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Abstract

Optimal regulatory restrictions on banks have to solve a delicate balance. Tighter
regulations reduce the likelihood of banks’ distress. Looser regulations foster the
allocation of funds towards productive investments. With multiple banks, opti-
mal regulation becomes even more challenging. Banks form partnerships in the
interbank lending market in order to face liquidity needs and to meet investment
possibilities. We show that the interbank network can suddenly collapse when
regulations are pushed beyond a critical level, with a discontinuous increase in
systemic risk as the cross-insurance of banks collapses.
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1. Introduction

Banks provide a key intermediation function in the economy. They extend
loans to agents with productive investment opportunities using funds from de-
positors who do not have access to those opportunities. Because banks’ invest-
ments can fail, depositors are only willing to provide the funds if they are ex-ante
compensated for potential losses, which forces bankers to internalize failure and
to invest e�ciently, both in terms of scale and risk exposure. The scenario
changes, however, in the presence of governments that have ex-post incentives
to cover the losses of depositors with distortionary taxation proceedings. These
bailouts provide an implicit insurance for depositors that allows banks to obtain
funds at a subsidized rate and invest those funds excessively, either at a larger
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scale or by taking more risks, relative to the e�cient allocation. As highlighted
by Nosal and Ordonez (2016), when the government lacks commitment not to
bail out depositors in distress, banks tend to invest excessively and ine�ciently,
which increases the likelihood and the magnitude of crises and the need for
distortionary bailouts.

In response to this time inconsistency governments tend to regulate banking
activity, in part to counteract these perverse ex-ante banks’ incentives. The
banking regulations that are introduced to restrict the volume and the risk of
investments take several forms. Capital requirements specify the level of equity
that a bank must hold as a percentage of its risk-weighted assets. Liquidity
and reserve requirements impose a direct upper bound on the amount of loans
that can be extended by a bank per U.S. dollar kept physically in possession
of the bank. Credit rating requirements curb the choice of projects that a
bank can choose to maintain a certain credit qualification. Financial disclosure
requirements increase the cost of extending and managing loans. Even though
all these restrictions are introduced to tackle di↵erent situations, all have the
consequence of restricting the volume and riskiness of a bank’s assets.

Too tight regulations reduce excessive investments and risk-taking and, thus,
the need for bailouts, but they may end up choking the bank’s ability to channel
funds to productive investment opportunities. When these two forces change
smoothly on the level of regulatory requirements for an individual bank, it
should in principle be possible to obtain the optimal level of regulation that
counteracts the banks’ incentives to extend excessive (and excessively risky)
loans.

Although this logic is sound in the case of a single bank, it becomes more
challenging in the case of multiple banks that interact with one another. In-
deed, banks do not operate in isolation. After extending loans for a lucrative
investment opportunity, a bank may fall short of the liquidity needed to cover
potential extra refinancing needs to continue old projects or to take advantage
of new profitable projects. When this occurs they refer to other banks for short-
term loans in order to satisfy these needs. This implies that the tightness of
regulatory constraints may have a first-order impact on the vibrancy and in-
terconnectedness of the interbank market. How does the interbank network
react to changes in regulation? How should regulation be determined in a set-
ting in which banks interact? How does the endogenous formation of interbank
networks a↵ect the welfare e↵ects of regulation?

In this paper we explore these questions and show that the topology and
the level of interconnectedness of the interbank network react discontinuously
to regulatory requirements, adding an additional layer of complexity to the
delicate balance that optimal banking regulations should strive to achieve. The
reaction of an interbank network features a “phase transition”: beyond a tipping
point of regulatory requirements, the network becomes disproportionately less
interconnected, with systemic risk increasing discontinuously in response to this
abrupt change in the network architecture.

To fix ideas we will focus on a specific type of regulatory constraint: liquidity
requirements. On the one hand, the coverage of liquidity shortages is one of the
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main functions of interbank lending, constituting the blood of banking networks’
operations. On the other hand, a micro-founded model encompassing regulation
in general would require many more elements than those needed to show the
deep source of network fragility: restrictions on the volume of loans. Even
though we craft our model to specifically capture restrictions on the ratio of
liquid to illiquid assets, we map our results on to other banking regulations and
show that we should expect the same fragility from them.

In our model, the benefit of having an interbank counterparty is that it
provides additional “insurance” in case that a refinancing shock realizes, which
requires extra funds to continue or expand some of a bank’s investments. Even
though some of the bank’s counterparties are expected to become insolvent, the
rest can provide extra liquidity should a refinancing shock occur. On the one
hand, the marginal benefit of having an extra counterparty decreases as liquidity
requirements tighten up because the loan sizes decline and banks obtain less
benefits from insuring continuation of those projects. On the other hand, we
assume that the marginal cost of an extra counterparty is independent of the
liquidity requirement or the investment scale.

We demonstrate that as liquidity requirements tighten, not only does the
desired level of counterparties decrease, but after a critical point a bank discon-
tinuously prefers to reduce its counterparties. When that happens the network
structure changes suddenly from very dense to very sparse and the aggregate
level of interbank activity collapses. In other words, as liquidity requirements
tighten not only investment declines but also systemic risk – measured by the
fraction of banks that choose to close operations – increases, discontinuously
after a certain threshold. This sudden change induces a discontinuous increase
in distortionary bailouts and a discontinuous decline in welfare.

The logic behind the fragility of the network structure relies on the strategic
considerations of a bank when it chooses its level of connectivity. When a bank
chooses how many counterparties to have, it takes into account how many of
those counterparties are expected to be able to provide assistance in the case of
a refinancing need. How many of a bank’s counterparties will be able to provide
assistance, however, depends on the number of counterparties that each of the
bank’s counterparties choose to have. With many banks these strategic consid-
erations may in principle be intractable. Our model describes the conditions
under which a unique stable network is possible, and this allows us to develop
comparative statics.

Creating a banking network model that puts these strategic considerations
at the forefront of the discussion is relevant for two reasons. First, connectiv-
ity decisions of other banks have a large impact on each bank’s connectivity
decisions, and these strategic considerations create a highly nonlinear network
response to changes in regulation. Second, a bank does not internalize the e↵ects
of its own connectivity decisions on others which can create severe externalities.

Our result also has important policy implications. The highest welfare that
takes into account endogenous network formation tends to be achieved at high
levels of connectivity and close to the tipping point at which networks discontin-
uously collapse. In principle this calls for setting regulations close to the tipping
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point that sustains dense networks. This is, however, a dangerous endeavor
when it is carried out in the presence of exogenous shocks to fundamentals that
can change the network’s tipping point. Setting regulatory requirements very
close to the tipping point increases the likelihood of a collapse, and, thus, a
crisis. This suggests that the optimal distance between regulatory requirements
and the tipping point should balance the loss in welfare from a lower level of
connectivity and the gains from a lower probability of a crisis.

