MACROECONOMICS OF FINANCIAL MARKETS

ECON 712, Fall 2018

Financial Markets and Business Cycles

Guillermo Ordoñez University of Pennsylvania and NBER

October 15, 2018

-

FINANCIAL FRICTIONS IN MACRO

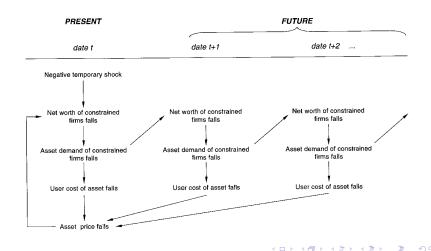
- Financial markets have the potential to magnify and generate fluctuations.
- Magnification of productivity shocks
 - Collateral constraints

Kiyotaki and Moore (JPE 97).

• Costly state verification

Bernanke and Gertler (AER 89)

Carlstrom and Fuerst (AER, 97).


- Generation of cycles.
 - Collateral Crises.

Gorton and Ordonez (AER, 14)

The Role of Collateral Constraints

- Main Paper: Kiyotaki and Moore (JPE, 1997)
- $\bullet~{\rm Credit}~{\rm frictions} \rightarrow {\rm amplification}$ & persistence of shocks
- Two roles for capital
 - Factor of production
 - Collateral for loans
- Negative productivity shock
 - Reduces output; reduces value of collateral
 - Reduces borrowing, which reduces output further
 - "Multiplier" effects amplifies losses

MECHANISM SUMMARY

Agents

• Farmers. measure 1

$$E_t \sum_{s=0}^{\infty} \beta^s x_{t+s}$$

• Gatherers, measure m

$$E_t \sum_{s=0}^{\infty} \beta'^s x'_{t+s}$$

- Farmers more impatient (β < β')
 (will imply that Farmers are the borrowers in equilibrium)
- Both use land k_t to produce fruit
- Value of land $k_t q_t$ used as collateral

FARMERS

• Farmers' production function for fruit

$$y_{t+1} = (a+c)k_t$$

 $ak_t =$ sellable fruit

 $ck_t =$ "bruised fruit" which must be consumed

• Investment happens at a rate $R = \frac{1}{\beta'}$, then

$$a + c = x + \frac{a - x}{\beta}$$

• Assumption $a + c > \frac{a}{\beta}$

(farmers do not want to consume more than ck_t , then sell ak_t) = $a_{0,0}$

FARMERS (CONSTRAINED)

- Can borrow b_t at rate R
- Borrowing Constraint (inalienability of farmers' human capital)

$$Rb_t \leq q_{t+1}k_t$$

• Farmers' "flow of funds" constraint

$$(a+c)k_{t-1} + b_t + q_t k_{t-1} = x_t + Rb_{t-1} + q_t k_t$$

 x_t is consumption of fruit

GATHERERS (UNCONSTRAINED)

- They do not have specific skills to threat not paying.
- Gatherers' production function for fruit

$$y_{t+1}^\prime = G(k_t^\prime)$$

 $G(\cdot)$ has decreasing returns to scale

• Gatherers' budget constraint

$$G(k'_{t-1}) + b'_t + q_t k'_{t-1} = x'_t + Rb'_{t-1} + q_t k'_t$$

 x'_t is consumption of fruit

Equilibrium

• Sequences of land prices, allocations of land, debt, consumption for farmers and gatherers

 $\{q_t, k_t, k'_t, b_t, b'_t, x_t, x'_t\}$

such that everyone's optimizing and markets clearing.

• No uncertainty: perfect foresight

Equilibrium Results: Farmers

• Farmers always borrow the maximum and invest in land

$$b_t = q_{t+1}k_t/R$$
 and $x_t = ck_{t-1}$

• From the budget constraint, farmers' land holdings are

$$k_t = \frac{1}{q_t - q_{t+1}/R} \underbrace{\left[(a+q_t)k_{t-1} - Rb_{t-1} \right]}_{\text{net worth}}$$

 $u_t \equiv q_t - q_{t+1}/R =$ "down payment"

• Farmers spend entire net worth on difference between price of new land q_t and amount against which they can borrow against each unit of land q_{t+1}/R

