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Abstract
We study the limiting behavior as |x | → ∞ of extremal functions u for Morrey’s inequality
on R

n . In particular, we compute the limit of u(x) as |x | → ∞ and show |x ||Du(x)| tends
to 0. To this end, we exploit the fact that extremals are uniformly bounded and that they each
satisfy a PDE of the form −�pu = c(δx0 − δy0) for some c ∈ R and distinct x0, y0 ∈ R

n .
More generally, we explain how to quantitatively deduce the asymptotic flatness of bounded
p-harmonic functions on exterior domains of Rn for p > n.

1 Introduction

For each n ∈ N and p > n, Morrey’s inequality asserts that there is a constant C > 0 such
that

sup
x �=y

{ |u(x) − u(y)|
|x − y|1−n/p

}
≤ C

(∫
Rn

|Du|pdx
)1/p

(1.1)

for all continuously differentiable functions u : Rn → R. In particular, it provides control
on the 1 − n/p Hölder seminorm of any function whose first partial derivatives belong to
L p(Rn). In recent work [6], we showed that there is a smallest constant C∗ > 0 for which
(1.1) holds and that there are nonconstant functions for which equality holds in (1.1) with
C = C∗. We call any such function an extremal.

It turns out that for any nonconstant extremal function u, there is a unique pair of distinct
points x0, y0 ∈ R

n such that

sup
x �=y

{ |u(x) − u(y)|
|x − y|1−n/p

}
= |u(x0) − u(y0)|

|x0 − y0|1−n/p
. (1.2)

Moreover, u satisfies the PDE

− �pu = c(δx0 − δy0) (1.3)
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Fig. 1 The graph of a numerically approximated extremal u with n = 2, p = 4, x0 = (0, 1), y0 = (0, −1),
u(x0) = 1 and u(y0) = −1. Note that u(x) ≈ 1

2 (u(x0) + u(y0)) = 0 for larger values of |x |

in R
n for some nonzero constant c. Here

�pv := div(|Dv|p−2Dv)

is the p-Laplacian, and Eq. (1.3) is understood to mean∫
Rn

|Du|p−2Du · Dφdx = c(φ(x0) − φ(y0))

for each φ ∈ C∞
c (Rn).

Equation (1.3) canbeused to show that each extremal is bounded andhas various symmetry
properties. In this note, we will make use of these facts to prove the following theorem. We
interpret the existence of limit (1.4) below as asserting that extremals are asymptotically flat.
This result was also confirmed by numerical computations as observed in Fig. 1.

Theorem 1.1 Suppose n ≥ 2 and that p > n. If u is an extremal which satisfies (1.2), then

lim|x |→∞ u(x) = 1

2
(u(x0) + u(y0)) (1.4)

and

lim|x |→∞ |x ||Du(x)| = 0.

Furthermore,

r p−n
∫

|x |>r
|Du|pdx = p

∫
|x |>r

|x |p−n |Du|p−2
(
Du · x

|x |
)2

dx

is nonincreasing in r ∈ (s,∞) for some s > 0 and tends to 0 as r → ∞.

In proving Theorem 1.1, we will first verify that any bounded p-harmonic function u on
the exterior domain

R
n \ B1 = {x ∈ R

n : |x | > 1}
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is asymptotically flat for p > n ≥ 2. That is, there is some β ∈ R for which

β = lim|x |→∞ u(x).

By employing aHarnack inequality, we can quantify this assertion and show there are positive
numbers A and α such that

|u(x) − β| ≤ A‖u‖∞
|x |α , |x | ≥ 1.

In particular, we will be able to conclude that the limit (1.4) occurs with an (at least) algebraic
rate of convergence.

The precise decay estimate we derive is described as follows.

Theorem 1.2 Suppose n ≥ 2 and p > n. There are positive constants α > 0 and A > 0
such that

sup
{
|u(x) − u(y)| : |x |, |y| ≥ r

}
≤ A‖u‖∞

rα
, r ≥ 1

for each function u that is bounded and p-harmonic in Rn \ B1.

Then we’ll show how these results extend to solutions u : R
n → R of the multipole

equation

−�pu =
N∑
i=1

ciδxi ,

where x1, . . . , xN ∈ R
n are distinct and c1, . . . , cN ∈ R satisfy

∑N
i=1 ci = 0. Themain point

is to establish that each solution u is bounded. Moreover, we will argue that each solution u
is not differentiable at any xi in which it has a strict local maximum or minimum. Finally, in
the “Appendix”, we will explain the numerical method we used to produce Fig. 1 as shown
above.

2 Bounded p-harmonic functions on exterior domains

In what follows, we will suppose that

n ≥ 2 and p > n

are fixed. Even though we are primarily interested in functions defined on R
n , we will

also consider functions defined on bounded domains � or possibly on the complement of
such subsets. Recall that each function in the Sobolev space W 1,p(�) has a 1− n/p Hölder
continuous representative (Theorem5, Sect. 5.6 of [3]). Consequently,wewill always identify
a W 1,p(�) function with its continuous representative and consider W 1,p(�) as a subset of
the continuous functions on �.

For a given domain � ⊂ R
n , we will say that u is p-harmonic in � and write

−�pu = 0 in �

so long as u ∈ W 1,p
loc (�) and ∫

�

|Du|p−2Du · Dφdx = 0
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for each φ ∈ C∞
c (�). Likewise, for a signed Borel measure ρ on �, we say that

−�pu = ρ in �

provided u ∈ W 1,p
loc (�) and∫

�

|Du|p−2Du · Dφdx =
∫

�

φdρ

for all φ ∈ C∞
c (�).

In this section, we will establish three facts about bounded p-harmonic functions on
R
n \ B1. We first show that these functions are all asymptotically flat and their gradients tend

to zero as |x | → ∞ at a certain rate. Then we show that if one of these functions lies strictly
between two values, its limit as |x | → ∞ lies strictly between these two values, as well.
Finally, we establish decay and monotonicity properties of two integral quantities involving
these functions.

