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mation, which allows for a rich set of signaling strategies based on the path of debt and
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pends on the degree of uncertainty in collateral value. When uncertainty is low, good

borrowers fully and costlessly separate by deleveraging, that is borrowing a sufficiently

high amount such that subsequent repayment reveals the presence of unobservable
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1. Introduction

How can leverage signal credit quality? Ross (1977) and Leland and Pyle (1977) develop

static models of credit markets with asymmetric information about borrowers’ profitability

and deadweight costs of default. Because good borrowers have a lower probability of default

for a given loan amount, they can signal their type through higher leverage in a separating

equilibrium. A large empirical literature that followed finds that leverage is negatively related

to profitability in the cross-section of firms (Titman and Wessels, 1988; Rajan and Zingales,

1995), which is opposite of the simple theoretical prediction. In a comprehensive review of

the literature, Schmid Klein et al. (2002) conclude that there must be other confounding

factors that cause the empirical correlation to be opposite of the theoretical prediction.

This paper considers an alternative possibility, that the world is dynamic. A lender can

potentially infer a borrower’s credit quality based on the entire repayment history, not just

the current loan balance. Indeed, repayment history is the most important of five factors that

determine the FICO score (FICO, 2015), a leading measure of consumer credit quality, and

the only factor that determines the PAYDEX score (Dun and Bradstreet, 2017), a leading

measure of credit quality for small businesses.

We study how the lender’s perception of credit quality evolves based on the history of

borrowing, repayment, and default in a dynamic model of credit markets with asymmetric

information. Under what conditions can credit history resolve asymmetric information at

no cost? Under what conditions does information revelation involve costly default? Under

what conditions does information revelation not even happen? These questions are impor-

tant insofar as informational frictions could reduce efficiency in credit markets and cause

misallocation of real resources to borrowers with worse investment opportunities. We show

that the borrower’s ability to signal credit quality through debt and repayment and the cost

of such signaling strategies depend critically on the degree of uncertainty in collateral value.

We develop a three-period model of credit markets in which borrowers do not have im-

mediate investment needs and borrow purely for signaling reasons, following Ross (1977).

There are two types of borrowers, good and bad. Both types of borrowers have a pledgeable

asset that can be used as collateral and generates observable income, whose value is subject

to uncertainty. Only good borrowers have a non-pledgeable asset that cannot be used as

collateral and generates unobservable income. Borrowers maximize net worth, as perceived

by the lender or outside investors, which is increasing in reputation (i.e., the perceived prob-

ability that the borrower is good).1 The lender is risk neutral and prices debt to break even,

1Reputation is publicly observable in our model so that we are only concerned with “directly placed debt”
in the language of Diamond (1991).
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conditional on reputation. Reputation is updated through Bayes’ rule, based on repayment

versus default and rollover choices (i.e., the new loan amount conditional on repayment).

Good borrowers have an incentive to signal through a strategic path of debt and repay-

ment that reveals the presence of unobservable income. Bad borrowers have an incentive to

mimic the path of debt, if possible, to delay or prevent information revelation. When un-

certainty in collateral value is low, good borrowers fully separate by borrowing a sufficiently

high amount and subsequently repaying with unobservable income. Bad borrowers, who do

not have unobservable income, must roll over more debt to repay. Therefore, the ability to

deleverage signals that the borrower is good. Importantly, signaling through deleveraging is

costless because it does not involve default in equilibrium.

The effectiveness of costless separation through deleveraging depends critically on the

degree of uncertainty in collateral value. When uncertainty in collateral value is higher, full

separation is no longer possible through deleveraging alone. A loan amount that is necessary

for separation through deleveraging when the collateral value rises forces bad borrowers to

default when the collateral value falls. Although good borrowers do not default, they bear

an ex-ante cost of adverse selection through a higher interest rate that reflects the possibility

that bad borrowers default. Because we assume no deadweight costs of default in contrast to

Ross (1977), the higher interest rate arises from adverse selection only. Bad borrowers benefit

at the cost of good borrowers through pure cross-subsidization. In choosing the optimal loan

amount, good borrowers must trade off the ex-post benefit of separation against the ex-ante

cost of paying a higher interest rate. This tradeoff depends on uncertainty in collateral value

because the benefit of separation is constant, while the interest rate for a given loan amount

increases with uncertainty as default becomes more likely.

For intermediate uncertainty in collateral value, the benefit of separation outweighs the

higher interest cost, so there is costly full separation in equilibrium. Good borrowers borrow a

sufficiently high amount to fully separate by deleveraging if the collateral value subsequently

rises. However, if the collateral value falls instead, bad borrowers do not have sufficient

collateral and are forced to default. Thus, there is full information revelation with bad

borrowers rolling over more debt in good states and defaulting in bad states.

For high uncertainty in collateral value, the higher interest cost outweighs the benefit

of separation, so full separation is no longer optimal. Good borrowers borrow a relatively

low amount such that, if the collateral value subsequently rises, even bad borrowers repay

by rolling over a low amount, so there is no information revelation. If the collateral value

falls instead, good borrowers fully separate by deleveraging. Thus, there is costless partial

separation in equilibrium, only in bad states.

In summary, the cost of asymmetric information rises with uncertainty in collateral value.
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When uncertainty in collateral value is low, good borrowers can costlessly signal their type

by deleveraging, and asymmetric information is fully resolved. When uncertainty in collat-

eral value is intermediate, the equilibrium entails bad borrowers defaulting in bad states.

Although asymmetric information is fully resolved, good borrowers must bear an adverse

selection cost through a higher interest rate. When uncertainty in collateral value is high,

good borrowers borrow a conservative amount such that asymmetric information is not al-

ways resolved. In this case, there are realized paths of collateral value such that both types

repay or default.

An important implication of our results is that credit history is a less precise signal

of credit quality in environments with high uncertainty. For example, uncertainty could

be higher in recessions or for collateral that is difficult to value. In such environments,

asymmetric information becomes a more relevant friction that credit history cannot fully

resolve, which leads to a higher probability of default and a higher interest rate.

Because the intended purpose of our model is to provide general insights about leverage

dynamics and credit quality, it is not tailored to any particular credit market. However, we

motivate our model with two examples of short-term credit markets with private information

and uncertainty in collateral value. In consumer credit markets, a new borrower without a

credit history may put a balance on a credit card to establish a credit history. A successful

history of balances followed by repayment would improve the FICO score, which may be

useful for a future durable-good purchase or capital investment. Although credit cards are

a type of unsecured debt, creditors have “collateral” in the form of expected recovery value.

The pledgeable asset in our model corresponds to the part of future income allocated to

repayment of unsecured creditors in a chapter 13 bankruptcy.

In a banking context, asset-backed commercial paper (Acharya et al., 2013) and repur-

chase agreements (Gorton and Metrick, 2012) are examples of short-term collateralized debt.

Banks borrow extensively through these short-term (sometimes overnight) contracts that

are collateralized by asset-backed securities. These contracts must be rolled over frequently

because of their short maturity, which provides frequent signaling opportunities through

changes in debt and repayment. Investors’ beliefs about the bank’s credit risk is priced into

contract terms such as repo rates and haircuts on collateral. In extreme scenarios, a bank

may not be able to roll over contracts if its perceived credit risk is too high.

1.1. Related literature

This paper is part of a long tradition of studying asymmetric information in credit markets

and the potential role that financing strategies play in revealing private information (Ross,

1977; Myers and Majluf, 1984). Some notable extensions of Ross (1977) and Leland and Pyle
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(1977) include managers with different objective functions (Heinkel, 1982), projects with

different mean returns (Blazenko, 1987; John, 1987), and projects with different variance of

returns (Brick et al., 1998). This paper also contributes to the literature on reputation in

credit markets (Diamond, 1989).

This paper complements a more recent effort to extend models of credit markets with

asymmetric information to a dynamic setting (Hennessy et al., 2010; Morellec and Schürhoff,

2011; Strebulaev et al., 2016). These papers essentially reduce the optimal choice of debt

to a static problem by assuming that private information is short-lived or that debt is a

one-time choice in a real options framework. In contrast, this paper allows for a richer set of

signaling strategies through the path of debt and repayment. We also abstract from optimal

investment choice to isolate the pure signaling motive for debt. Thus, the only role of debt

in our model is to signal credit quality, not to fund investment.

This paper is related to a recent literature that studies signaling in dynamic models

with persistent asymmetric information. Sannikov (2007) finds that an increasing credit

line is an optimal contract in a dynamic principal-agent model with asymmetric information

and moral hazard. Geelen (2017) extends Diamond (1993) and studies dynamics of debt

maturity as a signal of default probability. Borrowers do not have unobservable income in his

model, however, which precludes the set of signaling strategies that we consider. Bond and

Zhong (2016) study a dynamic model of equity issuance and repurchase under asymmetric

information. Guerrieri and Shimer (2014) study the frequency of trade as a signal of asset

quality in an exchange economy. Guerrieri and Shimer (2018) and Chang (2018) extend this

analysis to the case of multi-dimensional private information and show the limitations of

signaling in dynamic settings.

The remainder of the paper is organized as follows. Section 2 presents a dynamic model

of credit markets with asymmetric information and uncertainty in collateral value. Section 3

discusses some important properties of the equilibrium that we will use to prove our main

results. Section 4 presents our main results on how uncertainty in collateral value determines

information revelation through deleveraging or default. Section 5 discusses the robustness

of our results to incorporating long-term debt, hidden savings, and alternative distributional

assumptions about uncertainty in collateral value. Section 6 concludes.

2. A dynamic model of credit markets

We present a dynamic model of credit markets with asymmetric information and uncertainty

in collateral value. The dynamic model allows for a rich set of signaling strategies through

the path of debt and repayment, which could resolve asymmetric information. Uncertainty
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in collateral value affects the precision of the signaling strategies and whether separation

entails default in equilibrium.