FARMERS IN THE AGGREGATE

• Farmer aggregate landholding & borrowing

$$K_t = \frac{1}{u_t} [(a+q_t)K_{t-1} - RB_{t-1}]$$

$$B_t = \frac{1}{R}q_{t+1}K_t$$

• Note: higher $q_t, q_{t+1} \to$ farmers demand more k_t

- can borrow more when $q_{t+1}k_t$ (collateral) values higher
- net worth higher when q_t higher

Equilibrium Results: Gatherers

• Gatherer's demand for land.

$$G'(k'_t)/R = u_t = \underbrace{q_t - (q_{t+1}/R)}_{\text{vser cost}}$$

э

Equalize the marginal product of land $(G'(k'_t))$ with its opportunity cost $(Rq_t - q_{t+1})$.

MARKET CLEARING

• Land market resource constraint

$$mk_t' + K_t = \bar{K}$$

• Land market clearing

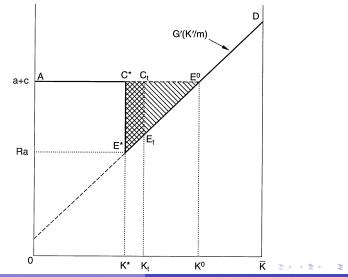
$$u_t = q_t - q_{t+1}/R = G'\left(\underbrace{\frac{1}{m}(\bar{K} - K_t)}_{k'}\right)/R$$

Note u_t is decreasing in k'_t (increasing in K_t) and gatherers are not constrained, then $R = \frac{1}{\beta'}$.

• ASS: No bubbles in land price: $\lim_{s\to\infty} E_t(R^{-s}q_{t+s}) = 0$

STEADY STATE

$$u^* = (1 - 1/R)q^* = a$$


$$u^* = G'\left(\frac{1}{m}(\bar{K} - K^*)\right)/R$$

$$(R-1)B^* = aK^*$$

э

Assumption 1: $Ra = G'\left(\frac{1}{m}(\bar{K} - K^*)\right) < \frac{a}{\beta} < a + c.$ Inefficient allocation because of collateral constraint.

STEADY STATE

ONE-TIME PRODUCTIVITY SHOCK

• Say
$$y_{t+1} = (1 + \Delta)(a + c)k_t$$

• Period of shock (period t)

$$u(K_t)K_t = (a + \Delta a)K^* + q_t K^* - \underbrace{RB^*}_{q^*K^*}$$

$$\implies u(K_t)K_t = (a + \Delta a + q_t - q^*)K^*$$

• Subsequent periods (periods t + s, s = 1, 2, ...)

$$u(K_{t+s})K_{t+s} = aK_{t+s-1} + \underbrace{q_{t+s}K_{t+s-1} - RB_{t+s-1}}_{=0}$$

ONE-TIME PRODUCTIVITY SHOCK

- Log-linearize around steady state
- Define for variable X_t the proportional change from steady state

$$\hat{X}_t = \frac{X_t - X^*}{X^*}$$

• Period of shock (period t)

$$(1+1/\eta)\hat{K}_t = \Delta + \frac{R}{R-1}\hat{q}_t$$

• Subsequent periods (periods t + s, s = 1, 2, ...)

$$(1+1/\eta)\hat{K}_{t+s} = \hat{K}_{t+s-1}$$

where η denotes elasticity of land supply of gatherers to user cost

Response of Land Price & Land Holdings

• Land price response

$$\hat{q}_t = \frac{1}{\eta} \Delta$$

• Overall land holding response

$$\hat{K}_t = \underbrace{\frac{1}{1 + \frac{1}{\eta}} (1 + \frac{R}{R - 1} \frac{1}{\eta})}_{>1} \Delta$$

Response of Land Price & Land Holdings

• Land price response

$$\hat{q}_t = \frac{1}{\eta} \Delta$$

• Overall land holding response

$$\hat{K}_t = \underbrace{\frac{1}{1 + \frac{1}{\eta}} (1 + \frac{R}{R - 1} \frac{1}{\eta})}_{>1} \Delta$$