2.1 Asymptotic flatness

Asmentioned above, our first order of business is to verify the asymptotic flatness of bounded
p-harmonic functions onRn \B1. This is the central goal of this subsection.We also note that
the first part of following statement has essentially been verified by Serrin [15], who showed
that a positive p-harmonic function on an exterior domain has a positive limit as |x | → ∞
or tends to∞ at a specific rate; this result was also extended recently by Fraas and Pinchover
[4,5]. Our result is not as general, however our proof is simple and direct.

Proposition 2.1 Suppose u is a bounded p-harmonic function on Rn \ B1. Then the limit

lim|x |→∞ u(x)

exists and

lim|x |→∞ |x ||Du(x)| = 0.

To this end, we will need to make use of a version of Caccioppoli’s inequality and a
Liouville-type assertion for p-harmonic functions on punctured domains.

Lemma 2.2 Suppose � ⊂ R
n is a domain and x0 ∈ �. Further assume u satisfies

−�pu = cδx0

in � for some constant c. Then for each nonnegative ζ ∈ C∞
c (�),∫

�

ζ p|Du|pdx ≤ pp
∫

�

|u − u(x0)|p|Dζ |pdx . (2.1)

Proof Observe ∫
�

|Du|p−2Du · Dφdx = cφ(x0)

for φ ∈ W 1,p
0 (�). Let φ = ζ p(u − u(x0)) and note φ(x0) = 0 and

Dφ = pζ p−1Dζ (u − u(x0)) + ζ pDu.
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Substituting this test function above gives∫
�

ζ p|Du|pdx = −p
∫

�

ζ p−1|Du|p−2Du · (u − u(x0))Dζdx

≤ p
∫

�

(ζ |Du|)p−1(|u − u(x0)||Dζ |)dx

≤ p

(∫
�

ζ p|Du|pdx
)1−1/p (∫

�

|u − u(x0)|p|Dζ |pdx
)1/p

which is (2.1). �
Corollary 2.3 Suppose � is a domain and B2r (x0) ⊂ �. Further assume u satisfies

−�pu = cδx0

in � for some constant c. Then
∫
Br (x0)

|Du|pdx ≤
(
2p

r

)p ∫
B2r (x0)

|u − u(x0)|pdx . (2.2)

Proof Choose ϕ ∈ C∞
c (B2(0)) with 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B1(0) and

‖Dϕ‖∞ ≤ 2.

Then set

ζ(x) = ϕ

(
x − x0

r

)
, x ∈ B2r (x0).

Clearly, ζ ∈ C∞
c (B2r (x0)) is nonnegative, ζ ≡ 1 in Br (x0) and

‖Dζ‖∞ ≤ 2

r
.

The conclusion follows from substituting this ζ in (2.1). �
Corollary 2.4 Suppose u is bounded and satisfies

−�pu = cδx0

in R
n for some constant c. Then u is necessarily constant and c = 0.

Proof In view of (2.2),∫
Br (x0)

|Du|pdx ≤
(
2p

r

)p ∫
B2r (x0)

|u − u(x0)|pdx

≤
(
2p

r

)p

(2‖u‖∞)pωn(2r)
n

≤ (4p‖u‖∞)pωn2n

r p−n

for each r > 0; here ωn is the Lebesgue measure of B1. Sending r → ∞ forces |Du| to
vanish on R

n . �
We are now ready to employ these observations to fashion a proof of Proposition 2.1.
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Proof of Proposition 2.1 1. For t > 0, set

vt (x) := u(t x), x ∈ R
n .

Note that vt is p-harmonic on R
n \ B1/t . Without loss of generality, suppose |u(y)| ≤ 1 for

all |y| > 1, so that

|vt (x)| ≤ 1

for |x | > 1/t . We will now proceed to send t → ∞.
By a result of Ural’ceva [17] (see also Lewis [10] and Evans [2]), there is γ ∈ (0, 1)

depending on p and n such that

‖vt‖C1,γ (K ) ≤ A

for each compact K ⊂ R
n \ {0} and t sufficiently large. Here A depends on p and n and K .

Consequently, there is a sequence (vtk )k∈N with tk → ∞ and v∞ ∈ C1
loc(R

n \ {0}) such that
vtk → v∞ in C1(K )

for each compact K ⊂ R
n \ {0}. It follows easily that v∞ is p-harmonic on Rn \ {0}.

By Theorem 1.1 and Remark 1.6 of [8] (see also [9]), there is a constant μ ∈ R such that

−�pv∞ = |μ|p−2μnωnδ0

in R
n . Moreover,

lim|x |→0

|Dv∞(x)|
|x |
(

p−n
p−1

)
−1

= |μ|.

This limit gives that |Dv∞|p is locally integrable in a neighborhood of 0. Since

|v∞(x)| ≤ 1

for all x ∈ R
n , we have v∞ ∈ W 1,p

loc (Rn). Corollary 2.4 then implies that v∞ is identically
equal to a constant β and so

lim
k→∞ vtk (x) = β

locally uniformly on Rn \ {0}.
2. Consider

m(t) := min|y|=t
u(y)

for t > 1. By the comparison principle for p-harmonic functions,

u(z) ≥ min{m(t),m(s)}
for 1 < s < |z| < t . It follows that

m(λt + (1 − λ)s) ≥ min{m(t),m(s)}
for λ ∈ [0, 1]. In particular, m : (1,∞) → [−1, 1] is quasiconcave. So there is r1 ≥ 1 for
which m|(r1,∞) is monotone (Theorem 17 in Chapter 3 of [12]) and thus

lim
t→∞m(t) = lim

t→∞ min|y|=t
u(y) = lim

t→∞ min|x |=1
vt (x)

exists.
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We can choose an xt ∈ R
n with |xt | = 1 so that

min|x |=1
vt (x) = vt (xt ).

We may as well also suppose that (xtk )k∈N is convergent. In this case,

lim
t→∞ min|x |=1

vt (x) = lim
k→∞ min|x |=1

vtk (x) = lim
k→∞ vtk (xtk ) = β.