In order to evaluate the e↵ect of banking regulations on networks we com-
pare the liquidity requirements chosen by a network-conscious regulator who
understands the reaction of interbank insurance possibilities to changes in reg-
ulation and a network-blind regulator who does not understand that networks
change with regulation. We show that the potential welfare losses that occur
when network reactions (including discontinuous collapse) are ignored can be
large.

Literature Review: The recent financial crisis has been a catalyst for
scholarly research into both banking regulations and interbank networks. Al-
though there is a recent rich literature on these two topics, our paper is one of
the few, if not the first, to combine these two policy-relevant topics and analyze
the e↵ects of regulatory requirements on interbank network formation.

With regards to banking regulations, most of the literature has focused on
the optimal level of a single bank’s liquidity requirement to prevent bank runs.
See, for example, Cooper and Ross (1998), Ennis and Keister (2006), Calomiris
et al. (2014), Santos and Suarez (2015), Diamond and Kashyap (2016) and
van den Heuvel (2016). In spite of these e↵orts, Allen (2014), who surveys the
recent literature on liquidity regulation, concludes that “much more research
is required in this area. With capital regulation there is a huge literature but
little agreement on the optimal level of requirements. With liquidity regulation,
we do not even know what to argue about.” Confusion about how liquidity
requirements help facing liquidity shortages comes in large part from the lack
of consensus of what a liquidity shortage is. While the literature cited above
focuses on using liquidity regulation to curb the e↵ects of liquidity shocks on
banks’ short-term liabilities as in Diamond and Dybvig (1983), our paper focuses
on using liquidity regulations to curb the e↵ects of liquidity shocks on banks’
assets refinancing needs as in Holmström and Tirole (1998).

A more recent literature acknowledges banking interconnections when study-
ing liquidity regulations. Farhi et al. (2009) study the role of liquidity require-
ments when the liquidity of one bank reduces the likelihood of a run in another
bank. Wang (2016) highlights the externalities that characterize the formation
of linkages and the importance of conditioning regulation on the topology of
banking networks. Aldasoro et al. (2015) also discuss the e↵ects of banking
regulations in the presence of banking interconnections. They show that liquid-
ity requirements decrease systemic risks at the cost of lower e�ciency given a
network structure. By endogenizing the network reaction, we show instead that
there exists a critical point beyond which liquidity requirements both increase
systemic risks and reduce e�ciency discontinuously.
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There is also a heated debate about liquidity requirements that are alter-
natives to standard reserve requirements, such as the liquidity coverage ratio
(LCR) and the net stable funding ratio (NSFR) that have been proposed by
the Dodd Frank Act and by the Basel Committee on Banking Supervision. The
LCR extends the interpretation of “liquid assets” beyond reserves, such as as-
sets with higher interest rates. Goodfriend (2016) has examined the high costs,
complexity, and discretion vulnerability of LCR relative to standard reserve re-
quirements. The NSFR defines the portion of capital and reliable liabilities that
financial intermediaries have to maintain over a specified time horizon relative
to the amount of required stable funding during that time period. Although our
setting is constructed to capture reserve requirements, it could accommodate
these two alternatives by including more assets classes (LCR) or a more involved
timing of funding needs (NSFR).

Not surprisingly then, there are not many empirical studies of the e↵ects of
policies on banking networks. An exception is Paddrik et al. (2016), who show
that the pattern of reserve requirements established by the National Banking
Acts (NBA) in the U.S. dramatically changed the network structure of interbank
deposits between 1862 and 1867 in Pennsylvania. This involved a reinforcement
of linkages between Philadelphia and New York banks and a weakening of the
linkages between county banks. Their finding is consistent with our model.

Another recent literature, such as Erol and Vohra (2016), examines endoge-
nous networks, but these are not systematic studies that seek to understand
the endogenous reaction of financial networks to changes in banking regulations
and their e↵ects on systemic risk and welfare. Allen and Gale (2000) discuss
bankruptcy contagion in an exogenous network (modeled as a ring) and, consis-
tent with our results, show a negative relation between the degree of connectivity
and systemic risk. Battiston et al. (2012) show that the relationship between
connectivity and systemic risk can be hump-shaped, and they demonstrate that
this is so because low connectivity implies less risk-sharing and high connectiv-
ity implies more exposure to the default of partners. Acemoglu et al. (2015)
also show that the e↵ects of connectivity can go in both directions for di↵erent
magnitudes of shocks. In a setting with heterogenous banks, Farboodi (2015)
also provides a model of banking networks, within which funds flow from savers
to investment opportunities, possibly over several links, and she demonstrates
that the distribution of surplus depends on the network topology. None of these
papers, however, studies the reaction of networks to changes in policy.

Finally, in contrast to Ordonez (2016), who studies the unforeseen e↵ects
of banking regulations on financial innovations that allow banks to channel
activities outside the scope of regulators (the so-called shadow banking), this
paper focuses on the unforeseen e↵ects of banking regulations on networks,
specifically the creation and destruction of banking linkages, that a↵ect both
systemic risk and welfare. We contend that the unforeseen e↵ects of banking
regulations should be included in discussions of optimal regulations.

We structure this paper as follows. In the next section we present a simple
model that includes liquidity requirements and the possibility that linkages can
be created with other banks in order to face refinancing needs. In Section 3
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we explain the main forces in the model and show the characterization of the
network structure for a given level of regulation. In Section 4 we study the e↵ects
of liquidity requirements on the anatomy of a banking network. In Section 5 we
characterize optimal regulation by a network-conscious regulator who factors in
network e↵ects. In Section 6 we compute the welfare losses of a network-blind
regulator who does not take into account the e↵ects of regulations on networks.
We conclude with some final remarks and considerations.

2. Model

2.1. Environment

We consider a single-period economy composed of k risk-neutral banks, k
risk-neutral households and a government. We denote by N = {n1, ..., nk} the
set of banks. Each bank ni has access to a unique project (of maximum possible
scale, Li) to finance, and each is associated with a unique household n

h
i . We

assume that the household n

h
i deposits Di in bank ni at the beginning of the

period and wishes to withdraw and consume at the end of the period.
The timing of actions and events within the period can be split into five

stages. First is a regulation stage. The government sets a liquidity requirement
� 2 [0, 1], which imposes a minimum ratio of liquid to illiquid assets that a
bank has to hold on its balance sheet. The role of the policy parameter � is
to restrict the bank’s investments in risky and illiquid assets. At the end of
the section we discuss how � maps on to policies that we observe in reality,
such as reserve requirements, di↵erent types of liquidity requirements, capital
requirements, and more.