2.1. Pledgeable and non-pledgeable assets

There are two types of assets, pledgeable and non-pledgeable, which generate stochastic

income streams. The pledgeable asset can be used as collateral in credit transactions, whereas

the non-pledgeable asset cannot be used as collateral. A pledgeable asset can be thought

of as a tangible and observable asset such as financial assets, land, physical structure, or

equipment. A non-pledgeable asset can be thought of as an intangible and unobservable

asset such as human capital, innovative ability, managerial skill, or organizational structure.

The pledgeable asset generates observable income Xt in each period t, which follows a

martingale (i.e., Et[Xt+s] = Xt). Let R > 1 denote the gross riskless interest rate, which

satisfies R2(R− 1) < 1. The value of the pledgeable asset is the present value of its income:

Vt =
Et[Xt+1 + Vt+1]

R
=

∞∑
s=1

Et[Xt+s]

Rs
=

Xt

R− 1
.

The non-pledgeable asset generates unobservable income Yt in each period t, which also

follows a martingale (i.e., Et[Yt+s] = Yt). All income is perishable and must be immediately

consumed or used to repay debt. In Section 5, we show that are our main results are robust

to an extension in which unobservable income can be saved.

2.2. Borrowers with private information

There are two types of risk-neutral borrowers, “good” and “bad”. Both types of borrowers

are endowed with a unit of the pledgeable asset. Only good borrowers are also endowed

with a unit of the non-pledgeable asset. Whether a given borrower is good or bad is private

information to the borrower, which arises from the fact that income from the non-pledgeable

asset is unobservable. By definition, the non-pledgeable asset cannot be used as collateral,

which rules out a separating equilibrium based on good borrowers signaling through higher

collateral value (Bester, 1985; Besanko and Thakor, 1987; Martin, 2009).

Each borrower is in the credit market for at most three periods, which we denote as

t ∈ {1, 2, 3}. Let F0 be the face value of existing debt that matures in period 1. Let

π0 ∈ (0, 1) be the lender’s perceived probability that the borrower is good, which we refer

to as reputation, at the beginning of period 1.2 More generally, the borrower enters each

2We assume that π0 is exogenous for simplicity, but it can be endogenized as the mass of borrowers who
choose to invest in the non-pledgeable asset (Atkeson et al., 2015).

6



period t with maturing debt Ft−1 and reputation πt−1.

The borrower receives income Xt+Yt if good or Xt if bad. The borrower can either repay

the face value of maturing debt or default. Let Di,t denote an endogenous default boundary

such that it is feasible and optimal for a borrower of type i ∈ {g, b} (i.e., good or bad) to

repay if Ft−1 ≤ Di,t and to default otherwise. The borrower can repay using his income as

well as the proceeds from rolling over one-period debt with face value Fi,t at the equilibrium

price Pt.
3 Conditional on repayment, the lender updates reputation to πt. Note that not

only repayment, but also the face value of new debt, could serve as signals for the updating

of reputation. Conditional on default, the lender takes possession of the collateral (i.e., the

pledgeable asset and its income in period t) and updates reputation to π̂t. For simplicity,

there are no deadweight costs of default.

The borrower essentially faces the same problem in period 3, which is the terminal period.

The only difference is that instead of rolling over debt, he can sell the pledgeable asset at

market value to repay. Therefore, only repayment can serve as a signal for the updating of

reputation in period 3.

Following Ross (1977), we assume that the borrower maximizes net worth, as perceived

by the lender (or outside investors with knowledge of only reputation). The value of the

non-pledgeable asset in period 3 is W3 = π3Y3

R−1
in case of repayment and Ŵ3 = π̂3Y3

R−1
in case

of default. That is, the value of the non-pledgeable asset is equal to the probability that the

borrower has the non-pledgeable asset times its value conditional on ownership. Let �g(i)

be an indicator function that is equal to one if the borrower is good and zero otherwise. The

net worth for a type i borrower in period 3 is

Ji,3 =

⎧⎨
⎩X3 + �g(i)Y3 + V3 +W3 − F2 if Di,3 ≥ F2

�g(i)Y3 + Ŵ3 if Di,3 < F2

. (1)

In case of repayment, net worth is income plus the terminal value of both types of assets

minus the face value of maturing debt. In case of default, net worth is the terminal value of

the non-pledgeable asset and (for a good borrower) its income.

In our model, the borrower’s objective is to maximize reputation in the terminal period.

In reality, borrowers care about reputation only indirectly through the fact that borrowing

capacity (and the ability to make a durable-good purchase or capital investment) increases in

reputation. Thus, our model describes a new borrower without a credit history, who wants to

establish a credit score in the first two periods in order to borrow and make a durable-good

3In Section 5, we show that the assumption of one-period debt is not restrictive. The reason is that good
borrowers (at least weakly) prefer one-period debt to two-period debt in period 1.
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purchase or capital investment in the terminal period. The assumption that the borrower

cares directly about reputation is a reduced-form representation of the fact that borrowing

capacity in the terminal period would naturally be increasing in reputation.

We define the borrower’s net worth in period t ∈ {1, 2} recursively as

Ji,t =

⎧⎨
⎩Xt + �g(i)Yt + PtFt − Ft−1 +

Et[Ji,t+1]

R
if Di,t ≥ Ft−1

�g(i)Yt + Ŵi,t if Di,t < Ft−1

, (2)

where

Ŵi,t =

3−t∑
s=1

�g(i)Et[Yt+s]

Rs
+

Et[π̂3Y3]

R3−t(R− 1)
=

((R3−t − 1)�g(i) + π̂t)Yt

R3−t(R− 1)
. (3)

In case of repayment, net worth is income plus the net proceeds from rolling over debt plus

the borrower’s continuation value. In case of default, net worth is the terminal value of the

non-pledgeable asset and (for a good borrower) its income through period 3. Note that once

the borrower defaults in period 2, there is no further updating of reputation so that π̂3 = π̂2.

2.3. Lender

The representative lender is risk neutral and earns an expected gross return R on each debt.

The lender does not know whether a given borrower is good or bad. However, the lender

updates reputation based on repayment versus default and the new loan amount conditional

on repayment.

We assume throughout the paper that F0 ≤ X1 to rule out a trivial outcome of immediate

default in period 1. As we discussed above, there is no refinancing in period 3. The lender

updates reputation based on the new loan amount in period 1, the new loan amount and

the default decision in period 2, and the default decision in period 3. Three periods is

the minimum number necessary to capture deleveraging strategies in which the borrower

increases the loan amount in period 1 and subsequently decreases it in period 2.

Conditional on repayment in period t ∈ {1, 2}, the lender updates reputation through

Bayes’ rule:

πt =

(
1 +

(1− πt−1) Pr({Db,t ≥ Ft−1} ∩ {Fb,t = Ft})
πt−1 Pr({Dg,t ≥ Ft−1} ∩ {Fg,t = Ft})

)−1

. (4)

This formula accounts for the fact that not only repayment, but also the face value of new

debt Ft, potentially reveals borrower type. The fact that reputation depends on repayment
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history and debt outstanding is consistent with the determinants of FICO score.4 Conditional

on default in period t, reputation is

π̂t =

(
1 +

(1− πt−1) Pr(Db,t < Ft−1)

πt−1 Pr(Dg,t < Ft−1)

)−1

. (5)

Because there is no refinancing in period 3, the lender updates reputation based on repayment

alone. Conditional on repayment in period 3, the terminal reputation is

π3 =

(
1 +

(1− π2) Pr(Db,3 ≥ F2)

π2 Pr(Dg,3 ≥ F2)

)−1

. (6)

Since a borrower’s type is time invariant, his actions are either fully revealing or not at

all, conditional on the realized collateral value. Therefore, reputation either remains the

same or updates fully to one or zero for good and bad borrowers, respectively. Shocks to the

borrower type could prevent the full updating of reputation, but such an extension would

unnecessarily complicate the analysis and the exposition.

To complete the model, we must make auxiliary assumptions about beliefs off the equi-

librium path. We assume that a borrower who repays is believed to be good if no borrower

is expected to repay in equilibrium. Similarly, a borrower who defaults is believed to be bad

if no borrower is expected to default in equilibrium. These restrictions on off-equilibrium

beliefs arise naturally from the intuitive criterion (Cho and Kreps, 1987). We state our

assumptions more formally as follows.

Assumption 1. The lender’s off-equilibrium beliefs are given by

πt = 1 if Pr({Dg,t ≥ Ft−1} ∩ {Fg,t = Ft}) = Pr({Db,t ≥ Ft−1} ∩ {Fb,t = Ft}) = 0

for all Ft and

π̂t = 0 if Pr(Dg,t < Ft−1) = Pr(Db,t < Ft−1) = 0.

In period t ∈ {1, 2}, the lender’s break-even condition determines the equilibrium price

of debt Pt, given face value Ft and reputation πt:

PtFt = πtCg,t + (1− πt)Cb,t, (7)

4According to FICO (2015), repayment history determines 35%, and debt outstanding determines 30%
of the FICO score.
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where

Ci,t =
Pr(Di,t+1 ≥ Ft)Ft + Pr(Di,t+1 < Ft)Et[Xt+1 + Vt+1|Di,t+1 < Ft]

R
. (8)

That is, the lender breaks even if the value of debt is equal to the expected repayment

discounted at R. The expected repayment is equal to the probability that the borrower

is good multiplied by good borrowers’ expected repayment plus the probability that the

borrower is bad multiplied by bad borrowers’ expected repayment.5

2.4. Model summary

The borrower can signal through the new loan amount in periods 1 and 2 and through

repayment in periods 2 and 3. We summarize the model as follows.

Period 1. The borrower starts with face value of debt F0 ≤ X1 and reputation π0.

(a) The borrower receives income X1 + Y1 if good and X1 if bad.

(b) The borrower takes out new debt with face value F1 at the equilibrium price P1.

The lender updates reputation to π1.

Period 2. The borrower enters with face value of debt F1 and reputation π1.

(a) The borrower receives income X2 + Y2 if good and X2 if bad.

(b) The borrower decides whether or not to repay F1.

• In case of repayment, the borrower takes out new debt with face value F2 at

the equilibrium price P2. The lender updates reputation to π2.