With virtually the same argument, we find

lim
t→∞ max|x |=1

vt (x) = β.

Consequently,

lim
t→∞ vt (x) = β

uniformly for |x | = 1.
3. Now let (yk)k∈N ⊂ R

n be a sequence such that |yk | → ∞. Without loss of generality,
we will suppose |yk | > 0 and that (yk/|yk |)k∈N is convergent as these properties are true for
a subsequence of (yk)k∈N. Then

lim
k→∞ u(yk) = lim

k→∞ u

(
|yk | yk

|yk |
)

= lim
k→∞ v|yk |

(
yk

|yk |
)

= β,

and we conclude that

lim|y|→∞ u(y) = β.

We also have that

Dvt (x) = Du(t x)t

tends to 0 ∈ R
n uniformly for |x | = 1. Choosing (yk)k∈N as above, we find

lim
k→∞ |yk ||Du(yk)| = lim

k→∞ |yk |
∣∣∣∣Du

(
|yk | yk

|yk |
)∣∣∣∣

= lim
k→∞

∣∣∣∣Dv|yk |
(

yk
|yk |

)∣∣∣∣
= 0.

That is,

lim|y|→∞ |y||Du(y)| = 0.

�
Remark 2.5 This theorem can be proved without appealing to the C1,γ

loc estimates for p-
harmonic functions. Local uniform convergence of a subsequence of (vt )t>0 in R

n \ {0}
would follow from Morrey’s inequality, and convergence in W 1,p

loc (Rn \ {0}) can be verified
using the Browder and Minty method (as described in Sect. 9.1 of [3]).

Remark 2.6 In Corollary 4.2 below, we will show that min|x |=r u(x) is nondecreasing and
max|x |=r u(x) is nonincreasing for all r ∈ (1,∞).
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2.2 Strict bounds on limiting values

Thenext assertion states that the limit of a bounded p-harmonic functiononRn\B1 always lies
strictly within the bounds observed by the function. In particular, any bounded and positive
p-harmonic function on an exterior domain has a positive limit. Pinchover and Tintarev [13]
established this conclusion using a different argument and for more general operators.

Proposition 2.7 Suppose u is p-harmonic in R
n \ B1 and

a < u(x) < b, x ∈ R
n \ B1

for some a, b ∈ R. Then

a < lim|x |→∞ u(x) < b.

Proof Fix r > 1, and for R > r define

wR(x) = R
p−n
p−1 − |x | p−n

p−1

R
p−n
p−1 − r

p−n
p−1

, r ≤ |x | ≤ R.

Note that wR is p-harmonic in the annulus BR \ Br ,

wR |∂Br = 1 and wR |∂BR = 0.

Now choose δ > 0 such that

min
x∈∂Br

u(x) − a ≥ δ.

By comparison,

u(x) − a ≥ δwR(x), r ≤ |x | ≤ R.

Let e1 = (1, 0, . . . , 0) and suppose R > 2r . Then r < 1
2 R < R and so

u

(
R

2
e1

)
≥ a + δwR

(
R

2
e1

)

= a + δ
R

p−n
p−1 − (R/2)

p−n
p−1

R
p−n
p−1 − r

p−n
p−1

= a + δ
1 − (1/2)

p−n
p−1

1 − (r/R)
p−n
p−1

.

As a result,

lim|x |→∞ u(x) = lim
R→∞ u

(
R

2
e1

)
≥ a + δ

(
1 − (1/2)

p−n
p−1

)
> a.

Likewise, we find lim|x |→∞ u(x) < b. �
Remark 2.8 We will see in Corollary 4.2, that the same conclusion holds only assuming

a < u(x) < b, |x | = r

for some r > 1. This improvement relies on a global comparison property of bounded
p-harmonic functions on the exterior domain Rn \ B1.
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2.3 Integral decay andmonotonicity

In Proposition 2.1, we showed that if u is a bounded p-harmonic function in Rn \ B1, then

lim|x |→∞ |x ||Du(x)| = 0. (2.3)

This limit immediately implies the following decay property.

Corollary 2.9 Suppose u is bounded and p-harmonic in Rn \ B1. Then∫
|x |>s

|Du|pdx < ∞

for any s > 1. Moreover,

lim
r→∞ r p−n

∫
|x |>r

|Du|pdx = 0.

Proof Fix ε > 0. By (2.3), there is r > s so large that

|Du(x)| ≤ ε

|x |
for |x | ≥ r . Then∫

|x |>r
|Du|pdx ≤ ε pnωn

∫ ∞

r
τ−pτ n−1dτ = ε p nωn

(p − n)r p−n
.

Since ∫
s<|x |<r

|Du|pdx < ∞,

the first assertion follows. As for the second claim,

lim
r→∞ r p−n

∫
|x |>r

|Du|pdx ≤ ε p nωn

(p − n)
.

The conclusion follows as ε > 0 is arbitrary. �
Using a certain identity for smooth p-harmonic functions, we can strengthen the conclu-

sion of the previous corollary.

Proposition 2.10 Suppose u is smooth, bounded and p-harmonic in Rn \ B1. Then

(1,∞) � r �→ r p−n
∫

|x |>r
|Du|pdx

is nonincreasing. In particular,

lim
r→∞ r p−n

∫
|x |>r

|Du|pdx = inf
r>1

r p−n
∫

|x |>r
|Du|pdx = 0. (2.4)

Moreover,

r p−n
∫

|x |>r
|Du|pdx = p

∫
|x |>r

|x |p−n |Du|p−2
(
Du · x

|x |
)2

dx (2.5)

for each r > 1.
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Proof As u is smooth, direct computation gives

div

((
Du · x +

(
n

p
− 1

)
u

)
p|Du|p−2Du − |Du|px

)
= 0 (2.6)

in Rn \ B1 (Chapter 8, Sect. 6 of [3]). Integrating both sides of (2.6) over r < |x | < R gives

0 =
∫
r<|x |<R

div

((
Du · x +

(
n

p
− 1

)
u

)
p|Du|p−2Du − |Du|px

)
dx

=
∫

|x |=R

((
Du · x +

(
n

p
− 1

)
u

)
p|Du|p−2Du − |Du|px

)
· x

R
dσ

−
∫

|x |=r

((
Du · x +

(
n

p
− 1

)
u

)
p|Du|p−2Du − |Du|px

)
· x
r
dσ

= −R
∫

|x |=R

(|Du|p − p|Du|p−2(∂r u)2
)
dσ + (n − p)

∫
|x |=R

u|Du|p−2Du · x

R
dσ

+ r
∫

|x |=r

(|Du|p − p|Du|p−2(∂r u)2
)
dσ + (n − p)

∫
|x |=r

u|Du|p−2Du · −x

r
dσ.

