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Probability measures on the path space
and the sticky particle system

RYAN HYND

Abstract. We study collections of point masses which move freely along the
real line and stick together when they collide via perfectly inelastic collisions. We
quantify the way particles stick together and explain how to associate a probability
measure on the space of continuous paths to such a collection of evolving point
masses. These observations lead to a new method of designing solutions to the
sticky particle system in one spatial dimension which have nonincreasing kinetic
energy and satisfy an entropy inequality.

Mathematics Subject Classification (2010): 35L03 (primary); 35Q86 (sec-
ondary).

1. Introduction

The sticky particle system (SPS) is a system of PDE that governs the dynamics of a
collection of particles that move freely in R and interact only via perfectly inelastic
collisions. Using ⇢ to denote the density of particles and v as an associated velocity
field, the SPS is comprised of the conservation of mass

@t⇢ + @x (⇢v) = 0 (1.1)

together with the conservation of momentum

@t (⇢v) + @x (⇢v2) = 0. (1.2)

Both of these equations hold in R ⇥ (0,1). The SPS was first considered in three
spatial dimensions by Zel’dovich in a model for the expansion of matter without
pressure [15]. While this theory stimulated a lot of interest in the astronomy com-
munity, there is still much to be understood about solutions of the SPS even just in
one spatial dimension.
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One of the fundamental problems regarding the SPS is to find a solution that
satisfies a given set of initial conditions. Experience has shown that it makes sense
to study this problem aided with the concept of a weak solution. In particular, our
examples below show that the density ⇢ will typically be measure–valued and the
local velocity v will be discontinuous. As we expect the total mass to be conserved,
it makes sense for us to consider the space P(R) of Borel probability measures
on R. We recall this space has a natural topology: (�k)k2N ⇢ P(R) converges
narrowly to � 2 P(R) if

lim
k!1

Z

R
gd�k =

Z

R
gd�

for each g belonging to the space Cb(R) of bounded continuous functions on R.
Definition 1.1. Suppose ⇢0 2 P(R) and v0 : R ! R is continuous. A narrowly
continuous ⇢ : (0,1) ! P(R); t 7! ⇢t and Borel measurable v : R ⇥ (0,1) !
R is a weak solution pair of the SPS with initial conditions

⇢|t=0 = ⇢0 and v|t=0 = v0 (1.3)

provided Z 1

0

Z

R
(@t + v@x )d⇢t dt +

Z

R
 (·, 0)d⇢0 = 0 (1.4)

and Z 1

0

Z

R
(v@t + v2@x )d⇢t dt +

Z

R
 (·, 0)v0d⇢0 = 0 (1.5)

for each  2 C1
c (R ⇥ [0,1)).

Remark 1.2. Conditions (1.4) and (1.5) are the integral formulations of the con-
servation of mass (1.1) and momentum (1.2), respectively.

In the seminal works of E, Rykov and Sinai [5] and of Brenier and Grenier [2],
it was established that there is a weak solution of the SPS which satisfies given
initial conditions in one spatial dimension. Natile and Savaré subsequently unified
and built considerably on these works [11]; see also the paper by Cavalletti, Sedjro
and Westdickenberg [3] which shortens some of the proofs in [11]. In addition,
we mention that Huang and Wang deduced the uniqueness of weak solutions which
satisfy an additional entropy condition [7], and Nguyen and Tudorascu used optimal
transport methods to extend these existence and uniqueness results to a general class
of initial conditions [12,13].

Let us denote
0 := C([0,1))

as the space of continuous paths � : [0,1) ! R endowed with the topology of
local uniform convergence. In this paper, we will reinterpret a weak solution of the
SPS as a Borel probability measure ⌘ on 0 which we will denote by ⌘ 2 P(0). That
is, we will consider measures ⌘ which are supported on the trajectories of particles
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that move freely along the real line and undergo perfectly inelastic collisions when
they collide. To this end, we will employ the evaluation map

et : 0 ! R; � 7! � (t)

and the push forward measure et #⌘ 2 P(R) defined via
Z

R
f d(et #⌘) :=

Z

0
f (� (t))d⌘(� )

for each t � 0.
The central insight of this paper is as follows:

Proposition 1.3. Assume ⇢0 2 P(R) and v0 : R ! R is continuous with
Z

R
v20d⇢0 < 1.

There is ⌘ 2 P(0) which satisfies the following properties:

(i) ⇢0 = e0#⌘;
(ii) For each 0 < s  t and � , ⇠ 2 supp(⌘),

1
t
|� (t) � ⇠(t)| 

1
s
|� (s) � ⇠(s)|; (1.6)

(iii) For ⌘ almost every � 2 0, � : [0,1) ! R is absolutely continuous;
(iv) There is a Borel v : R ⇥ (0,1) ! R such that

�̇ (t) = v(� (t), t) a.e. t > 0

for ⌘ almost every � 2 0;
(v) For almost every 0 < t < 1 and each h 2 Cb(R),

Z

0
�̇ (t)h(� (t))d⌘(� ) =

Z

0
v0(� (0))h(� (t))d⌘(� ); (1.7)

(vi) For almost every 0  s  t < 1,
Z

0
�̇ (t)2d⌘(� ) 

Z

0
�̇ (s)2d⌘(� ) < 1.

We will call (1.6) the quantitative sticky particle property as it quantifies the fact
that

� (s) = ⇠(s) =) � (t) = ⇠(t) for t � s (1.8)

for each � , ⇠ 2 supp(⌘). That is, once particles meet they remain stuck together
thereafter. Moreover, (1.7) is a general interpretation of the conservation of mo-
mentum dictated by the rule of perfectly inelastic collisions among point masses.
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We will see that the family of measures ⌘ satisfying the above conditions is compact
in narrow topology on P(0) and the properties above are preserved under taking
limits. We will then build an ⌘ associated with a specific pair of initial conditions
⇢0, v0 by using a certain type of approximating sequence.

