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Abstract

We give a qualitative description of extremals for Morrey’s inequality. Our
theory is based on exploiting the invariances of this inequality, studying the equation
satisfied by extremals, and the observation that extremals are optimal for a related
convex minimization problem.

1. Introduction

The Sobolev inequality is arguably the most important functional inequality in
the theory of Sobolev spaces. It asserts that for each natural number n and

1 < p < n,

there is a constant C such that

(∫
Rn

|u|p∗
dx

)1/p∗

� C

(∫
Rn

|Du|pdx

)1/p

(1.1)

for each continuously differentiable u : Rn → R with compact support. Here

p∗ = np

n − p
.

This estimate is ubiquitous in PDE theory and also played a crucial role in the solu-
tion of Yamabe’s problem in Riemannian geometry [22]. For Yamabe’s problem, it
was essential to know the sharp or smallest constant C = C∗ for which (1.1) holds
and to know the extremals or functions for which equality is attained in (1.1).
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Using symmetrization methods, Talenti derived the sharp constant

C∗ = 1√
π n1/p

(
p − 1

n − p

)1−1/p
⎛
⎝ �

(
1 + n

2

)
�(n)

�
(

n
p

)
�
(
1 + n − n

p

)
⎞
⎠

1/n

and found nonnegative extremals of the form

u(x) =
(

a + b|x − z| p
p−1

)1− n
p

for a, b > 0 and z ∈ R
n [33]. Aubin made similar insights around the same time in

his influential work on Yamabe’s problem [2,3]. It was later verified, in [26] and [6]
for p = 2 and in [11] for all 1 < p < n, that extremals for the Sobolev inequality
must be of the above form and therefore are radially symmetric.

The counterpart for Sobolev’s inequality when

n < p < ∞ (1.2)

is known as Morrey’s inequality. This inequality asserts that there is a constant C
for which the inequality

sup
x �=y

{ |u(x) − u(y)|
|x − y|1−n/p

}
� C

(∫
Rn

|Du|pdz

)1/p

(1.3)

holds for every u : Rn → R that is continuously differentiable. It is of great interest
to deduce the sharp constant C = C∗ and to explicitly express the corresponding
extremal functions. These problems are easy to solve when n = 1 but are unsolved
for n � 2. In particular, symmetrization methods do not seem to yield insightful
information forMorrey’s inequality theway they do for otherwell known functional
inequalities as detailed in [7,9,10,28,34].

In this paper, we show extremals forMorrey’s inequality exist and establish sev-
eral qualitative properties of these functions. Specifically, we study their symmetry
properties and show that they are unique up to the natural invariances associated
withMorrey’s inequality.We also verifyMorrey extremals are bounded and smooth
on R

n minus two points, and their level sets bound convex regions in R
n . Our ap-

proach is based on the analysis of a certain PDE that extremals satisfy. We will
informally summarize these properties below and then verify precise versions of
these statements in the discussion to follow. Hereafter, the term “extremal” will
only apply to Morrey’s inequality and we will always assume (1.2).

Maximized Hölder ratio. For each extremal function u, there are distinct points
x0, y0 ∈ R

n that maximize its 1 − n/p Hölder ratio. That is,

sup
x �=y

{ |u(x) − u(y)|
|x − y|1−n/p

}
= |u(x0) − u(y0)|

|x0 − y0|1−n/p
. (1.4)

This property also holds more generally for functions v : Rn → R which satisfy∫
Rn

|Dv|pdx < ∞. (1.5)
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Curiously, a stability estimate for Morrey’s inequality follows from this insight. In
particular, for any v satisfying (1.5), there is an extremal u such that

(
C∗
2

)p ∫
Rn

|Du − Dv|pdx + sup
x �=y

{ |v(x) − v(y)|
|x − y|1−n/p

}p

� C p∗
∫
Rn

|Dv|pdx

when 2 < p < ∞; here C∗ is the sharp constant for Morrey’s inequality. There is
also an analogous inequality for 1 < p � 2.

PDE. Suppose u is an extremal which satisfies (1.4). Then the PDE

−�pu = |u(x0) − u(y0)|p−2(u(x0) − u(y0))

C p∗ |x0 − y0|p−n
(δx0 − δy0) (1.6)

holds in Rn . Here �p is the p-Laplace operator

�pu = div(|Du|p−2Du).

Moreover, the converse is true. If v satisfies

−�pv = c(δx0 − δy0)

in R
n for some c ∈ R, then v is necessarily an extremal and the Hölder ratio of v

is maximized at x0 and y0.

Uniqueness. For each distinct pair of points x0, y0 ∈ R
n and distinct pair of values

α, β ∈ R, there is a unique extremal u which satisfies (1.4) and

u(x0) = α and u(y0) = β.

Consequently, the dimension of the space of extremals is 2n + 2. Furthermore,∫
Rn

|Du|pdx �
∫
Rn

|Dv|pdx

for every v : Rn → R which satisfies the pointwise constraints

v(x0) = α and v(y0) = β.

This observation allows us to numerically approximate extremals with coordinate
gradient descent (as discussed in Appendix B); see Fig. 1.

Cylindrical symmetry. Assume u is an extremal which satisfies (1.4). Then

u(x) = u(O(x − x0) + x0)

for any orthogonal transformation O of Rn which satisfies

O(y0 − x0) = y0 − x0.

That is, u is invariant under rigid transformations of Rn that fix the line passing
through x0 and y0. In particular, extremals are cylindrical about this line and are
not radially symmetric.
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Fig. 1. The graph of an extremal for Morrey’s inequality in two spatial dimensions

Reflectional antisymmetry. If u is an extremal whose Hölder ratio is maximized
at distinct x0, y0 ∈ R

n , then

u

(
x − 2

(
(x0 − y0) · (x − 1

2 (x0 + y0)
)

|x0 − y0|2 (x0 − y0)

)
− u(x0) + u(y0)

2

= −
(

u(x) − u(x0) + u(y0)

2

)
.

In other words, the function

u − 1

2
(u(x0) + u(y0))

is antisymmetric with respect to reflection about the hyperplanewith normal x0−y0
that contains the point 1

2 (x0 + y0).

Boundedness. Suppose that u is an extremal which satisfies (1.4). Then u is
bounded with

inf
x∈Rn

u(x) = min{u(x0), u(y0)}

and

sup
x∈Rn

u(x) = max{u(x0), u(y0)}.

In particular, u assumes its minimum and maximum values at points which max-
imize its Hölder seminorm. Furthermore, if n � 2 and u is nonconstant, u attains
its maximum and minimum values uniquely at x0 and y0 (Fig. 2).

Quasiconcavity. Suppose that u is an extremal whose Hölder ratio is maximized
at distinct x0, y0 ∈ R

n . Also consider the two half-spaces

�± =
{

x ∈ R
n : ±

(
x − 1

2
(x0 + y0)

)
· (x0 − y0) > 0

}
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separated by the hyperplane with normal x0 − y0 that contains 1
2 (x0 + y0). If

u(x0) > u(y0), then

u|�+ is quasiconcave and u|�− is quasiconvex;
alternatively if u(x0) < u(y0), then

u|�+ is quasiconvex and u|�− is quasiconcave.

In either case, each level set of u is the boundary of a convex subset of Rn . Refer
to Fig. 3.

Nonvanishing gradient. Suppose n � 2. If u is a nonconstant extremal whose
Hölder ratio is maximized at distinct x0, y0 ∈ R

n , then

|Du| > 0 in R
n\{x0, y0}.

This positivity combined with equation (1.6) will imply that u has continuous
derivatives of all orders and is in fact real analytic on R

n\{x0, y0}. It also implies
there are no points where u has a local minimum or maximum except for x0 and y0.
In addition, this property will allow us to show that C∗ cannot be found from the
local version of Morrey’s inequality which can be used to establish (1.3) for some
C[13,14,18,31].

We will begin by indicating the natural invariances associated with Morrey’s
inequality and by exploiting these invariances to establish the existence of extremal
functions. Then we will proceed to verify each of the above assertions roughly in
the order that they are presented with the exception of property (1.4); we will save
this technical assertion for the last section of this paper. Finally, we would like
to thank Eric Carlen, Yat Tin Chow, Elliott Lieb, Bob Kohn, Erik Lindgren, Stan
Osher, and Tak Kwong Wong for their advice and insightful discussions related to
this work.

2. Preliminaries

In what follows, it will be convenient for us to adopt the notation

[u]C1−n/p(Rn) := sup
x �=y

{ |u(x) − u(y)|
|x − y|1−n/p

}

and

‖Du‖L p(Rn) :=
(∫

Rn
|Du|pdx

)1/p

.

This allows us to restate Morrey’s inequality (1.3) more concisely as

[u]C1−n/p(Rn) � C‖Du‖L p(Rn).

For the remainder of this paper, we will also reserve C for any constant such that
Morrey’s inequality holds and C∗ for the sharp constant.
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A natural class of functions for us to consider is the homogeneous Sobolev
space

D1,p(Rn) :=
{

u ∈ L1
loc(R

n) : uxi ∈ L p(Rn) for i = 1, . . . , n
}

.

In particular, u ∈ D1,p(Rn) means that u is weakly differentiable and all of its
weak first order partial derivatives are L p(Rn) functions. What’s more is that we
can interpret Morrey’s inequality to hold on D1,p(Rn) once we recall that each
u ∈ D1,p(Rn) has a Hölder continuous representative u∗ : R

n → R. Namely,
u(x) = u∗(x) for Lebesgue almost every x ∈ R

n and

[u∗]C1−n/p(Rn) � C‖Du‖L p(Rn).

As such an argument is now routine within the theory of Sobolev spaces, we omit
the details. Moreover, we will always identify u with u∗ going forward.