(2.7)

Here

∂r u(x) := Du(x) · x

|x |
is the radial derivative of u and σ is n − 1 dimensional Hausdorff measure. In view of (2.3),

−R
∫

|x |=R

(|Du|p − p|Du|p−2(∂r u)2
)
dσ

+(n − p)
∫

|x |=R
u|Du|p−2Du · x

R
dσ = o(Rn−p)

as R → ∞. So we can send R → ∞ in (2.7) to conclude

0 = r
∫

|x |=r

(|Du|p − p|Du|p−2(∂r u)2
)
dσ + (n − p)

∫
|x |=r

u|Du|p−2Du · −x

r
dσ

= r
∫

|x |=r

(|Du|p − p|Du|p−2(∂r u)2
)
dσ + (n − p)

∫
|x |>r

|Du|pdx .

Now observe

d

dr

{
r p−n

∫
|x |>r

|Du|pdx
}

= (p − n)r p−n−1
∫

|x |>r
|Du|pdx − r p−n

∫
|x |=r

|Du|pdσ

= r p−n−1
{
(p − n)

∫
|x |>r

|Du|pdx − r
∫

|x |=r
|Du|pdσ

}

= r p−n−1
{
−rp

∫
|x |=r

|Du|p−2(∂r u)2dσ

}

= −pr p−n
∫

|x |=r
|Du|p−2(∂r u)2dσ. (2.8)

As a result,

(1,∞) � r �→ r p−n
∫

|x |>r
|Du|pdx
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is nonincreasing. This quantity tends to 0 as r → ∞ by the previous corollary, sowe conclude
(2.4) by monotone convergence. Integrating the monotonicity formula (2.8) from r = s to
r = ∞ gives

s p−n
∫

|x |>s
|Du|pdx = p

∫ ∞

s
r p−n

∫
|x |=r

|Du|p−2(∂r u)2dσdr

= p
∫ ∞

s

∫
|x |=r

|x |p−n |Du|p−2(∂r u)2dσdr

= p
∫

|x |>s
|x |p−n |Du|p−2(∂r u)2dx

which is (2.5). �

3 Asymptotics of extremals

This section is dedicated to the proof of Theorem 1.1. Let u be an extremal satisfying (1.2).
In Proposition 3.5 of [6], we established that

min{u(x0), u(y0)} ≤ u(x) ≤ max{u(x0), u(y0)} (3.1)

for each x ∈ R
n ; this inequality is also established in Lemma 5.4 below. As a result, u is

uniformly bounded and is p-harmonic in Rn \ Bs for

s := max{|x0|, |y0|}.
It follows from Proposition 2.1 that the limit

lim|x |→∞ u(x)

exists and

lim|x |→∞ |x ||Du(x)| = 0.

As u is smooth in R
n \ Bs (Sect. 4.3 of [6]), we can apply Proposition 2.10 to conclude

r p−n
∫

|x |>r
|Du|pdx =

∫
|x |>r

|x |p−n |Du|p−2
(
Du · x

|x |
)2

dx

for r > s. Moreover, this quantity is nonincreasing on (s,∞) and tends to 0 as r → ∞.
In Proposition 3.4 of [6], we showed

u

(
x − 2

(
(x0 − y0) · (x − 1

2 (x0 + y0)
)

|x0 − y0|2 (x0 − y0)

)

−u(x0) + u(y0)

2
= −

(
u(x) − u(x0) + u(y0)

2

)

for each x ∈ R
n . This equality implies that u − 1

2 (u(x0) + u(y0)) is antisymmetric with
respect to reflection about the hyperplane

� :=
{
x ∈ R

n : (x0 − y0) ·
(
x − 1

2
(x0 + y0)

)
= 0

}
.
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Fig. 2 Level sets of the approximate extremal computed for Fig. 1. Each level set except the line x2 = 0
bounds a convex, compact subset of R2

In particular,

u(x) = 1

2
(u(x0) + u(y0))

for each x ∈ �. As � is unbounded, it must be that

lim|x |→∞ u(x) = 1

2
(u(x0) + u(y0)).

Remark 3.1 If u is an extremal which satisfies

sup
x �=y

{ |u(x) − u(y)|
|x − y|1−n/p

}
= u(x0) − u(y0)

|x0 − y0|1−n/p
> 0

for distinct x0, y0 ∈ R
n ,

{x ∈ R
n : u(x) ≥ t} and {x ∈ R

n : u(x) ≤ s}
are convex for

u(x0) + u(y0)

2
< t ≤ u(x0) and

u(x0) + u(y0)

2
> s ≥ u(y0),

respectively. This was proved in Proposition 4.4 of [6]. An immediate corollary of Theo-
rem 1.1 is that these subsets are compact, as displayed in Fig. 2.
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4 Quantitative flatness

We will now establish a Harnack inequality for bounded, nonnegative p-harmonic functions
onRn \ B1. We will then prove Theorem 1.2 similar to how Hölder continuity of p-harmonic
functions can be established with a Harnack inequality (as explained in Sect. 2 of [11]). To
this end, we will start with the following comparison principle.

Lemma 4.1 Suppose r > 1 and that u, v are bounded and p-harmonic in R
n \ B1 with

u ≤ v

on ∂Br . Then

u ≤ v

in R
n \ Br .