Upon setting
⇢ : (0,1) ! P(R); t 7! et #⌘,

we will show that ⇢ and v from condition (iv) is a weak solution pair of the SPS
with initial conditions ⇢|t=0 = ⇢0 and v|t=0 = v0. This will be an important step
in proving the following existence theorem. As mentioned above, this result was
previously obtained [2, 5, 7, 11, 12]. The novelty we offer is in our approach.

Theorem 1.4. Assume ⇢0 2 P(R) and v0 : R ! R is continuous with
Z

R
v20d⇢0 < 1.

There is a weak solution pair ⇢ and v of the SPS which satisfies ⇢|t=0 = ⇢0 and
v|t=0 = v0,

(v(x, t) � v(y, t))(x � y) 
1
t
(x � y)2 (1.9)

for almost every t > 0 and ⇢t almost every x, y 2 R, and
Z

R

1
2
v(x, t)2d⇢t (x) 

Z

R

1
2
v(x, s)2d⇢s(x) < 1 (1.10)

for almost every 0  s  t < 1.

This approach was inspired by the probabilistic interpretation of solutions of the
continuity equation described in Chapter 8 of the monograph by Ambrosio, Gigli
and Savaré [1]. They showed that any solution of the continuity equation can be
associated with a probability measure on 0 using a tightness argument. We were
also inspired by the work of Dermoune [4], who gave a probabilistic interpretation
of solutions of the SPS using a related stochastic differential equation; see also
[10] which extends Dermoune’s approach to include discontinuous initial velocity
functions.

This paper is organized as follows. In Section 2, we consider the dynamics of
finitely many point masses which move freely along the real line and interact only
through perfectly inelastic collisions. We will also use the trajectories of these point
masses to design ⌘ when ⇢0 is a convex combination of Dirac measures. We will
then take limits of these measures and prove Proposition 1.3 in Section 3. Finally, in
Section 4 we will show how to generate a weak solution pair of the SPS. We thank
Jin Feng, Wilfrid Gangbo, Emanuel Indrei, Changyou Wang and Zhenfu Wang for
engaging in insightful discussions related to this work.



PROBABILITY MEASURES ON THE PATH SPACEAND THE STICKY PARTICLE SYSTEM 1337

2. Sticky particle trajectories

In this section we will consider N point masses on the real line that move freely
unless they collide. We will further assume that when any sub-collection of these
particles collide, they stick together to form a particle of larger mass and undergo a
perfectly inelastic collision. For example, if the particles with masses m1, . . . ,mk
move with the respective velocities v1, . . . , vk before a collision, the new particle
that is formed after the collision has mass m1 + · · · + mk and velocity v chosen to
satisfy

m1v1 + · · · + mkvk = (m1 + · · · + mk)v.

In particular, v is the mass average of the individual velocities v1, . . . , vk . See
Figure 2.1.

Figure 2.1. Four point masses which move freely along the real line and undergo a
perfectly inelastic collision when they collide at time s. The velocity v of the resulting
particle satisfies m1v1+m2v2+m3v3+m4v4 = (m1+m2+m3+m4)v. Note that the
particles are drawn with different sizes to emphasize that they are not assumed to have
equal mass.

The proposition below involves trajectories which track the positions of a collection
of point masses as described above.

Proposition 2.1. Suppose m1, . . . ,mN > 0, x1, . . . , xN 2 R and v1, . . . , vN 2 R
are given. There exist piecewise linear paths

�i : [0,1) ! R (i = 1, . . . , N )

with
�i (0) = xi and �̇i (0+) = vi

that satisfy the following properties.
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(i) If �i (s) = � j (s), then
�i (t) = � j (t)

for t � s;
(ii) Whenever

�i1(t) = · · · = �ik (t) 6= �i (t) for i 62 {i1, . . . , ik},

then
�̇i j (t+) =

mi1 �̇i1(t�) + · · · + mik �̇ik (t�)

mi1 + · · · + mik

for j = 1, . . . , k.

Proof. We will argue by induction on N . For N = 2, there are two cases. The first
is when t 7! x1 + tv1 and t 7! x2 + tv2 never intersect. In this scenario, we set

�i (t) = xi + tvi , t � 0 (2.1)

for i = 1, 2. Otherwise, there is a first time s � 0 where the paths t 7! xi + tvi
intersect. In this case, we set

�i (t) :=

8
<

:

xi + tvi , t 2 [0, s]

z + (t � s)
✓
m1v1 + m2v2
m1 + m2

◆
t 2 [s,1),

where z := x1 + sv1 = x2 + sv2.
Now suppose the claim holds for some N � 2 and suppose m1, . . . ,mN+1 >

0, x1, . . . , xN+1 2 R and v1, . . . , vN+1 2 R are given. If none of the paths (2.1)
intersect, then we define �i by these linear trajectories for i = 1, . . . , N + 1. If
there is at least one intersection, let s � 0 denote the first time that the trajectories
(2.1) intersect. Let us also initially assume that a single subcollection of trajectories
intersect for the first time at s

z := xi1 + svi1 = · · · = xik + svik 6= xi + svi for i 62 {i1, . . . , ik}

(k � 2) and set
v =

mi1vi1 + · · · + mikvik
mi1 + · · · + mik

.