2.1. Existence of a Nonconstant Extremal

Note that the seminorms u 	→ [u]C1−n/p(Rn) and u 	→ ‖Du‖L p(Rn) are invariant
under the following transformations:

• Multiplication by −1: u(x) 	→ −u(x)

• Addition by a constant c ∈ R: u(x) 	→ u(x) + c
• Translation by a vector a ∈ R

n : u(x) 	→ u(x + a)

• Application of an orthogonal transformation O of Rn : u(x) 	→ u(Ox)

• Scaling by λ > 0: u(x) 	→ λn/p−1u(λx)

We will exploit these invariances to verify that extremals for Morrey’s inequality
exist.

Lemma 2.1. There exists a nonconstant u ∈ D1,p(Rn) such that

[u]C1−n/p(Rn) = C∗‖Du‖L p(Rn).

Proof. Let us define


 := inf
{
‖Du‖L p(Rn) : u ∈ D1,p(Rn), [u]C1−n/p(Rn) = 1

}

and choose a minimizing sequence (uk)k∈N for which


 = lim
k→∞ ‖Duk‖L p(Rn).

For each k ∈ N, we can select xk, yk ∈ R
n with xk �= yk such that

1 = [uk]C1−n/p(Rn) <
uk(yk) − uk(xk)

|xk − yk |1−n/p
+ 1

k
.

We may also find an orthogonal transformation Ok satisfying

Oken = yk − xk

|xk − yk | ,
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where en = (0, . . . , 0, 1).
In addition, we define

vk(z) := |xk − yk |n/p−1
{

uk (|xk − yk |Ok z + xk) − uk(xk)
}

for z ∈ R
n and k ∈ N. By the invariances of the seminorms u 	→ [u]C1−n/p(Rn) and

u 	→ ‖Du‖L p(Rn),

[vk]C1−n/p(Rn) = 1 and 
 = lim
k∈N ‖Dvk‖L p(Rn).

Moreover,

vk(0) = 0 and 1 − 1

k
< vk(en) � 1.

We can now employ a standard variant of the Arzelà-Ascoli theorem to obtain
a subsequence (vk j ) j∈N converging locally uniformly to a continuous function
v : Rn → R.

Local uniform convergence immediately implies

v(0) = 0, v(en) = 1, and [v]C1−n/p(Rn) � 1.

As

1 = v(en) − v(0)

|en − 0|1−n/p
� [v]C1−n/p(Rn),

we actually have

[v]C1−n/p(Rn) = 1.

Since ‖Dvk‖L p(Rn) is bounded, we may as well suppose that (Dvk j ) j∈N converges
weakly in L p(Rn;Rn). Using the local uniform convergence of vk j , it is easy to
verify that the weak limit of Dvk j in L p(Rn;Rn) is the weak derivative of v. It then
follows that v ∈ D1,p(Rn) and


 = lim inf
j∈N ‖Dvk j ‖L p(Rn) � ‖Dv‖L p(Rn).

Since v is nonconstant, 
 is positive. By the definition of 
, C = 1/
 is a
constant for which Morrey’s inequality holds. As

1 = [v]C1−n/p(Rn) � 1



‖Dv‖L p(Rn) � 1,

1/
 = C∗ and v is a nonconstant extremal of Morrey’s inequality. 
�
Corollary 2.2. Assume that x0, y0 ∈ R

n and α, β ∈ R are distinct. There is an
extremal u which satisfies u(x0) = α and u(y0) = β and whose 1 − n/p Hölder
ratio is maximized at x0 and y0.
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Proof. In the proof of the above lemma, we showed there is an extremal v which
satisfies v(0) = 0 and v(en) = 1 and whose 1− n/p Hölder ratio is maximized at
0 and en . We now select an orthogonal transformation O of Rn for which

O

(
y0 − x0

|y0 − x0|
)

= en

and set

u(x) = (β − α)v

(
O (x − x0)

|y0 − x0|
)

+ α

for x ∈ R
n . Clearly u(x0) = α and u(y0) = β, and by the scaling invariance of the

Hölder seminorm

[u]C1−n/p(Rn) = |β − α|
|x0 − y0|1−n/p

= |u(x0) − u(y0)|
|x0 − y0|1−n/p

.


�

2.2. PDE for Extremals

We have established the existence of an extremal whose 1 − n/p Hölder ratio
attains its maximum at a pair of distinct points. We will later show that every
function in D1,p(Rn) has this property. For now, we will assume this property and
use it to derive a PDE satisfied by extremal functions.

Proposition 2.3. Suppose u ∈ D1,p(Rn) is an extremal whose 1 − n/p Hölder
ratio attains its maximum at two distinct points x0, y0 ∈ R

n. Then, for each φ ∈
D1,p(Rn)

C p∗
∫
Rn

|Du|p−2Du·Dφdx = |u(x0) − u(y0)|p−2(u(x0) − u(y0))

|x0 − y0|p−n
(φ(x0)−φ(y0)).

(2.1)

Proof. By assumption,

|u(x0) − u(y0)|p

|x0 − y0|p−n
= C p∗

∫
Rn

|Du|pdx; (2.2)

and in view of Morrey’s inequality,

|u(x0) − u(y0) + t (φ(x0) − φ(y0))|p

|x0 − y0|p−n
� C p∗

∫
Rn

|Du + t Dφ|pdx (2.3)

for each φ ∈ D1,p(Rn) and t > 0. Moreover, the convexity of the function R �
w 	→ |w|p can be used to derive

|u(x0) − u(y0) + t (φ(x0) − φ(y0))|p

|x0 − y0|p−n

� |u(x0) − u(y0)|p

|x0 − y0|p−n
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+ tp
|u(x0) − u(y0)|p−2(u(x0) − u(y0))

|x0 − y0|p−n
(φ(x0) − φ(y0)). (2.4)

As a result, we can subtract (2.2) from (2.3) and use (2.4) to obtain

C p∗
∫
Rn

( |Du + t Dφ|p − |Du|p

pt

)
dx

� |u(x0) − u(y0)|p−2(u(x0) − u(y0))

|x0 − y0|p−n
(φ(x0) − φ(y0)). (2.5)

It is also possible to find a constant cp such that

0 � |Du + t Dφ|p − |Du|p

pt
− |Du|p−2Du · Dφ

� cp

{
t p−1|Dφ|p, 1 < p < 2

t |Dφ|2(|Du| + |Dφ|)p−2, 2 � p < ∞
for t ∈ (0, 1]; see for example Lemma 10.2.1 in [1]. With this estimate, we can
pass to the limit as t → 0+ in (2.5) to conclude that

C p∗
∫
Rn

|Du|p−2Du·Dφdx � |u(x0) − u(y0)|p−2(u(x0) − u(y0))

|x0 − y0|p−n
(φ(x0)−φ(y0)).

(2.6)
We arrive at (2.1) once we replace φ with −φ in (2.6). 
�

If u ∈ D1,p(Rn) satisfies (2.1) for each φ ∈ D1,p(Rn), we can choose φ = u
to find that u is a necessarily an extremal function for Morrey’s inequality and the
1 − n/p Hölder seminorm of u is attained at (x0, y0). Also note that (2.1) implies
that u is a weak solution of the PDE (1.6)

−�pu = |u(x0) − u(y0)|p−2(u(x0) − u(y0))

C p∗ |x0 − y0|p−n
(δx0 − δy0)

in Rn . In particular, u is p-harmonic

−�pu = 0

in R
n\{x0, y0}. As a result, Du is a locally Hölder continuous mapping from

R
n\{x0, y0} into Rn [12,25,35].
We will use the weak form of (1.6) to deduce various properties of extremals

below. Our first observation is that there are at least two other ways to identify that
a function u ∈ D1,p(Rn) is an extremal. The first is as a solution of a PDE of the
type (1.6); the second is as a minimizer of a related convex optimization problem.

Theorem 2.4. Suppose x0, y0 ∈ R
n are distinct and u ∈ D1,p(Rn). Then the

following are equivalent:

(i) u is an extremal with

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

.
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(ii) There is a constant c ∈ R for which u satisfies

−�pu = c(δx0 − δy0) (2.7)

in R
n.

(iii) For each v ∈ D1,p(Rn) with v(x0) = u(x0) and v(y0) = u(y0),∫
Rn

|Du|pdx �
∫
Rn

|Dv|pdx . (2.8)

Remark 2.5. In (i i), (2.7) means that∫
Rn

|Du|p−2Du · Dφdx = c(φ(x0) − φ(y0)) (2.9)

for each φ ∈ D1,p(Rn).

Proof. We have already shown that (i) implies (i i) in Proposition 2.3. Let us
assume (i i), and suppose v ∈ D1,p(Rn) satisfies v(x0) = u(x0) and v(y0) = u(y0).
Applying (2.9), we find∫

Rn
|Dv|pdx �

∫
Rn

|Du|pdx + p
∫
Rn

|Du|p−2Du · (Dv − Du)dx

=
∫
Rn

|Du|pdx + pc((v − u)(x0) − (v − u)(y0))

=
∫
Rn

|Du|pdx .

Therefore, (i i) implies (i i i).
Now suppose that u satisfies (i i i) and w is an extremal for which

[w]C1−n/p(Rn) = |w(x0) − w(y0)|
|x0 − y0|1−n/p

and
w(x0) = u(x0) and w(y0) = u(y0). (2.10)

Choosing v = u + t (w − u) in (2.8) gives∫
Rn

|Du|pdx �
∫
Rn

|Du + t D(w − u)|pdx

=
∫
Rn

|Du|pdx + pt
∫
Rn

|Du|p−2Du · D(w − u)dx + o(t)

as t → 0. It follows that∫
Rn

|Du|p−2Du · D(w − u)dx = 0.

By Proposition 2.3, we also have∫
Rn

|Dw|p−2Dw · D(w − u)dx = 0.
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In particular,∫
Rn

(|Du|p−2Du − |Dw|p−2Dw) · D(u − w)dx = 0.