Second is a network formation stage. By mutual consent banks form links
that serve as credit lines that insure one another against future refinancing
shocks that could prevent projects from reaching maturity. A link between
banks ni and nj is denoted lij = lji, and the resulting set of links is denoted

L ⇢ [N ]2. Then, (N ,L) is the realized interbank network. Denote Ni =
{j : lij 2 L} the set of counterparties of ni and di = |Ni| its degree (the number
of counterparties). Forming a link involves a utility cost l to each counterparty.

Third is an investment stage. Each bank ni extends in checks a loan of
Li to finance the project, keeping its deposits Di as reserves. The liquidity
requirement restricts the size of the loan (and thus the scale of the project) to
Li, as Di � �Li, where Li  L̄i is the natural limit. Notice that when investing
Li total assets are Di + Li (Di in cash and Li in loans) while total liabilities
are also Di + Li (Di as debt to the households, or “original depositors,” and
Li is debt to check holders, or “business depositors”).3 The returns from the

3The project uses bank ni’s checks to operate - for example to buy raw materials or to
pay workers. The recipients of these checks, for a total of Li, eventually deposit them in the
bank, at which point they become “business depositors.” The assumption that a bank uses
checks to finance its investment fully is an optimal bank’s response when the project displays
constant returns to scale and its return is higher than the return from holding cash. Under

6



projects materialize at the end of the period. Bank deposits and checks also are
due at the end of the period.

Fourth is a continuation stage. The projects managed by all banks are
publicly revealed to be ✓i 2 {B,G}, where B represents a bad project that never
matures and G a good project that can succeed if appropriate actions are taken
by the bank in the next stage. These types are independent across banks, with
G happening with probability ↵i and B happening with probability 1� ↵i.

After the projects’ types are publicly observed, each bank ni chooses an ac-
tion ai. Banks managing good projects can choose to continue (C) operating
the project, or not (N), then ai 2 {C,N}. Continuing operation incurs a man-
agement cost (an e↵ort cost) of c per unit of investment and 

0
l to maintain the

counterparty, making up a total of cLi + 

0
ldi. Banks that have bad projects

always choose ai = N ; that is, the bank would only pay the previous continu-
ation costs but would not recover any payo↵s form the project. Let gi and fi

respectively denote the number of counterparties of ni that chose to continue
and not continue: gi = |{nj 2 Ni : aj = C}| and fi = |{nj 2 Ni : aj = N}|.

A bank ni that experiences a good shock and chooses N liquidates its project
early and recovers R1Li where 1 > R1 � 0. This implies that the total assets
of a non-continuing bank at the end of the period are Di +R1Li while its total
liabilities are Di + Li. We assume that the government faces a large (maybe
political) disutility from depositors who do not get their funds back at the end
of the period. This simple assumption guarantees that the government would
always bail out the defaulted depositors. The funds used for bailouts per bank in
need at this stage amount to (1�R1)Li. Banks ni that chooses not to continue
then receive 0 payo↵.

A bank ni that chooses C and continues business moves to a fifth and last
refinancing stage. At that stage no more than one of the projects of the con-
tinuing banks receives a refinancing shock, which is characterized by new funds
that are needed in cash for the project to mature (a liquidity shock). The prob-
ability that a bank ni, and only ni, needs extra funds is ⌘i. With probability
⌘0 = 1�

P
i ⌘i no project receives a refinancing shock. Conditional on the con-

tinuing bank ni receiving a refinancing shock, the amount of funds needed is ⇢i,
drawn from a distribution with c.d.f. Fi. Investors can obtain these extra funds
only from their associated counterparty banks in the network and no others.

The banks that do not face a refinancing shock and that have invested at
scale Li obtain a return R2Li, where R2 > 1. As for the bank facing the
refinancing need, if the bank obtains enough funds to refinance the liquidity
need ⇢i, then the project’s return scales by m >

1
R2

and pays an extra ⇢i, at
which point the return to ni is mR2Li+⇢i. If the bank does not obtain enough
funds to refinance the liquidity need, the project fails and the return to ni is 0.

these circumstances the bank always chooses to lever as much as possible, with the amount
of liquid assets given exogenously by Di. A model with an interior optimal portfolio choice
is potentially interesting, but is not only beyond the scope of the paper but also complicates
the network analysis considerably.
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Finally, we assume that after the refinancing shock is observed, each house-
hold n

h
i receives extra funds (say wages) Wi, which are deposited at bank ni

if ni has continued and is still in business. Then, without interbank activity, a
bank ni that faces a refinancing shock relies on its own available funds Wi +Di

to ride the shock. This implies that under these conditions the bank would be
able refinance the project to completion if and only if ⇢i  Wi +Di.

Banks, however, can engage in interbank lending through credit lines (links)
formed in advance during the network formation stage. We assume that funds
do not travel further than one link, which is the main friction in the interbank
market; in other words, a bank intermediates not between two banks but be-
tween one household and one bank. Notice that due to the extra ⇢i return on
top of mR2Li, there is no risk in lending these funds to the bank that faces a
refinancing need; however this is conditional on knowing that ni will be able to
borrow ⇢i �Di �Wi in total from its counterparties. A counterparty nj , if it
has decided to continue, has Wj excess liquidity to lend to ni.4 Therefore, ni

can cover ⇢i if and only if ⇢i  Di +Wi +
P

j:nj2Ni,aj=C Wj .
The timeline in Figure 1 summarizes this sequence of events and actions as

well as the main notation we have introduced.

Regulation

�

Network Formation

(N ,L)

Lending

Li

Continuation

✓i 2 {G,B},
ai 2 {C,D}

Refinancing

⇢i

Figure 1: Timeline of events

2.2. Interpretation of the policy parameter �.

Notice that the parameter that determines the extent of banking regulation
in our setting is �, which imposes an upper bound on the ratio of liquid assets
to illiquid assets, which is Di

Li
� �. While liquid assets Di is meant to include

cash, treasury bills, repos, central bank reserves, and any other asset that can be
converted easily and quickly into cash, illiquid assets Li include loans, mortgages
and other investments whose liquidation is costly and incurs a loss. Here we
show that, when referring to a tightening in regulation �, we also capture a
tightening in other diverse forms of banking regulatory requirements.

Reserve requirements, for example, are defined by the Federal Reserve Bank
as “the amount of funds that a depository institution must hold in reserve against
specified deposit liabilities.” In our model reserves are captured by Di and to-
tal liabilities by Di + Li, then reserve requirements are given by a constraint

Di
Di+Li

� b
� ⌘ �

1+� . This implies that an analysis of changes in � is isomorphic

to an analysis of changes in reserve requirements b
�.