Now consider the N + 1� (k � 1) masses

{mi }i 6=i j and mi1 + · · · + mik ,

initial positions
{xi + svi }i 6=i j and z,

and initial velocities
{vi }i 6=i j and v.
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By induction, this data gives rise to N + 1 � (k � 1) trajectories {�̃i }i 6=i j and �̃
from [0,1) ! R, respectively, which satisfy the conclusion of this proposition.
We then set

�i (t) =

(
xi + tvi t 2 [0, s]
�̃i (t � s) t 2 [s,1)

for i 6= i j and

�i j (t) =

(
xi j + tvi j t 2 [0, s]
�̃ (t � s) t 2 [s,1)

for j = 1, . . . , k. It is immediate from construction that this collection of N + 1
paths satisfies the desired properties. Finally, we note that a similar argument can
be made in the case that more than one subcollection of (2.1) intersect for the first
time at s. We leave the details to the reader.

Figure 2.2. A schematic of the trajectories �1, . . . , �N in R ⇥ (0,1) which track the
motion of the respective point masses labeled m1, . . . ,mN . The trajectories �1, �i and
�N are shown with dashed line segments to highlight that they track m1,mi and mN ,
respectively.

Any collection of trajectories �1, . . . , �N : [0,1) ! R as specified in the con-
clusion of Proposition 2.1 are sticky particle trajectories associated with the re-
spective masses m1, . . . ,mN , initial positions x1, . . . , xN 2 R and initial velocities
v1, . . . , vN . Moreover, we interpret �i (t) as the location of point mass mi at time
t � 0; this mass could be by itself or a part of a larger mass if it has collided with
other particles prior to time t . The other two properties in the proposition represent
the rules of inelastic collisions: particles stick together and their velocities average
when they collide. See Figure 2.2 for a schematic.
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For the remainder of this section, we suppose that masses m1, . . . ,mN > 0
satisfy

NX

i=1
mi = 1,

initial positions x1, . . . , xN 2 R and initial velocities v1, . . . , vN 2 R are given and
fixed. We will denote �1, . . . , �N as a corresponding collection of sticky particle
trajectories and prove various important features of these paths. The first of which
is an averaging property.

Proposition 2.2. Assume g : R ! R. Then

NX

i=1
mig(�i (t))�̇i (t+) =

NX

i=1
mig(�i (t))�̇i (s+) (2.2)

for 0  s  t .

Proof. If the none of the trajectories �1, . . . , �N intersect, then �̇1, . . . , �̇N are each
constant and (2.2) trivially holds. Alternatively, some of the trajectories �1, . . . , �N
intersect and there are at most finitely many times when at least two of them agree
for the first time. We will call these times first intersection times and use 0 < t1 <
· · · < t` < 1 to denote this collection of times. We will also set t0 = 0.

As each [0,1) 3 t 7! �̇i (t+) is constant on the intervals [t0, t1), [t1, t2), . . . ,
[t`�1, t`), [t`,1), it suffices to show

NX

i=1
mig(�i (t))�̇i (tr+) =

NX

i=1
mig(�i (t))�̇i (tk+), (2.3)

where tr is the largest of t0, . . . , t` that is less than t and k = 0, . . . , r . We will prove
(2.3) by induction. For k = r , (2.3) is immediate. So we will assume that it holds for
some k 2 {1, . . . , r} and then show how this assumption implies the assertion holds
for k � 1. At time tk , let us initially suppose that one sub-collection {�i j }

n
j=1 ⇢

{�i }Ni=1 of paths intersect for the first time. Observe that these trajectories also
coincide at time t as t � tk ; we will call this common path � : [tk,1) ! R. We
also note that

�̇i j (tk+) = vk :=
mi1 �̇i1(tk�) + · · · + min �̇in (tk�)

mi1 + · · · + min

for j = 1, . . . , n and �̇i (tk+) = �̇i (tk�1+) for i 6= i j .
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Taking these observations into account and the induction hypothesis, we find

NX

i=1
mig(�i (t))�̇i (tr+) =

NX

i=1
mig(�i (t))�̇i (tk+)

=
X

i 6=i j

mi g(�i (t))�̇i (tk+) +
nX

j=1
mi j g(�i j (t))�̇i j (tk+)

=
X

i 6=i j

mi g(�i (t))�̇i (tk�1+) +

 
nX

j=1
mi j

!

g(� (t))vk

=
X

i 6=i j

mi g(�i (t))�̇i (tk�1+) + g(� (t))

 
nX

j=1
mi j

!

vk

=
X

i 6=i j

mi g(�i (t))�̇i (tk�1+) + g(� (t))
nX

j=1
mi j �̇i j (tk�)

=
X

i 6=i j

mi g(�i (t))�̇i (tk�1+) + g(� (t))
nX

j=1
mi j �̇i j (tk�1+)

=
X

i 6=i j

mi g(�i (t))�̇i (tk�1+) +
nX

j=1
mi j g(�i j (t))�̇i j (tk�1+)

=
NX

i=1
mig(�i (t))�̇i (tk�1+).

This argument is readily adapted to the case where more than one sub-collection
of �1, . . . , �N intersect for the first time at tk . Therefore, we conclude (2.3) and
consequently (2.2).

Using this averaging property, we can derive an elementary inequality involving the
velocities �̇i at different times. To this end, we set

v(x, t) :=

(
�̇i (t+) x = �i (t)
0 otherwise.

(2.4)

In view of Proposition 2.1 part (i), �̇i (t+) = �̇ j (t+) if �i (t) = � j (t). As a result,
v : R ⇥ [0,1) ! R is well defined.