As the mapping z 	→ |z|p−2z of Rn is strictly monotone, Du ≡ Dw. In view of
(2.10), u ≡ w and we conclude that (i i i) implies (i). 
�

2.3. Extremals in One Spatial Dimension

Suppose n = 1 and u ∈ D1,p(R). As u′ ∈ L p(R), u is absolutely continuous
and

|u(x) − u(y)| =
∣∣∣∣
∫ x

y
u′dz

∣∣∣∣ �
(∫ x

y
|u′|pdz

)1/p

|x − y|1−1/p (2.11)

for y � x . As a result
[u]C1−1/p(R) � ‖u′‖L p(R), (2.12)

and Morrey’s inequality holds with C∗ � 1. Moreover, it is easy to check that
equality holds for

u(x) =

⎧⎪⎨
⎪⎩

−1, x ∈ (−∞,−1)

x, x ∈ [−1, 1]
1, x ∈ (1,∞).

(2.13)

Therefore, C∗ = 1. We also note that the 1 − 1/p Hölder ratio of u is maximized
at ±1.

Conversely, if equality holds in (2.12) for some u ∈ D1,p(R) and if

[u]C1−1/p(R) = |u(x0) − u(y0)|
|x0 − y0|1−1/p

(2.14)

for some y0 < x0, then (2.11) gives(∫ x0

y0
|u′|pdz

)1/p

=
(∫

R

|u′|pdz

)1/p

.

Itwould then follow thatu′ vanishes onR\(y0, x0) and thatu′ is necessarily constant
on [y0, x0]. As a result, u would be of the form (2.13). In the last section of this
paper, we will verify (2.14) and use a higher dimensional analog of (2.11) to verify
that the Hölder ratio of each extremal is maximized at distinct points for n � 2.

3. Symmetry and Pointwise Bounds

We will now use PDE (1.6) to verify a variety of assertions for extremals.
We start off by showing that extremals are unique up to the natural invariances
associated with Morrey’s inequality. This uniqueness is employed to derive some
symmetry and antisymmetry properties. Then we will use the strong maximum
principle and Hopf’s boundary point lemma for p-harmonic functions to bound
extremals above and below and to obtain a sign of a directional derivative along an
antisymmetry plane for extremals.
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Fig. 2. The graph of an extremal in one spatial dimension whose 1 − 1/p Hölder ratio is
maximized at x0 and y0

3.1. Uniqueness

In Corollary 2.2, we showed that for distinct α, β ∈ R and x0, y0 ∈ R
n , there

is an extremal u ∈ D1,p(Rn) which satisfies u(x0) = α and u(x0) = β and whose
Hölder ratio is maximized at x0 and y0. It turns out that this extremal is the only one
that satisfies these constraints. The key observation needed to justify this statement
is as follows:

Proposition 3.1. Suppose x0, y0 ∈ R
n and x1, y1 ∈ R

n are distinct, and assume
u, v ∈ D1,p(Rn) are nonconstant extremals with

[u]C1−n/p(Rn) = u(x0) − u(y0)

|x0 − y0|1−n/p
and [v]C1−n/p(Rn) = v(x1) − v(y1)

|x1 − y1|1−n/p
.

Then for each orthogonal transformation O of Rn which satisfies

O

(
y0 − x0

|y0 − x0|
)

= y1 − x1
|y1 − x1|

and each x ∈ R
n,

u(x) = u(y0) − u(x0)

v(y1) − v(x1)
·
{
v

( |x1 − y1|
|x0 − y0| O(x − x0) + x1

)
− v(x1)

}
+ u(x0).

Proof. Set

ũ(x) := u(y0) − u(x0)

v(y1) − v(x1)
·
{
v

( |x1 − y1|
|x0 − y0| O(x − x0) + x1

)
− v(x1)

}
+ u(x0)

for x ∈ R
n . By design,

ũ(x0) = u(x0) and ũ(y0) = u(y0), (3.1)



Extremal Functions for Morrey’s Inequality

and in viewof the invariances of the seminorms associatedwithMorrey’s inequality,
ũ is a nonconstant extremal with

[ũ]C1−n/p(Rn) = ũ(x0) − ũ(y0)

|x0 − y0|1−n/p
.

Consequently, both u and ũ are both weak solutions of the PDE (1.6).
Evaluating (2.1) at φ = u − ũ gives

∫
Rn

|Du|p−2Du · (Du − Dũ)dx = 0,

and similarly, ∫
Rn

|Dũ|p−2Dũ · (Du − Dũ)dx = 0.

Subtracting these equalities gives
∫
Rn

(|Du|p−2Du − |Dũ|p−2Dũ) · (Du − Dũ)dx = 0.

Therefore, u − ũ is constant and by (3.1) must in fact vanish identically. 
�
Corollary 3.2. Suppose u1, u2 ∈ D1,p(Rn) are nonconstant extremals whose 1 −
n/p Hölder seminorms are both maximized at a pair of distinct points x0, y0 ∈ R

n.
If, in addition,

u1(x0) = u2(x0) and u1(y0) = u2(y0),

then u1(x) = u2(x) for all x ∈ R
n.

Proof. We can assume that u1(x0) > u1(y0), or else we can prove this corollary
for −u1 and −u2. The assertion is then immediate once we realize we can select
O = In in the statement of Proposition 3.1 with u = u1 and v = u2. 
�

A closer inspection of the previous assertion implies that any extremal u whose
1 − n/p Hölder ratio achieves its maximum at a pair of distinct points possesses
a strong symmetry property. Specifically, u will be cylindrically symmetric and
its axis of symmetry is the line through the points at which its 1 − n/p Hölder
seminorm is achieved.

Corollary 3.3. Suppose u ∈ D1,p(Rn) is an extremal with

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

.

Then
u(x) = u(O(x − x0) + x0), x ∈ R

n

for any orthogonal transformation O which satisfies

O (y0 − x0) = y0 − x0.
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Proof. Set

v(x) := u(O(x − x0) + x0), x ∈ R
n .

The claim follows once we observe that v is an extremal with [v]C1−n/p(Rn) =
[u]C1−n/p(Rn), v(x0) = u(x0), and v(y0) = u(y0). 
�
Extremals also have a certain antisymmetry property. We recall that the orthogonal
reflection about the hyperplane {x ∈ R

n : x ·a = c} is given by the transformation

x 	→ x − 2
(x · a − c)

|a|2 a.

Note in particular that this mapping is a composition of an orthogonal transforma-
tion and a translation.Wewill showbelow thatu− 1

2 (u(x0)+u(y0)) is antisymmetric
about the hyperplane with normal pointing in the same direction as x0 − y0 and
that passes through the midpoint of x0 and y0.

Proposition 3.4. Suppose u ∈ D1,p(Rn) is an extremal with

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

.

Then

u

(
x − 2

(
(x0 − y0) · (x − 1

2 (x0 + y0)
)

|x0 − y0|2 (x0 − y0)

)
− u(x0) + u(y0)

2

= −
(

u(x) − u(x0) + u(y0)

2

)

for each x ∈ R
n.

Proof. Define

v(x) := u(x0) + u(y0) − u

(
x − 2

(
(x0 − y0) · (x − 1

2 (x0 + y0)
)

|x0 − y0|2 (x0 − y0)

)
.

We note that

x 	→ x − 2

(
(x0 − y0) · (x − 1

2 (x0 + y0)
)

|x0 − y0|2 (x0 − y0)

is orthogonal reflection about the hyperplane with normal x0 − y0 which passes
through (x0 + y0)/2. Since this map is a composition of an orthogonal transforma-
tion and a translation, v is an extremal with [u]C1−n/p(Rn) = [v]C1−n/p(Rn). As

v(x0) = u(x0) and v(y0) = u(y0),

v(x) = u(x) for all x ∈ R
n by Corollary 3.2. 
�
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3.2. Pointwise Bounds

Asmentioned above, we will argue that each extremal is bounded. In particular,
if u ∈ D1,p(Rn) is an extremal with

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

,

we will show that

min{u(x0), u(y0)} � u(x) � max{u(x0), u(y0)} (3.2)

for all x ∈ R
n . When n = 1, these inequalities are immediate in view of the explicit

extremal (2.13). Consequently, we will focus on the case n � 2 and also prove a
refinement of (3.2).

Proposition 3.5. Suppose n � 2, u ∈ D1,p(Rn) is an extremal with

[u]C1−n/p(Rn) = u(x0) − u(y0)

|x0 − y0|1−n/p
> 0,

and set

�± :=
{

x ∈ R
n : ±

(
x − 1

2
(x0 + y0)

)
· (x0 − y0) > 0

}
.

Then
u(x0) + u(y0)

2
< u(x) < u(x0) (3.3)

for x ∈ �+ and

u(y0) < u(x) <
u(x0) + u(y0)

2
(3.4)

for x ∈ �−.

Proof. We will only prove (3.3) as a similar argument can be used to justify (3.4).
Moreover, we will suppose x0 = en , y0 = −en , u(en) = 1, and u(−en) = −1. In
this case, �+ = {x ∈ R

n : xn > 0}. The general case would then follow by an
appropriate change of variables.

Observe that Proposition 3.4 implies that

u|∂�+ = 0.

We claim that ∫
�+

|Du|pdx �
∫

�+
|Dw|pdx (3.5)

for each w ∈ D1,p(Rn) which satisfies

w(en) = 1 and w|∂�+ = 0 (3.6)

and that equality holds in (3.5) if and only if w|�+ = u|�+ .
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For a given w ∈ D1,p(Rn) satisfying (3.6), we can set

v(x) =
{

w(x), x ∈ �+
−w (x − 2xnen) , x �∈ �+

and check that v ∈ D1,p(Rn). As

v(en) = w(en) = 1 and v(−en) = −w(en) = −1,

Theorem 2.4 gives

2
∫

�+
|Du|pdx =

∫
Rn

|Du|pdx �
∫
Rn

|Dv|pdx = 2
∫

�+
|Dw|pdx .

This proves (3.5). If equality holds, then v is an extremal (by Theorem 2.4) which
is necessarily equal to u by Corollary 3.2.

Let us now choose

w(x) = min{u(x), 1}, x ∈ R
d .

As w fulfills the constraints (3.6), (3.5) gives∫
�+

|Du|pdx �
∫

�+
|Dw|pdx =

∫
�+∩{u�1}

|Du|pdx �
∫

�+
|Du|pdx .