• In case of default, the lender takes possession of the pledgeable asset (i.e.,

X2 + V2) and updates reputation to π̂2. The borrower’s terminal value is the

non-pledgeable asset and its income (i.e., �g(i)Y2 + Ŵi,2).

Period 3. In case of repayment in period 2, the borrower enters with face value of debt F2 and

reputation π2.

(a) The borrower receives income X3 + Y3 if good and X3 if bad.

(b) The borrower decides whether or not to repay F2.

• In case of repayment, the lender updates reputation to π3.

5In a separating equilibrium, equation (7) holds for a good borrower with πt = 1 and separately for a bad
borrower with πt = 0.
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• In case of default, the lender takes possession of the pledgeable asset (i.e.,

X3 + V3) and updates reputation to π̂3. The borrower’s terminal value is the

non-pledgeable asset and its income (i.e., �g(i)Y3 + Ŵ3).

3. Properties of the equilibrium

We first characterize some important properties of the equilibrium that do not depend on

additional parametric assumptions. We will use the lemmas in this section to prove our main

results in Section 4.

3.1. Borrowers’ maximization problem

In period 3, a type i borrower can repay if X3 + �g(i)Y3 + V3 ≥ F2. That is, he can repay

if his income plus the value of the pledgeable asset exceeds the face value of maturing debt.

Moreover, equation (1) implies that it is optimal for the borrower to repay if X3+V3+W3−
Ŵ3 ≥ F2. Combining feasibility and optimality, the default boundary in period 3 is

Di,3 = X3 + V3 +min
{
�g(i)Y3,W3 − Ŵ3

}
. (9)

In period t ∈ {1, 2}, a type i borrower can repay if

Xt + �g(i)Yt +max
Ft

PtFt ≥ Ft−1. (10)

That is, the borrower can repay if his income plus the maximum amount that he can borrow

exceeds the face value of maturing debt. The following lemma establishes the condition

under which repayment is optimal, which implies the default boundary when combined with

feasibility.

Lemma 1. In period t ∈ {1, 2}, the borrower’s net worth is

Ji,t =

⎧⎨
⎩Xt + �g(i)Yt + Vt +Wi,t − Ft−1 if Di,t ≥ Ft−1

�g(i)Yt + Ŵi,t if Di,t < Ft−1

, (11)

where the value of the non-pledgeable asset conditional on repayment is

Wi,t =− (�g(i)− πt)(Cg,t − Cb,t) +
�g(i)Yt + Pr(Di,t+1 ≥ Ft)Et[Wi,t+1|Di,t+1 ≥ Ft]

R

+
Pr(Di,t+1 < Ft)Et

[
Ŵi,t+1|Di,t+1 < Ft

]
R

. (12)
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The default boundary is

Di,t = Xt + Vt +min

{
�g(i)Yt +max

Ft

PtFt − Vt,Wi,t − Ŵi,t

}
, (13)

where

Wi,t − Ŵi,t =− (�g(i)− πt)(Cg,t − Cb,t) +
Et[π̂t+1Yt+1]− π̂tYt

R3−t(R− 1)

+
Pr(Di,t+1 ≥ Ft)Et

[
Wi,t+1 − Ŵi,t+1|Di,t+1 ≥ Ft

]
R

. (14)

Proof. See Appendix A.

In case of repayment in period t ∈ {1, 2}, the borrower chooses Ft to maximize his net

worth (11). However, all components of net worth are predetermined, except for the value

of the non-pledgeable asset. Therefore, the borrower’s maximization problem simplifies to

max
Ft

Wi,t subject to Xt + �g(i)Yt + PtFt ≥ Ft−1.

As we discussed in Section 2, the assumption that the borrower cares directly about repu-

tation is a reduced-form representation of the fact that borrowing capacity in the terminal

period would naturally be increasing in reputation.

3.2. Benchmark with perfect information

Private information about whether or not the borrower has the non-pledgeable asset is the

only friction in our model. The benchmark with perfect information is a special case of our

model where reputation is πt−1 ∈ {0, 1}. In this special case, we recover the standard result

that debt (or leverage) is indeterminate.

Lemma 2 (Modigliani and Miller (1958)). If Ft−1 ≤ Xt and πt−1 ∈ {0, 1}, borrowers
are indifferent between any loan amount such that PtFt ≤ Vt. The equilibrium interest rate

is P−1
1 = R.

Proof. See Appendix A.

3.3. Signaling through deleveraging or default

In the presence of asymmetric information, good borrowers have an incentive to signal

through repayment and the new loan amount conditional on repayment. Bad borrowers
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have an incentive to mimic good borrowers’ actions in order to delay (or if possible avoid)

information revelation.6 The incentive of bad borrowers to mimic good borrowers comes

from two sources. First, bad borrowers pay interest that is lower than under perfect infor-

mation, given that they are more likely to default in the future. This source is captured by

the first term, πt(Cg,t−Cb,t) ≥ 0, in equation (12). Second, there is a higher terminal value of

the non-pledgeable asset if bad borrowers can altogether avoid information revelation. This

source is captured by the last two terms in equation (12).

The following lemma formally establishes that bad borrowers are more likely to default

than good borrowers.

Lemma 3. The default boundary for good borrowers is higher than that for bad borrowers:

Xt + Vt ≤ Db,t ≤ Dg,t ≤ Xt + Yt + Vt. (15)

In the event of full separation in period t, the first and third inequalities are equalities, and

the second inequality is strict.

Proof. See Appendix A.

Based on Lemma 3, we define four regions for the face value of maturing debt relative to

the realized collateral value and the default boundaries, as illustrated in Figure 1. Lemmas 4

to 7 that follow correspond to the four regions. For each region, we state the optimal strategy

of good borrowers and whether there is separation in equilibrium.

Outstanding

debt Ft−1

Collateral value

Xt

Default boundary
Bad borrower

Db,t

Default boundary
Good borrower

Dg,t

No separation

All borrowers

repay

Separation by
deleveraging

All borrowers

repay

Separation
by default

Only bad

borrowers

default

No separation

All borrowers

default

Figure 1: Signaling regions

6To simplify the statement of our results, we follow the convention that bad borrowers mimic good
borrowers in the knife-edge case of indifference.
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Lemma 4 (No separation). Suppose that Ft−1 ≤ Xt in period t ∈ {1, 2} or F2 ≤ Db,3 in

period 3. All borrowers repay, so borrower type is not revealed.

Proof. If Ft−1 ≤ Xt, both types of borrowers can repay without rolling over debt.

Lemma 5 (Separation by deleveraging). Suppose that Ft−1 ∈ (Xt, Db,t] in period t ∈
{1, 2}. Good borrowers repay by rolling over Ft ∈ [Rmax{0, Ft−1 −Xt − Yt}, R(Ft−1 −Xt)).

Bad borrowers repay by rolling over Ft ∈ [R(Ft−1 − Xt), RVt]. Thus, borrower type is fully

revealed.

Proof. In this region, it is optimal for all borrowers to repay. Good borrowers can repay

by rolling over at least PtFt ≥ max{0, Ft−1 −Xt − Yt}. Bad borrowers can repay by rolling

over at least PtFt ≥ Ft−1 −Xt. Therefore, good borrowers separate by rolling over at most

PtFt < Ft−1 −Xt. Lemma 2 implies that the equilibrium interest rate is P−1
t = R.

Lemma 6 (Separation by default). Suppose that Ft−1 ∈ (Db,t, Dg,t] in any period t.

Only bad borrowers default, so borrower type is fully revealed. In period t ∈ {1, 2}, good

borrowers repay by rolling over Ft ∈ [Rmax{0, Ft−1 −Xt − Yt}, RVt].

Proof. In this region, bad borrowers are forced to default. In period t ∈ {1, 2}, good

borrowers can repay by rolling over at least PtFt ≥ max{0, Ft−1 − Xt − Yt}. Lemma 2

implies that the equilibrium interest rate is P−1
t = R.

Lemma 7 (No separation). Suppose that Ft−1 > Dg,t in any period t. All borrowers

default, so borrower type is not revealed.

Lemmas 5 and 6 establish that there are two ways in which the borrower type is fully

revealed in period 2. First consider a low amount of maturing debt F1 ∈ (X2, Db,2], shown as

the red shaded region in Figure 1. In this region, good borrowers can roll over less debt by

repaying with unobservable income. Bad borrowers, who do not have unobservable income,

must roll over more debt in order to repay. Therefore, rolling over a lower amount than

the maturing debt minus observable income signals that the borrower is good because only

borrowers with unobservable income can follow such a strategy.

Next consider a higher amount of maturing debt F1 > Db,2 in Figure 1. In this region,

good borrowers can repay with unobservable income, while bad borrowers are forced to

default. Therefore, repayment signals that the borrower is good.

Lemmas 5 and 6 describe the optimal strategy conditional on the face value of maturing

debt and the realized collateral value in period 2. In Section 4, we will work backwards to
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solve for the optimal choice of debt in period 1. Before we go into the formal analysis, we

discuss the intuition for the tradeoff that good borrowers face in choosing the optimal loan

amount in period 1. Good borrowers have a choice of borrowing a lower amount to prepare

for signaling by deleveraging or a higher amount to prepare for signaling by forcing default

in period 2. If possible, good borrowers prefer deleveraging because equation (12) implies

that the value of the non-pledgeable asset is Wg,1 =
Y1

R−1
under deleveraging and

Wg,1 = −(1− πt)(Cg,1 − Cb,1) +
Y1

R− 1
(16)

under forcing default. Forcing default is costly because good borrowers must pay higher

interest in period 1 due to adverse selection, captured by the first term in equation (16).

Recall that asymmetric information is the only friction in our model. We do not have

deadweight costs of default, which is the key friction that allows good borrowers to signal

through higher debt in the static model (Ross, 1977). In a dynamic setting, deleveraging is

a superior way of signaling, which is ruled out by construction in the static model.