Proof In view of the monotonicity of the mapping z �→ |z|p−2z,

0 ≤
∫

{u>v}∩{|x |>r}
(|Du|p−2Du − |Dv|p−2Dv) · (Du − Dv)dx

=
∫

|x |>r
(|Du|p−2Du − |Dv|p−2Dv) · D(u − v)+dx . (4.1)

As (u − v)+ is bounded and vanishes on ∂Br , we can integrate by parts and appeal to (2.3)
in order to deduce∫

|x |>r
(|Du|p−2Du − |Dv|p−2Dv) · D(u − v)+dx

= lim
R→∞

∫
r<|x |<R

(|Du|p−2Du − |Dv|p−2Dv) · D(u − v)+dx

= lim
R→∞

∫
|x |=R

(u − v)+(|Du|p−2Du − |Dv|p−2Dv) · x

R
dx

= lim
R→∞ o(Rn−p)

= 0.

Combining with (4.1) gives∫
{u>v}∩{|x |>r}

(|Du|p−2Du − |Dv|p−2Dv) · (Du − Dv)dx = 0.

As z �→ |z|p−2z is strictly monotone, it must either be that the Lebesgue measure of
{u > v} ∩ {|x | > r} is zero or that Du = Dv almost everywhere in {u > v} ∩ {|x | > r}. If
the Lebesgue measure of {u > v} ∩ {|x | > r} is zero, u(x) ≤ v(x) for almost every |x | > r ;
as u, v are continuous, this would imply that u(x) ≤ v(x) for every |x | > r . Otherwise,
D(u − v)+ = 0 in R

n \ Br which would mean (u − v)+ is constant throughout Rn \ Br .
Since (u − v)+ vanishes on ∂Br , we would have (u − v)+ ≡ 0 in Rn \ Br . That is, u ≤ v in
R
n \ Br . �

Corollary 4.2 Suppose u is p-harmonic and bounded in Rn \ B1.
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(i) For each r > 1,

sup
|x |≥r

u(x) = sup
|x |=r

u(x) and inf|x |≥r
u(x) = inf|x |=r

u(x).

(ii) For 1 < r1 ≤ r2,

sup
|x |=r1

u(x) ≥ sup
|x |=r2

u(x) and inf|x |=r1
u(x) ≤ inf|x |=r2

u(x).

(iii) For 1 < r1 ≤ r2,

sup
|x |=r1

u(x) = sup
r1≤|x |≤r2

u(x) and inf|x |=r1
u(x) = inf

r1≤|x |≤r2
u(x).

(iv) If r > 1 and a < u(x) < b for |x | = r , then

a < lim|x |→∞ u(x) < b.

Proof We will only prove the statements involving suprema. (i) Let v denote the constant
functiononRn which is equal to sup|x |=r u(x).Asv is bounded, p-harmonic, andu(y) ≤ v(y)
for |y| = r , it follows that u(y) ≤ v(y) for each |y| ≥ r . That is,

u(y) ≤ sup
|x |=r

u(x), |y| ≥ r .

(ii) By part (i),

sup
|x |=r1

u(x) = sup
|x |≥r1

u(x) ≥ sup
|x |≥r2

u(x) = sup
|x |=r2

u(x).

(iii) Part (i) also implies

sup
|x |≥r1

u(x) = sup
|x |=r1

u(x) ≤ sup
r1≤|x |≤r2

u(x) ≤ sup
|x |≥r1

u(x).

(iv) Choose δ > 0 so small that sup|x |=r u(x) < b − δ. By part (i), u(x) < b − δ for each
|x | ≥ r . Consequently, lim|x |→∞ u(x) ≤ b − δ < b. �

The following harnack inequality is now an easy consequence of these observations.

Proposition 4.3 There is a constant C > 1 such that

sup
|x |≥2r

u(x) ≤ C inf|x |≥2r
u(x) (4.2)

for each r > 0 and bounded, nonnegative p-harmonic u in Rn \ Br .

Remark 4.4 The example u(x) = |x | p−n
p−1 shows that the boundedness assumption cannot be

removed.

Proof First suppose r = 1 and choose C > 1 such that

sup
2<|x |<3

v ≤ C inf
2<|x |<3

v. (4.3)

for each for each nonnegative p-harmonic function v on {1 < |x | < 4}. Such a constant C
exists by the Harnack inequality proved by Serrin in Sect. 5 of [14]. In view of Corollary 4.2
and (4.3),

sup
|x |≥2

u(x) = sup
2≤|x |≤3

u(x)
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≤ C inf
2≤|x |≤3

u(x)

= C inf|x |≥2
u(x).

For general r > 0, we set w(y) = u(ry) for |y| > 1. Then w is bounded, nonnegative,
and p-harmonic in Rn \ B1. By our computation above,

sup
|y|≥2

w(y) ≤ C inf|y|≥2
w(y)

with the constant C from (4.3). It follows that (4.2) holds with this constant C . �
Along with this Harnack inequality, we will need one more fact to prove Theorem 1.2.

Lemma 4.5 Suppose f : [1,∞) → [0,∞) is nonincreasing and satisfies

f (2r) ≤ μ f (r), r ≥ 1

for some μ ∈ (0, 1). Then

f (r) ≤ 1

μ
r

(
lnμ
ln 2

)
f (1)

for r ≥ 1.

Remark 4.6 lnμ < 0, so f (r) decays like a power of r as r → ∞.

Proof By induction,

f (2k) ≤ μk f (1)

for each nonnegative integer k. Choose k ∈ N so that

2k−1 ≤ r < 2k

and

k − 1 ≤ ln r

ln 2
< k.