4Motivated by the use of reserve requirements, banks are only allowed to lend above re-
quired reserves in the interbank market. Hence only Wj can be used on the interbank market.
This can be rationalized as the limit of a credit line. This assumption allows us to simplify
the optimal choice of Li which is otherwise intractable due to network externalities.
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Similarly, and although a liquidity requirement is conceptually a constraint
on the ratio of liquid to illiquid assets, as is the case in our model, in reality these
constraints take several forms. The liquidity coverage ratio (LCR), for example,
is defined by the Federal Reserve Bank as “the amount of high quality, liquid
assets (HQLA) such as central bank reserves and government and corporate
debt that can be converted easily and quickly into cash that has to be equal to or
greater than its projected cash outflows minus its projected cash inflows during a
30-day stress period.” Assuming that in our model the expected net cash outflow
during a stress period is a fraction � of total liabilities, then the LCR is given
by a constraint Di

�(Di+Li)
� e

� ⌘ �
�(1+�) . Again, changes in � are isomorphic to

changes in LCR e
�.

Other forms of liquidity requirements applied by regulators include the net
stable funding ratio (NSFR), which recently has been applied. The NSFR, which
specifies a more involved timing of funding needs and definition of applicable
assets, changes how the � above is defined. From the perspective of our model,
however, an increase in � has the same e↵ect as an increase in the NSFR.

Another important banking regulation is given by capital requirements,
which is defined as “the amount of capital a bank or other financial institution
has to hold as required by its financial regulator, usually expressed as a capi-
tal adequacy ratio of equity that must be held as a percentage of risk-weighted
assets.” Although we do not include bank capital in our model, imagine that
instead of households depositing funds Di they hold bank stocks for Ei = Di,
which banks then can use to invest in risky and illiquid assets, Li. In this case,
capital requirements can be expressed as a condition Ei

Li
� �, and the model is

identical to the one we study here.
Finally, any other regulatory requirement that raises the costs of investing in

illiquid assets more than it raises the costs of investing in liquid assets e↵ectively
reduces Li relative to Di and acts as a de facto upper bound (endogenously
chosen by banks) on the ratio Di

Li
. Examples of these regulations include credit

rating requirements that put constraints on the riskiness of investments or the
expected returns of loans and disclosure requirements that increase the cost of
extending loans to non-standardized assets.

3. Banking Networks

We now solve for the equilibrium network. Working backwards we first
solve the investment, continuation and refinancing stages. Then, based on these
solutions, we discuss our solution concepts and characterize the equilibrium
network (solving the network formation stage) as a function of an arbitrary
regulatory parameter �.

3.1. Investment, Continuation and Refinancing Stages

3.1.1. Payo↵s
Refinancing stage: A bank ni that does not continue in the continuation

stage pays ldi in terms of utility to form the network, has the ex-post income
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Di + R1Li and owes Di + Li. After paying all available assets to depositors,
it obtains 0 and depositors receive a bailout for (1 � R1)Li. Then the bank’s
ex-post (utility) payo↵s are �ldi.

If bank ni continues and does not receive a refinancing shock, it pays back its
depositors and obtains a return (R2Li+Di+Wi)�(Li+Di+Wi) = (R2�1)Li.
The bank that continues also incurs utility costs to form the network, ldi,
to maintain the network, 

0
ldi and to manage the project, cLi. Then the

continuing bank’s ex-post (utility) payo↵s are (R2� 1)Li� (0
ldi+cLi)�ldi.

If the bank ni continues and receives a refinancing shock, then payo↵s depend
on whether or not it can obtain funds to refinance. If the bank can refinance
the shock ⇢i, it receives mR2Li�Li ex-post payo↵s because it uses the ⇢i extra
return on top of mR2Li to repay the credit from counterparties. Notice that
interbank lending does not enter a bank’s payo↵s since lending to a troubled
bank only happens if repayment is certain. Then this bank’s ex-post (utility)
payo↵s are (mR2� 1)Li� (0

ldi+cLi)�ldi. If the bank cannot refinance the
shock ⇢i, it cannot fully repay its depositors and has ex-post (utility) payo↵s
�(0

ldi + cLi)� ldi.
Continuation stage: Let Mi denote the expected net return of a bank ni per

unit of loan, net of the management costs of the network:

Mi = (1� ⌘i)(R2 � 1) + ⌘iFi

✓
Di +Wi +

X

j:nj2Ni,aj=C

Wj

◆
(mR2 � 1)� c (1)

Accordingly, the bank ni that continues has an expected payo↵ (at the end
of the continuation stage)

⇧(C) = MiLi � (0
l + l)di. (2)

If ni does not continue, its payo↵ is ⇧(N) = �ldi.
Investment stage: At the continuation stage bank ni will best respond, so

that its payo↵ is �kldi+max{0,MiLi�

0
ldi}. Mi is independent of Li because

the continuation decisions of ni’s counterparties depend only on the amount
that ni can lend to them in the interbank market, which is Wi, independent
of Li. This makes the the expected payo↵ of ni weakly increasing in Li. Thus
banks choose to extend the largest loan possible during the investment stage,

Li = min

⇢
Di

�

, L̄i

�
.

3.1.2. Simplifying Assumptions
For the sake of simplicity in the exposition that follows we focus on a sym-

metric scenario in which all banks are identical. At the end of this section we
discuss the implications of heterogeneity for network formation.

Assumption 1. L̄i = L̄, Di = D, Wi = W , ↵i = ↵, ⌘i = ⌘, Fi = F for all ni.
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Henceforth we denote L(�) = min{D
� , L̄} for all banks. Also denote � =

⌘(mR2�1). Recall that the total number of counterparties of ni that continue is
gi; these are the banks that lend their excess liquidity to bank ni when ni needs
to refinance its project. Moreover define T (di|�) as the “probability threshold”
of ni for continuing. This is

T (di|�) = T0 +
di

0
l

�L(�)
, T0 =

c � (1� ⌘)(R2 � 1)

�

(3)

Under Assumption 1 we can simplify the expression of the net return per
unit of loan from (1) and rewrite the expected payo↵ from (2) as

⇧(C, gi, di|�) = �ldi + �L(�)
⇥
F

�
D +W + giW

�
� T (di|�)

⇤
, (4)

⇧(N, gi, di|�) = �ldi (5)

in the case of continuation and not-continuation, respectively.
If T (di|�) > 1, ni plays N regardless, as F (·)  1. Similarly, if T (di|�) < 0

ni plays C regardless, as F (·) � 0. For T (di|�) 2 (0, 1), define the fragility of a
bank ni with degree di as

S(di|�) ⌘ d(F�1(T (di|�))�D �W )/W e � 1.