Corollary 2.3. For 0  s  t ,

1
2

NX

i=1
mi �̇i (t+)2 

1
2

NX

i=1
mi �̇i (s+)2.
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Proof. Employing (2.4) and (2.2), we find
NX

i=1
mi �̇i (t+)2 =

NX

i=1
mi �̇i (t+)v(�i (t), t)

=
NX

i=1
mi �̇i (s+)v(�i (t), t)

=
NX

i=1
mi �̇i (s+)�̇i (t+)


NX

i=1
mi

✓
1
2
�̇i (s+)2 +

1
2
�̇i (t+)2

◆

=
1
2

NX

i=1
mi �̇i (s+)2 +

1
2

NX

i=1
mi �̇i (t+)2.

The last property we will derive is the quantitative sticky particle property. It
follows easily from the next assertion.
Proposition 2.4. For each i, j 2 {1, . . . , N } and t > 0,

(�̇i (t+) � �̇ j (t+))(�i (t) � � j (t)) 
1
t
(�i (t) � � j (t))2. (2.5)

Proof. Set t0 = 0, and suppose t1 < · · · < t` < 1 are the possible first intersection
times of the trajectories �1, . . . , �N . We will focus on an interval (tk�1, tk) where
no collisions occur. Between these intersection times, all trajectories are linear so

�i (t) = ai + twi and �i (t) = a j + tw j

for t 2 (tk�1, tk), some ai , a j , wi , w j 2 R. Without loss of generality, we will
assume that �i (t) 6= � j (t) for t 2 (tk�1, tk).

If
(ai � a j )(wi � w j ) < 0, (2.6)

then the linear paths ai + twi and a j + tw j will eventually intersect. By our as-
sumption, tk must be less than or equal to this intersection time. That is,

tk  �
(ai � a j )(wi � w j )

(wi � w j )2
.

As a result,
(�̇i (t) � �̇ j (t))(�i (t) � � j (t)) = (wi � w j )(ai + twi � (a j + tw j ))

= (wi � w j )(ai � a j ) + t (wi � w j )
2

 (wi � w j )(ai � a j ) + tk(wi � w j )
2

 0
for t 2 (tk�1, tk).
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Alternatively, if (2.6) does not hold, then

(�̇i (t)��̇ j (t))(�i (t)�� j (t)) = (wi � w j )(ai � a j ) + t (wi � w j )
2

 2(wi � w j )(ai � a j ) + t (wi � w j )
2


1
t
(ai� a j )2 + 2(wi� w j )(ai� a j ) + t (wi� w j )

2

=
1
t
(ai � a j + t (wi � w j ))

2

=
1
t
(ai + twi � (a j + tw j ))

2

=
1
t
(�i (t) � � j (t))2.

Thus (2.5) holds for all t 2 (tk�1, tk). It is also not hard to see the argument above
implies that (2.5) holds for (t`,1), as well. Taking limits in (2.5) as t & tk for
k = 1, . . . , `, we conclude that it actually holds for all t > 0.

Corollary 2.5. For each i, j 2 {1, . . . , N } and 0 < s  t < 1,

1
t
|�i (t) � � j (t)| 

1
s
|�i (s) � � j (s)|.

Proof. Observe

d
dt
1
2
(�i (t) � � j (t))2 = (�i (t) � � j (t))(�̇i (t) � �̇ j (t))

= (�i (t) � � j (t))(v(�i (t), t) � v(� j (t), t))


1
t
(�i (t) � � j (t))2

for almost every t > 0. As a result,

d
dt
1
t2

(�i (t) � � j (t))2 =
1
t2
d
dt

(�i (t) � � j (t))2 �
2
t3

(�i (t) � � j (t))2


2
t3

(�i (t) � � j (t))2 �
2
t3

(�i (t) � � j (t))2

= 0.

We can summarize these properties and relate them to Proposition 1.3 as de-
scribed below.

Proposition 2.6. Define

⌘ =
NX

i=1
mi��i 2 P(0)
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and ⇢0 =
PN

i=1mi�xi , and suppose v0 : R ! R satisfies

v0(xi ) = vi , for i = 1, . . . , N .

Then the following assertions hold:

(i) ⇢0 = e0#⌘;
(ii) For each 0 < s  t and � , ⇠ 2 supp(⌘),

1
t
|� (t) � ⇠(t)| 

1
s
|� (s) � ⇠(s)|;

(iii) For each � 2 supp(⌘), � : [0,1) ! R is continuous and piecewise linear;
(iv) Define v : R ⇥ [0,1) ! R via (2.4). For � 2 supp(⌘),

�̇ (t+) = v(� (t), t), t � 0;

(v) For h : R ! R and all but finitely many t > 0
Z

0
�̇ (t)h(� (t))d⌘(� ) =

Z

0
v0(� (0))h(� (t))d⌘(� );

(vi) For all 0  s  t < 1,
Z

R

1
2
�̇ (t+)2d⌘(� ) 

Z

R

1
2
�̇ (s+)2d⌘(� ).

Proof. For f 2 Cb(R),

Z

R
f (x)d⇢0(x) =

NX

i=1
mi f (xi ) =

NX

i=1
mi f (�i (0)) =

Z

0
f (� (0))d⌘(� ).

This proves (i). As supp(⌘) = {�1, . . . , �N }, (ii) follows from Corollary 2.5. Part
(iii) is due to Proposition 2.1, (iv) is immediate from the definition of (2.4), (v)
follows from Proposition 2.2 (with s = 0), and (vi) is a consequence of Corol-
lary 2.3.

