≤ C|t− s|

for t, s ≥ 0 and k ∈ N. In summary, (σk)k∈N is a uniformly equicontinuous family of
mappings from [0,∞) into (P(R2),d) which is also pointwise precompact. By the
Arzelà–Ascoli theorem, there are a subsequence (σkj )j∈N and a narrowly continuous
mapping σ : [0,∞)→ P(R2) such that

(4.6) σ
kj
t → σt

narrowly in P(R2) for each t ≥ 0.
Step 2: “weak” convergence. A direct consequence of (4.6) is∫∫
R2

φ(x)dσt(x, y) = lim
j→∞

∫∫
R2

φ(x)dσ
kj
t (x, y) = lim

j→∞

∫
R
φ(x)dρ

kj

0 (x) =

∫
R
φ(x)dρ0(x)

for φ ∈ Cb(R). By the disintegration theorem (Theorem 5.3.1 of [1]), there is a family
of probability measures (ζxt )x∈R ⊂ P(R) such that∫∫

R2

h(x, y)dσt(x, y) =

∫
R

(∫
R
h(x, y)dζxt (y)

)
dρ0(x)

for h ∈ Cb(R2). We define

X(x, t) :=

∫
R
ydζxt (y)

for x ∈ R and t ≥ 0.
In view of (4.5), (x, y) 7→ |y| is uniformly integrable with respect to (σ

kj
t )j∈N.

Indeed,∫∫
|y|≥R

|y|dσkjt (x, y) ≤ 1

R

∫∫
|y|≥R

y2dσ
kj
t (x, y) ≤ 1

R

∫∫
R2

(x2 + y2)dσ
kj
t (x, y)

so that

lim
R→∞

∫∫
|y|≥R

|y|dσkjt (x, y) = 0

uniformly in j ∈ N. It follows that



3788 RYAN HYND

lim
j→∞

∫
R
Xkj (t) φdρ

kj
0 = lim

j→∞

∫∫
R2

y φ(x)dσ
kj
t (x, y)

=

∫∫
R2

y φ(x)dσt(x, y)

=

∫
R

(∫
R
y φ(x)dζxt (y)

)
dρ0(x)

=

∫
R
X(t) φdρ0(4.7)

for φ ∈ Cb(R) and each t ≥ 0.
Step 3: “strong” convergence. Fix t ≥ 0. By Remark 3.11,

|Xk(y, t)−Xk(z, t)| ≤ |y − z|+ tω(|y − z|)

for y, z ∈ R. Moreover,

|Xk(y, t)| ≤ |Xk(y, t)−Xk(z, t)|+ |Xk(z, t)|
≤ |y − z|+ tω(|y − z|) + |Xk(z, t)|.

Integrating over z ∈ R gives

|Xk(y, t)| ≤
∫
R

(
|y − z|+ tω(|y − z|) + |Xk(z, t)|

)
dρk0(z).

In view of (4.1), (4.4), and the fact that ω grows at most linearly,

(4.8) |Xk(y, t)| ≤ B(1 + t)(1 + |y|)

for some constant B > 0 independent of k ∈ N and for each y ∈ R and t ≥ 0.
It follows from the Arzelà–Ascoli theorem that (Xkj (t))j∈N has a subsequence

(Xkj` (t))`∈N that converges locally uniformly on R to a uniformly continuous function
Y : R→ R. We also have by (4.7) that∫

R
Y φdρ0 = lim

`→∞

∫
R
Xkj` (t) φdρ

kj`
0 =

∫
R
X(t) φdρ0

for φ ∈ Cb(R). That is, X(t) = Y ρ0 almost everywhere. And for any other subse-
quence of (Xkj (t))j∈N which converges locally uniformly to a continuous function Z,
it must be that Y = Z ρ0 almost everywhere.

If Y (x0) > Z(x0) for some x0 ∈ supp(ρ0), then continuity ensures Y > Z in some
neighborhood (x0 − δ, x0 + δ) of x0. This leads to a contradiction

0 =

∫
R
|Y − Z|dρ0 ≥

∫
(x0−δ,x0+δ)

(Y − Z)dρ0 > 0,

since ρ0((x0 − δ, x0 + δ)) > 0. It follows that Z = Y on the support of ρ0, and these
limiting values are uniquely determined on the support of ρ0.