This measure of fragility captures the number of successful counterparties a
bank needs if it is to refinance the project. As fragility S increases so must
the success of the counterparties that a bank needs if it is to continue. More
specifically, as shown in Figure 2, a bank ni plays N if gi  S(di|�); otherwise
it plays C.5

Conditional on the total number of counterparties and the number of coun-
terparties that continue, a bank ni is more likely to continue when S(di|�)
declines, which occurs when the bank has more funds on its own (i.e. a higher
D and W ) or when the threshold for refinancing decreases and the bank has
more incentives to continue (i.e. a higher T (di|�)). The latter happens when
the net present value of the project is relatively large (high R2), when the cost
of continuation is relatively small (a low c or 0

l), or when the probability that
the project needs refinancing is relatively small (a low ⌘).

For expositional simplicity we assume that F is uniform on [0, P ], which
implies that F (D + W + gW ) = max{0,min{1, D+W+gW

P }}. Moreover, we
assume that the largest possible refinancing need P cannot be met at any level
of connectivity. The latter ensures that every additional counterparty that
continues strictly improves the expected return.

Assumption 2. F ⇠ U [0, P ], P > D +W + kW .

Before moving to solving for the equilibrium network, we specify the solution
concepts.

5Here we follow the convention that F�1(t) = 1 for t > 1 and �1 for t < 0.
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0

di

0

F (D +W )

1

T (di|�)

S(di|�)

F (D +W + giW )F (D +W + diW )

ai = N ai = C

Figure 2: The decision to continue or not conditional on di and gi

3.2. Solution Concepts

In the continuation stage, banks that experience bad shocks are forced to
play N . Banks that experience good shocks play a binary game among each
other. This game is supermodular. The solution concept is the cooperating
equilibrium: the Nash equilibrium in which the largest set of agents, with respect
to set inclusion, play C among all Nash equilibria. Due to supermodularity,
this equilibrium notion is well-defined. Supermodularity, according to Tarski’s
Theorem, implies that the set of Nash equilibria is a complete lattice, and the
cooperating equilibrium is the highest element of the lattice.

An alternative definition of the cooperating equilibrium can be given via a
strategic contagion argument, which employs a natural interpretation in finan-
cial contagion setup. Banks that receive bad shocks are forced to discontinue.
After some banks become insolvent in this way, some solvent banks that are
tightly connected to insolvent banks now are more likely to be illiquid: they
have less likelihood of refinancing their projects and prefer not to continue in
order to save costs. These banks find N iteratively strictly dominant, and so
on. This highlights the strategic aspect of contagion in our model. The iterated
elimination of strictly dominated strategies resembles a black-boxed financial
contagion. Along the iteration, at the point that the remaining banks can ratio-
nalize C, the contagion stops. The resulting profile is the rationalizable strategy
profile in which anyone who can rationalize C do play C. Supermodularity en-
sures that this profile is also a Nash equilibrium.

During the network formation stage, banks evaluate each network with their
expected payo↵s (over the shocks ✓’s) in the cooperating equilibrium in the
subsequent periods. Agents form a strongly stable network that is defined as
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follows. Consider a candidate interbank network (N ,L) and a subset N 0 of
agents. A feasible deviation by N 0 from L is one in which i) N 0 can add any
missing links or cut any existing links that stay within N 0, and ii) N 0 can cut
any of the links between N 0 and N/N 0. A profitable deviation by N 0 from L is a
feasible deviation in which the resulting network yields a strictly higher expected
payo↵ to every member of N 0. An interbank network (N ,L) is strongly stable
if there are no subsets of N with a profitable deviation from L.6

The notion of network formation that we employ embeds many strategic
concerns regarding the formation of links. When choosing the number of coun-
terparties, each bank has to infer how many of them will be able to help in case
of a refinancing shock, which, in turn, depends on the number of counterparties
that each counterparty chooses. Moreover, multiple banks can form coalitions
that coordinate their decisions regarding their links with other banks, and this
models another layer of strategic sophistication among banks.

3.3. Equilibrium Network

Payo↵ functions ⇧(C) in (4) and ⇧(N) in (5) are special cases of Erol (2016),
who proves the existence and uniqueness of strongly stable networks in a more
general setup.

Define the functions V and d

⇤ as follows.

V (d|�) := Eg̃[(1� ↵)⇥⇧(N, g̃, d|�) + ↵⇥max{⇧(C, g̃, d|�),⇧(N, g̃, d|�)}]

= �ld+ ↵�L(�)Eg̃

⇥
max{0, F

�
D +W + g̃W

�
� T (di|�)}

⇤

where g̃ ⇠ G[·, d,↵] for G is defined as the c.d.f. of binomial distribution
with d trials and ↵ success probability. V can be thought of as a hypothetical
payo↵ function for a single bank with degree d that supposes its counterpar-
ties default if and only if they received bad shocks. In other words, V is the
payo↵ function absent contagion. Define d

⇤⇤(�) := argmaxd2Z⇤
V (d|�) as the

hypothetical optimal degree for a single bank if there was no contagion. Since
F (·)  1, d⇤⇤ is generically well-defined. As there is an upper bound on the
number of counterparties, the relevant optimal degree is

d

⇤(�) := argmaxdk�1V (d|�).

Clearly d

⇤(�)  d

⇤⇤(�). If d⇤⇤(�)  k � 1, then d

⇤(�) = d

⇤⇤(�). The following
proposition characterizes the optimal network degree.

Proposition 1 (Network Formation). Let k(�) 2 [0, d⇤(�)] be given by k ⌘
k(�)(mod d

⇤(�) + 1). If T (d⇤(�)|�) > F (D + 2W ); then there exists a unique

6This network formation solution concept can be micro-founded by a proposal game. Each
bank pays c > 0 to make a proposal to another bank. Mutual proposals turn into links, and
cost c is refunded to both. One-sided proposals do not turn into links, and c is lost. After
being formed, links represent secondary market trades that provide liquidity to banks. The
strong Nash equilibria of this game corresponds to strongly stable networks. See Erol and
Vohra (2016) for more details.

13



strongly stable network that consists of
�
k�k(�)

�
/(d⇤(�)+1) disjoint cliques of

order d⇤(�)+1 and some more disjoint cliques of smaller orders.7 If T (d⇤(�)|�) <
F (D + 2W ); then the network described above is strongly stable. In any other
strongly stable network, all but at most d⇤(�) banks have degree d

⇤(�).
In the cooperating equilibrium, if less than S(d⇤(�)|�) banks in a clique ex-

perience good shocks, then all d⇤(�)+1 banks in the clique play N . If more than
or equal to S(d⇤(�)|�) banks in a clique get good shocks, banks that experience
bad shocks play N and banks that experience good shocks play C.