In the absence of uncertainty in collateral value, X2 is known when borrowers choose

F1 in period 1. In that case, good borrowers can choose F1 ∈ (X2, Db,2] to always separate

by deleveraging in period 2. When there is uncertainty in collateral value, however, good

borrowers may not be able to ensure that F1 ∈ (X2, Db,2] in all states. A sufficiently high

loan amount that ensures full separation through deleveraging when collateral value rises

could cause bad borrowers to default when collateral value falls. Thus, good borrowers face

a tradeoff between the benefit of separation and a higher interest cost that arises from the

possibility of default. We analyze how this tradeoff depends on uncertainty in collateral

value in the next section.

4. Characterization of the equilibrium

The tradeoff between the benefit of separation and a higher interest cost depends on para-

metric assumptions about uncertainty in collateral value. We make such assumptions and

fully characterize how the equilibrium depends on uncertainty in collateral value.

4.1. Parametric assumptions

Our first assumption is that unobservable income is a constant proportion of observable

income. Moreover, unobservable income is less than the collateral value so that signaling

plays a non-trivial role in the model.
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Assumption 2. Unobservable income is a constant proportion y of observable income. More-

over, unobservable income is less than the collateral value:

y =
Yt

Xt
<

Xt + Vt

Xt
=

R

R− 1
.

Our second assumption is that observable income follows a binomial version of the geo-

metric random walk.

Assumption 3. The growth rate of observable income is distributed as

xt =
Xt

Xt−1
=

⎧⎨
⎩x with probability 1− p

x with probability p
,

where x ≥ x and (1− p)x+ px = 1.

There are only two free parameters between x, x, and p because of the normalization

that the mean growth rate of observable income is one. In characterizing the equilibrium,

it is convenient to divide the parameter space into regions along x
x
and (1 − p)x. x

x
cap-

tures uncertainty in collateral value, and (1 − p)x captures asymmetry in the distribution

of collateral value. In this section, we present the results for the case (1− p)x ≥ 0.5, where

collateral value is unlikely to fall and thus has negative skew. We present the results for the

complementary case (1− p)x < 0.5 in Appendix C.

As we discuss in Section 5, our main results are robust to an alternative distributional

assumption that the growth rate is continuous and bounded between x and x. Thus, the

binomial assumption is not important per se, but the fact that the distribution has bounded

support is important for the set of signaling strategies that we consider. To be precise about

the interpretation of x
x
, the relevant notion of uncertainty is the maximum range of possible

values for the growth rate.

4.2. Low uncertainty in collateral value

As we discussed in Section 3, deleveraging is a costless and optimal strategy for separation in

the absence of uncertainty in collateral value. By continuity, the equilibrium should remain

full separation through deleveraging as long as uncertainty in collateral value is low.

Proposition 1 (Costless full separation). Suppose that uncertainty in collateral value is

low. That is, x
x
< R

R−1
. In period 1, all borrowers borrow F1 ∈ (X1x,RV1x] at the interest

rate P−1
1 = R. In period 2, borrower type is fully revealed. Good borrowers repay by rolling
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over F2 ∈ [Rmax{0, F1 − X2 − Y2}, R(F1 − X2)). Bad borrowers repay by rolling over

F2 ∈ [R(F1 −X2), RV2].

Proof. Lemma 9 in Appendix B implies the equilibrium in period 1. Lemma 5 implies the

equilibrium in period 2.

In period 2, good borrowers can fully separate by deleveraging if the face value of maturing

debt F1 is greater than observable income X2. In that case, good borrowers repay from their

observable income, part of their unobservable income, and the remainder from rolling over

debt. Bad borrowers, who do not have unobservable income, must roll over more debt in order

to repay. This implies that in period 1, good borrowers must borrow at least F1 > X1x ≥ X2

to ensure separation in period 2, even if the realized collateral value is high. Thus, X1x is the

lower bound on F1 for costless full separation. This is illustrated as the red shaded region

in the upper line in Figure 2.

Collateral
value rises Outstanding debt F1

Collateral
value falls

Outstanding debt F1

Debt that can be paid
with just collateral

X2 = X1x

Bad borrowers
prefer to default

Db,2 = R
R−1

X1x

Good borrowers
prefer to default

Dg,2 =
(

R
R−1

+ y
)

X1x

X2 = X1x Db,2 = R
R−1

X1x Dg,2 =
(

R
R−1

+ y
)

X1x

Region with costless
full separation by
deleveraging

(in both states)

Figure 2: Signaling regions for low uncertainty in collateral value

Bad borrowers can repay in period 2 as long as the face value of maturing debt F1 is less

than the collateral value X2 + V2. Therefore, good borrowers do not want to borrow more

than F1 ≤ RV1x ≤ X2+V2 to ensure that bad borrowers do not default even if the collateral

value falls. As we discussed in Section 3, good borrowers prefer not to force default because

they bear a higher interest cost due to adverse selection in period 1. Thus, RV1x is the upper

bound on F1 for costless full separation. This is illustrated as the red shaded region in the

lower line in Figure 2.

The range of equilibrium debt in period 1, which is the gray shaded region of overlap in

Figure 2, shrinks as uncertainty in collateral value rises. This is because the lower bound
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on debt must rise so that bad borrowers cannot repay with observable income alone, even if

the collateral value rises in period 2. At the same time, the upper bound on debt must fall

to prevent bad borrowers from defaulting and surrendering collateral, even if the collateral

value falls in period 2. The range of equilibrium debt shrinks until it becomes a point at

which F1 = X1x = RV1x, which is equivalent to x
x
= R

R−1
. At this point, good borrowers face

a tradeoff. On the one hand, a higher loan amount in period 1 would force bad borrowers to

default if collateral value falls in period 2. On the other hand, a lower loan amount in period

1 would allow even bad borrowers to repay without rolling over debt if collateral value rises

in period 2.

4.3. Higher uncertainty in collateral value

When uncertainty in collateral value is higher such that x
x
≥ R

R−1
, good borrowers cannot

costlessly separate by deleveraging in all states. A sufficiently high loan amount that allows

good borrowers to separate by deleveraging when collateral value rises causes bad borrowers

to default when collateral value falls. A lower loan amount allows good borrowers to separate

by deleveraging when collateral value falls, but it does not allow good borrowers to separate

when collateral value rises.

When uncertainty in collateral value is intermediate, the equilibrium turns out to be full

separation through deleveraging in good states and default in bad states. The optimal loan

amount in period 1 is F1 > X1x, illustrated as the red shaded region in the upper line in

Figure 3. If the collateral value rises in period 2, good borrowers fully separate by rolling

over less debt than bad borrowers. If the collateral value falls in period 2, good borrowers

fully separate by repaying, while bad borrowers default. Thus, full separation is costly in

the sense that bad borrowers default in bad states.

Proposition 2 (Costly full separation). Suppose that uncertainty in collateral value is

intermediate. That is, R
R−1

≤ x
x
< min{dg,2, z}, where

dg,2 =
R

R− 1
+ y,

z =
R

R− 1
+

(1− p)xy

R(R− 1)
.

In period 1, all borrowers borrow F1 > X1x at an interest rate P−1
1 > R that satisfies

P1F1 =
(1− (1− π0)p)F1

R
+

(1− π0)pX1x

R − 1
.

If the collateral value rises in period 2 (i.e., x2 = x), borrower type is fully revealed. Good
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Collateral
value rises Outstanding debt F1

Collateral
value falls

Outstanding debt F1

Debt that can be paid
with just collateral

X2 = X1x

Db,2 = R
R−1

X1x

Bad borrowers
prefer to default

↘
Debt level that allows for
costless separation by deleveraging
when collateral value rises
but costly separation
(bad borrowers default)
when collateral value falls

↖

Debt level that allows for
costless separation by deleveraging
when collateral value falls
but prevents separation
(all borrowers repay)
when collateral value rises

Figure 3: Signaling regions for intermediate uncertainty in collateral value

borrowers repay by rolling over F2 = 0, and bad borrowers repay by rolling over F2 ∈ (0, RV2].

If the collateral value falls in period 2 (i.e., x2 = x), only bad borrowers default, so borrower

type is fully revealed. Good borrowers repay by rolling over F2 ∈ [Rmax{0, F1−X2−Y2}, RV2].

Proof. Lemma 9 in Appendix B implies the equilibrium in period 1. Lemma 5 implies the

equilibrium if the collateral value rises in period 2. Lemma 6 implies the equilibrium if the

collateral value falls in period 2.

When uncertainty in collateral value is high, the equilibrium turns out to be partial

separation. The optimal loan amount in period 1 is F1 ∈ (X1x,RV1x], which is illustrated as

the red shaded region in the lower line in Figure 4. If the collateral value rises in period 2, all

borrowers roll over the same amount, so borrower type is not revealed. If the collateral value

falls in period 2, good borrowers fully separate by rolling over less debt than bad borrowers.

Proposition 3 (Partial separation). Suppose that uncertainty in collateral value is high.

That is, x
x
≥ min{dg,2, z}. In period 1, all borrowers borrow F1 ∈ (X1x,RV1x] at the interest

rate P−1
1 = R.

If the collateral value rises in period 2 (i.e., x2 = x), borrower type is not revealed. All

borrowers repay by rolling over F2 > RV2x at an interest rate P−1
2 > R that satisfies

P2F2 = V2 + π0(1− p)

(
F2

R
− V2x

)
.
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value falls

Outstanding debt F1

Debt that can be paid
with just collateral

X2 = X1x

Dg,2 =
(

R
R−1

+ y
)

X1x
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↘
Debt level that allows for
costless separation by deleveraging
when collateral value rises
but prevents separation
(all borrowers default)
when collateral value falls

↖

Debt level that allows for
costless separation by deleveraging
when collateral value falls
but prevents separation
(all borrowers repay)
when collateral value rises

Figure 4: Signaling regions for high uncertainty in collateral value

Subsequently, if the collateral value rises in period 3 (i.e., x3 = x), only bad borrowers

default, so borrower type is fully revealed. If the collateral value falls instead (i.e., x3 = x),

all borrowers default, so borrower type is not revealed.

If the collateral value falls in period 2 (i.e., x2 = x), borrower type is fully revealed. Good

borrowers repay by rolling over F2 ∈ [Rmax{0, F1 −X2 − Y2}, R(F1 −X2)). Bad borrowers

repay by rolling over F2 ∈ [R(F1 −X2), RV2].