Consequently,

u(x) = w(x) = min{u(x), 1} � 1

for each x ∈ �+.
Since u is p-harmonic in the domain �+\{en}, either u < 1 in or u ≡ 1

throughout �+\{en} by the strong maximum principle (Chapter 2 of [27]). Since
u|∂�+ = 0, it must be that u < 1 in �+\{en}. Analogously, we can employ
w(x) = max{u(x), 0} for x ∈ �+ to deduce u > 0 in �+. We leave the details to
the reader. 
�

We finally assert that a certain directional derivative of extremals always has a
sign. This observation will be useful when we discuss the analyticity of extremal
functions.

Proposition 3.6. Assume n ≥ 2, u ∈ D1,p(Rn) is a nonconstant extremal with

[u]C1−n/p(Rn) = u(x0) − u(y0)

|x0 − y0|1−n/p
,

and set

�+ :=
{

x ∈ R
n :

(
x − 1

2
(x0 + y0)

)
· (x0 − y0) > 0

}
.

Then
Du(x) · (x0 − y0) > 0 (3.7)

for x ∈ ∂�+.
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Proof. Without loss of generality, we can focus on the case where x0 = en , y0 =
−en , u(en) = 1, and u(−en) = −1. In this case, �+ = {x ∈ R

n : xn > 0}. By the
previous proposition, u > 0 in�+ and u|∂�+ = 0. Observe that for each x ∈ ∂�+,
u is p-harmonic in the ball

Dx := B 1
2

(
x + 1

2
en

)

and

u(x) = 0 < u(y), y ∈ Dx\{x}.
The latter observation follows from the fact that Dx ⊂ �+ and Dx ∩ ∂�+ = {x}.
By Hopf’s boundary point lemma for p-harmonic functions (Lemma A.3 of [32]),

Du(x) · (−en) < 0.


�

4. Regularity

In this section, we will consider the smoothness properties of extremals. In
particular, we will establish that nonconstant extremals are smooth except for at
the two points which maximize their Hölder seminorms. We also verify that their
level sets bound convex regions in Rn .

4.1. Nondifferentiability Points

It will be useful for us to recall some properties of p-harmonic functions in
punctured domains. In particular, the behavior of these functions near their singular
points has been deduced by Kichenassamy and Véron [20,21]. We will adapt their
results to our setting as follows:

Lemma 4.1. Suppose n � 2 and 
 ⊂ R
n is a bounded domain with x0 ∈ 
.

Further suppose that u ∈ D1,p(Rn) is p-harmonic in 
\{x0} with u(x) � u(x0)
for x ∈ 
. Then

lim
x→x0

u(x0) − u(x)

|x − x0|
p−n
p−1

= γ

for some γ � 0, and

−�pu = nωn

(
p − n

p − 1
γ

)p−1

δx0

in 
.

Remark 4.2. Here ωn is the Lebesgue measure of the unit ball in Rn .

Proof. Choose r > 0 so small that Br (x0) ⊂ 
. Note that u(x0)−u is p-harmonic
in the punctured ball Br (x0)\{x0}. Moreover,
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u(x0) − u(x) � [u]C1−n/p(Rn)r
1− n

p

= [u]C1−n/p(Rn)r
1− n

p −
(

p−n
p−1

)
r

p−n
p−1

= [u]C1−n/p(Rn)r
1− n

p −
(

p−n
p−1

)
|x − x0|

p−n
p−1

=: Lr |x − x0|
p−n
p−1

for x ∈ ∂ Br (x0). Since both u(x0) − u(x) and Lr |x − x0|
p−n
p−1 are p-harmonic in

Br (x0)\{x0} and vanish at x = x0, the maximum principle implies

u(x0) − u(x) � Lr |x − x0|
p−n
p−1

for x ∈ Br (x0). With this estimate, the assertion follows from Theorem 1.1 and
Remark 1.6 of [20]. 
�

We have already noted that if u is an extremal whose 1 − n/p Hölder ratio
attains its maximum at two distinct points x0, y0 ∈ R

n , then u is continuously
differentiable in R

n\{x0, y0}. It follows from the above lemma that a nonconstant
extremal is not differentiable at its maximum and minimum points.

Corollary 4.3. Suppose u ∈ D1,p(Rn) is a nonconstant extremal whose 1 − n/p
Hölder ratio attains its maximum at two distinct points x0, y0 ∈ R

n. Then u is not
differentiable at x0 or y0.

Proof. When n = 1, we may conclude the nondifferentiability of u at the points
where its 1−1/p Hölder ratio attains its maximum by simply inspecting the graph
of (2.13).

Let’s now consider the case n � 2 and additionally suppose u(x0) > u(y0). As
u is an extremal, we have by Proposition 2.3 that for sufficiently small r > 0,

C p∗
∫

Br (x0)
|Du|p−2Du · Dφdx = |u(x0) − u(y0)|p−2(u(x0) − u(y0))

|x0 − y0|p−n
φ(x0)

for each φ ∈ C∞
c (Br (x0)). That is,

−�pu = |u(x0) − u(y0)|p−2(u(x0) − u(y0))

C p∗ |x0 − y0|p−n
δx0

in Br (x0). As u(x) � u(x0) in Br (x0), we can appeal to Lemma 4.1 to find

nωn

(
p − n

p − 1
γ

)p−1

= |u(x0) − u(y0)|p−2(u(x0) − u(y0))

C p∗ |x0 − y0|p−n
> 0.

In particular, γ > 0.
If u is differentiable at x0,

u(x) − u(x0) = Du(x0) · (x − x0) + o(|x − x0|)
as x 	→ x0. It would then follow that

γ = lim
x→x0

u(x0) − u(x)

|x − x0|
p−n
p−1

� lim
x→x0

(
(|Du(x0)| + o(1))|x − x0|1−

p−n
p−1

)
= 0,

which is a contradiction. We can also argue similarly for y0. 
�
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4.2. Quasiconcavity

We will now investigate the quasiconcavity and quasiconvexity properties of
extremal functions. Recall that for a given convex 
 ⊂ R

n , a function f : 
 → R

is quasiconcave if {x ∈ 
 : f (x) � t} is convex for each t ∈ R. Likewise, f is
quasiconvex if − f is quasiconcave. We note that f is quasiconcave if and only if

f ((1 − λ)x + λy) � min{ f (x), f (y)} (4.1)

for x, y ∈ 
 and λ ∈ [0, 1]. Our central assertion is
Proposition 4.4. Suppose that u ∈ D1,p(Rn) is an extremal with

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

and set

�± =
{

x ∈ R
n : ±

(
x − 1

2
(x0 + y0)

)
· (x0 − y0) > 0

}
.

If u(x0) > u(y0), then

u|�+ is quasiconcave and u|�− is quasiconvex;
alternatively if u(x0) < u(y0), then

u|�+ is quasiconvex and u|�− is quasiconcave.

In our proof of the above proposition, we will make use of the subsequent approx-
imation lemma.

Lemma 4.5. Let u ∈ D1,p(Rn) be an extremal with u(en) = 1, u(−en) = −1,
and

[u]C1−n/p(Rn) = |u(en) − u(−en)|
|en − (−en)|1−n/p

.

For each ε > 0, there is w ∈ C∞
c ({xn > 0}) such that

(∫
{xn>0}

|Du − Dw|pdx

)1/p

� ε.

Proof. 1. Choose f ∈ C∞
c (B2) radial with 0 � f � 1 and f ≡ 1 on B1. Next,

set f δ(x) := f (δx) and

uδ := f δu

for δ > 0. In addition, we may select r > 0 so large that

(∫
|x |�r

|Du|pdx

)1/p

� 1

4
ε
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and δ > 0 so small that δr < 1. Since Duδ = D f δu + f δ Du and |u| ≤ 1 by
(3.2),

‖Duδ − Du‖L p(Rn) =
(∫

Rn
|Duδ − Du|pdx

)1/p

=
(∫

Rn
|( f δ − 1)Du + u D f δ|pdx

)1/p

�
(∫

Rn
|( f δ − 1)Du|pdx

)1/p

+
(∫

Rn
|u D f δ|pdx

)1/p

�
(∫

Rn
(1 − f δ)p|Du|pdx

)1/p

+
(∫

Rn
|D f δ|pdx

)1/p

�
(∫

|x |�r
|Du|pdx

)1/p

+
(∫

Rn
δ p|D f (δx)|pdx

)1/p

� 1

4
ε + δ1−n/p‖D f ‖L p(Rn).

Choosing δ smaller if necessary, we have

‖Duδ − Du‖L p(Rn) � 1

2
ε.

2. Let η be a standard, radial mollifier on R
n and set

v := ητ ∗ uδ,

where ητ (x) := τ−nη(x/τ) for τ > 0. As the support of uδ is bounded,
v ∈ C∞

c (Rn). We also recall that

‖Dv − Duδ‖L p(Rn) � 1

2
ε

for all τ > 0 small enough (Theorem 4.22 in [5] and Theorem 1 of section 5.3
in [13]). For such τ ,

‖Dv − Du‖L p(Rn) � ‖Dv − Duδ‖L p(Rn) + ‖Duδ − Du‖L p(Rn) � ε.

According to Proposition 3.4, u is antisymmetricwith respect to reflection about
the xn = 0 hyperplane. Using that η and f are radial, it is routine to verify that
v is also antisymmetric with respect to reflection about the xn = 0 hyperplane. In
particular,

v|xn=0 = 0.

3. Select s > 0 so that v is supported in the ball Bs . It follows v vanishes on the
boundary of the Lipschitz domain

U = Bs ∩ �+ = {x ∈ R
n : xn > 0, |x | < s}.
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As a result, v ∈ W 1,p
0 (U ). Theorem 18.7 in [23] then implies that there is

w ∈ C∞
c (U ) for which

‖Dv − Dw‖L p(U ) � 1

2
ε.

Therefore,

‖Dw − Du‖L p({xn>0}) � ‖Dw − Dv‖L p({xn>0}) + ‖Dv − Du‖L p({xn>0})

= ‖Dw − Dv‖L p(U ) + 1

2
‖Dv − Du‖L p(Rn)

≤ 1

2
ε + 1

2
ε

= ε.