Figure 3: Cliques

Proof.
Here we show that the payo↵ functions ⇧ can be modified appropriately to

satisfy the assumptions that guarantee the main theorem in Erol (2016).
Define ⇧⇤(ai, fi, di, ✓i) as

⇧⇤(ai, fi, di, ✓i) =

8
><

>:

⇧(ai, di � fi, di) ✓i = G

⇧(N, di � fi, di) ✓i = B, ai = N

⇧(N, di � fi, di)� 1 ✓i = B, ai = C

For this altered function ⇧⇤, even if bad banks were allowed to play C, they
would never do so because it is strictly dominant to play N if ✓i = B. Hence,
the cooperating equilibrium of the game with payo↵ function ⇧⇤ where bad
banks are also allowed to play C corresponds to the cooperating equilibrium of
the game with payo↵ function ⇧ where bad banks are forced to play N .

The assumptions in Erol (2016) are satisfied by ⇧⇤. First, counterparty
failures hurt: ⇧⇤(C, fi, di, G) must be strictly decreasing in fi. Notice that
P > D + W + kW and D + W > 0 ensure that F (D + W + giW ) stays in
the interior of the support of F . Hence ⇧(C, gi, di) is strictly increasing in
gi, which makes ⇧⇤(C, fi, di, G) strictly decreasing in fi. This assumption is
relevant for uniqueness, not for existence. Second, N -payo↵s are independent
of fi: Given that ⇧(N, gi, di) = �ldi is independent of gi, this assumption is
clearly satisfied. Third, N is a strictly dominant strategy if ✓i = B: This is
guaranteed by construction.

7See Erol (2016) for the exact order(s) of the remaining smaller clique(s). Describing the
remainder of the network requires much heavier notation which we skip for simplicity of the
exposition.
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Then the main theorem in Erol (2016) can be applied, and the unique
strongly stable network is given by disjoint cliques of order d⇤(�) + 1.

Figure 3 illustrates the structure of the equilibrium network (in this example,
four cliques of order ten-that is each clique has ten banks). Notice that this
structure eliminates second order counterparty risk, which is defined as the risk
that a bank can incur losses because some of its counterparties choose not to
continue because some of their own counterparties do not continue. By forming
cliques of an optimal size, banks reach a satiation point in terms of the desired
number of counterparties while they do not face any risk of contagion further
and beyond what is inevitable, i.e. the risk that their immediate counterparties
experience bad shocks. The particular clique structure might seem unrealistic as
a description of interbank networks. But as noted at the end of the next section,
when there is heterogeneity across banks, they form core-periphery networks and
yet the qualitative fragility result that we obtain (see below) from this simple
symmetric version remains the same.

If T (d⇤(�)|�) < F (D + W ) the available funds from the bank that faces
the shock are enough to cover the refinancing need. Then the bank continuous
even if none of its counterparties continue. As a result, there is no contagion,
so there is no second order counterparty risk. If F (D + W ) < T (d⇤(�)|�) <

F (D+2W ) it is enough that one counterparty continues for the bank in need of
refinancing continues. Then the bank continues unless none of its counterparties
continue, meaning that there is minimal contagion and there is no second order
counterparty risk either. The more interesting case is T (d⇤(�)|�) > F (D+2W ),
in which the bank with refinancing needs continues if and only if some certain
non-trivial fraction of its counterparties continue. Proposition 1 shows that in
this last and more relevant case the strongly stable network is unique.

4. Network Reactions to Banking Regulations

In this section we discuss how the banking network changes in response to
changes in the liquidity requirement �, and we show that above a certain critical
threshold the network drastically collapses.

In what follows, we ignore integer problems between d

⇤(�) + 1 and k and
focus on networks that consist of disjoint cliques of order d⇤(�) + 1.8

We focus on the expected number of banks that choose N as our main notion
of systemic risk. For arbitrary networks this is hard to pin down analytically
in closed form. Using Proposition 1 we can compute even the distribution of
the number of banks that play N in the unique strongly stable network that is
formed.

8By assuming that � is selected from a finite subset X of [0, 1], and k is divisible byQ
�2X(d⇤(�) + 1), integer problems can be eliminated formally. Intuitively, however, for any

� the remainder cliques represent a very small fraction of the economy, and they are isolated
from the rest of the network, hence they have negligible impact on the comparative statics.
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Corollary 1 (Systemic Risk). For a given �, the expected fraction of banks
that play N is

1� ↵+ ↵G[S(d⇤(�)|�)� 1, d⇤(�),↵],

and the probability that all banks play N is

G[S(d⇤(�)|�), d⇤(�) + 1,↵]
k

d⇤(�)+1
.

Recall that G[S(d⇤(�)|�)� 1, d⇤(�),↵] measures the probability that, given
the d

⇤ counterparties that a good bank has, not enough succeed for the bank
to continue (bearing in mind that the bank needs S(d⇤(�)|�) of the d

⇤ counter-
parties to succeed if it is to continue).

If tighter regulations decrease the equilibrium number of counterparties in
the network, d⇤(�), then the level of systemic risk in the economy may increase.
In what follows we show that an increase in � reduces d

⇤ smoothly until it
reaches a threshold, beyond which d

⇤ suddenly collapses to 0 – a situation that
we call an empty network.

The optimal number of counterparties for a bank will be given by the degree
that maximizes its value function. Define the resilience of a bank as

R(d|�) := d� S(d|�)� 1.

which increases with the number of counterparts a bank has and decreases
with the fragility of the bank (the number of successful counterparties the bank
requires to continue). After some algebra, the value V (d|�) is given by:

V (d|�) = A L(�) G
�
R(d|�), d, 1� ↵

�
+

d⇥

� l � ↵

0
l G

�
R(d|�), d, 1� ↵

�
+B L(�) G

�
R(d|�), d� 1, 1� ↵

��
,

where

A = ↵�

�
F (D+W )� T0

�
= ↵


� c + (1� ⌘)(R2 � 1)+ ⌘

(D +W )

P

(mR2 � 1)

�
,

B =
↵

2
�W

P

.

This characterization of the value function as a function of the network
degree, which, according to Proposition 1, is based on cliques, defines the indi-
vidual optimal number of counterparties that a bank would choose to borrow
from in the interbank lending market should it is to successfully face a refinanc-
ing need. We describe next the shape of this value function, its maximum d

⇤(�)
and how it changes as the regulation parameter � changes.