Proof. Lemma 9 in Appendix B implies the equilibrium in period 1. Lemma 8 implies the

equilibrium if the collateral value rises in period 2. Lemma 6 implies the equilibrium if the

collateral value subsequently rises in period 3, and Lemma 7 implies the equilibrium if the

collateral value falls instead. Lemma 5 implies the equilibrium if the collateral value falls in

period 2.

We now discuss the intuition for Propositions 2 and 3 by sketching out the essential

elements of the formal proofs in Appendix B. As we discussed above, full separation through

deleveraging alone is no longer possible when x
x
≥ R

R−1
. Good borrowers then face a tradeoff

between costly full separation and partial separation.

Costly full separation occurs if good borrowers borrow F1 > X1x as in Proposition 2.

The value of the non-pledgeable asset under this strategy is

Wg,1 = −(1 − π0)p

(
F1

R
− X1x

R− 1

)
+

Y1

R− 1
.
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The first term is the interest cost in period 1, which arises from bad borrowers defaulting if

the collateral value falls in period 2 with probability p. The second term is the benefit of

full separation. To minimize the interest cost, good borrowers optimally choose F1 that is

arbitrarily close to X1x so that

Wg,1 = −(1− π0)X1px

R

(
x

x
− R

R− 1

)
+

Y1

R− 1
. (17)

Fixing (1 − p)x (or equivalently fixing px = 1 − (1 − p)x), the interest cost increases with

uncertainty x
x
.

Partial separation occurs if good borrowers borrow F1 ≤ RV1x as in Proposition 3. Under

this strategy, good borrowers avoid the higher interest cost at the sacrifice of not being able to

fully separate in all future states. The value of the non-pledgeable asset under this strategy

is

Wg,1 =
Y1

R− 1
− (1− π0)(1− p)xpxY1

R2(R− 1)
. (18)

The first term is the benefit of full separation. The second term accounts for the fact that

good borrowers cannot separate if the collateral value rises in period 2 with probability

1− p, then falls in period 3 with probability p. Fixing (1− p)x, equation (18) is constant in

uncertainty x
x
.

Comparing equations (17) and (18), good borrowers prefer costly full separation to partial

separation when

−(1 − π0)X1px

R

(
x

x
− R

R− 1

)
> −(1− π0)(1− p)xpxY1

R2(R− 1)
,

which is equivalent to

x

x
<

R

R − 1
+

(1− p)xy

R(R− 1)
= z.

That is, good borrowers prefer costly full separation when uncertainty in collateral value is

sufficiently low. Because the interest cost increases with uncertainty, the preferred strategy

switches to partial separation at the point z. Even if costly full separation is preferred, it

may not be feasible if the face value of debt must be so high that even good borrowers would

want to default. Therefore, the boundary between Propositions 2 and 3 is the minimum of

z (i.e., the point at which partial separation becomes preferred) and dg,2 (i.e., the point at

which full separation becomes infeasible).
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Figure 5: Regions of the parameter space. The proposition that describes the equilibrium
depends on uncertainty in collateral value (x

x
) and asymmetry in the distribution of collateral

value ((1− p)x).

In this section, we have presented the results for the case (1−p)x > 0.5. In Appendix C,

we present the results for the complementary case (1−p)x < 0.5 as summarized by Figure 5.

The condition for costless full separation remains the same as Proposition 1. The results

for Proposition 2 and 3 also remain essentially the same, except for two small differences.

First, the threshold z for uncertainty in collateral value at which partial separation becomes

preferred to full separation takes a different expression. Second, the optimal loan amount

when the collateral value falls in period 2 is lower than in Proposition 3. Therefore, if the

collateral value rises in period 3, all borrowers repay, so borrower type is not revealed. If the

collateral value falls instead, only bad borrowers default, so borrower type is fully revealed.

5. Extensions

We have made simplifying assumptions to highlight how leverage dynamics could signal credit

quality and how the equilibrium depends on uncertainty in collateral value. We now discuss

22



three extensions to show the robustness of our main results to various modeling assumptions.

First, we discuss why good borrowers prefer short-term debt to long-term debt in our model.

Second, we discuss how the possibility of hidden savings only affects the boundary between

Propositions 2 and 3 and not the fundamental structure of the equilibrium. Finally, we relax

the binomial distribution for collateral growth and consider a continuous distribution with

bounded support instead.

5.1. Long-term debt

In our baseline model, we have assumed that borrowers can only borrow through one-period

debt. We consider an extension where borrowers can also borrow through two-period debt.

In Ordoñez et al. (2019), we prove that good borrowers strictly prefer one-period debt to two-

period debt (except in the region labeled Proposition 3′ in Figure 5, where they are indifferent

between the two maturities). The intuition is that one-period debt creates opportunities for

good borrowers to costlessly separate by deleveraging in period 2. Two-period debt rules

out the possibility of separation by deleveraging since separation in the terminal period can

only happen through default, which is ex-ante costly. The only situation in which borrowers

are indifferent is the combination of parameters (i.e., high collateral uncertainty and positive

skew) such that there is no separation when the collateral value rises in both periods. In

this case, two-period debt can achieve the same equilibrium as one-period debt.

5.2. Hidden savings

In our baseline model, we have assumed that income is perishable and cannot be saved. In

principle, this assumption restricts good borrowers from separating by using hidden savings

to repay debt. If good borrowers could save their unobservable income in period 1, could

they separate more effectively in period 2? The possibility of hidden savings simply shifts

the boundary between Propositions 2 and 3 in Figure 5 to the right and otherwise leaves our

results intact.

The region “separation by deleveraging” in Figure 1 is defined by the collateral value

Xt and the default boundary for bad borrowers Db,t, neither of which depends on unob-

servable income. The intuition is that good borrowers need only an infinitesimal amount

of unobservable income to separate by rolling over an infinitesimally smaller amount than

bad borrowers. Since separation through deleveraging does not require a large amount of

unobservable income, good borrowers do not need hidden savings.

The region “separation by default” in Figure 1 is defined by the default boundaries for

the two types of borrowers, Db,t and Dg,t. To see how hidden savings affect this region,

23



we assume that unobservable income that is saved earns a gross return xt (i.e., the same

return as collateral). Inequality (15) in Lemma 3 that determines the region in which there

is separation by default becomes

Xt + Vt ≤ Db,t ≤ Dg,t ≤ Xt +
t∑

s=1

xt−s
t Ys + Vt.

The default boundary for the good borrower is bounded by a larger amount than in the

baseline case because of hidden savings. The corresponding expressions in Proposition 2

become

dg,2 =
R

R− 1
+ 2y,

z =
R

R− 1
+

(1− p)x2y

R(R− 1)
.

Since the boundary between Propositions 2 and 3 is min{dg,2, z}, hidden savings simply

shifts this boundary to the right.

In summary, the possibility of hidden savings does not alter our conclusions about costless

separation by deleveraging. However, the possibility of hidden savings expands the parameter

region under which good borrowers choose to separate by costly default, by reducing the

likelihood of default for a given loan amount.

Hidden savings could play a more important role if good borrowers could signal through

a durable-good purchase or capital investment in the terminal period. By saving their unob-

servable income until the terminal period, good borrowers could self-finance a higher share of

the durable-good purchase than bad borrowers. This signaling strategy is essentially Bester

(1985), where good borrowers signal through higher collateral. It requires that lenders know

the realized returns on hidden savings and the total cost of the durable good. Otherwise,

the loan amount may not be a reliable signal of hidden savings because of high returns on

hidden savings or a low cost of the durable good.

In this extension, deleveraging is a better signaling strategy as long as collateral uncer-

tainty is sufficiently low. There is no reason for good borrowers to wait until the terminal

period if they can fully separate by deleveraging earlier. When collateral uncertainty is

higher, hidden savings could enrich the set of signaling strategies in the terminal period. To

model this interaction, we must introduce a durable-good purchase in the terminal period,

which we leave for future work.
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5.3. Continuous distribution of collateral growth

In our baseline model, we have assumed that collateral growth follows a binomial distribution.

In Ordoñez et al. (2019), we consider an alternative distributional assumption that the growth

rate is continuous and bounded between x and x. This extension delivers two insights.

First, costless full separation is feasible as long as x
x
≤ R

R−1
, exactly as in Proposition 1

for the binomial case. Thus, this result appears robust to the shape of the underlying

distribution. The intuition is that a loan amount that allows good borrowers to separate

through deleveraging when collateral growth is the maximum possible does not induce default

if collateral growth is the minimum possible. In other words, the extent to which debt

dynamics can sustain costless full separation only depends on the range between the highest

and lowest possible growth rates, not on the underlying distribution. If the distribution were

unbounded, costless full separation would not be feasible.

Second, the equilibrium entails default in some states when x
x

> R
R−1

. In this case,

the point at which good borrowers prefer to switch from costly full separation to partial

separation (i.e., the boundary between Propositions 2 and 3 in Figure 5) does depend on the

underlying distribution. Intuitively, the distribution of collateral growth determines how the

relative probabilities of no separation versus bad borrowers defaulting change with the loan

amount. As we characterize in Ordoñez et al. (2019), the equilibrium is essentially a hybrid

of Propositions 2 and 3 for the binomial case, as illustrated in Figure 6.

Distribution of
collateral growth
x ∼ G [x , x]

x

x2

x1

x

Outstanding debt F1

Debt that can be paid
with just collateral

X2 = X1x

Bad borrowers
prefer to default

Db,2 = R
R−1

X1x

↖

Debt level that allows for: No separation (all borrowers repay) when x ∈ (x2, x]

Costless separation by deleveraging when x ∈ [x1, x2]

Costly separation (bad borrowers default) when x ∈ [x, x1)

Figure 6: Signaling regions for a continuous distribution of collateral growth
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6. Conclusion

We have developed a dynamic model of credit markets with asymmetric information to allow

for a richer set of signaling strategies through the path of debt and repayment, which were

ruled out by assumption in a previous literature dominated by static models. In particular,

we have shown the importance of deleveraging strategies in which good borrowers borrow a

sufficiently high amount such that subsequent repayment reveals the presence of unobservable

income. The precision of deleveraging as a signal depends on the degree of uncertainty in

collateral value. When uncertainty is high, information revelation could entail default of bad

borrowers or no information revelation in equilibrium.