3. Proof of Proposition 1.3

This section is devoted to the proof of Proposition 1.3. To this end, we let ⇢0 2
P(R) and suppose v0 : R ! R is continuous with

Z

R
v20d⇢0 < 1.
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By Lemma A.1, there is a sequence (⇢k0)k2N such that each ⇢k0 2 P(R) is a convex
combination of Dirac measures, ⇢k0 ! ⇢0 narrowly, and

lim
k!1

Z

R
v20d⇢

k
0 =

Z

R
v20d⇢0. (3.1)

We also recall that since ⇢k0 ! ⇢0 narrowly, there is a function ✓ : R ! [0,1)
with compact sublevel sets for which

sup
k2N

Z

R
✓d⇢k0 < 1 (3.2)

[1, Remark 5.1.5].
As ⇢k0 is a convex combination of Dirac measures, Proposition 2.6 implies

there is ⌘k 2 P(0) which satisfies:

(a) ⇢k0 = e0#⌘k ;
(b) For each 0 < s  t and � , ⇠ 2 supp(⌘k),

1
t
|� (t) � ⇠(t)| 

1
s
|� (s) � ⇠(s)|; (3.3)

(c) For h : R ! R and all but finitely many t > 0
Z

0
�̇ (t)h(� (t))d⌘k(� ) =

Z

0
v0(� (0))h(� (t))d⌘k(� ); (3.4)

(d) For all but finitely many t � 0,
Z

0
�̇ (t)2d⌘k(� ) 

Z

R
v20d⇢

k
0 . (3.5)

We will show that (⌘k)k2N has a convergent subsequence.

Lemma 3.1. There is a subsequence (⌘k j ) j2N and ⌘1 2 P(0) such that

lim
j!1

Z

0
F(� )d⌘k j (� ) =

Z

0
F(� )d⌘1(� ) (3.6)

for each bounded, continuous F : 0 ! R. Moreover,

lim
R!1

Z

|� (t2)�� (t1)|�R
|� (t2) � � (t1)|d⌘k(� ) = 0 (3.7)

for each t1, t2 � 0 and

lim
R!1

Z

|v0(� (0))|�R
|v0(� (0))|d⌘k(� ) = 0

uniformly in k 2 N.
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Proof. 1. First we define

X :=

⇢
� 2 0 | � : [0,1)

! R absolutely continuous and
Z n

0
�̇ (t)2dt < 1 for all n 2 N

�

and set

8(� ) :=

8
><

>:

✓(� (0)) +
X

n=1

1
2n

Z n

0
�̇ (t)2dt � 2 X

+1 � 62 X.

(3.8)

Using (3.5) gives
Z

0
8(� )d⌘k(� ) =

Z

0

"

✓(� (0)) +
X

n=1

1
2n

Z n

0
�̇ (t)2dt

#

d⌘k(� )

=
Z

0
✓(� (0))d⌘k(� ) +

X

n=1

1
2n

Z

0

✓Z n

0
�̇ (t)2dt

◆
d⌘k(� )

=
Z

R
✓d⇢k0 +

X

n=1

1
2n

Z n

0

✓Z

0
�̇ (t)2d⌘k(� )

◆
dt


Z

R
✓d⇢k0 +

X

n=1

1
2n

Z n

0

✓Z

R
v20d⇢

k
0

◆
dt

=
Z

R
✓d⇢k0 +

X

n=1

n
2n

Z

R
v20d⇢

k
0

=
Z

R

⇣
✓ + 2v20

⌘
⇢k0 .

(3.9)

In view of (3.1) and (3.2),

sup
k2N

Z

0
8(� )d⌘k(� ) < 1.

By the Arzelà-Ascoli theorem, the sublevel sets of 8 are compact within 0. Here
we recall that 0 is a complete, separable metric space when equipped with the
distance

d(� , ⇣ ) :=
X

n2N

1
2n

0

@
max
0tn

|� (t) � ⇣(t)|

1+ max
0tn

|� (t) � ⇣(t)|

1

A (� , ⇠ 2 0)

[8, Proposition A.2]. As a result, Prokhorov’s theorem [1, Theorem 5.1.3] asserts
that (⌘k)k2N has a narrowly convergent subsequence. That is, there is a subsequence
(⌘k j ) j2N and ⌘1 2 P(0) such that (3.6) holds.
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2. For t1  t2,
Z

|� (t2)�� (t1)|�R
|� (t2) � � (t1)|d⌘k(� ) 

1
R

Z

0
|� (t2) � � (t1)|2d⌘k(� )


t2 � t1
R

Z

0

✓Z t2

t1
�̇ (t)2dt

◆
d⌘k(� )

=
t2 � t1
R

Z t2

t1

✓Z

0
�̇ (t)2d⌘k(� )

◆
dt


(t2 � t1)2

R

Z

R
v20d⇢

k
0 .

Again appealing to (3.1), we conclude that the limit (3.7) is uniform in k 2 N.
Likewise
Z

|v0(� (0))|�R
|v0(� (0))|d⌘k(� ) 

1
R

Z

0
v0(� (0))2d⌘k(� ) =

1
R

Z

R
v20d⇢

k
0 ! 0

as R ! 1 uniformly in k 2 N.

Proof of Proposition 1.3. We will now show ⌘1 satisfies conditions (i)-(vi) in the
statement of Proposition 1.3.

Proof of (i) : As e0 : 0 ! R is continuous, it follows from the narrow convergence
of ⌘k j ! ⌘1 in P(0) that

⇢0 = lim
j!1

e0#⌘k j = e0#⌘1.

Proof of (ii): Suppose � , ⇠ 2 supp(⌘1). Then there are sequences (� j ) j2N and
(⇠ j ) j2N such that � j , ⇠ j 2 supp(⌘k j ) for all j 2 N and � j ! � and ⇠ j ! ⇠ in
0 [1, Lemma 5.1.8]. Combining with (3.3), we have

1
t
|� (t) � ⇠(t)| = lim

j!1

1
t
|� j (t) � ⇠ j (t)|

 lim
j!1

1
s
|� j (s) � ⇠ j (s)|

=
1
t
|� (s) � ⇠(s)|

for 0 < s  t .