Then

f (r) ≤ f (2k−1)

≤ 1

μ
μk f (1)

≤ 1

μ
μ

ln r
ln 2 f (1)

= 1

μ
r

lnμ
ln 2 f (1). �

Proof of Theorem 1.2 Set

M(r) := sup
|x |≥r

u(x), m(r) := inf|x |≥r
u(x), and ω(r) := M(r) − m(r)

for r ≥ 1. Observe that M(r),−m(r) and ω(r) are nonincreasing. Also note u(x) −m(r) is
a bounded, nonnegative p-harmonic function for |x | ≥ r . By Proposition 4.2,

M(2r) − m(r) = sup
|x |≥2r

(u(x) − m(r)) ≤ C inf|x |≥2r
(u(x) − m(r)) = C(m(2r) − m(r))

123



  159 Page 16 of 24 R. Hynd, F. Seuffert

for some C > 1 independent of r . Likewise M(r) − u(x) is a bounded, nonnegative p-
harmonic function for |x | ≥ r , so

M(r) − m(2r) = sup
|x |≥2r

(M(r) − u(x)) ≤ C inf|x |≥2r
(M(r) − u(x)) = C(M(r) − M(2r)).

Adding these inequalities gives

ω(2r) + ω(r) ≤ C(−ω(2r) + ω(r)).

That is,

ω(2r) ≤ C − 1

C + 1
ω(r), r ≥ 1.

By the Lemma 4.5,

ω(r) ≤ A‖u‖∞
rα

, r ≥ 1

for some α, A > 0; here we used ω(1) ≤ 2‖u‖∞. In particular,

sup
{
|u(x) − u(y)| : |x |, |y| ≥ r

}
≤ A‖u‖∞

rα

for r ≥ 1. �
A minor variation of our proof of Theorem 1.2 combined with (3.1) gives the following
conclusion.

Corollary 4.7 Assume u is an extremal which satisfies (1.2). There are positive A, α, and s
such that ∣∣∣∣u(x) − 1

2
(u(x0) + u(y0))

∣∣∣∣ ≤ Amax{|u(x0)|, |u(y0)|}
|x |α

for each |x | > s.

5 Multipole equation

We define

D1,p(Rn) := {u ∈ L1
loc(R

n) : uxi ∈ L p(Rn) for i = 1, . . . , n
}

and suppose x1, . . . , xN ∈ R
n are distinct and a1, . . . , aN ∈ R are given. Let us consider the

minimization problem: find v ∈ D1,p(Rn) which minimizes the integral∫
Rn

|Dv|pdx (5.1)

subject to the constraints

v(xi ) = ai , i = 1, . . . , N . (5.2)

Direct methods from the calculus of variations can be used to show that there is a minimizer
u ∈ D1,p(Rn). Moreover, as the Dirichlet integral (5.1) is strictly convex, u is unique.

These observations were first noted by Kichenassamy in Sect. 2.3 of [7]. Discrete analogs
of this minimization problem also arise in semi-supervised learning with labels as studied
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recently by Calder [1] and by Slepčev and Thorpe [16].We became interested in this problem
when we noticed that the minimizer u above satisfies a generalized version of the PDE solved
by Morrey extremals.

Proposition 5.1 (i) Suppose u ∈ D1,p(Rn) minimizes (5.1) subject to the constraints (5.2).
Then there are constants c1, . . . , cN ∈ R such that

∫
Rn

|Du|p−2Du · Dφdx =
N∑
i=1

ciφ(xi ) (5.3)

for all φ ∈ D1,p(Rn).
(ii) Conversely, assume u ∈ D1,p(Rn) satisfies (5.3) and the constraints (5.2). Then u mini-

mizes (5.1) among all v ∈ D1,p(Rn) which satisfy (5.2).

Remark 5.2 Choosing φ ≡ 1 in (5.3), we see that
∑N

i=1 ci = 0.

Remark 5.3 If u ∈ D1,p(Rn) satisfies (5.3), then u is a solution of the multipole equation

− �pu =
N∑
i=1

ciδxi (5.4)

Proof (i) Let φ ∈ D1,p(Rn) and choose r > 0 so small that all of the balls
Br (x1), . . . , Br (xN ) are disjoint. It is straightforward to check that u is p-harmonic in
R
n \⋃N

i=1 Br (xi ). Consequently, we can integrate by parts to find

∫
Rn\⋃N

i=1 Br (xi )
|Du|p−2Du · Dφdx = −

N∑
i=1

∫
∂Br (xi )

φ|Du|p−2Du · x − xi
r

dσ. (5.5)

By Theorem 1.1 and Remark 1.6 of [8],

lim
r→0

[
−
∫

∂Br (xi )
φ|Du|p−2Du · x − xi

r
dσ

]
= ciφ(xi )

for some ci ∈ R independent of φ for each i = 1, . . . , N . As a result, we can send r → 0+
in (5.5) and conclude (5.3).

(ii) Suppose u ∈ D1,p(Rn) fulfills (5.3) and that u, v ∈ D1,p(Rn) satisfy (5.2). As

|z|p ≥ |w|p + p|w|p−2w · (z − w)

for all z, w ∈ R
n ,

|Dv|p ≥ |Du|p + p|Du|p−2Du · (Dv − Du)

holds almost everywhere in Rn . Integrating this inequality gives∫
Rn

|Dv|pdx ≥
∫
Rn

|Du|pdx + p
∫
Rn

|Du|p−2Du · D(v − u)dx

=
∫
Rn

|Du|pdx + p
N∑
i=1

ci (u − v)(xi )

=
∫
Rn

|Du|pdx . �
It also turns out that minimizers are uniformly bounded.
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Lemma 5.4 Suppose u ∈ D1,p(Rn) minimizes (5.1) subject to the constraints (5.2). Then

min
1≤i≤N

ai ≤ u(x) ≤ max
1≤i≤N

ai

for each x ∈ R
n. Moreover, if not all of the ai are identical,

min
1≤i≤N

ai < u(x) < max
1≤i≤N

ai (5.6)

for each x ∈ R
n \ {x1, . . . , xN }.

Proof We will only establish the claimed upper bounds. Set

M := max
1≤i≤N

ai

and define

v(x) = min{u(x), M}, x ∈ R
n .