• Say
$$\eta = 1, R = 1.05$$

$$\hat{K}_t \approx 11\Delta$$

э

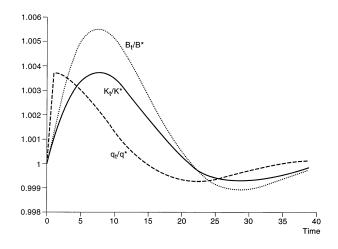
STATIC RESPONSE OF LAND PRICE & LAND HOLDINGS

• Land price response

$$\hat{q}_t|_{q_{t+1}=q^*} = \frac{1}{\eta} \underbrace{\frac{R-1}{R}}_{<1} \Delta$$

• Overall land holding response

$$\hat{K}_t|_{q_{t+1}=q^*} = \Delta$$


Response of Output & Productivity

$$\hat{Y}_{t+s} = \underbrace{\frac{a+c-Ra}{a+c}}_{\text{Productivity diff, Farmers' share}} \underbrace{\frac{(a+c)K^*}{Y^*}}_{\text{Farmers' share}} \hat{K}_{t+s-1}$$

ECON 712, Fall 2018 Financial Markets and Busine Macroeconomics of Financial Markets

ъ.

Response to Shock

ECON 712, Fall 2018 Financial Markets and Busine Macroeconomics of Financial Markets

ъ.

NET WORTH SHOCK

- One time reduction in debt obligations
- Increases net worth
- Farmer increases leverage, production
- Another view of Bernanke-Paulson policies?

WRAPPING UP

- Firms' productive capital also used as collateral
- Amplification and persistency of real shocks through lower collateral value of capital
- Real effects of lower asset values and financial frictions.

CRITIQUES/COMMENTS

- Kocherlakota (QR, 2000): Quantitative importance likely to be small if land & capital share less than 0.4
- Andres Arias (WP, 2005): Calibrated RBC model with KM credit constraints deliver small amplification effects
- Brunnermeier and Sannikov (2014): Non-linearities during crises.
- Real effects of housing/stock bubbles

THE CONCEPTUAL IDEA

- Main Paper: Bernanke and Gertler (AER, 1989).
- Costly state verification in a Real Business Cycle model.
- Debt-Deflation meets Real Business Cycle.
- Main idea.
 - The borrowers' net worth determines both their risk of default and agency problems (the intermediation cost).
 - Net worth is procyclical.
 - In recessions the costs of intermediation increase, reduce the net return of investment and depress investment, magnifying the recession.

- A IB N - A IB N

Environment

- Risk neutral E and L.
- E has net worth n.
- E's technology:
 - i units of $c \text{ good} \rightarrow \omega i$ units of k good
 - ω is iid over time and investors, st, $\int_0^\infty \omega d\Phi(\omega) = 1$.
 - We denote by q the price of the k good in terms of the c good.
- A fancy costly state verification
 - ω is private information to E. L has to pay μi to learn ω

CONTRACTING PROBLEM

• E borrows i - n in c goods and repays $(1 + r^k)(i - n)$ in k goods.

• E defaults iff
$$\omega \leq \bar{\omega} \equiv (1 + r^k) \frac{i-n}{i}$$
.

• Then

$$r^k = \frac{\bar{\omega}i}{i-n} - 1$$

э

• = • • = •

EXPECTED INCOME FOR E and L

• E's expected income (in terms of c goods)

$$q\left[\int_{\bar{\omega}}^{\infty} \omega i d\Phi(\omega) - (1 - \Phi(\bar{\omega}))(1 + r^k)(i - n)\right]$$

=
$$qi\underbrace{\left[\int_{\bar{\omega}}^{\infty} \omega i d\Phi(\omega) - (1 - \Phi(\bar{\omega}))\bar{\omega}\right]}_{f(\bar{\omega})}$$

• L's expected income (in terms of c goods)

$$q\left[\int_{0}^{\bar{\omega}}\omega id\Phi(\omega) + (1-\Phi(\bar{\omega}))(1+r^{k})(i-n) - \Phi(\bar{\omega})\mu i\right]$$

$$= qi\underbrace{\left[\int_{0}^{\infty}\omega id\Phi(\omega) + (1-\Phi(\bar{\omega}))\bar{\omega} - \Phi(\bar{\omega})\mu\right]}_{g(\bar{\omega})}$$

Optimal Contract

• The optimal contract specifies

$$\max_{i,\bar{\omega}} qif(\bar{\omega}) \qquad st \qquad qig(\bar{\omega}) \ge i - n$$