Proof of (iii): Recall that 8 : 0 ! [0,1] defined in (3.8) has compact sublevel
sets and is thus lower semicontinuous. By narrow convergence and (3.9),

Z

0
8(� )d⌘1(� )  lim inf

j!1

Z

0
8(� )d⌘k j (� )

 lim inf
j!1

Z

R

⇣
✓ + 2v20

⌘
d⇢k j0 < 1.

(3.10)
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In particular, 8(� ) < 1 for ⌘1 almost every � 2 0. As a result, � : [0,1) ! R
is absolutely continuous for ⌘1 almost every � 2 0.

Proof of (iv): For each (x, t, s) 2 R ⇥ (0,1) ⇥ (0,1) with s  t , define

f (x, t, s) := inf
⇢
⇠(t) +

t
s
|x � ⇠(s)| : ⇠ 2 supp(⌘1)

�
. (3.11)

If x = � (s) with � 2 supp(⌘1) and s  t , we can choose ⇠ = � in the above
infimum to get f (� (s), t, s)  � (t). By part (ii) of this proof, ⇠(t) + t

s |� (s) �
⇠(s)| � � (t) for all ⇠ 2 supp(⌘1). It follows that

f (� (s), t, s) = � (t)

for � 2 supp(⌘1) and s  t .
For n 2 N, set

vn(x, t) := n( f (x, t + 1/n, t) � x)

for (x, t) 2 R ⇥ (0,1). As f is upper semicontinuous, vn is Borel measurable.
Moreover,

vn(� (t), t) = n(� (t + 1/n) � � (t))

for � 2 supp(⌘1) and t > 0.
It is routine to verify that

D = {(� , t) 2 0 ⇥ (0,1) : �̇ (t) exists}

is a Borel subset of 0 ⇥ (0,1). Furthermore,

D(� , t) =

(
�̇ (t) (� , t) 2 D
0 otherwise

is Borel measurable as �̇ (t) = limn!1 n (� (t + 1/n) � � (t)) for (� , t) 2 D. We
also set

7 = D \ (supp(⌘1) ⇥ (0,1))

and note that the collection of Borel subsets of 7 is

{7 \A : Borel A ⇢ 0 ⇥ (0,1)} .

Observe that for every (� , t) 2 7 ,

D(� ,t)= �̇ (t)= lim
n!1

n (� (t+1/n) � � (t))= lim
n!1

vn(� (t), t)= lim
n!1

vn � E(� ,t).

Here
E : 0 ⇥ (0,1) ! R ⇥ (0,1); (� , t) 7! (� (t), t)
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is continuous, so

G :=
n
7 \ E�1(B) : Borel B ⇢ R ⇥ (0,1)

o

is a sub-sigma-algebra of the Borel subsets of 7 . In particular, any G measurable
function on 7 is of the form g � E for some Borel g : R ⇥ (0,1) ! R [9, Lemma
1.13].

Since D restricted to 7 is the pointwise limit of G measurable functions, it is
G measurable [6, Proposition 2.7], [9, Lemma 1.10]. That is,

D|7 = v � E

for a Borel v : R ⇥ (0,1) ! R. In particular, for � 2 supp(⌘1) \ {8 < 1}

�̇ (t) = v(� (t), t) a.e. t > 0. (3.12)

Proof of (v): Suppose h 2 Cb(R) and set g(z) =
R z
0 h(w)dw. For t1  t2,

Z t2

t1

Z

0
�̇ (t)h(� (t))d⌘k j (� )dt =

Z

0

✓Z t2

t1

d
dt
g(� (t))dt

◆
d⌘k j (� )

=
Z

0
(g(� (t2)) � g(� (t1))) d⌘k j (� ).

Also note that � 7! g(� (t2)) � g(� (t1)) is continuous on 0 and

|g(� (t2)) � g(� (t1)|  khk1|� (t2) � � (t1)|.

The previous lemma asserts that � 7! |� (t2) � � (t1)| is uniformly integrable, so

lim
j!1

Z t2

t1

Z

0
�̇ (t)h(� (t))d⌘k j (� )dt = lim

j!1

Z

0
(g(� (t2)) � g(� (t1))) d⌘k j (� )

=
Z

0
(g(� (t2)) � g(� (t1))) d⌘1(� )

=
Z t2

t1

Z

0
�̇ (t)h(� (t))d⌘1(� )dt

[1, Lemma 5.1.7].
We also note that

� 7!
Z t2

t1
v0(� (0))h(� (t))dt

is continuous on 0 and
�
�
�
�

Z t2

t1
v0(� (0))h(� (t))dt

�
�
�
�  khk1(t2 � t1)|v0(� (0))|.
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As � 7! |v0(� (0))| is uniformly integrable,

lim
j!1

Z t2

t1

Z

0
v0(� (0))h(� (t))d⌘k j (� )dt

= lim
j!1

Z

0

✓Z t2

t1
v0(� (0))h(� (t))dt

◆
d⌘k j (� )

=
Z

0

✓Z t2

t1
v0(� (0))h(� (t))dt

◆
d⌘1(� )

=
Z t2

t1

Z

0
v0(� (0))h(� (t))d⌘1(� )dt.

Thus we can integrate (3.4) from t1 to t2 and send k = k j ! 1 to conclude
Z t2

t1

Z

0
�̇ (t)h(� (t))d⌘1(� )dt =

Z t2

t1

Z

0
v0(� (0))h(� (t))d⌘1(� )dt.

Since t1, t2 are arbitrary, this proves part (v).