While the coe�cient A governs the behavior of an isolated bank (without
any counterparty, or degree d = 0), the coe�cient that multiplies d nicely
decomposes the costs and benefits of having additional counterparties. This ex-
pression for the value function is suggestive of discontinuous dynamics. Imagine
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first that the probability that a good bank can continue because not enough
counterparties are successful, G, is fixed. It is clear that as regulation tightens
(� increases) the bank invests less (L(�) decreases) and it has less incentives to
have a counterparty that helps to refinance a small project in distress. When
� is relatively small the coe�cient that multiplies d in the previous expression
may be positive, and banks want to have all other banks as counterparties (a
complete network). When � is relatively large the coe�cient may be negative,
in which case the bank does not want any counterparty. Given the monotonicity
of the coe�cient that multiplies d when G is fixed, this captures a trivial bang-
bang solution. Our model, however, captures a more intricate fragility. We show
that the expectation of idiosyncratic bad shocks and the resulting expectation
of ine�cient cascades of ex-post failures induce banks ex-ante to strategically
and jointly reduce the number of their counterparties, until at a certain point
the whole network suddenly collapses.

The probability that the bank can obtain enough refinancing funds from
counterparties to justify continuation, G, depends, however, on both � and d.
How does the value function change with the number of counterparties? This
is illustrated in each panel of Figure 4.9 Value functions decrease in d when the
probability of not obtaining enough funds from counterparties, G, is fixed, and
this is so because the bank has to pay l for each additional counterparty. This
is clearly the case when d is very small (there are so few counterparties that
G ⇡ 0) or when d is very large (there are so many counterparties that G ⇡ 1).
When d is intermediate, however, an additional counterparty increases G, and
this makes it more likely for a bank to find enough funds to cover refinancing
needs. When the increase in the probability of taking the project to maturity is
higher than the cost of creating the link, then the value function can increase in
this intermediate region. Since G is probabilistically more reactive to �, in this
region extra links rapidly become more beneficial up to a probabilistic satiation
point. Therefore, V is hump-shaped in this middle region and the peak of the
hump is the optimal degree d

⇤. The peak is achieved at a value of d with large
resilience R and G very close to 1.

How does the optimal number of counterparties, d⇤, change with regulation,
�? To illustrate this relation we compare the panels in Figure 4. As � increases,
the value function for all d and the optimal degree d⇤ decrease, which generates
an initial smooth change in the level of connectivity d

⇤. This smooth transition
occurs until a point in which the maximum of the value function becomes neg-
ative. At this tipping point the solution becomes d

⇤ = 0, as shown in the last
panel of Figure 4.

This analysis shows that a simpler model that features two banks and a
bang-bang solution misses important elements that only arise in the presence
of networks. Two banks have only one link, and so we cannot study them to
determine how banks take the resilience and connectivity of other banks in the

9The parameters used to construct Figure 4 are k = 100, ↵ = 0.9, L̄ = 3000, ⌘ = 1/k, W =
10, R1 = 0, R2 = 20, m = 1, d = 1, D = 15, P = 615, c = 18.905, l = 0.03, 0

l = 0.02.
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system into account when they choose their own level of connectivity. Changes in
regulation modify both the individual benefits of having counterparties and the
connectivity choices of other banks and, thus, their likelihood of being successful
counterparties. Intuitively, the phase transition happens because as regulation
increases and the size of investments declines, each bank is less likely to form
counterparties. This implies that each counterparty is less likely to continue or
help refinance in the event of a shock. This makes a counterparty less attractive,
further reducing the incentive to form links. This introduces a non-linear feed-
back e↵ect that, after a critical � level is reached, leads to a sudden collapse.
Formally, we prove the phase transition in an Online Appendix for a special
case.
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Expected Payoff of Banks, V(d|ϕ) for ϕ=0.3
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Figure 4: V (d|�) as � increases

Naturally, if k < d

⇤, the upper bound k � 1 on the number of counterpar-
ties binds before reaching the satiation point, and the realized network will be
complete (a single clique with all banks as members). After � goes above a cer-
tain threshold, the network will suddenly collapse to an empty network. Once
the network is empty, no bank continues. Good banks liquidate their projects
because the likelihood of a refinancing shock is large compared to the chances
of refinancing, and so it does not compensate to pay continuations costs.10

Remark on heterogeneity across banks: The symmetric clique struc-
ture that we propose might seem unrealistic as a description of interbank net-
works. This particular structure, however, is a simplification of a broader and
more general structure that will arise when banks are heterogenous. The main
fragility insight we obtain is not an outcome of this simplification. For example
if some banks are large in terms of their deposit base while others are small, the
network will display a core-periphery structure wherein banks in the periphery
are lumped into cliques modulo their links with the core. These cliques will still
have a certain size and similar qualitative results would hold in the size of the
cliques in the periphery. Another way of introducing heterogeneity is along the

10Why do banks invest knowing that they will not continue? Banks are indi↵erent between,
on the one hand, investing L = 0 and obtaining 0 profits and, on the other hand, investing
any other amount and obtaining 0 after liquidation. This is artificial; if there is a very small
chance that at the end of the investment stage the project becomes guaranteed to not su↵er
any refinancing shock at the refinancing stage, then the bank would strictly prefer to invest
although it is almost certain that the project will not become guaranteed, and the bank will
not continue in the continuation stage.
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lines of Farboodi (2015) who assumes that some banks have access to investment
opportunities and some do not. In a version of the model in which banks can
make ex-ante side payments or links are directed, banks that have investment
opportunities would pay for links with banks that don’t have the investment
opportunities. Moreover, banks with investment opportunities will form cliques
among each other, leading to a collection of core-periphery sub-networks. Simi-
lar qualitative results will hold in the size of cliques that arise across the banks
that have investment opportunities.

5. Optimality of a Network-Conscious Regulator

The analysis so far has been positive and focused on understanding how the
policy a↵ects the network structure and the resulting systemic risk. Here we ob-
tain the optimal liquidity requirement that a network-conscious regulator, who
understands the e↵ects of regulation in the network structure, would introduce.
To simplify the exposition we introduce two assumptions that we relax at the
end of this section. First, we assume that the number of banks is not too large.
As a consequence, the upper bound k�1 on d

⇤ binds before the tipping point, so
that when a network exists, it is complete, and then falls to the empty network
at the tipping point. Second, we assume that individual deposits of banks are
not too large and, thus, they need each other. In particular they are not likely
to refinance a project in isolation, so that isolated banks play N (in case of not
having any counterparty).