It is plain to see that v ≤ M and that v satisfies (5.2). Moreover,∫
Rn

|Dv|pdx =
∫
u≤M

|Du|pdx ≤
∫
Rn

|Du|pdx .

So v ∈ D1,p(Rn) minimizes (5.1) subject to (5.2). It follows that u ≡ v ≤ M .
Observe that u − M is nonpositive and p-harmonic in the domain Rn \ {x1, . . . , xN }. By

the strong maximum principle (Corollary 2.21 of [11]), it is either that u ≡ M or u < M in
R
n \ {x1, . . . , xN }. Since u is not constant inRn is must be that u < M inRn \ {x1, . . . , xN }.

�
The following corollary is now easily seen as a consquence of Propositions 2.1 and 2.7.

Corollary 5.5 Suppose u ∈ D1,p(Rn) minimizes (5.1) subject to the constraints (5.2). Then
the limit

lim|x |→∞ u(x) (5.7)

exists and

lim|x |→∞ |x ||Du(x)| = 0.

Moreover, if not all of the ai are identical,

min
1≤i≤N

ai < lim|x |→∞ u(x) < max
1≤i≤N

ai .

Remark 5.6 Using the estimate from Theorem 1.2, we can also conclude that the limit (5.7)
occurs with at least an algebraic rate of convergence.

We can also make a few basic observations about a particular level set of solutions of Eq.
(5.4).

Corollary 5.7 Suppose u ∈ D1,p(Rn) minimizes (5.1) subject to the constraints (5.2) and

lim|x |→∞ u(x) = β.
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Then

{x ∈ R
n : u(x) = β}

is nonempty and noncompact. Furthermore, c = β is the only value for which the level set

{x ∈ R
n : u(x) = c}

has this property.

Proof We have established

β ∈
[
min

1≤i≤N
ai , max

1≤i≤N
ai

]
= u(Rn).

Since u is continuous, there is some z ∈ R
n for which u(z) = β. Consequently, {x ∈ R

n :
u(x) = β} �= ∅.

If {x ∈ R
n : u(x) = β} ⊂ BR for some R > 0, then either u > β in R

n \ BR or u < β

in Rn \ BR . If u > β in Rn \ BR , then u − β is a bounded and positive p-harmonic function
on an exterior domain. By Proposition 2.7, there is a η > 0 such that u(x) − β → η as
|x | → ∞. However, this contradicts u(x) → β as |x | → ∞. Thus, no such R exists and
{x ∈ R

n : u(x) = β} is noncompact.
Finally, we note that if there is a sequence (xk)k∈N with |xk | → ∞ and u(xk) = c then

β = lim
k→∞ u(xk) = c.

That is, {x ∈ R
n : u(x) = c} is compact when c �= β. �

Remark 5.8 It would be really interesting to explicitly compute

lim|x |→∞ u(x)

for solutions of the multipole PDE (5.4). Perhaps it is possible to do so in terms of the given
data a1, . . . , aN and x1, . . . , xN . Recall that when N = 1,

lim|x |→∞ u(x) = a1

by Corollary 2.4; and when N = 2,

lim|x |→∞ u(x) = a1 + a2
2

by Theorem 1.1. We wonder if there are analogous formulae for N ≥ 3.

We conclude by studying the (non)differentiability ofminimizers at the points x1, . . . , xN .
This and the other properties we have already discussed about solutions of the multipole PDE
may be seen in Figs. 3 and 4.

Proposition 5.9 Suppose u ∈ D1,p(Rn) minimizes (5.1) subject to the constraints (5.2) and
i ∈ {1, . . . , N }. If u has a strict local maximum or minimum at xi , then u is not differentiable
at xi .

Proof We will prove that u is not differentiable at x1 provided that it has a strict local max at
x1. With this assumption, there is some r > 0 such that u(x) < u(x1) for x ∈ Br (x1) \ {x1}.
In particular,

u(x1) > max
∂Br (x1)

u. (5.8)
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Fig. 3 The graph of the solution of themultipole Eq. (5.4)with n = 2, p = 3, x1 = (0, 1), x2 = (0, −1), x3 =
(2, 0) and c1 = 1, c2 = −3/2 and c3 = 1/2

Fig. 4 The graph of a solution of the multipole Eq. (5.4) with n = 2, p = 5, x1 = (0, 1), x2 = (0, −1), x3 =
(2, 0), x4 = (−2, 0) and c1 = 2, c2 = −2, c3 = 1 and c4 = −1

Choosing r smaller if necessary, we may also suppose that u is p-harmonic in Br (x1) \ {x1}.
Set

v(x) :=
(
u(x1) − max

∂Br (x1)
u

)⎛⎝1 − |x − x1|
p−n
p−1

r
p−n
p−1

⎞
⎠+ max

∂Br (x1)
u

for x ∈ Br (x1). Note that v(x1) = u(x1) and

v|∂Br (x1) = max
∂Br (x1)

u ≥ u|∂Br (x1).
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As v is p-harmonic in Br (x1) \ {x1}, comparison gives v ≥ u in Br (x1).
If u is differentiable at x1, then

v(x) =
(
u(x1) − max

∂Br (x1)
u

)⎛
⎝1 − |x − x1|

p−n
p−1

r
p−n
p−1

⎞
⎠+ max

∂Br (x1)
u

≥ u(x)

= u(x1) + Du(x1) · (x − x1) + o(|x − x1|)
≥ u(x1) − (|Du(x1)| + o(1)) |x − x1|

as x → x1. Rearranging this inequality gives

(|Du(x1)| + o(1)) |x − x1|1−
(

p−n
p−1

)
≥ 1

r
p−n
p−1

(
u(x1) − max

∂Br (x1)
u

)
.

And sending x → x1 leads us to

0 ≥ u(x1) − max
∂Br (x1)

u,

which contradicts (5.8). Consequently, u is not differentiable at x1. �
Corollary 5.10 Suppose u ∈ D1,p(Rn) minimizes (5.1) subject to the constraints (5.2) and
that a1, . . . , aN are not all the same. Then u is not differentiable at any point in which it
attains its global maximum or its global minimum.