• From the participation constraint, i is increasing in q and n

$$i = \frac{1}{1 - qg(\bar{\omega})}n$$

• The maximization becomes

$$\max_{\bar{\omega}} q \frac{n}{1 - qg(\bar{\omega})} f(\bar{\omega})$$

э

Optimal Contract

• FOC

$$g(\bar{\omega}) - g'(\bar{\omega})\frac{f(\bar{\omega})}{f'(\bar{\omega})} = \frac{1}{q}$$

where

$$f(\bar{\omega}) + g(\bar{\omega}) = 1 - \mu \Phi(\bar{\omega})$$

$$f'(\bar{\omega}) + g'(\bar{\omega}) = -\mu\phi(\bar{\omega})$$

• Then, implicit function $\bar{\omega}(q)$ increasing in q,

$$1 - \mu \Phi(\bar{\omega}) + \phi(\bar{\omega})\mu \frac{f(\bar{\omega})}{f'(\bar{\omega})} = \frac{1}{q}$$

문 🛌 🖻

THE QUANTITATIVE APPLICATION

• Main Paper: Carlstrom and Fuerst (AER, 1997).

• Financial frictions provide a propagation mechanism....is this large quantitatively?

ECON 712, Fall 2018 Financial Markets and Busine Macroeconomics of Financial Markets

General Equilibrium Model

• Players

- Two types of consumers
 - HHs: Households (risk averse)
 - E: Entrepreneur (risk neutral)
- MF: Mutual Fund channels funds from HHs to E.

GENERAL EQUILIBRIUM MODEL

- Sequence of Events
 - θ_t : Aggregate productivity shocks
 - Firms produce c goods: $Y_t = \theta_t F(K_t, L_t^{HH}, L_t^E)$
 - HHs buy c goods and order new k goods from the MF at a price q_t
 - MF finances loans to E (with the technology we discussed).
 - iid shocks to E (in ω).
 - CSV contract.
 - Production of k goods.
 - Solvent E sell capital to MF and purchase c goods.
- Production is linear and net worth can just be aggregated in an aggregated net worth.

GENERAL EQUILIBRIUM MODEL

- This is calibrated with the following exercises.
- Shift of 0.1% of SS capital from HH to E.
 - This implies an increase in net worth of 13%.

•
$$\uparrow I = 5.5\%$$
 and $\downarrow q$.

- $\downarrow C^{HH} = 0.8\%, \uparrow L^{HH} = 2.2\%$ and $\uparrow Y = 1.4\%$
- A positive productivity shock on θ .
 - Increase in the demand for k goods but slow response on n.
 - Hump shaped increase in Y.

MOTIVATION

- Main paper: Gorton and Ordonez (AER 14)
- Information is at the heart of financial intermediation.
- Transparency is at the heart of new proposed regulation.

- How information production shapes business cycles?
- Should policies induce information production?
- We show information dynamics can account for fragility, magnification, persistence and asymmetry of cycles.

- 周下 - 王下 - 王下

PEEKING AT THE RESULTS

- In a world of collateralized short-term debt, symmetric ignorance about the quality of collateral may be efficient.
 - Firms with bad collateral get loans that they otherwise would not. "Ignorance Credit Boom".
- but fragile to small shocks that induce asymmetric information.
 - Firms with good collateral do not get loans that they otherwise would. "Collateral Crises".
- Endogenous tail events. Larger booms lead to larger crises.

Setting

• Single Period. Mass 1 of risk-neutral firms and households.

$$K' = \begin{cases} A \min\{K, L^*\} & \text{ with prob. } q \\ 0 & \text{ with prob. } (1-q) \end{cases}$$

qA > 1. Optimal scale $K^* = L^*$

- Households: $\overline{K} > K^*$.
- Firms: L^* and a unit of land.