Without any loss of generality, we will redefine X(t) = Y , as these functions agree
ρ0 almost everywhere, and now note

(4.9)

{
Xkj (yj , t)→ X(y, t)

whenever y ∈ supp(ρ0) and yj → y.
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Moreover, in view of the bound (4.8), we can also apply Lemma 2.1 to get

lim
`→∞

∫
R
Xkj` (t)2dρ

kj`
0 =

∫
R
Y 2dρ0 =

∫
R
X(t)2dρ0 <∞.

As this limit is independent of the subsequence, we actually have

lim
j→∞

∫
R
Xkj (t)2dρ

kj
0 =

∫
R
X(t)2dρ0.

The limit (4.2) now follows, as we have shown that (x, y) 7→ x2 + y2 is uniformly

integrable with respect to σ
kj
t (see Remark 7.1.1 of [1] for more on this technical

point).
Step 4: verifying (i), (ii), and (iii). Let us now define the mapping X : [0,∞) →

L2(ρ0); t 7→ X(t), and let 0 ≤ s ≤ t. By (3.15) and the assumption that v0 : R → R
is absolutely continuous and grows at most linearly,∫

R
(X(t)−X(s))2dρ0 = lim

j→∞

∫
R

(Xkj (t)−Xkj (s))2dρ
kj
0

≤ (t− s)2 lim
j→∞

∫
R
v20dρ

kj
0

= (t− s)2
∫
R
v20dρ0.

It follows that X is Lipschitz continuous.
Suppose y, z ∈ supp(ρ0) with y < z. By Proposition 5.1.8 of [1], there are

sequences (yj)j∈N and (zj)j∈N with yj , zj ∈ supp(ρ
kj
0 ) such that yj → y and zj → z.

Without any loss of generality, we may suppose that yj < zj for all j ∈ N. By part
(iv) of Proposition 3.10,

(4.10) 0 ≤ Xkj (zj , t)−Xkj (yj , t) ≤ zj − yj + t

∫ zj

yj
|v′0(x)|dx

for j ∈ N. In view of (4.9), we can send j →∞ and conclude part (i) of this theorem.
A similar argument combined with part (v) of Proposition 3.10 can be used to prove
part (ii) of this theorem. We leave the details to the reader.

Let us finally verify part (iii) of this theorem. To this end, we let 0 < s ≤ t and
recall from part (vi) of Proposition 3.10 that there is fkj : R→ R which satisfies

|fkjt,s(x)− fkjt,s(y)| ≤ t

s
|x− y|, x, y ∈ R,

and

(4.11) Xkj (yj , t) = f
kj
t,s(X

kj (yj , s))

for yj belonging to the support of ρ
kj
0 . Choose y ∈ supp(ρ0) and yj → y. By (4.9),

Xkj (yj , s)→ X(y, s) and Xkj (yj , t)→ X(y, t). As

|fkjt,s(x)| ≤ |fkjt,s(x)− fkjt,s(Xkj (yj , s))|+ |fkjt,s(Xkj (yj , s))|

≤ t

s
|x−Xkj (yj , s)|+ |Xkj (yj , t)|,



3790 RYAN HYND

fkj is locally uniformly bounded on R. It follows that fkj has a subsequence (which
we will not relabel) which converges locally uniformly on R to a function f which
satisfies the same Lipschitz estimate. Sending kj →∞ along an appropriate sequence
in (4.11) gives (4.3).

For the remainder of this subsection, we will denote X as the mapping and
(Xkj )j∈N as the sequence obtained in the previous lemma. We note that as X :
[0,∞) → L2(ρ0) is Lipschitz continuous it is differentiable almost everywhere on
[0,∞).

Corollary 4.2. For almost every t ≥ 0, there is a Borel function u : R → R
such that

Ẋ(t) = u(X(t))

ρ0 almost everywhere.