�
Proof of Proposition 4.4. Without loss of generality, we may verify this assertion
for x0 = en , y0 = −en , u(en) = 1, and u(−en) = −1. In this case,

�± = {x ∈ R
n : ±xn > 0}.

By Proposition 3.4 and the fact that the reflection of a convex set about the hyper-
plane ∂�+ = {x ∈ R

n : xn = 0} is still convex, we only need to verify that u|�+
is quasiconcave.

1. Recall that u is p-harmonic in �+\{en}, u(en) = 1 and u|∂�+ = 0. We will
use this information to build an approximation scheme of quasiconcave functions.
For each r > 0, set

Dr := Br (
√
1 + r2en) =

{
x ∈ R

n : x21 + · · · + x2n−1 + (xn −
√
1 + r2)2 < r2

}
.

(4.2)
We note that x ∈ Dr if and only if

x21 + · · · + x2n + 1 < 2
√
1 + r2 xn . (4.3)

This implies en ∈ Dr , Dr ⊂ �+, and also that Dr ⊂ Ds for r < s. Moreover,
�+ = ⋃

r>0 Dr ; indeed for a given x ∈ R
n with xn > 0, (4.3) holds for all large

enough r > 0.
Now let ur ∈ W 1,p

0 (Dr ) be the unique solution of the boundary value problem
⎧⎪⎨
⎪⎩

−�pv = 0 in Dr\{en}
v(en) = 1

v = 0 on ∂ Dr .

(4.4)

This function ur can be found by minimizing the integral
∫

Dr

|Dv|pdx
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Fig. 3. Various contours of a numerical approximation for the extremal u : R2 → R of
Morrey’s inequality whose Hölder seminorm is maximized at (0, 1) and (0,−1) and which
satisfies u(0, 1) = 1 and u(0, −1) = −1. Here p = 4

among v ∈ W 1,p
0 (Dr ) which satisfy v(en) = 1. In view of (4.4) and Lemma 4.1,

we also have

−�pur = arδen

in Dr for some ar ∈ R. Multiplying this equation by ur and integrating by parts
shows that in fact

ar =
∫

Dr

|Dur |pdx . (4.5)

2. Extending ur by 0 to R
n\Dr , we see ur ∈ D1,p(Rn). By the results of

Lewis on capacitary functions in convex rings [24], ur is quasiconcave. In order to
complete this proof, we only need to prove that

ur (x) → u(x) for x ∈ �+ (4.6)

as r → ∞. If this is the case, we would have by (4.1) that

u((1 − λ)x + λy) = lim
r→∞ ur ((1 − λ)x + λy)

≥ lim
r→∞min{ur (x), ur (y)} = min{u(x), u(y)}

for each x, y ∈ �+ and λ ∈ [0, 1]. So now we focus on proving (4.6).
Recall that D1 ⊂ Dr when r > 1. It follows that u1 ∈ W 1,p

0 (Dr ) and

∫
Rn

|Dur |pdx =
∫

Dr

|Dur |pdx �
∫

Dr

|Du1|pdx =
∫
Rn

|Du1|pdx
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for all r > 1. Since ur (en) = 1, there is u∞ ∈ D1,p(Rn) and a sequence of positive
numbers r j increasing to ∞ such that⎧⎪⎨

⎪⎩
ur j → u∞ locally uniformly in Rn

Dur j ⇀ Du∞ in L p(Rn;Rn).

The local uniform convergence also gives that

u∞(en) = 1 and u∞|∂�+ = 0. (4.7)

Passing to a further subsequence if necessary, the limit a := lim j→ ar j exists,
where ar is defined in (4.5).

3. In order to conclude (4.6), it suffices to show

u∞|�+ = u|�+ . (4.8)

To this end, we note for w ∈ C∞
c (�+) and r > 0 sufficiently large∫

�+

1

p
|Dw|pdx =

∫
Dr

1

p
|Dw|pdx

�
∫

Dr

1

p
|Dur |pdx +

∫
Dr

|Dur |p−2Dur · (Dw − Dur )dx

=
∫

Dr

1

p
|Dur |pdx + ar (w(en) − ur (en))

=
∫

�+

1

p
|Dur |pdx + ar (w(en) − 1).

Sending r = r j → ∞ gives that∫
�+

1

p
|Dw|pdx �

∫
�+

1

p
|Du∞|pdx + a(w(en) − 1). (4.9)

By Lemma 4.5, there is a sequence (wk)k∈N ⊂ C∞
c (�+) such that Dwk → Du

in L p(�+;Rn). Also note that Dwk → Du+ in L p(Rn;Rn) as u+ = 0 on �−.
We can then employ Morrey’s inequality to find that

|wk(en) − u(en)| = |wk(en) − u+(en) − (wk(0) − u+(0))|

� C |en|1−n/p
(∫

Rn
|Dwk − Du+|pdx

)1/p

� C

(∫
�+

|Dwk − Du|pdx

)1/p

.

Therefore, wk(en) → u(en) = 1 as k → ∞. Substituting wk for w in (4.9) and
sending k → ∞ gives that∫

�+
|Du|pdx �

∫
�+

|Du∞|pdx .

As noted in the proof of Proposition 3.5, this inequality combinedwith (4.7) implies
(4.8). 
�
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Remark 4.6. The conclusion of the above proof also gives that ur → u locally
uniformly on �+ and Dur → Du in L p(�+;Rn).

4.3. Analyticity

It follows from a theorem of Hopf [19] that a p-harmonic function is locally
analytic in a neighborhood of any point for which its gradient does not vanish.
Therefore, the analyticity of extremal functions is an immediate corollary of the
following assertion:

Proposition 4.7. Suppose n � 2 and u ∈ D1,p(Rn) is a nonconstant extremal with

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

.

Then

|Du| > 0 in R
n\{x0, y0}.

Proof. We will assume without loss of generality that x0 = en, y0 = −en and
u(en) = 1, u(−en) = −1. By the antisymmetry of u across {x ∈ R

n : xn = 0} and
the fact that uxn > 0 on this hyperplane by (3.7), it suffices to show that |Du| > 0
on �+ := {x ∈ R

n : xn > 0}. To this end, we will employ the family of functions
(ur )r>0 defined in the proof of Proposition 4.4.

In view of (4.4), ur is a capacitary function on the convex ring Dr\{en} for each
r > 0. Lewis showed that for each ball B with B ⊂ Dr\{en}, there is a constant
ρ = ρ(B) � 1 for which

max
B

|Dur | � ρ min
B

|Dur |
(section 5 of [24]). In particular,

|Dur (y)| � ρ|Dur (z)|
for every y, z ∈ B.

Since Dur → Du in L p(B), it must be that Dur j (x) → Du(x) for almost
every x ∈ B for an appropriate sequence (r j ) j∈N tending to 0. Therefore,

|Du(y)| � ρ|Du(z)|
for Lebesgue almost every y, z ∈ B. Since u is p-harmonic in B, u is continuously
differentiable in B and this inequality holds for every y, z ∈ B. That is,

max
B

|Du| � ρ min
B

|Du|. (4.10)

Suppose there is some y ∈ �+ such that Du(y) = 0. Then for every δ > 0
for which Bδ(y) ⊂ �+\{en}, Du|Bδ(y) = 0. This follows from inequality (4.10).
Choosing

δ := dist(y, ∂(�+\{en})),
we have that either en ∈ ∂ Bδ(y) or ∂ Bδ(y) ∩ ∂�+ �= ∅. In the case en ∈ ∂ Bδ(y),
u ≡ 1 in Bδ(y); otherwise u ≡ 0 in Bδ(y). Either conclusion is a contradiction to
Proposition 3.3. As a result, no such point y exists. 
�
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5. Morrey’s Estimate and the Sharp Constant C∗

We will now argue that the sharp constant C∗ for Morrey’s inequality (1.3)
cannot be derived the way other constants for Morrey’s inequality typically are. To
this end, we will recall Morrey’s estimate: there is a constant C > 0 depending
only on p and n such that

|u(x) − u(y)| � Cr1−n/p
(∫

Br (z0)
|Du|pdz

)1/p

(5.1)

for each x, y ∈ Br (z0) and u ∈ D1,p(Rn). This inequality was verified by Evans
andGariepy (Theorem4.10 of [14]) and is based on earlierwork byMorrey (Lemma
1 of Section 2 of [29], Theorem 3.5.2 of [30]). We also note that other good presen-
tations of versions of this inequality can be found in Nirenberg’s Lecture II of [31],
section 5.6.2 of Evans’ textbook [13] and in section 7.8 of Gilbarg and Trudinger’s
monograph [18].

It is not hard to see that Morrey’s inequality holds with the constant C in (5.1).
Indeed, we can choose z0 = x and r = |x − y| to find that

|u(x) − u(y)|
|x − y|1−n/p

� C

(∫
Br (x)

|Du|pdz

)1/p

� C

(∫
Rn

|Du|pdz

)1/p

(5.2)

for each u ∈ D1,p(Rn). However, we claim that any such C must be larger than
C∗. In particular, it is not possible to find the best constant for Morrey’s inequality
from Morrey’s estimate.

Proposition 5.1. Suppose n � 2, C is a constant for which (5.1) holds, and C∗ is
the sharp constant for Morrey’s inequality. Then

C∗ < C.

Proof. Let u ∈ D1,p(Rn) be a nonconstant extremal whose Hölder ratio is maxi-
mized at 0 and en . In view of (5.2),

C∗
(∫

Rn
|Du|pdz

)1/p

= |u(en) − u(0)|
|en − 0|1−n/p

� C

(∫
B1(0)

|Du|pdz

)1/p

.

By Proposition 4.7, |Du| > 0 in Rn\B1(0). Therefore,

C∗
(∫

Rn
|Du|pdz

)1/p

< C

(∫
Rn

|Du|pdz

)1/p

.