э

-

Setting

• Single Period. Mass 1 of risk-neutral firms and households.

$$K' = \begin{cases} A \min\{K, L^*\} & \text{ with prob. } q \\ 0 & \text{ with prob. } (1-q) \end{cases}$$

$$qA > 1$$
. Optimal scale $K^* = L^*$

- Households: $\overline{K} > K^*$.
- Firms: L^* and a unit of land.

$$\begin{cases} C > K^* & \text{ with prob. } p \\ 0 & \text{ with prob. } (1-p) \end{cases}$$

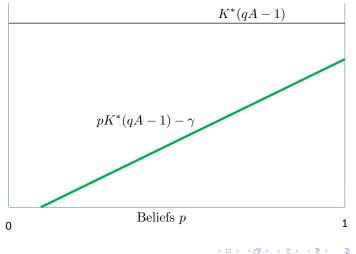
Only households can privately learn the truth at a cost γ .

16

INDUCE INFORMATION

- Symmetric Information.
- Lenders break even and debt is risk free

$$p(qR_{IS} + (1-q)xC) = \gamma + pK$$
 and $R_{IS} = xC$


Then

$$x = \frac{pK + \gamma}{pC} \le 1$$

э

INDUCE INFORMATION

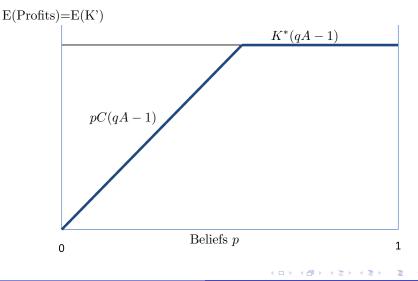
E(Profits) = E(K')

- Symmetric Ignorance.
- Lenders break even and debt is risk free

$$qR_{II} + (1-q)pxC = K$$
 and $R_{II} = pxC$

э

Then
$$x = \frac{K}{pC} \le 1$$


- Symmetric Ignorance.
- Lenders break even and debt is risk free

$$qR_{II} + (1-q)pxC = K$$
 and $R_{II} = pxC$
Then $x = \frac{K}{pC} \le 1$

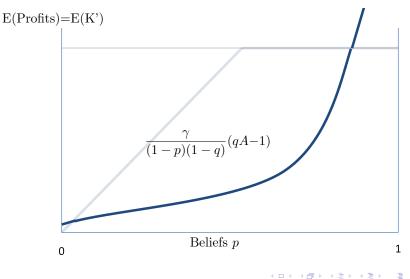
э

- H - N

• Subject to loans not triggering information acquisition.

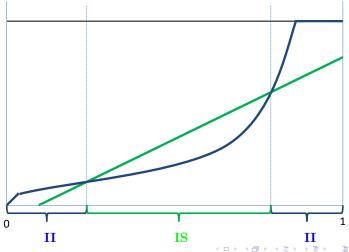
E(Profits) = E(K') $K^*(qA-1)$ pC(qA-1) $p(1-q)\left[\frac{K}{p} - K\right] + (1-p)0 \le \gamma$ Beliefs p1 0

э

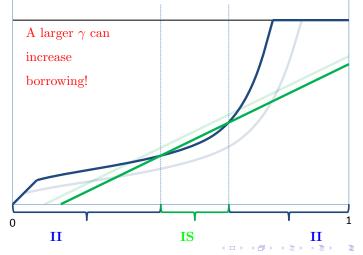

4 B.

E(Profits) = E(K') $K^*(qA-1)$ pC(qA-1) $K \le \frac{\gamma}{(1-p)(1-q)}$ Beliefs p1 0

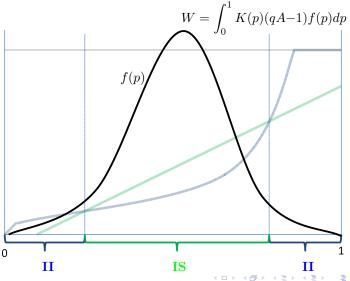
1


4 B.

э


OPTIMAL INFORMATION

E(Profits) = E(K')



OPTIMAL INFORMATION

$\rm E(\rm Profits){=}E(\rm K')$

Setting Dynamics

How this distribution of beliefs evolves over time?

- Dynamic extension.
 - OG: "young" households, "old" firms.
 - Land is storable, K is not.
 - Land is transferred across generations.
 - We assume away bubbles and multiplicity.
 - There are no fire sales.
 - Price is pC (i.e., single match and buyers' negotiation power).

TIMING

- Firm w/ collateral p

- Borrows K w/ II or IS debt (conditions R and x)

- Lender can privately observe collateral type.