Proof of (vi): By (3.10),
Z n

0

✓Z

0
�̇ (t)2d⌘1(� )

◆
dt  2n

Z

0
8(� )d⌘1(� ) < 1

for all n 2 N. As a result,
Z

0
v(� (t), t)2d⌘1(� ) =

Z

0
�̇ (t)2d⌘1(� ) < 1

for almost every t > 0. We can also use part (v) of this theorem and the function f
defined in (3.11) to find

Z

0
�̇ (t)h(� (t))d⌘1(� ) =

Z

0
v0(� (0))h(� (t))d⌘1(� )

=
Z

0
v0(� (0))h( f (� (s), t, s))d⌘1(� )

=
Z

0
�̇ (s)h( f (� (s), t, s))d⌘1(� )

=
Z

0
�̇ (s)h(� (t))d⌘1(� )

for almost every t, s 2 [0,1) with s  t and h 2 Cb(R).
By approximation, we also have

Z

0
�̇ (t)h(� (t))d⌘1(� ) =

Z

0
�̇ (s)h(� (t))d⌘1(� )
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for almost every t, s 2 [0,1) with s  t and each Borel h : R ! R with
Z

0
h(� (t))2d⌘1(� ) < 1.

See for instance [6, Theorem 7.9]. Consequently,
Z

0
�̇ (t)2d⌘1(� ) =

Z

0
�̇ (t)v(� (t), t)d⌘1(� ) =

Z

0
�̇ (s)v(� (t), t)d⌘1(� )

=
Z

0
�̇ (s)�̇ (t)d⌘1(� )


1
2

Z

0
�̇ (s)2d⌘1(� ) +

1
2

Z

0
�̇ (t)2d⌘1(� )

for almost every s  t .

4. Solution of the SPS

Wewill now show how to use a measure ⌘ 2 P(0) from Proposition 1.3 to generate
a solution of the SPS for given initial conditions.

Proof of Theorem 1.4. Let ⌘1 2 P(0) be the probability measure we constructed
in our proof of Proposition 1.3. Recall that ⌘1 fulfills conditions (i)-(vi) in the
statement of Proposition 1.3, which we will refer to as (i)-(vi) throughout this proof.
We set

⇢ : (0,1) ! P(R); t 7! et #⌘1

and proceed to show that ⇢ and the function v : R ⇥ (0,1) ! R from part (iv) is
the desired weak solution pair.
1. Let  2 C1

c (R ⇥ [0,1)). In view of conditions (i), (iii) and (iv),
Z 1

0

Z

R
(@t + v@x )d⇢t dt =

Z 1

0

Z

0
(@t (� (t), t)

+ v(� (t), t)@x (� (t), t))d⌘1(� )dt

=
Z 1

0

Z

0
(@t (� (t), t)

+ �̇ (t)@x (� (t), t))d⌘1(� )dt

=
Z

0

Z 1

0

d
dt
 (� (t), t)dtd⌘1(� )

= �
Z

0
 (� (0), 0)d⌘1(� )

= �
Z

R
 (·, 0)d⇢0.
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We also have by condition (v),

Z 1

0

Z

R
(v@t + v2@x )d⇢t dt =

Z 1

0

Z

0
�̇ (t)(@t (� (t), t)

+ v(� (t), t)@x (� (t), t))d⌘1(� )dt

=
Z 1

0

Z

0
v0(� (0))(@t (� (t), t)

+ v(� (t), t)@x (� (t), t))d⌘1(� )dt

=
Z 1

0

Z

0
v0(� (0))(@t (� (t), t)

+ �̇ (t)@x (� (t), t))d⌘1(� )dt

=
Z 1

0

Z

0
v0(� (0))

d
dt
 (� (t), t)d⌘1(� )dt

=
Z

0
v0(� (0))

✓Z 1

0

d
dt
 (� (t), t)dt

◆
d⌘1(� )

= �
Z

0
v0(� (0)) (� (0), 0)d⌘1(� )

= �
Z

R
v0 (·, 0)d⇢0.

Consequently, ⇢ and v is a weak solution pair which satisfies ⇢|t=0 = ⇢0 and
v|t=0 = v0.

2. By part (i i) and (3.12),

d
dt

(� (t) � ⇠(t))2

t2

=
2
t2

✓
(v(� (t), t) � v(⇠(t), t))(� (t) � ⇠(t)) �

1
t
(� (t) � ⇠(t))2

◆
 0

(4.1)

for each � , ⇠ 2 supp(⌘1)\{8 < 1} and almost every t > 0. Here8was specified
in (3.8), and we recall that

⌘1({8 < 1}) = 1,

which followed from (3.10).
We also note

et ({8 < 1} \ supp(⌘1)) =
[

m2N
{� (t) 2 R : � 2 supp(⌘1), 8(� )  m}
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is a Borel subset of R since {� (t) 2 R : � 2 supp(⌘1), 8(� )  m} is compact
for each m 2 N. Moreover,

⇢t (et ({8 < 1} \ supp(⌘1))) = ⌘1
⇣
e�1t

�
et ({8 < 1} \ supp(⌘1))

�⌘

� ⌘1 �
{8 < 1} \ supp(⌘1)

�

= 1.

In view of (4.1),
(v(x, t) � v(y, t))(x � y) 

1
t
(x � y)2

holds for almost every t > 0 and for ⇢t almost every x, y 2 R.

3. By (iv) and (v),
Z

R
v(x, t)2d⇢t (x) =

Z

0
�̇ (t)2d⌘1(� ) 

Z

0
v0(� (0))2d⌘1(� ) =

Z

R
v20d⇢0 < 1

for almost every t > 0. Employing part (vi), we also find
Z

R

1
2
v(x, t)2d⇢t (x) =

Z

0

1
2
v(� (t), t)2d⌘1(� )

=
Z

0

1
2
�̇ (t)2d⌘1(� )


Z

0

1
2
�̇ (s)2d⌘1(� )

=
Z

R

1
2
v(x, s)2d⇢s(x)

for almost every 0 < s  t .