Proof Suppose

a1 = max
1≤i≤N

ai .

We noted that u(x) < u(x1) = a1 in R
n \ {x1, . . . , xN } in (5.6). It follows that u has a

strict local max at x1. By Proposition 5.9, u isn’t differentiable at x1. As a result, u is not
differentiable at any point in which it attains its global maximum. We can argue similarly for
points at which u attains its global minimum. �

Appendix A: Numerical method

We will now discuss the method used to approximate the solution of PDE (1.3) displayed in
Fig. 1. It turns out that this method also can be adapted to obtain approximations of solutions
of the multipole Eq. (5.4), as exhibited in Figs. 3 and 4. For simplicity, we will focus on the
particular case of approximating a solution u of the PDE

− �pu = δ(0,1) − δ(0,−1) (A.1)

in R
2. We will also change notation and use ordered pairs (x, y) to denote points in R

2 so
that u = u(x, y).

Observe that any solution u ∈ D1,p(R2) of (A.1) minimizes∫∫
R2

1

p
|Dv|pdxdy − (v(0, 1) − v(0,−1)) (A.2)

among all v ∈ D1,p(R2). For a given � ∈ N, wemay also consider the problem ofminimizing∫ �

−�

∫ �

−�

1

p
|Dv|pdxdy − (v(0, 1) − v(0,−1))
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amongst v ∈ W 1,p([−�, �]2). It is not hard to show this problem has a minimizer u� ∈
W 1,p([−�, �]2). Further, it is routine to check that u�(x, y) − u�(0, 0) converges to u(x, y)
for each (x, y) ∈ R

2 as � → ∞, where u is the unique minimizer of (A.2) with u(0, 0) = 0.
Consequently, we will focus on approximating u�.

Below we will show how to derive a discrete version of our minimization problem for
u�. Then we will explain how to use an iteration scheme based on a quasi-Newton method.
Again we emphasize that all of the figures in this article were based on this method or minor
variants to account for differences in the particular examples we considered.

Appendix A.1: Discrete energy

Let us fix � ∈ N (� ≥ 2) and discretize the interval [−�, �] along the x-axis with

xi = −� + (i − 1)h

for i = 1, . . . , M . Here

h = 2�

M − 1
,

and we note that each of the subintervals [x1, x2], . . . , [xM−1, xM ] has length h. We can do
the same for the interval [−�, �] along the y-axis and obtain

y j = −� + ( j − 1)h

for j = 1, . . . , M . Our goal is to derive an appropriate energy specified for functions defined
on the grid points (xi , y j ).

To this end, we observe that if v : [−�, �]2 → R is sufficiently smooth

∫ �

−�

∫ �

−�

|Dv|pdxdy

≈
M−1∑
i, j=1

|Dv(xi , y j )|ph2

=
M−1∑
i, j=1

(
vx (xi , y j )

2 + vy(xi , y j )
)p/2

h2

≈
M−1∑
i, j=1

((
v(xi + h, y j ) − v(xi , yi )

h

)2

+
(

v(xi , y j + h) − v(xi , yi )

h

)2
)p/2

h2

=
M−1∑
i, j=1

((
v(xi+1, y j ) − v(xi , yi )

h

)2

+
(

v(xi , y j+1) − v(xi , yi )

h

)2
)p/2

h2

= h2−p
M−1∑
i, j=1

((
v(xi+1, y j ) − v(xi , yi )

)2 + (v(xi , y j+1) − v(xi , yi
)2)p/2

.

We also suppose h = 1/k for some k ∈ N which gives

M = 2�k + 1
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and

(x�k+1, y(�+1)k+1) = (0, 1) and (x�k+1, y(�−1)k+1) = (0,−1).

As a result, we will attempt to minimize

E(v) = 1

p
k p−2

M−1∑
i, j=1

((
vi+1, j − vi, j

)2 + (vi, j+1 − vi, j
)2)p/2

−(v�k+1,(�+1)k+1 − v�k+1,(�−1)k+1) (A.3)

over the M2 − 1 variables

v =

⎛
⎜⎜⎜⎜⎜⎝

v1,1 v1,2 . . . v1,M−1 v1,M
v2,1 v2,2 . . . v2,M−1 v2,M
...

...
. . .

...
...

vM−1,1 vM−1,2 . . . vM−1,M−1 vM−1,M

vM,1 vM,2 . . . vM,M−1

⎞
⎟⎟⎟⎟⎟⎠

.

A minimizer v = (vi j ) for E would then form an approximation for u� on the grid points
(xi , y j )

u�(xi , y j ) ≈ vi j .

Appendix A.2: Quasi-Newtonmethod

We used a multidimensional version of the secant method to approximate minimizers of the
discrete energy E defined above in (A.3). In particular, since E is convex we only need to
approximate a v = (vi j ) such that

∂vi j E(v) = 0

for each i, j = 1, . . . , M with (i, j) �= (M, M).
First we chose the initial guesses

v0i j = 0

and

v1i j = g(xi , y j ).

Here

g(x, y) = − 1

4π
log

[
x2 + (y − 1)2 + 10−2

x2 + (y + 1)2 + 10−2

]

is approximately equal to

g0(x, y) = − 1

4π
log

[
x2 + (y − 1)2

x2 + (y + 1)2

]
,

which is a solution of the Dipole equation −�g0 = δ(0,1) − δ(0,−1) in R
2.
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Then we performed the iteration⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vm+1
i j = vmi j − τm∂vi j E(vm)

τm :=
∑

i j
(vmi j − vm−1

i j )(∂vi j E(vm) − ∂vi j E(vm−1))∑
i j

(
∂vi j E(vm) − ∂vi j E(vm−1)

)2
for m = 1, 2, 3, . . . until the stopping criterion

max
i j

∣∣∂vi j E(vm)
∣∣ < 10−6

was achieved. The iteration was computed for all i, j = 1, . . . , M except for (i, j) �=
(M, M).
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