If we interpret uncertainty of collateral value as a property of an asset class, our model

shows that assets with more certain values allow borrowers to signal through the path of

debt and repayment in a dynamic setting. Interestingly, Dang et al. (2015) reach a similar

conclusion that optimal collateral in credit markets is debt instead of equity because of its

low information sensitivity.

If we interpret uncertainty in collateral value as systematic uncertainty that is common

across borrowers, our model provides an alternative view of leverage cycles in the macroe-

conomy. The previous literature solidified a view that a wave of leveraging followed by

deleveraging or default is a negative consequence of financial frictions or credit constraints

(Kiyotaki and Moore, 1997; Geanakoplos, 2009; Fostel and Geanakoplos, 2008). In our model,

leverage is not an outcome of constraints but rather determined by the optimal choice of

borrowers trying to resolve asymmetric information. Deleveraging is a signaling mechanism

that reveals credit quality, sometimes through default of bad borrowers in equilibrium. Such

information revelation is more likely when collateral value falls, such as in periods of falling

home or stock prices. Our model thus highlights a potentially positive side of deleveraging

that complements existing theories of leverage cycles.
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Appendix A. Proofs of Lemmas 1 to 3

Proof of Lemma 1. We show that equations (2) and (11) are equivalent by induction.

Suppose that equation (11) holds for period t+ 1. Then the continuation value is

Et[Ji,t+1]

R
=
Pr(Di,t+1 ≥ Ft)Et[Xt+1 + �g(i)Yt+1 + Vt+1 +Wi,t+1 − Ft|Di,t+1 ≥ Ft]

R

+
Pr(Di,t+1 < Ft)Et

[
�g(i)Yt+1 + Ŵi,t+1|Di,t+1 < Ft

]
R

=Vt − Ci,t +
Pr(Di,t+1 ≥ Ft)Et[�g(i)Yt+1 +Wi,t+1|Di,t+1 ≥ Ft]

R

+
Pr(Di,t+1 < Ft)Et

[
�g(i)Yt+1 + Ŵi,t+1|Di,t+1 < Ft

]
R

. (A.1)

Substituting equations (7) and (A.1) into equation (2), equation (11) holds for period t.

Equations (10) and (11) imply equation (13).

Proof of Lemma 2. When there is no further updating of reputation, the value of the non-

pledgeable asset is Wi,t = Ŵi,t. That is, the borrower’s objective function is independent of

Ft. Therefore, the borrower is indifferent between any loan amount such that repayment is

feasible (i.e., PtFt ≥ Ft−1 −Xt − �g(i)Yt). Moreover, the maximum possible loan amount is

PtFt =
Pr(Xt+1 + Vt+1 ≥ Ft)Ft + Pr(Xt+1 + Vt+1 < Ft)Et[Xt+1 + Vt+1|Xt+1 + Vt+1 < Ft]

R

≤Pr(Xt+1 + Vt+1 ≥ Ft)Et[Xt+1 + Vt+1|Xt+1 + Vt+1 ≥ Ft]

R

+
Pr(Xt+1 + Vt+1 < Ft)Et[Xt+1 + Vt+1|Xt+1 + Vt+1 < Ft]

R
= Vt,

with equality when Ft = Et[Xt+1+Vt+1|Xt+1+Vt+1 ≥ Ft]. That is, debt is fully collateralized

and riskless.

Proof of Lemma 3. We first show that inequality (15) holds in period 3. By equation (9),

it suffices to show that 0 ≤ π3 − π̂3 ≤ 1, which would imply that 0 ≤ W3 − Ŵ3 ≤ Y3

R−1
. If

F2 ≤ min{Db,3, Dg,3}, all borrowers repay. Therefore, equation (6) and Assumption 1 imply

that π3 = π2 and π̂3 = 0. If F2 > max{Db,3, Dg,3}, all borrowers default. Therefore, equation
(5) and Assumption 1 imply that π3 = 1 and π̂3 = π2.

If F2 ∈ (min{Db,3, Dg,3},max{Db,3, Dg,3}], we show that Db,3 ≤ Dg,3 by contradiction.

Suppose that Db,3 > Dg,3. Equations (5) and (6) imply that π3 = 0 and π̂3 = 1. Equation

(9) then implies that Db,3 = Dg,3 = X3+V3− Y3

R−1
, which contradicts Db,3 > Dg,3. Therefore,
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Db,3 ≤ Dg,3. In the event of full separation in period 3, π3 = 1, π̂3 = 0, and W3− Ŵ3 =
Y3

R−1
.

Therefore, the default boundary (9) simplifies to Di,3 = X3 + V3 + �g(i)Y3.

We now show that inequality (15) holds in period t ∈ {1, 2}. By equation (13), it suffices

to show that

max
Ft

PtFt ≥ Vt (A.2)

and

0 ≤ Wb,t − Ŵb,t ≤ Wg,t − Ŵg,t ≤ Yt

R3−t(R − 1)
. (A.3)

Suppose that inequalities (15) and (A.3) hold in period t+ 1. The proof is by induction.

Equation (8) implies that

Cg,t − Cb,t = Pr(Ft ∈ (Db,t+1, Dg,t+1])Et

[
Ft

R
− Xt+1

R− 1
|Ft ∈ (Db,t+1, Dg,t+1]

]
≥ 0, (A.4)

where the inequality follows from

Ft

R
− Xt+1

R− 1
≥ 0 ⇐⇒ Ft ≥ RXt+1

R − 1
= Xt+1 + Vt+1

and the induction hypothesis. Inequality (A.2) then follows from maxFt Cb,t = Vt.

We now prove the first part of inequality (A.3). Inequality (A.4) implies that the first

term in equation (14) is weakly positive for bad borrowers. The third term in equation (14) is

weakly positive by the induction hypothesis. The numerator in the second term of equation

(14) can be rewritten as

Et[π̂t+1Yt+1]− π̂tYt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πt Pr(Dg,t+1 < Ft)Et[Yt+1|Dg,t+1 < Ft] if Ft−1 ≤ min{Db,t, Dg,t}
Pr(Dg,t+1 < Ft)Et[Yt+1|Dg,t+1 < Ft] if Ft−1 ∈ (Db,t, Dg,t]

−Yt if Ft−1 ∈ (Dg,t, Db,t]

0 if Ft−1 > max{Db,t, Dg,t}

,

(A.5)

which is weakly positive unless Ft−1 ∈ (Dg,t, Db,t]. In this case, we show that Db,t ≤ Dg,t

by contradiction. Suppose that Db,t > Dg,t. Equations (4) and (5) imply that πt = 0 and

π̂t = 1. Moreover, Lemma 2 implies thatDb,t+1 = Dg,t+1 andWi,t+1 = Ŵi,t+1. Equations (13)

and (A.2) then imply that Db,t = Dg,t = Xt + Vt − Yt

R3−t(R−1)
, which contradicts Db,t > Dg,t.
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Therefore, Db,t ≤ Dg,t.

We now prove the third part of inequality (A.3). Inequality (A.4) implies that the first

term in equation (14) is weakly negative for good borrowers. If Ft−1 ≤ Db,t, the sum of the

second and third terms of equation (14) is less than or equal to

πt Pr(Dg,t+1 < Ft)Et[Yt+1|Dg,t+1 < Ft]

R3−t(R − 1)
+

Pr(Dg,t+1 ≥ Ft)Et[Yt+1|Dg,t+1 ≥ Ft]

R3−t(R− 1)

<
Yt

R3−t(R − 1)

by equation (A.5) and the induction hypothesis. If Ft−1 ∈ (Db,t, Dg,t], the second term of

equation (14) is less than or equal to Yt

R3−t(R−1)
by equation (A.5), and the third term is zero

by Lemma 2.

We now prove the second part of inequality (A.3). Equations (14) and (A.4) imply that

Wg,t − Ŵg,t −
(
Wb,t − Ŵb,t

)
=

Pr(Ft ∈ (Db,t+1, Dg,t+1])Et

[
Yt+1

R3−t(R− 1)
− Ft

R
+

Xt+1

R− 1
|Ft ∈ (Db,t+1, Dg,t+1]

]

+
Pr(Db,t+1 ≥ Ft)Et

[
Wg,t+1 − Ŵg,t+1 −

(
Wb,t+1 − Ŵb,t+1

)
|Db,t+1 ≥ Ft

]
R

.

The first term is positive if

Yt+1

R3−t(R − 1)
− Ft

R
+

Xt+1

R − 1
≥ 0 ⇐⇒ Ft ≤ Xt+1 + Vt+1 +

Yt+1

R2−t(R− 1)
,

which holds by the induction hypothesis. The second term is also positive by the induction

hypothesis.

In the event of full separation in period t, maxFt PtFt = maxFt Ci,t = Vt andWi,t−Ŵi,t =
�g(i)Yt

R3−t(R−1)
. Therefore, the default boundary (13) simplifies to Di,t = Xt + Vt + �g(i)Yt.

Appendix B. Lemmas used to prove Propositions 1 to 3

To simplify notation, let lowercase letters denote the corresponding variables divided by Xt.

That is, ft =
Ft

Xt
, di,t =

Di,t

Xt
, wi,t =

Wi,t

Xt
, and ci,t =

Ci,t

Xt
.

Lemma 8. If f1 ≤ x2 in period 2, all borrowers borrow f2 = db,3x + ε2 for an arbitrarily
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small ε2 > 0 at an interest rate P−1
2 < R that satisfies

P2f2 =

⎧⎨
⎩

1
R−1

+ π1

(
x−1
R−1

+ ε2
R

)
if x

x
< dg,3

db,3

1
R−1

+ π1(1−p)ε2
R

if x
x
≥ dg,3

db,3

. (B.1)

The value of non-pledgeable assets for good borrowers is

wg,2 =

⎧⎨
⎩−(1 − π1)

(
x−1
R−1

+ ε2
R

)
+ y

R−1
if x

x
< dg,3

db,3

− (1−π1)(1−p)ε2
R

+ y
R−1

− (1−π1)pxy
R(R−1)

if x
x
≥ dg,3

db,3

. (B.2)

Proof. If f1 ≤ x2, Lemma 4 implies no updating of reputation in period 2 so that π2 = π1.