Appendix

A. Approximation lemma

This is a variation of a standard method used to show that P(R) is separable. See
for the instance Proposition 4.4 of the notes by Onno [14]. The main point is the
function g is not assumed to be bounded.

Lemma A.1. Suppose µ 2 P(R) and g : R ! [0,1) is continuous with
Z

R
g(x)dµ(x) < 1.
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There is a sequence (µk)k2N for which each µk 2 P(R) is a convex combination of
Dirac measures, µk ! µ narrowly and

Z

R
g(x)dµ(x) = lim

k!1

Z

R
g(x)dµk(x). (A.1)

Proof. 1. Fix ✏ 2 (0, 1) and choose R > 0 so large that
Z

R\[�R,R)
(1+ g(x))dµ(x)  ✏. (A.2)

As g|[�R,R] is uniformly continuous, there is � 2 (0, ✏) such that

|g(x) � g(y)|  ✏

provided x, y 2 [�R, R] and |x � y|  �. Let us also select a natural number N
for which

2R
N

 �.

In addition, we set

y j := �R + j
✓
2R
N

◆
j = 0, . . . , N

and choose any x j 2 [y j�1, y j ) for j = 1, . . . , N . Moreover, we may select
z 62 [�R, R) such that

inf
R\[�R,R)

g � g(z) � ✏.

Now define
m j := µ([y j�1, y j )) j = 0, . . . , N

and
m :=

X

j=1
m j = µ([�R, R)).

Finally, we set

⌫ :=
NX

j=1
m j�x j + (1� m)�z

and note ⌫ 2 P(R) is a convex combination of Dirac measures.

2. Suppose f : R ! R satisfies | f (x)|  1 and | f (x) � f (y)|  |x � y| for each
x, y 2 R. As f is continuous, there are z j 2 [y j�1, y j ) with

f (z j )m j =
Z

[y j�1,y j )
f (x)dµ(x)
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for j = 1, . . . , N . Observe
�
�
�
�

Z

R
f d⌫ �

Z

R
f dµ

�
�
�
�

=

�
�
�
�
�

NX

j=1
m j f (x j ) + (1� m) f (z) �

Z

R\[�R,R)
f dµ �

Z

[�R,R)
f dµ

�
�
�
�
�



�
�
�
�
�

NX

j=1
m j f (x j ) �

Z

[�R,R)
f dµ

�
�
�
�
�
+ (1� m)| f (z)| +

Z

R\[�R,R)
| f |dµ



�
�
�
�
�

NX

j=1

 

m j f (x j ) �
Z

[y j�1,y j )
f dµ

!��
�
�
�
+ (1� m) + µ(R \ [�R, R))


NX

j=1
m j | f (x j ) � f (z j )| + 2µ(R \ [�R, R))


NX

j=1
m j |x j � z j | + 2✏ 

NX

j=1
m j� + 2✏  3✏.

3. We may also choose w j 2 [y j�1, y j ) such that

g(w j )m j =
Z

[y j�1,y j )
g(x)dµ(x)

for j = 1, . . . , N . Doing so gives
�
�
�
�

Z

R
gd⌫ �

Z

R
gdµ

�
�
�
�

=

�
�
�
�
�

NX

j=1
m jg(x j ) + (1� m)g(z) �

Z

R\[�R,R)
gdµ �

Z

[�R,R)
gdµ

�
�
�
�
�

=

�
�
�
�
�

NX

j=1

 

m jg(x j ) �
Z

[y j�1,y j )
gdµ

!

+ (1� m)g(z) �
Z

R\[�R,R)
gdµ

�
�
�
�
�


NX

j=1
m j |g(x j ) � g(w j )| +

�
�
�
�µ(R \ [�R, R))g(z) �

Z

R\[�R,R)
gdµ

�
�
�
�


NX

j=1
m j · ✏ +

�
�
�
�µ(R \ [�R, R))g(z) �

Z

R\[�R,R)
gdµ

�
�
�
�

 ✏ +

�
�
�
�µ(R \ [�R, R))g(z) �

Z

R\[�R,R)
gdµ

�
�
�
� .
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As g � 0 and by our assumption (A.2),

µ(R \ [�R, R))g(z) �
Z

R\[�R,R)
gdµ � �✏.

And by our choice of z,

µ(R \ [�R, R))g(z) �
Z

R\[�R,R)
gdµ

 µ(R \ [�R, R))

✓
inf

R\[�R,R)
g + ✏

◆
�
Z

R\[�R,R)
gdµ

 µ(R \ [�R, R)) inf
R\[�R,R)

g �
Z

R\[�R,R)
gdµ + ✏2

 ✏2

 ✏.

Thus, �
�
�
�

Z

R
gd⌫ �

Z

R
gdµ

�
�
�
�  2✏.

4. For each k 2 N, we can then find ⌫ = µk 2 P(R)which is a convex combination
of Dirac measures and �

�
�
�

Z

R
f dµk �

Z

R
f dµ

�
�
�
� 

1
k

for each k 2 N and f : R ! R with | f (x)|  1 and | f (x) � f (y)|  |x � y|
for x, y 2 R. It is well known that this type of convergence implies that µk ! µ
narrowly [1, Remark 5.1.1]. Since each µk can be chosen so that

�
�
�
�

Z

R
gdµk �

Z

R
gdµ

�
�
�
� 

1
k

(k 2 N),

we conclude (A.1), as well.
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