Proof. Choose a time t ≥ 0 for which

Ẋ(t) = lim
n→∞

n (X(t+ 1/n)−X(t))

exists in L2(ρ0). Without any loss of generality, we may assume this limit exists ρ0
almost everywhere, as it does for a subsequence. By part (iii) of Lemma 4.1,

(4.12) Ẋ(t) = lim
n→∞

un(X(t))

ρ0 almost everywhere. Here

un := n
(
ft+1/n,t − idR

)
is Borel measurable for each n ∈ N.

Let S ⊂ R be a Borel subset such that ρ0(S) = 1 and (4.12) holds at each point
in S; such a subset can be found as detailed in Theorem 1.19 in [9]. Let us also define
the Borel sigma subalgebra

F := {{y ∈ S : X(y, t) ∈ A} : A ⊂ R Borel} .

We note that F is the sigma algebra generated by the restriction of X(t) to S, and so
a Borel function is F measurable if and only if it is a composition of a Borel function
with X(t)|S (exercise 1.3.8 of [7]). Consequently, Ẋ(t)|S is the pointwise limit of F
measurable functions and therefore must be F measurable itself (Corollary 2.9 in [9]).
As a result, there is some Borel u : R→ R for which

Ẋ(t)|S = u (X(t)|S) .

That is, Ẋ(t) = u(X(t)) ρ0 almost everywhere.

The final lemma needed for the proof of Theorem 1.2 is as follows.

Lemma 4.3. Suppose t ≥ 0 and g ∈ Cb(R). Then

lim
j→∞

∫ t

0

∫
R
Ẋkj (τ) g(Xkj (τ))dρ

kj
0 dτ =

∫ t

0

∫
R
Ẋ(τ) g(X(τ))dρ0dτ.

Proof. Set

(4.13) F (z) =

∫ z

0

g(y)dy



LAGRANGIAN COORDINATES FOR STICKY PARTICLE SYSTEMS 3791

for z ∈ R, and observe that F is continuously differentiable and Lipschitz continuous.
Moreover,∫ t

0

∫
R
Ẋkj (τ) g(Xkj (τ))dρ

kj
0 dτ =

∫
R

(∫ t

0

Ẋkj (τ) g(Xkj (τ))dτ

)
dρ
kj
0

=

∫
R

(∫ t

0

d

dτ
F (Xkj (τ))dτ

)
dρ
kj
0

=

∫
R

(
F (Xkj (t))− F (idR)

)
dρ
kj
0 .

Since F grows at most linearly, we can appeal to Lemma 4.1 and send j →∞ to find

lim
j→∞

∫ t

0

∫
R
Ẋkj (τ) g(Xkj (τ))dρ

kj
0 dτ =

∫
R

(F (X(t))− F (idR)) dρ0

=

∫
R

(∫ t

0

d

dτ
F (X(τ))

)
dρ0

=

∫
R

(∫ t

0

Ẋ(τ) g(X(τ))dτ

)
dρ0

=

∫ t

0

∫
R
Ẋ(τ) g(X(τ))dρ0dτ.

Proof of Theorem 1.2. We will show X : [0,∞)→ L2(ρ0) is the desired solution.
First note that Lemma 4.1 implies∫

R
X(0)φdρ0 = lim

j→∞

∫
R
Xkj (0)φdρ

kj
0 = lim

j→∞

∫
R

idRφdρ
kj
0 =

∫
R

idRφdρ0

for each φ ∈ Cb(R). It follows that X satisfies the initial condition (1.6). It also
follows from (4.2) that

lim
j→∞

∫ t

0

∫
R
v0g(Xkj (τ))dρ

kj
0 dτ =

∫ t

0

∫
R
v0g(X(τ))dρ0dτ

for each g ∈ Cb(R) and t ≥ 0. Combining with Lemma 4.3 gives∫ t

0

∫
R
v0g(X(τ))dρ0dτ = lim

j→∞

∫ t

0

∫
R
v0g(Xkj (τ))dρ

kj
0 dτ

= lim
j→∞

∫ t

0

∫
R
Ẋkj (τ)g(Xkj (τ))dρ

kj
0 dτ

=

∫ t

0

∫
R
Ẋ(τ)g(X(τ))dρ0dτ.