�
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6. Maximizing the 1 − n/p Hölder Ratio

Wewill finally argue that theHölder ratio of any function belonging toD1,p(Rn)

always attains its maximum at a pair of distinct points. In particular, every extremal
also has this property. We will also show how the following theorem implies a type
of stability for Morrey’s inequality.

Theorem 6.1. Assume u ∈ D1,p(Rn) is nonconstant. Then

[u]C1−n/p(Rn) = |u(x0) − u(y0)|
|x0 − y0|1−n/p

for some x0, y0 ∈ R
n with x0 �= y0.

In order to verify this assertion, it will be convenient for us to employ the
following estimate:

|u(x) − u(y)| � Cr1−n/p

(∫
Br/2

(
x+y
2

) |Du|pdz

)1/p

, (6.1)

for each u ∈ D1,p(Rn) and x, y ∈ R
n . Here r = |x − y| and C is a constant

depending only on n and p. This estimate follows from Morrey’s estimate (5.1) by
choosing z0 = 1

2 (x + y) as x, y ∈ ∂ Br (z0).
We will prove Theorem 6.1 as follows. We first select any pair of sequences

(xk)k∈N, (yk)k∈N such that

[u]C1−n/p(Rn) = lim
k→∞

|u(xk) − u(yk)|
|xk − yk |1−n/p

,

and then show
lim inf
k→∞ |xk − yk | > 0 (6.2)

and
sup
k∈N

|xk |, sup
k∈N

|yk | < ∞. (6.3)

It follows that (xk)k∈N and (yk)k∈N have convergent subsequences (xk j ) j∈N and
(yk j ) j∈N that converge to distinct points x0 and y0. We could then conclude by
noting

[u]C1−n/p(Rn) = lim
k→∞

{ |u(xk j ) − u(yk j )|
|xk j − yk j |1−n/p

}
= |u(x0) − u(y0)|

|x0 − y0|1−n/p
.

It turns out that (6.2) is easy to prove. For if it fails, we may as well assume
limk→∞ |xk − yk | = 0. Applying (6.1) gives

[u]p
C1−n/p(Rn)

= lim sup
k→∞

{ |u(xk) − u(yk)|p

|xk − yk |p−n

}

� C p lim sup
k→∞

∫
Brk /2

(
xk+yk

2

) |Du|pdz (rk := |xk − yk |)

= 0,
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so u would be constant. The last equality follows from the fact that |Du|p is an
integrable function on Rn and the Lebesgue measure of Brk/2

( xk+yk
2

)
tends to 0 as

k → ∞. Therefore,we only are left to verify (6.3) in order to concludeTheorem6.1.
We will write separate proofs for n = 1 and for n � 2.

6.1. The 1 − n/p Hölder Ratio is Maximized for n = 1

Suppose n = 1 and that (6.3) fails. Then there are three possibilities to consider:

(i) xk, yk → ∞
(ii) xk → ∞, yk → y
(iii) xk → ∞, yk → −∞.

We will argue that these three cases cannot occur.

Case (i): Fix ε > 0. Since |u′|p is integrable, there is R > 0 such that

(∫
R\[−R,R]

|u′|pdx

)1/p

� ε. (6.4)

As the 1 − 1/p Hölder ratio of u is a symmetric function, we may assume

xk > yk � R

for all k ∈ N sufficiently large. For all such k ∈ N, we can combine (2.11) and
(6.4) to find

|u(xk) − u(yk)|
|xk − yk |1−1/p

�
(∫ xk

yk

|u′|pdx

)1/p

�
(∫ ∞

R
|u′|pdx

)1/p

� ε.

As a result,

[u]C1−1/p(R) = lim
k→∞

|u(xk) − u(yk)|
|xk − yk |1−1/p

� ε

which forces u to be constant.

Case (i i): We assume y = 0 and u(0) = 0. With this assumption, it is routine to
check

[u]C1−1/p(R) = lim
k→∞

|u(xk) − u(0)|
(xk − 0)1−1/p

= lim
k→∞

|u(xk)|
x1−1/p

k

.

We may also suppose that

|u(xk)|
x1−1/p

k

� |u(xk+1)|
x1−1/p

k+1
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and

0 < 2xk � xk+1

for each k ∈ N. If not, we can pass to appropriate subsequences to achieve these
inequalities.

Notice

|u(xk+1) − u(xk)|
(xk+1 − xk)1−1/p

� |u(xk+1)| − |u(xk)|
(xk+1 − xk)1−1/p

= x1−1/p
k+1 (|u(xk+1)|/x1−1/p

k+1 ) − x1−1/p
k (|u(xk)|/x1−1/p

k )

(xk+1 − xk)1−1/p

� |u(xk+1)|
x1−1/p

k+1

x1−1/p
k+1 − x1−1/p

k

(xk+1 − xk)1−1/p

= |u(xk+1)|
x1−1/p

k+1

1 − (xk/xk+1)
1−1/p

(1 − (xk/xk+1))1−1/p

� |u(xk+1)|
x1−1/p

k+1

(
1 − (1/2)1−1/p

)
.

Therefore,

lim inf
k→∞

|u(xk+1) − u(xk)|
|xk+1 − xk |1−1/p

� [u]C1−1/p(R)

(
1 − (1/2)1−1/p

)
.

We can now argue as we did for case (i) to find that u is constant.

Case (i i i): Without loss of generality we may assume u(0) = 0 and

yk < 0 < xk

for all k ∈ N. Observe

|xk − yk | = xk − yk > xk and |xk − yk | = xk − yk > −yk .

Consequently,

|u(xk) − u(yk)|
|xk − yk |1−1/p

� |u(xk)|
|xk − yk |1−1/p

+ |u(yk)|
|xk − yk |1−1/p

� |u(xk)|
|xk |1−1/p

+ |u(yk)|
|yk |1−1/p

.

Therefore, it must be that either

lim sup
k→∞

|u(xk)|
|xk |1−1/p

> 0 or lim sup
k→∞

|u(yk)|
|yk |1−1/p

> 0.

In either scenario, we can argue as in our proof of case (i i) to conclude that u is
constant.
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6.2. An Estimate for the 1 − n/p Hölder Ratio

Now suppose n � 2. Observe that if u ∈ D1,p(Rn) is nonconstant, there is an
R > 0 such that

C

(∫
Rn\BR(0)

|Du|pdx

)1/p

<
1

2
[u]C1−n/p(Rn).

If, in addition,

Br/2

(
x + y

2

)
⊂ R

n\BR(0) (6.5)

with r = |x − y| > 0, (6.1) would give

|u(x) − u(y)|
|x − y|1−n/p

� C

(∫
Rn\BR(0)

|Du|pdx

)1/p

<
1

2
[u]C1−n/p(Rn).

In particular, the supremum of the 1− n/p Hölder ratio for u can’t be achieved by
such a pair x, y ∈ R

n .
We will argue below that a similar estimate is available for x, y with large norm

without requiring (6.5). Our strategy is based on the observation that there are
z1, . . . , zm ∈ R

n with large norm such that (6.5) holds for each of the consecutive
pairs

(x, z1), . . . , (zi , zi+1), . . . , (zm, y).

Moreover, m can be estimated from above provided |x |, |y| are sufficiently large. In
summary, we have the following technical assertionwhich is proved in the appendix
(Fig. 4).

Finite Chain Lemma 1. Suppose R > 0 and x, y ∈ R
n\B2R(0). Then there are

m ∈ {1, . . . , 7} and z1, . . . , zm ∈ R
n\B2R(0) such that

|x − z1|, . . . , |zi − zi+1|, . . . , |zm − y| � |y − x | (6.6)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Br/2
( x+z1

2

)
with r = |x − z1|

...

Bri /2

(
zi +zi+1

2

)
with ri = |zi − zi+1|

...

Bs/2
( zm+y

2

)
with s = |zm − y|

(6.7)

are all subsets of Rn\BR(0).

The main application of the Finite Chain Lemma is the following assertion:

Lemma 6.2. Suppose R > 0, u ∈ D1,p(Rn), and x, y ∈ R
n\B2R(0). Then

|u(x) − u(y)| � 8C

(∫
Rn\BR(0)

|Du|pdx

)1/p

|x − y|1−n/p (6.8)
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Fig. 4. This figure illustrates the conclusion of the Finite Chain Lemma. Note that x, y ∈
R

n\B2R(0) and z1, . . . , z6 satisfy (6.6) and (6.7)

Proof. We apply the Finite Chain Lemma to obtain z1, . . . , zm ∈ R
n\B2R(0) with

m ∈ {1, . . . , 7} that satisfy (6.6) and (6.7). Next, we employ (6.1) to get

|u(x) − u(y)| � |u(x) − u(z1)| +
m−1∑
j=1

|u(z j ) − u(z j+1)| + |u(zm) − u(y)|

= C

(∫
Rn\BR(0)

|Du|pdx

)1/p

⎛
⎝|x − z1|1−n/p +

m−1∑
j=1

|z j − z j+1|1−n/p + |zm − y|1−n/p

⎞
⎠

� (m + 1)C

(∫
Rn\BR(0)

|Du|pdx

)1/p

|x − y|1−n/p

� 8C

(∫
Rn\BR(0)

|Du|pdx

)1/p

|x − y|1−n/p.


�

6.3. The 1 − n/p Hölder Ratio is Maximized for n � 2

We are now in position to verify (6.3) and in turn complete our proof of Theo-
rem 6.1 for n � 2. There are two cases to consider:

(i) |xk |, |yk | → ∞;
(ii) |xk | → ∞, yk → y.

Case (i): Fix ε > 0 and choose R > 0 so large that

8C

(∫
Rn\BR(0)

|Du|pdx

)1/p

< ε. (6.9)
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For all large enough k ∈ N,

|yk |, |xk | � 2R,

so we can combine (6.8) and (6.9) to get

|u(xk) − u(yk)|
|xk − yk |1−n/p

< ε.

Therefore,

[u]C1−n/p(Rn) = lim
k→∞

|u(xk) − u(yk)|
|xk − yk |1−n/p

≤ ε.

It follows that u must be constant.