Market for loans

- Project realization

- Debts are paid off and any info is revealed (p')

- Firms sell land at p'C to households.

Market for land

TIMING

Idiosyncratic and Aggregate Shocks

- Firm w/ collateral p

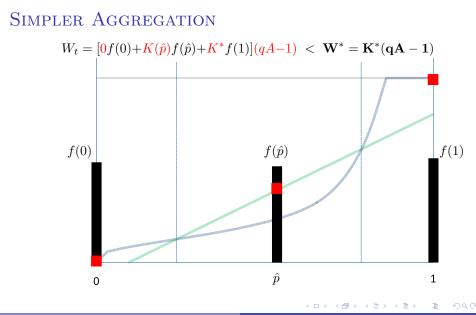
- Borrows K w/ II or IS debt (conditions R and x)

- Lender can privately observe collateral type.

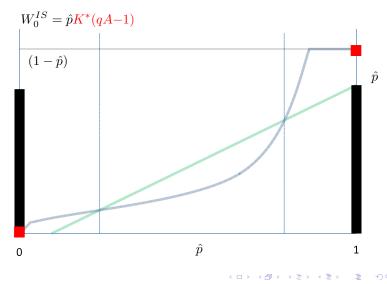
Market for loans

- Project realization

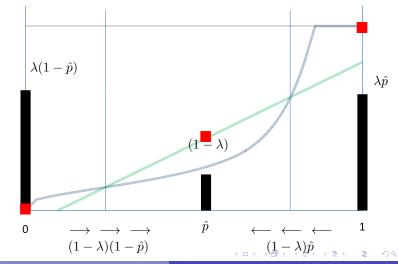
- Debts are paid off and any info is revealed (p')

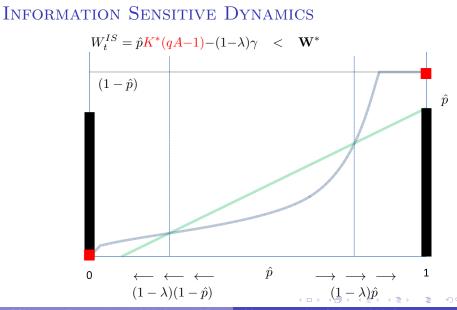

- Firms sell land at p'C to households.

Market for land

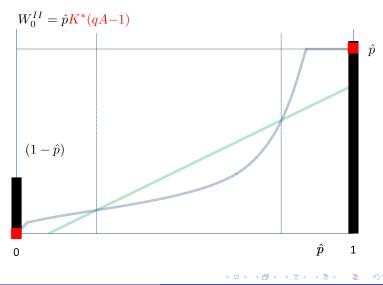

EVOLUTION OF COLLATERAL TYPES

- Important assumption: Mean reversion of collateral.
- Simplifying assumptions
 - \hat{p} : Fraction of good land.
 - Idiosyncratic shocks
 - Occur with probability (1λ)
 - Land becomes good with probability \hat{p} .
 - The shock is observable, the realization is not.