We may write

(4.14)

∫ t

0

∫
R
Ẋ(τ)g(X(τ))dρ0dτ =

∫
R

(F (X(t))− F (idR)) dρ0

using an antiderivative F of g as in (4.13). Recall that Ẋ(t) exists for almost every
t ≥ 0. At any such t, we can differentiate (4.14) to find∫

R
Ẋ(t)g(X(t))dρ0dτ =

∫
R
v0g(X(t))dρ0.
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By Corollary 4.2, there is also a Borel function u : R→ R such that

Ẋ(t) = u(X(t))

for almost every t ≥ 0. These observations imply that X satisfies the sticky particle
flow equation (1.5).

Parts (ii) and (iii) of this theorem follows from parts (i) and (ii) of Lemma 4.1,
respectively. So all that we are left to show is part (i). Fix two times s, t ≥ 0 with
t ≥ s such that

Ẋ(s) = Eρ0 [v0|X(s)] and Ẋ(t) = Eρ0 [v0|X(t)]

ρ0 almost everywhere. By part (iii) of Lemma 4.1 and the tower property of condi-
tional expectation, (2.9),

Eρ0 [Ẋ(s)|X(t)] = Eρ0 [Eρ0 [v0|X(s)]|X(t)] = Eρ0 [v0|X(t)] = Ẋ(t).

We then conclude that∫
R

1

2
Ẋ(t)2dρ0 ≤

∫
R

1

2
Ẋ(s)2dρ0 ≤

∫
R

1

2
v20dρ0

by appealing to (2.8).

4.2. Generating a solution of the SPS. This final subsection is dedicated to
the Proof of Corollary 1.4, which we will accomplish in three steps:

1. For each t ≥ 0, set
ρt := X(t)#ρ0.

As X : [0,∞)→ L2(ρ0) is continuous, ρ : [0,∞)→ P(R) is narrowly continuous. Let
us also define the Borel probability measure µ on R× [0,∞)

µ(S) :=

∫ ∞
0

∫
R
χS(X(t), t)dρ0e

−tdt =

∫∫
S

dρte
−tdt

and the signed Borel measure π on R× [0,∞)

π(S) :=

∫ ∞
0

∫
R
v0 · χS(X(t), t)dρ0e

−tdt

for S ⊂ R× [0,∞).
In view of Hölder’s inequality,

|π(S)| ≤
(∫

R
|v0|2dρ0

)1/2

µ(S)1/2.

Therefore, π is absolutely continuous with respect to µ. By the Radon–Nikodym
theorem, there is a Borel v : R× [0,∞)→ R such that∫ ∞

0

∫
R
h(x, t)dπ(x, t) =

∫ ∞
0

∫
R
h(X(t), t)v0dρ0e

−tdt

=

∫ ∞
0

∫
R
h(x, t)v(x, t)dµ(x, t)

=

∫ ∞
0

∫
R
h(x, t)v(x, t)dρt(x)e−tdt
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=

∫ ∞
0

∫
R
h(X(t), t)v(X(t), t)dρ0e

−tdt.

It follows that for Lebesgue almost every t ≥ 0,

(4.15) v(X(t), t) = Eρ0 [v0|X(t)] = Ẋ(t)

ρ0 almost everywhere. Also note that∫
R
v(x, t)2dρt(x) =

∫
R
v(X(t), t)2dρ0 =

∫
R
Ẋ(t)2dρ0 ≤

∫
R
v20dρ0

for almost every t ≥ 0. Therefore,∫ T

0

∫
R
v(x, t)2dρt(x)dt <∞

for each T > 0.
2. Fix φ ∈ C∞c (R× [0,∞)), and observe∫ ∞
0

∫
R
(∂tφ+ v∂xφ)dρtdt =

∫ ∞
0

∫
R

(∂tφ(X(t), t) + v(X(t), t)∂xφ(X(t), t))dρ0dt

=

∫ ∞
0

∫
R

(∂tφ(X(t), t) + Ẋ(t)∂xφ(X(t), t))dρ0dt

=

∫ ∞
0

∫
R

d

dt
φ(X(t), t)dρ0dt

=

∫
R

∫ ∞
0

d

dt
φ(X(t), t)dtdρ0

= −
∫
R
φ(X(0), 0)dρ0

= −
∫
R
φ(·, 0)dρ0.