Good borrowers choose f2 that maximizes wg,2, and bad borrowers mimic good borrowers.

In period t ∈ {1, 2}, expected repayment for a type i borrower is

ci,t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
R−1

if ft > di,t+1x

(1−p)ft
R

+ px
R−1

if ft ∈ (di,t+1x, di,t+1x]

ft
R

if ft ≤ di,t+1x.

.

If db,t+1x < dg,t+1x, the difference in expected repayment is

cg,t − cb,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ft > dg,t+1x

(1− p)
(
ft
R
− x

R−1

)
if ft ∈ (dg,t+1x, dg,t+1x]

ft
R
− 1

R−1
if ft ∈ (db,t+1x, dg,t+1x]

p
(
ft
R
− x

R−1

)
if ft ∈ (db,t+1x, db,t+1x]

0 if ft ≤ db,t+1x.

. (B.3)

If db,t+1x ≥ dg,t+1x, the difference in expected repayment is

cg,t − cb,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ft > dg,t+1x

(1− p)
(
ft
R
− x

R−1

)
if ft ∈ (db,t+1x, dg,t+1x]

0 if ft ∈ (dg,t+1x, db,t+1x]

p
(
ft
R
− x

R−1

)
if ft ∈ (db,t+1x, dg,t+1x]

0 if ft ≤ db,t+1x.

. (B.4)
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If db,3x < dg,3x, equations (3), (12) and (B.3) imply that

wg,2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π2)y
R(R−1)

if (1) f2 > dg,3x

−(1 − π2)(1− p)
(
f2
R
− x

R−1

)
+ y

R−1
− (1−π2)pxy

R(R−1)
if (2) f2 ∈ (dg,3x, dg,3x]

−(1 − π2)
(
f2
R
− 1

R−1

)
+ y

R−1
if (3) f2 ∈ (db,3x, dg,3x]

−(1 − π2)p
(
f2
R
− x

R−1

)
+ y

R−1
− (1−π2)(1−p)xy

R(R−1)
if (4) f2 ∈ (db,3x, db,3x]

y
R−1

− (1−π2)y
R(R−1)

if (5) f2 ≤ db,3x.

.

Note that wg,2 is decreasing in f2 in regions (2), (3) and (4). In the other regions, wg,2 is

independent of f2. Let wg,2(n) denote the maximized value of wg,2 in region (n). wg,2(3)

is greater than wg,2(2). wg,2(4) is greater than wg,2(1) and wg,2(5). wg,2(3) is greater than

wg,2(4) when (1−p)x ≥ 0.5. Therefore, wg,2 is maximized in region (3) when f2 = db,3x+ ε2.

If db,3x ≥ dg,3x, equations (3), (12) and (B.4) imply that

wg,2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π2)y
R(R−1)

if (1) f2 > dg,3x

−(1− π2)(1− p)
(
f2
R
− x

R−1

)
+ y

R−1
− (1−π2)pxy

R(R−1)
if (2) f2 ∈ (db,3x, dg,3x]

y
R−1

− (1−π2)y
R(R−1)

if (3) f2 ∈ (dg,3x, db,3x]

−(1− π2)p
(
f2
R
− x

R−1

)
+ y

R−1
− (1−π2)(1−p)xy

R(R−1)
if (4) f2 ∈ (db,3x, dg,3x]

y
R−1

− (1−π2)y
R(R−1)

if (5) f2 ≤ db,3x.

.

Note that wg,2 is decreasing in f2 in regions (2) and (4). In the other regions, wg,2 is

independent of f2. wg,2(4) is greater than wg,2(1), wg,2(3), and wg,2(5). wg,2(2) is greater than

wg,2(4) when (1−p)x ≥ 0.5. Therefore, wg,2 is maximized in region (2) when f2 = db,3x+ ε2.

We obtain equation (B.1) by substituting the value of f2 that maximizes wg,2, π2 = π1,

as well as equations (B.3) and (B.4) into equation (7).

Lemma 9. If f0 ≤ x1 in period 1, all borrowers borrow

f1 ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(x, db,2x] if x

x
∈ [1, db,2)

x+ ε1 if x
x
∈ [db,2,min{dg,2, z})

(x, db,2x] if x
x
≥ min{dg,2, z}

,
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for an arbitrarily small ε1 > 0 at an interest rate P−1
1 < R that satisfies

P1f1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1
R

if x
x
∈ [1, db,2)

(1−(1−π0)p)f1
R

+ (1−π0)px
R−1

if x
x
∈ [db,2,min{dg,2, z})

f1
R

if x
x
≥ min{dg,2, z},

. (B.5)

Proof. If f0 ≤ x1, Lemma 4 implies no updating of reputation in period 1 so that π1 = π0.

Good borrowers choose f1 that maximizes wg,1, and bad borrowers mimic good borrowers.

We obtain equation (B.5) by substituting π1 = π0 as well as equations (B.3) and (B.4) into

equation (7).

In period t ∈ {1, 2}, Lemma 3 and Assumption 2 imply that the default boundaries

satisfy the inequality

dg,t
db,t

≤
R

R−1
+ y

R3−t(R−1)

R
R−1

≤ R + y

R
<

R

R− 1
≤ db,2.

In addition, Lemmas 5, 6, and 8 imply that

wg,2 =

⎧⎨
⎩

y
R−1

if f1 ∈ (x2, dg,2x2]

wg,2(2, 3) <
y

R−1
if f1 ≤ x2

, (B.6)

where wg,2(2, 3) denotes equation (B.2).

If x
x
<

dg,2
db,2

, equations (3), (12), (B.3), and (B.6) imply that

wg,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π1)y
R2(R−1)

if (1) f1 > dg,2x

−(1− π1)(1− p)
(
f1
R
− x

R−1

)
+ y

R−1
− (1−π1)pxy

R2(R−1)
if (2) f1 ∈ (dg,2x, dg,2x]

−(1− π1)
(
f1
R
− 1

R−1

)
+ y

R−1
if (3) f1 ∈ (db,2x, dg,2x]

−(1− π1)p
(
f1
R
− x

R−1

)
+ y

R−1
if (4) f1 ∈ (db,2x, db,2x]

y
R−1

if (5) f1 ∈ (x, db,2x]

y
R−1

− (1−p)x
R

(
y

R−1
− wg,2(2, 3)

)
if (6) f1 ∈ (x, x]

y
R−1

− 1
R

(
y

R−1
− wg,2(2, 3)

)
if (7) f1 ≤ x.

. (B.7)

Note that wg,1 is maximized in region (5) for any f1 ∈ (x, db,2x].
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If x
x
∈ [

dg,2
db,2

, db,2), equations (3), (12), (B.4), and (B.6) imply that

wg,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π1)y
R2(R−1)

if (1) f1 > dg,2x

−(1− π1)(1− p)
(
f1
R
− x

R−1

)
+ y

R−1
− (1−π1)pxy

R2(R−1)
if (2) f1 ∈ (db,2x, dg,2x]

y
R−1

− (1−π1)pxy
R2(R−1)

if (3) f1 ∈ (dg,2x, db,2x]

−(1− π1)p
(
f1
R
− x

R−1

)
+ y

R−1
if (4) f1 ∈ (db,2x, dg,2x]

y
R−1

if (5) f1 ∈ (x, db,2x]

y
R−1

− (1−p)x
R

(
y

R−1
− wg,2(2, 3)

)
if (6) f1 ∈ (x, x]

y
R−1

− 1
R

(
y

R−1
− wg,2(2, 3)

)
if (7) f1 ≤ x.

. (B.8)

Note that wg,1 is maximized in region (5) for any f1 ∈ (x, db,2x].

If x
x
∈ [db,2, dg,2), equations (3), (12), (B.4), and (B.6) imply that

wg,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π1)y
R2(R−1)

if (1) f1 > dg,2x

−(1− π1)(1− p)
(
f1
R
− x

R−1

)
+ y

R−1
− (1−π1)pxy

R2(R−1)
if (2) f1 ∈ (db,2x, dg,2x]

y
R−1

− (1−π1)pxy
R2(R−1)

if (3) f1 ∈ (dg,2x, db,2x]

−(1− π1)p
(
f1
R
− x

R−1

)
+ y

R−1
if (4) f1 ∈ (x, dg,2x]

−(1− π1)p
(
f1
R
− x

R−1

)
− (1−π1)(1−p)2xε2

R2 + y
R−1

− (1−π1)(1−p)xpxy
R2(R−1)

if (5) f1 ∈ (db,2x, x]

− (1−π1)(1−p)2xε2
R2 + y

R−1
− (1−π1)(1−p)xpxy

R2(R−1)
if (6) f1 ∈ (x, db,2x]

− (1−π1)(1−p)ε2
R2 + y

R−1
− (1−π1)pxy

R2(R−1)
if (7) f1 ≤ x.

.

Note that wg,1 is decreasing in f1 in regions (2), (4) and (5). In the other regions, wg,1 is

independent of f1. Let wg,1(n) denote the maximized value of wg,1 in region (n). wg,1(3)

is greater than wg,1(1) and wg,1(2). wg,1(6) is greater than wg,1(3), wg,1(5), and wg,1(7).