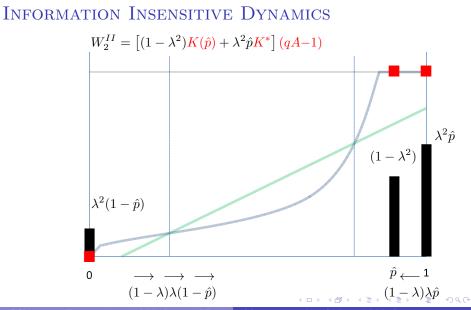

-

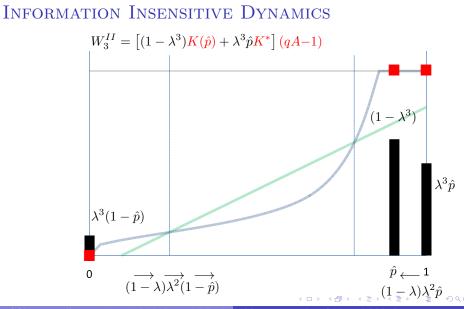


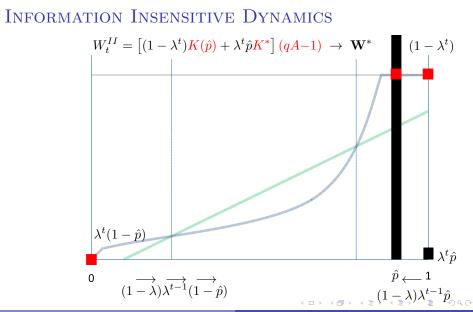
INFORMATION SENSITIVE DYNAMICS

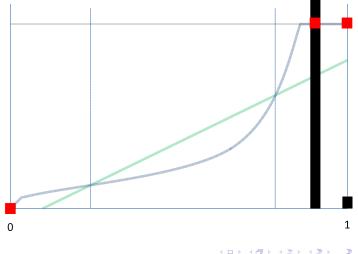


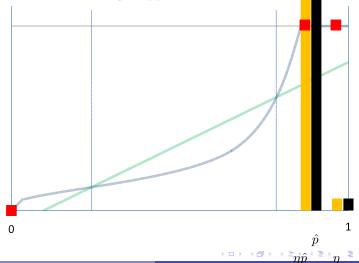
INFORMATION SENSITIVE DYNAMICS

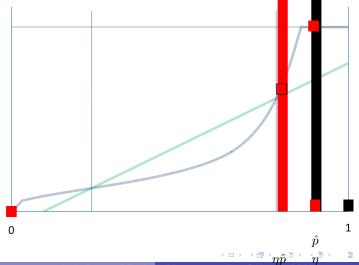


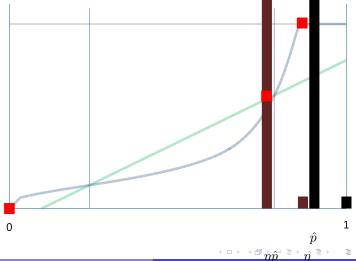


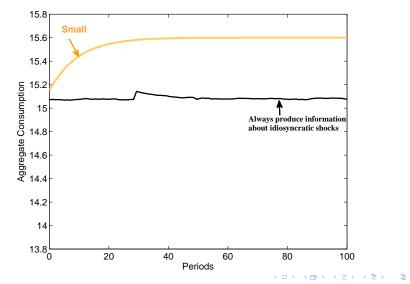

INFORMATION INSENSITIVE DYNAMICS

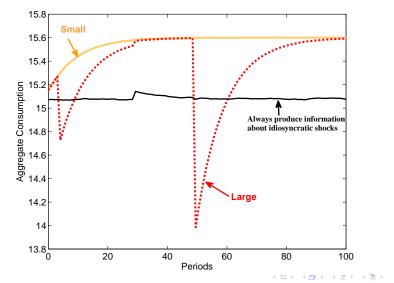




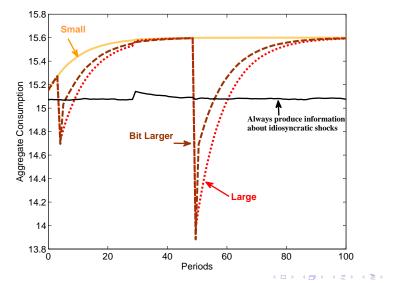

A fraction $(1 - \eta)$ of good collateral become bad.

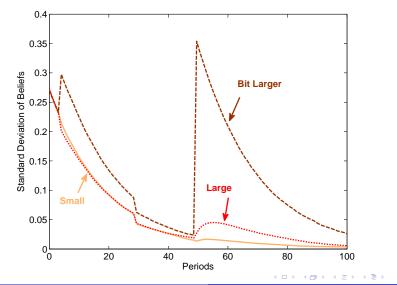

SMALL: Nothing Happens




LARGE: Credit Crunch

A BIT LARGER: Wave of Information




ECON 712, Fall 2018 Financial Markets and Busine Macroeconomics of Financial Markets

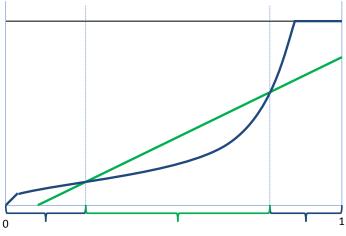
Э

ECON 712, Fall 2018 Financial Markets and Busine Macroeconomics of Financial Markets

Э

A PLANNER

• Assume a planner that maximizes the discounted utility of cohorts

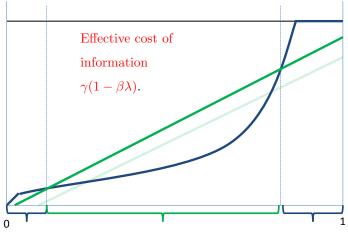

$$U_t = E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} W_t.$$

э

- Optimal range of information production is wider.
- The planner can implement the optimum by subsidizing a fraction $\beta\lambda$ of the information cost γ .