Case (i i): It is routine to verify

[u]C1−n/p(Rn) = lim
k→∞

|u(xk) − u(y)|
|xk − y|1−n/p

.

We may also assume for each k ∈ N

|u(xk) − u(y)|
|xk − y|1−n/p

≤ |u(xk+1) − u(y)|
|xk+1 − y|1−n/p

and

0 < 2|xk − y| � |xk+1 − y|,
as these inequalities hold along appropriately selected subsequences. Observe that

|u(xk+1) − u(xk)|
|xk+1 − xk |1−n/p

≥ |u(xk+1) − u(y)| − |u(xk) − u(y)|
|(xk+1 − y) − (xk − y)|1−n/p

≥ |u(xk+1) − u(y)|
|xk+1 − y|1−n/p

|xk+1 − y|1−n/p − |xk − y|1−n/p

|(xk+1 − y) − (xk − y)|1−n/p

≥ |u(xk+1) − u(y)|
|xk+1 − y|1−n/p

|xk+1 − y|1−n/p − 1
21−n/p |xk+1 − y|1−n/p

|(xk+1 − y) − (xk − y)|1−n/p

= |u(xk+1) − u(y)|
|xk+1 − y|1−n/p

(
1 −

(
1

2

)1−n/p
)

|xk+1 − y|1−n/p

|(xk+1 − y) − (xk − y)|1−n/p
.

As

|(xk+1 − y) − (xk − y)| � |xk+1 − y| + |xk − y| � 3

2
|xk+1 − y|,

it follows that

|xk+1 − y|1−n/p

|(xk+1 − y) − (xk − y)|1−n/p
≥
(
2

3

)1−n/p

.

As a result,

lim inf
k→∞

|u(xk+1) − u(xk)|
|xk+1 − xk |1−n/p

� [u]C1−n/p(Rn)

[(
2

3

)1−n/p

−
(
1

3

)1−n/p
]

.

We can now argue as in the case (i) to conclude that u must be constant.
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6.4. Stability

It turns out that a type of stability for Morrey’s inequality follows directly from
Theorem 6.1. In order to establish this stability, we will make use of Clarkson’s
inequalities which state: for f, g ∈ L p(Rn)

∥∥∥∥ f + g

2

∥∥∥∥
p

L p(Rn)

+
∥∥∥∥ f − g

2

∥∥∥∥
p

L p(Rn)

≤ 1

2
‖ f ‖p

L p(Rn)
+ 1

2
‖g‖p

L p(Rn)
(6.10)

for 2 < p < ∞ and

∥∥∥∥ f + g

2

∥∥∥∥
p

p−1

L p(Rn)

+
∥∥∥∥ f − g

2

∥∥∥∥
p

p−1

L p(Rn)

≤
(
1

2
‖ f ‖p

L p(Rn)
+ 1

2
‖g‖p

L p(Rn)

) 1
p−1

for 1 < p � 2. We would also like to emphasize that the method presented in
our proof below is quite different from the way stability is typically pursued for
Sobolev and related isoperimetric inequalities [4,8,9,15–17].

Corollary 6.3. Suppose v ∈ D1,p(Rn). Then there is an extremal u ∈ D1,p(Rn)

such that
(

C∗
2

)p

‖Du − Dv‖p
L p(Rn)

+ [v]p
C1−n/p(Rn)

� C p∗ ‖Dv‖p
L p(Rn)

when 2 < p < ∞ and

(
1

2

) p
p−1 ‖u′ − v′‖

p
p−1
L p(R)

+ [v]
p

p−1

C1−1/p(R)
� ‖v′‖

p
p−1
L p(R)

when 1 < p � 2.

Proof. According to Theorem 6.1, there are distinct x0, y0 ∈ R
n such that

[v]C1−n/p(Rn) = |v(x0) − v(y0)|
|x0 − y0|1−n/p

.

By Corollary 2.2, we can also select an extremal u with u(x0) = v(x0), u(y0) =
v(y0) and

[u]C1−n/p(Rn) = [v]C1−n/p(Rn).

Of course, we have

‖Du‖L p(Rn) � ‖Dv‖L p(Rn).

It is also easy to check that

[v]C1−n/p(Rn) =
[

u + v

2

]
C1−n/p(Rn)

.
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First suppose 2 < p < ∞. We note that inequality (6.10), while stated for
functions, also holds for measurable mappings of f, g : Rn → R

n . Therefore,(
C∗
2

)p

‖Du − Dv‖p
L p(Rn)

+ [v]p
C1−n/p(Rn)

= C p∗
∥∥∥∥Du − Dv

2

∥∥∥∥
p

L p(Rn)

+ [v]p
C1−n/p(Rn)

= C p∗
∥∥∥∥Du − Dv

2

∥∥∥∥
p

L p(Rn)

+
[

u + v

2

]p

C1−n/p(Rn)

� C p∗
∥∥∥∥Du − Dv

2

∥∥∥∥
p

L p(Rn)

+ C p∗
∥∥∥∥Du + Dv

2

∥∥∥∥
p

L p(Rn)

= C p∗

(∥∥∥∥Du − Dv

2

∥∥∥∥
p

L p(Rn)

+
∥∥∥∥Du + Dv

2

∥∥∥∥
p

L p(Rn)

)

� C p∗
(
1

2
‖Du‖p

L p(Rn)
+ 1

2
‖Dv‖p

L p(Rn)

)

� C p∗ ‖Dv‖p
L p(Rn)

.

Recall that when 1 < p � 2, n is necessarily equal to 1. As a result, we can
apply the other Clarkson’s inequality to find that
(
1

2

) p
p−1 ‖u′ − v′‖

p
p−1
L p(R)

+ [v]
p

p−1

C1−1/p(R)
=
∥∥∥∥u′ − v′

2

∥∥∥∥
p

p−1

L p(R)

+ [v]
p

p−1

C1−1/p(R)

=
∥∥∥∥u′ − v′

2

∥∥∥∥
p

p−1

L p(R)

+
[

u + v

2

] p
p−1

C1−1/p(R)

�
∥∥∥∥u′ − v′

2

∥∥∥∥
p

p−1

L p(R)

+
∥∥∥∥u′ + v′

2

∥∥∥∥
p

p−1

L p(R)

�
(
1

2

∥∥u′∥∥p
L p(R)

+ 1

2

∥∥v′∥∥p
L p(R)

) 1
p−1

� ‖v′‖
p

p−1
L p(R)

.


�
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A Finite Chain Lemma

We will first pursue the Finite Chain Lemma for n = 2. To this end, we will need
to recall a few facts about isosceles triangles. Suppose a > 0 and consider an
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Fig. 5. This figure on the left is a schematic of the assertion made in Lemma A.1. This
corresponds to the case where three points z1, z2, z3 are needed to form a finite chain
linking x to y on the circle centered at 0 of radius 1 + a. The enlarged triangle on the right
shows how θ(a) is defined and how it is related to the figure on the left

isosceles triangle with two sides equal to 1 + a and another equal to a. Using the
law of cosines we find that the angle θ(a) between the two sides of length 1 + a
satisfies (Fig. 5)

cos(θ(a)) = 1 − 1

2

(
a

1 + a

)2

.

It is also easy to check that 0 < θ(a) < π/3 and that θ(a) is increasing in a. In
particular, θ(1) � θ(a) for a ≥ 1. It will also be useful to note

θ(1) = cos−1
(
7

8

)
>

π

7
.

With these observations, we can derive the following assertion:

Lemma A.1. Assume a � 1 and x, y ∈ R
2 with

|y| = |x | = 1 + a.

If

|y − x | > a,

there are z1, . . . , zm ∈ R
2 with m ∈ {1, . . . , 6} such that

|z1| = · · · = |zm | = 1 + a,

|x − z1| = |z1 − z2| = · · · = |zm−1 − zm | = a, (A.1)

and

|y − zm | � a.
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Proof. First assume x = (1 + a)e1. Note that

y = (1 + a)(cosϑ, sin ϑ)

for some ϑ ∈ (θ(a), 2π − θ(a)). If ϑ ∈ (θ(a), π ], we set

z j = (1 + a)(cos( jθ(a)), sin( jθ(a)))

j = 1, . . . , 6. By the definition of θ(a), (A.1) holds.
As 7θ(a) > π , there is m ∈ {1, . . . , 6} such that

mθ(a) � ϑ � (m + 1)θ(a).

It follows that

|y − zm |2 = (1 + a)22 [1 − cos(mθ(a) − ϑ)]

� (1 + a)22 [1 − cos(θ(a))]

= a2.

If ϑ ∈ (π, 2π − θ(a)), we consider the reflection Ry of y about the x-axis. In
particular, we can reason as in the case when ϑ ∈ (θ(a), π ] for Ry and obtain
points z1, . . . , zm ∈ R

2. In this case, Rz1, . . . , Rzm satisfy the conclusion of this
lemma. For a general x that is not necessarily equal to (1 + a)e1, we can find a
rotation O of R2 so that Ox = (1 + a)e1. Then we can prove the assertion for
(1 + a)e1 and Oy to get points z1, . . . , zm ∈ R

2 satisfying the conclusion of the
lemma as we argued above. Then O−1z1, . . . , O−1zm satisfy the conclusion of this
lemma for the given x and y. 
�
Corollary A.2. Assume s � t > 0 and x, y ∈ R

2 with

|y| = |x | = t + s.

If

|y − x | > s,

there are z1, . . . , zm ∈ R
2 with m ∈ {1, . . . , 6} such that

|z1| = · · · = |zm | = t + s, (A.2)

|x − z1| = |z1 − z2| = · · · = |zm−1 − zm | = s, (A.3)

and

|y − zm | � s. (A.4)

Proof. We can apply the previous lemma with a = s/t ≥ 1 and x/t, y/t ∈ R
2.


�



Ryan Hynd & Francis Seuffert

We are of course interested in the scenario where |x | is not necessarily equal to |y|.
Fortunately, we can just add an additional point to obtain an analogous statement.
We also will need to use the following elementary fact: if x, y ∈ R

2 with |y| �
|x | > 0, then ∣∣∣∣|x | y

|y| − x

∣∣∣∣ � |x − y|. (A.5)

Corollary A.3. Assume s � t > 0 and x, y ∈ R
2 with

|y| � |x | = t + s.