Moreover, wg,1(4) is greater than wg,1(6) if and only if x
x
< z. Therefore, wg,1 is maximized

in region (4) for f1 = x + ε1 if x
x
< z. Otherwise, wg,1 is maximized in region (6) for any

f1 ∈ (x, db,2x].
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If x
x
≥ dg,2, equations (3), (12), (B.4), and (B.6) imply that

wg,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π1)y
R2(R−1)

if (1) f1 > dg,2x

−(1− π1)(1− p)
(
f1
R
− x

R−1

)
+ y

R−1
− (1−π1)pxy

R2(R−1)
if (2) f1 ∈ (db,2x, dg,2x]

y
R−1

− (1−π1)pxy
R2(R−1)

if (3) f1 ∈ (x, db,2x]

− (1−π1)(1−p)2xε2
R2 + y

R−1
− (1−π1)(1+(1−p)x)pxy

R2(R−1)
if (4) f1 ∈ (dg,2x, x]

−(1− π1)p
(
f1
R
− x

R−1

)
− (1−π1)(1−p)2xε2

R2 + y
R−1

− (1−π1)(1−p)xpxy
R2(R−1)

if (5) f1 ∈ (db,2x, dg,2x]

− (1−π1)(1−p)2xε2
R2 + y

R−1
− (1−π1)(1−p)xpxy

R2(R−1)
if (6) f1 ∈ (x, db,2x]

− (1−π1)(1−p)ε2
R2 + y

R−1
− (1−π1)pxy

R2(R−1)
if (7) f1 ≤ x.

.

Note that wg,1 is decreasing in f1 in regions (2) and (5). In the other regions, wg,1 is

independent of f1. wg,1(3) is greater than wg,1(1) and wg,1(2). wg,1(6) is greater than wg,1(3),

wg,1(4), wg,1(5), and wg,1(7). Therefore, wg,1 is maximized in region (6) for any f1 ∈ (x, db,2x].

Appendix C. Characterization of the equilibrium for (1− p)x < 0.5

We first present Lemmas 8′ and 9′ for the case (1−p)x < 0.5, which correspond to Lemmas 8

and 9 for the case (1 − p)x ≥ 0.5. We then present Propositions 2′ and 3′ for the case

(1− p)x < 0.5, which correspond to Propositions 2 and 3 for the case (1− p)x ≥ 0.5.

Lemma 8′. Suppose that (1− p)x < 0.5 and x
x
≥ dg,3

db,3
. If f1 ≤ x2 in period 2, all borrowers

borrow f2 = db,3x + ε2 for an arbitrarily small ε2 > 0 at an interest rate P−1
2 < R that

satisfies

P2f2 =
(1− (1− π1)p)f2

R
+

(1− π1)px

R− 1
.

The value of non-pledgeable assets for good borrowers is

wg,2 = −(1− π1)pε2
R

+
y

R− 1
− (1− π1)(1− p)xy

R(R− 1)
. (C.1)

Proof. The proof essentially follows that for Lemma 8. The only difference is that wg,2(4)

is greater than wg,2(2) when (1− p)x < 0.5. Therefore, wg,2 is maximized in region (4) when

f2 = db,3x+ ε2.
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Lemma 9′. Suppose that (1− p)x < 0.5. If f0 ≤ x1 in period 1, all borrowers borrow

f1 ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(x, db,2x] if x

x
∈ [1, db,2)

x+ ε1 if x
x
∈ [db,2,min{dg,2, z′})

(x, db,2x] if x
x
≥ min{dg,2, z′}

for an arbitrarily small ε1 > 0 at an interest rate P−1
1 < R that satisfies

P1f1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1
R

if x
x
∈ [1, db,2)

(1−(1−π0)p)f1
R

+ (1−π0)px
R−1

if x
x
∈ [db,2,min{dg,2, z′})

f1
R

if x
x
≥ min{dg,2, z′}

.

Proof. The proof essentially follows that for Lemma 9. Lemmas 5, 6, and 8′ imply that

wg,2 =

⎧⎨
⎩

y
R−1

if f1 ∈ (x2, dg,2x2]

wg,2(4) <
y

R−1
if f1 ≤ x2

, (C.2)

where wg,2(4) denotes equation (C.1).

If x
x
<

dg,2
db,2

, wg,1 is given by equation (B.7) with wg,2(2, 3) replaced by wg,2(4). Similarly,

if x
x
∈ [

dg,2
db,2

, db,2), wg,1 is given by equation (B.8) with wg,2(2, 3) replaced by wg,2(4). In both

cases, wg,1 is maximized in region (5) for any f1 ∈ (x, db,2x].

If x
x
∈ [db,2, dg,2), equations (3), (12), (B.4), and (C.2) imply that

wg,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π1)y
R2(R−1)

if (1) f1 > dg,2x

−(1− π1)(1− p)
(
f1
R
− x

R−1

)
+ y

R−1
− (1−π1)pxy

R2(R−1)
if (2) f1 ∈ (db,2x, dg,2x]

y
R−1

− (1−π1)pxy
R2(R−1)

if (3) f1 ∈ (dg,2x, db,2x]

−(1− π1)p
(
f1
R
− x

R−1

)
+ y

R−1
if (4) f1 ∈ (x, dg,2x]

−(1− π1)p
(
f1
R
− x

R−1

)
− (1−π1)p(1−p)xε2

R2 + y
R−1

− (1−π1)(1−p)2x2y
R2(R−1)

if (5) f1 ∈ (db,2x, x]

− (1−π1)p(1−p)xε2
R2 + y

R−1
− (1−π1)(1−p)2x2y

R2(R−1)
if (6) f1 ∈ (x, db,2x]

− (1−π1)pε2
R2 + y

R−1
− (1−π1)(1−p)xy

R2(R−1)
if (7) f1 ≤ x.

.

Note that wg,1 is decreasing in f1 in regions (2), (4) and (5). In the other regions, wg,1 is

independent of f1. Let wg,1(n) denote the maximized value of wg,1 in region (n). wg,1(3) is

greater than wg,1(1) and wg,1(2). wg,1(6) is greater than wg,1(3), wg,1(5), and wg,1(7). wg,1(4)
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is greater than wg,1(6) if and only x
x
< z′, where z′ is given by equation (C.3). Therefore,

wg,1 is maximized in region (4) for f1 = x + ε1 if x
x
< z′. Otherwise, wg,1 is maximized in

region (6) for any f1 ∈ (x, db,2x].

If x
x
≥ dg,2, equations (3), (12), (B.4), and (C.2) imply that

wg,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
R−1

− (1−π1)y
R2(R−1)

if (1) f1 > dg,2x

−(1− π1)(1− p)
(
f1
R
− x

R−1

)
+ y

R−1
− (1−π1)pxy

R2(R−1)
if (2) f1 ∈ (db,2x, dg,2x]

y
R−1

− (1−π1)pxy
R2(R−1)

if (3) f1 ∈ (x, db,2x]

− (1−π1)p(1−p)xε2
R2 + y

R−1
− (1−π1)(px+(1−p)2x2)y

R2(R−1)
if (4) f1 ∈ (dg,2x, x]

−(1− π1)p
(
f1
R
− x

R−1

)
− (1−π1)p(1−p)xε2

R2 + y
R−1

− (1−π1)(1−p)2x2y
R2(R−1)

if (5) f1 ∈ (db,2x, dg,2x]

− (1−π1)p(1−p)xε2
R2 + y

R−1
− (1−π1)(1−p)2x2y

R2(R−1)
if (6) f1 ∈ (x, db,2x]

− (1−π1)pε2
R2 + y

R−1
− (1−π1)(1−p)xy

R2(R−1)
if (7) f1 ≤ x

.

Note that wg,1 is decreasing in f1 in regions (2) and (5). In the other regions, wg,1 is

independent of f1. wg,1(3) is greater than wg,1(1) and wg,1(2). wg,1(6) is greater than wg,1(3),

wg,1(4), wg,1(5), and wg,1(7). Therefore, wg,1 is maximized in region (6) for any f1 ∈ (x, db,2x].

Proposition 2′. Suppose that (1−p)x < 0.5 and uncertainty in collateral value is interme-

diate. That is, R
R−1

≤ x
x
< min{dg,2, z′}, where

dg,2 =
R

R− 1
+ y,

z′ =
R

R− 1
+

((1− p)x)2y

R(R− 1)(1− (1− p)x)
. (C.3)

In period 1, all borrowers borrow F1 > X1x at an interest rate P−1
1 > R that satisfies

P1F1 =
(1− (1− π0)p)F1

R
+

(1− π0)pX1x

R − 1
.

If the collateral value rises in period 2 (i.e., x2 = x), borrower type is fully revealed. Good

borrowers repay by rolling over F2 = 0. Bad borrowers repay by rolling over F2 ∈ (0, RV2]. If

the collateral value falls in period 2 (i.e., x2 = x), only bad borrowers default, so borrower type

is fully revealed. Good borrowers repay by rolling over F2 ∈ [Rmax{0, F1 −X2 − Y2}, RV2].

Proof. Lemma 9′ implies the equilibrium in period 1. Lemma 5 implies the equilibrium if

the collateral value rises in period 2. Lemma 6 implies the equilibrium if the collateral value
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falls in period 2.

Proposition 3′. Suppose that (1−p)x < 0.5 and uncertainty in collateral value is high. That

is, x
x
≥ min{dg,2, z′}. In period 1, all borrowers borrow F1 ∈ (X1x,RV1x] at the interest rate

P−1
1 = R.

If the collateral value rises in period 2 (i.e., x2 = x), borrower type is not revealed. All

borrowers repay by rolling over F2 > RV2x at an interest rate P−1
2 > R that satisfies

P2F2 =
(1− (1− π0)p)F2

R
+

(1− π0)pX2x

R − 1
.

Subsequently, if the collateral value rises in period 3 (i.e., x3 = x), all borrowers repay, so

borrower type is not revealed. If the collateral value falls instead (i.e., x3 = x), only bad

borrowers default, so borrower type is fully revealed.

If the collateral value falls in period 2 (i.e., x2 = x), borrower type is fully revealed. Good

borrowers repay by rolling over F2 ∈ [Rmax{0, F1 −X2 − Y2}, R(F1 −X2)). Bad borrowers

repay by rolling over F2 ∈ [R(F1 −X2), RV2].

Proof. Lemma 9′ implies the equilibrium in period 1. Lemma 8′ below implies the equilib-

rium if the collateral value rises in period 2. Lemma 4 implies the equilibrium if the collateral

value subsequently rises in period 3, and Lemma 6 implies the equilibrium if the collateral

value falls instead. Lemma 5 implies the equilibrium if the collateral value falls in period 2.
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