A PLANNER: CUTOFFS

E(Profits) = E(K')


Э

-

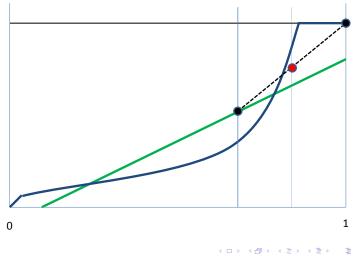
< ∃ >

E(Profits) = E(K')

Э

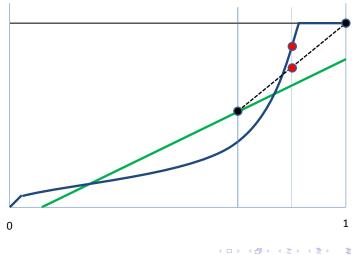
э

< ∃ >

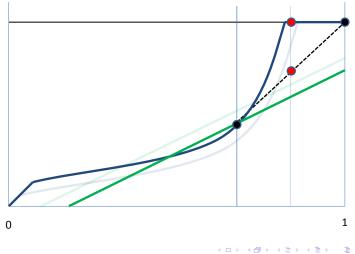

EXTENSIONS

- Endogenous complex securities.
- Real Shocks.
- Two Sided Information Production.
- Crises without shocks.

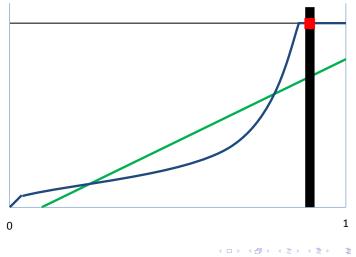
э


ENDOGENOUS SECURITY STRUCTURE

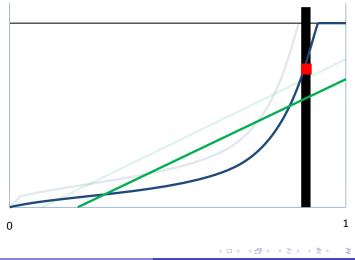
Two securities with different p


ENDOGENOUS SECURITY STRUCTURE

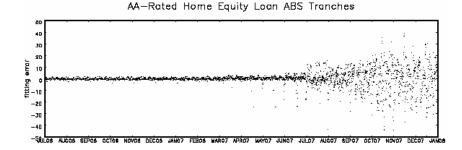
Pooling Collateral


ENDOGENOUS SECURITY STRUCTURE

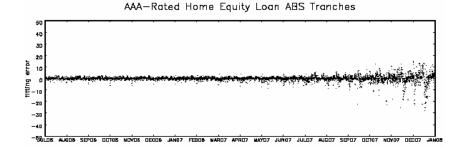
Complexity of Securities (Larger γ)


A REAL SOURCE OF A CREDIT CRUNCH

A reduction in the success probability q can lead to a credit crunch.



A REAL SOURCE OF A CREDIT CRUNCH


A reduction in the success probability q can lead to a credit crunch.

SUGGESTIVE EVIDENCE INFORMATION PRODUCTION Perraudin and Wu (2008)

SUGGESTIVE EVIDENCE INFORMATION PRODUCTION Perraudin and Wu (2008)

FINAL REMARKS

- Symmetric ignorance may be socially desirable, but it is vulnerable to a sudden loss of confidence in its symmetry.
- Macroeconomic implications:
 - Larger "ignorance credit booms" lead to larger crises.
 - The planner may not want to eliminate fragility.
 - Dispersion of beliefs (and of credit and production) is endogenous. We are testing this implication of the mechanism empirically (Kyriakos, Gorton and Ordonez, 18?).