We also have, by (4.15),∫ ∞
0

∫
R
(v∂tφ+ v2∂xφ)dρtdt

=

∫ ∞
0

∫
R

(∂tφ(X(t), t) + v(X(t), t)∂xφ(X(t), t))v(X(t), t)dρ0dt

=

∫ ∞
0

∫
R

(∂tφ(X(t), t) + v(X(t), t)∂xφ(X(t), t))v0dρ0dt

=

∫ ∞
0

∫
R

(∂tφ(X(t), t) + Ẋ(t)∂xφ(X(t), t))v0dρ0dt

=

∫ ∞
0

∫
R

d

dt
φ(X(t), t)v0dρ0dt

=

∫
R

(∫ ∞
0

d

dt
φ(X(t), t)dt

)
v0dρ0

= −
∫
R
φ(X(0), 0)v0dρ0
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= −
∫
R
φ(·, 0)v0dρ0.

As a result, the pair ρ and v is a weak solution of the SPS (1.1) with initial conditions
(1.2).

3. In view of (4.15) and (i) of Theorem 1.2,∫
R

1

2
v(x, t)2dρt(x) =

∫
R

1

2
Ẋ(t)2dρ0

≤
∫
R

1

2
Ẋ(s)2dρ0

=

∫
R

1

2
v(x, s)2dρs(x)

for almost every 0 ≤ s ≤ t. Moreover, part (iii) of Theorem 1.2 implies

0 ≥ d

dt

1

t2
(X(w, t)−X(z, t))2

=
2

t2
(X(w, t)−X(z, t))(∂tX(w, t)− ∂tX(z, t))− 2

t3
(X(w, t)−X(z, t))2

=
2

t2

[
(X(w, t)−X(z, t))(v(X(w, t), t)− v(X(z, t), t))− 1

t
(X(w, t)−X(z, t))2

]
for Lebesgue almost every t > 0 and w, z ∈ E. Here E ⊂ R is ρ0 measurable and
ρ0(E) = 1. Without loss of generality, we may assume E is a countable union of
closed sets (part c of Theorem 1.19 in [9]).

In particular, we have shown that (1.7) holds for x, y belonging to the forward
image of E under X(t):

X(t)(E) := {X(w, t) ∈ R : w ∈ E}.

By part (ii) of Theorem 1.2, we may assume that X(t) : R → R is continuous. It
follows that X(t)(E) is Borel measurable (see Proposition A.1). Furthermore,

X(t)−1 [X(t)(E)] ⊃ E,

and so

ρt(X(t)(E)) = ρ0(X(t)−1 [X(t)(E)]) ≥ ρ0(E) = 1.

Consequently, (1.7) holds on a Borel subset of full measure for ρt and we conclude
part (ii) of this corollary.

Appendix A. Measurability of a continuous image. In this appendix, we
will prove the following elementary assertion, which was used in the proof of Corollary
1.4.

Proposition A.1. Suppose f : R→ R is continuous and C =
⋃
i∈N Ci and each

Ci ⊂ R is closed. Then f(C) is Borel measurable.

Proof. For each i ∈ N, we may write

Ci = R ∩ Ci =

(⋃
k∈Z

[k, k + 1]

)
∩ Ci =

⋃
k∈Z

([k, k + 1] ∩ Ci) .
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As the forward image distributes over unions,

f(Ci) =
⋃
k∈Z

f([k, k + 1] ∩ Ci).

Since [k, k + 1] ∩ Ci is compact and f is continuous, f([k, k + 1] ∩ Ci) is compact.
As a result, f(Ci) is a countable union of compact subsets of R and is thus Borel
measurable. Hence,

f(C) =
⋃
i∈N

f(Ci)

is also Borel.
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