Suppose ∣∣∣∣|x | y

|y| − x

∣∣∣∣ > s.

(i) Then there are z1, . . . , zm ∈ R
2 with m ∈ {1, . . . , 7} such that

|z1| = · · · = |zm | = t + s,

and
|x − z1|, . . . , |zi − zi+1|, . . . , |zm − y| � |y − x |. (A.6)

(ii) Furthermore, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bt0/2
( x+z1

2

)
with t0 = |x − z1|

...

Bti /2

(
zi +zi+1

2

)
with ti = |zi − zi+1|

...

Btm/2
( zm+y

2

)
with tm = |zm − y|

(A.7)

are all subsets of R2\Bt (0).

Proof. (i)CorollaryA.2 applied to x and |x | y
|y| give atmost six points z1, . . . , zm−1

such that (A.2) holds. We also observe that by (A.3) and inequality (A.5)

|x − z1| = |z1 − z2| = · · · = |zm−2 − zm−1| = s <

∣∣∣∣|x | y

|y| − x

∣∣∣∣ � |y − x |.

Set

zm := |x | y

|y| ,

and note by conclusion (A.4) of the previous corollary that |zm−1 − zm | � s �
|y − x |. Moreover, |zm | = |x | = t + s. As

|zm − y| =
∣∣∣∣|x | y

|y| − y

∣∣∣∣ = |y| − |x | � |y − x |,

we have verified each inequality in (A.6).
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Fig. 6. This diagram shows how we can adapt our proof of Lemma A.1 to the case where
|y| > |x |. We do so by simply adding another point z4 = (|x |/|y|)y to the chain we obtained
by linking x and (|x |/|y|)y

(i i) Since |x | = s + t , Bs(x) ⊂ R
2\Bt (0). Moreover, if z ∈ Bs/2

( x+z1
2

)
then

|z − x | �
∣∣∣∣z − x + z1

2

∣∣∣∣ +
∣∣∣∣ x + z1

2
− x

∣∣∣∣ � s

2
+ |x − z1|

2
= s.

Thus, Bs/2
( x+z1

2

) ⊂ Bs(x) ⊂ R
2\Bt (0) with s = |x − z1|. The inclusions for

i = 1, . . . , m − 1 in (A.7) follow similarly.
As for the case i = m, set tm := |zm −x |. Note that the closest point in Btm/2

( zm+y
2

)
to the origin is zm = |x | y

|y| . Thus for any z ∈ Btm/2
( zm+y

2

)
, |z| � ||x | y

|y| | = |x | > t .

Hence, Btm/2
( zm+y

2

) ⊂ R
2\Bt (0) and we conclude (A.7) (Fig. 6). 
�

It turns out that we can easily generalize the ideas we developed for n = 2 to all
n � 3. The main insight is that for any two-dimensional subspace ofRn containing
x and y, we can find a chain of points linking x to y that belong to this subspace.
In particular, we can accomplish this task by applying Corollary A.3.

Corollary A.4. Suppose n � 2. Assume s � t > 0 and x, y ∈ R
n with

|y| � |x | = t + s.

Suppose that ∣∣∣∣|x | y

|y| − x

∣∣∣∣ > s.

(i) Then there are z1, . . . , zm ∈ R
n with m ∈ {1, . . . , 7} such that

|z1| = · · · = |zm | = t + s,

and

|x − z1|, . . . , |zi − zi+1|, . . . , |zm − y| � |y − x |.
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(ii) Furthermore, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bt0/2
( x+z1

2

)
with t0 = |x − z1|

...

Bti /2

(
zi +zi+1

2

)
with ti = |zi − zi+1|

...

Btm/2
( zm+y

2

)
with tm = |zm − y|

are all subsets of Rn\Bt (0).

Proof. Choose a two-dimensional subspace in R
n that includes x and y. We can

then apply Corollary A.3 to obtain z1, . . . , zm ∈ R
n that belong to this subspace

and check that these points satisfy the desired conclusions. We leave the details to
the reader. 
�
Proof of the Finite Chain Lemma. Without loss of generality, we may assume
|y| � |x |. Set S := |x | − R, and note S � R with

|y| � |x | = R + S.

We will verify the claim by considering the following two cases:

(i)

∣∣∣∣|x | y

|y| − x

∣∣∣∣ � S

(ii)

∣∣∣∣|x | y

|y| − x

∣∣∣∣ > S

Case (i): As |x | = R + S, BS(x) ⊂ R
n\BR(0). And by adapting our the proof of

(A.7), we find

Br/2

(
x + (|x |/|y|)y

2

)
⊂ BS(x)

for r =
∣∣∣∣|x | y

|y| − x

∣∣∣∣ and

Bs/2

(
y + (|x |/|y|)y

2

)
⊂ R

n\BR(0)

for s =
∣∣∣∣|x | y

|y| − y

∣∣∣∣ = |y| − |x |. We also have r � |x − y| by inequality A.5 and

s � |y − x | by the triangle inequality. Therefore, the claim holds for m = 1 and

z1 = |x | y

|y| .

Case (i i): We can apply Corollary A.4 with s = S and t = R to obtain an m =
{1, . . . , 7} and a finite sequence z1, . . . , zm ∈ R

n\B2R(0) which satisfy (6.6) and
(6.7). 
�
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B Coordinate Gradient Descent

In this section, we will change notation and use (x, y) to denote a point in R2. For
a given � > 1, we seek to approximate minimizers of the two dimensional integral

∫ �

−�

∫ �

−�

|Dv(x, y)|pdxdy

among functions v ∈ W 1,p([−�, �]2) which satisfy

v(0, 1) = 1 and v(0,−1) = −1. (B.1)

It can be shown that a unique minimizer u� ∈ W 1,p([−�, �]2) exists and that u� is
p-harmonic and thus continuously differentiable in (−�, �)2\{(0,±1)}. Moreover,
as � → ∞, u� converges locally uniformly to an extremal of Morrey’s inequality
in R

2 which satisfies (B.1). Therefore, our numerical approximation for u� will in
turn serve as an approximation for the corresponding extremal.
To this end, we suppose that � ∈ N and divide the interval [−�, �] into N −1 evenly
spaced sub-intervals of length

h = 2�

N − 1
.

Along the x-axis, we will label the endpoints of these intervals with

xi = −� + (i − 1)h

for i = 1, . . . , N and along the y-axis we will use the labels

y j = −� + ( j − 1)h

for j = 1, . . . , N .
Assuming that v : [−�, �]2 → R is continuously differentiable,

∫ �

−�

∫ �

−�

|Dv(x, y)|pdxdy

≈
N−1∑
i, j=1

|Dv(xi , y j )|ph2

=
N−1∑
i, j=1

(
vx (xi , y j )

2 + vy(xi , y j )
2
)p/2

h2

≈
N−1∑
i, j=1

((
v(xi + h, y j ) − v(xi , y j )

h

)2

+
(

v(xi , y j + h) − v(xi , yi )

h

)2
)p/2

h2

=
N−1∑
i, j=1

((
v(xi+1, y j ) − v(xi , yi )

h

)2

+
(

v(xi , y j+1) − v(xi , yi )

h

)2
)p/2

h2
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-1

2

0

-2
0 0

1

-2 2

Fig. 7. A numerically computed approximation for an extremal of Morrey’s inequality with
n = 2 and p = 4. Here � = 6 and k = 10 (so that N = 121), τ = 10−10, and this
approximation was obtained after 108 iterations. Our initial guess was v0i, j = w(xi , y j ),

where w(x, y) = c ln[(x2 + (y − 1)2 + 10−2)/(x2 + (y + 1)2 + 10−2)] and c is chosen to
ensure w(0, 1) = 1 and w(0, −1) = −1

= h2−p
N−1∑
i, j=1

((
v(xi+1, y j ) − v(xi , yi )

)2 + (
v(xi , y j+1) − v(xi , yi

)2)p/2

= h2−p
N−1∑
i, j=1

((
vi+1, j − vi, j

)2 + (
vi, j+1 − vi, j

)2)p/2
.

Here we have written

vi, j = v(xi , y j ).

We now suppose that N is of the form

N = 2�k + 1

for some k ∈ N; this assumption is equivalent to h = 1/k. We can then attempt to
minimize

E(v) :=
N−1∑
i, j=1

((
vi+1, j − vi, j

)2 + (
vi, j+1 − vi, j

)2)p/2

among the N 2 − 1 variables

v =

⎛
⎜⎜⎜⎜⎜⎝

v1,1 v1,2 . . . v1,N−1 v1,N

v2,1 v2,2 . . . v2,N−1 v2,N
...

...
. . .

...
...

vN−1,1 vN−1,2 . . . vN−1,N−1 vN−1,N

vN ,1 vN ,2 . . . vN ,N−1

⎞
⎟⎟⎟⎟⎟⎠

,

which satisfy

v�k+1,(�+1)k+1 = 1 and v�k+1,(�−1)k+1 = −1. (B.2)
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These constraints are natural as x�k+1 = 0, y(�+1)k+1 = 1, and y(�−1)k+1 = −1.
We are now in position to use coordinate gradient descent to minimize E . That is,
we choose an initial guess v0 = (v0i, j )which satisfies (B.2), select a small parameter
τ > 0, and then run the iteration scheme⎧⎪⎪⎪⎨

⎪⎪⎪⎩
vm

i, j = vm−1
i, j − τ

∂ E(vm−1)

∂vi, j
, (i, j) �= (�k + 1, (� ± 1)k + 1)

vm
i, j = vm−1

i, j , (i, j) = (�k + 1, (� ± 1)k + 1)

for m ∈ N. After we perform this scheme for large number of iterates m =
1, . . . , M , for τ small and k sufficiently large, we can use vM

i, j as an approximation
for u�(xi , y j ). This is what we did to produce the graphs in Figs. 1 and 7 and the
contour plot in Fig. 3.
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