Figure 5 shows that the network collapses from a complete network (d⇤ =
100) to an empty network (d⇤ = 0) at � = 0.25.11 The second panel in the
figure shows the evolution of fragility in the network. As � increases towards
0.25, the number of counterparties that are required for a bank to be successful
increases from 50 to 65, at which point the network collapses. The last panel
shows the expected fraction of banks that choose not to continue, jumping from
from 10% (the fraction of bad banks) when the network is complete, to 100%
when the network is empty.
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Figure 5: Optimal degree d⇤(�), induced fragility S, and resulting systemic risk

11The parameters used to construct the Figures 5, 6, 9 are k = 100, ↵ = 0.9, L̄ = 3000, ⌘ =
1/k, W = 10, R1 = 0, R2 = 20, m = 1, d = 1, D = 15, P = 1025, c = 18.905, l =
0.03, 0

l = 0.02.
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5.1. Notion of Welfare

Banks have all the bargaining power (so they capture all profits when contin-
uing) and limited liability (so they do not su↵er any loss when not continuing).
The government has to resort on distortionary bailouts to cover the promises
banks made to depositors. As deposits are always repaid, either by the bank or
the government, households do not count for welfare.

We can decompose welfare into two parts. One is the banking component :
the part of welfare that is internalized by banks, which is the surplus from
production in case of continuation. The other is the bailout component : the
part of welfare that is not internalized by banks and that consists of direct
and indirect costs the government incurs to cover the depositors in case of no
continuation. More specifically,

Banking component: The profits from all bad projects and from all good
projects that do not continue are 0. The expected profits from all good projects
that continue are (R2 � 1)L. Let g

⇤ denote the total number of good banks
that choose to continue: g⇤ = |{ni : ai = C, ✓i = G}|. The expected total bank
profits in the system is then (g⇤�I)(R2�1)L, where I is an indicator function
that takes the value 1 if a bank has a refinancing need that cannot be covered
(and the project is then lost), and 0 otherwise. We include the total utility
costs of forming the network (kld

⇤), the utility costs of managing the network
for all good banks that continue (g⇤0

ld
⇤) and the utility costs of managing the

continuing projects (g⇤cL). The banking component is then

(g⇤ � I)(R2 � 1)L� kld
⇤ � g

⇤(cL+ 

0
ld

⇤)

Bailout component: Let f

⇤ denote the total number of good banks that
choose not to continue: f

⇤ = |{ni : ai = N, ✓i = G}|. This means k � f

⇤ � g

⇤

banks receive bad shocks, and so the government covers (k � f

⇤ � g

⇤)L due to
bad shocks. f

⇤(1 � R1)L is the total amount covered by the government due
to good banks that decide not to continue. Moreover, IL is covered due to the
refinancing shock. The direct e↵ect of bailouts, not internalized by banks, is the
amount of deposits to be covered. The indirect e↵ect comes from distortionary
costs to cover these deposits, d � 1 per unit of bailout. The bailout component
is then

�d

⇥
(k � f

⇤ � g

⇤)L+ f

⇤(1�R1)L+ IL
⇤
.

Both components are influenced by policy � through three main channels.
First is the direct and well-known investment channel, as L(�) = min{D

� , L̄}.
The project scale has a direct e↵ect both on bank profits and on government
bailouts. Second is the contagion channel, which is captured by the number of
good banks that choose not to continue, f⇤, and the good bank that continues
but su↵ers a refinancing need that cannot be covered in the network, I. Third
is the management channel which lumps the utility costs of management and
link formation incurred by banks.

The number of banks that experience good shocks is f⇤+g

⇤. This number is
↵k in expectation at the regulation stage. We define f⇤⇤ = E[f⇤] and I⇤ = E[I]
wherein expectations are taken at the regulation stage. Expected welfare can
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Welfare Banking component Bailout component
(Net) Investment channel ↵k(R2 � 1)L �d(1� ↵)kL

Contagion channel �f

⇤⇤(R2 � 1)L� I⇤(mR2 � 1)L �d[f⇤⇤(1�R1)L+ I⇤]L
Management channel �kld

⇤ � (↵k � f

⇤⇤)(cL+ 

0
ld

⇤) �

Table 1: Components of ex-ante welfare

be decomposed into components and channels as follows as in Table 1. Adding
up all terms in Table 1 yields ex-ante welfare.

5.2. Optimal regulation and phase transition

Once we compute welfare for di↵erent levels of liquidity requirements �,
we can identify the level of �

⇤ that maximizes welfare. Figure 6 illustrates
how welfare changes in response to �. The optimal liquidity requirement is
�

⇤ = 0.25, which is the threshold point at which the network transitions from
complete to empty, as in Figure 5.

Welfare increases in � except at the transition point when the network col-
lapses. More regulation reduces the size of bailouts, except at �⇤, at which point
the network collapses and there is a sudden jump in the number of bailouts and
a sudden decrease in welfare. This result suggests that, if the government has
some uncertainty about fundamentals, it might be too risky to try to set the
exact optimal policy at the kink since a slight overshooting can result in a large
unintended welfare cost through the collapse of interbank lending.

0.2 0.4 0.6 0.8 1.
ϕ

Ex-ante welfare

Banking benefits

Bailout costs

0.2 0.4 0.6 0.8 1.
ϕ

Banking and bailout components

⨯
⨯
⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

○
○
○○○○○○○○○○

○○○○○○○○

⨯ Investment benefits

∇ Contagion costs

○ Management costs

0.1 0.3
ϕ

Loan, contagion, and management channels

Figure 6: Welfare in �, and its components and channels
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Figure 6 also dissects welfare into its components and channels. The banking
benefits (the banking component) decline with � because investments decline
with �. Since the scale of projects declines, the amount that bailouts have to
cover (bailout costs, or the negative of the bailout component) also decline, but
only initially, when the network si operating fully. When the network collapses,
bailout needs increase discontinuously because no bank chooses to make cross-
insurance and all choose to not continue. The government suddenly has to
cover smaller projects but for many additional banks. The second panel of the
figure also shows the sudden reduction in management costs the (negative of
management channel), which are not large enough to compensate the increase
in the higher need for bailouts.

5.3. Relaxing Assumptions.

5.3.1. Large number of banks
In the previous welfare analysis we have assumed that k is not too large

so that when a network is not empty it is complete. This is so because the
largest shock P was su�ciently large to force any bank into default no matter
how many counterparties it has. Therefore, there was never a satiation point
in terms of the number of desired counterparties. Then banks wanted as many
links as possible, hence form a complete network.

Here we show that this assumption is not critical for the results. If k is
not as small or P is not as large, there is a satiation point in the number
of counterparties needed to satisfy a large probability of surviving a possible
refinancing shock (typically a probability close to 1). This generates a dense
but not complete network.12 Changes in regulation now smoothly change the
satiation point. Figure 7 shows how the satiation point d

⇤ slowly decreases as
regulation becomes tighter. Nonetheless, the network suddenly collapses at the
point � = 0.45.13

Notice that in this example welfare starts to fall sharply just before the
network’s transition point, not exactly at the transition point itself. This is so
because in this example the source of the phase transition is the probabilistic
source. A larger � reduces the size of investments, which decreases fragility S,
just as the bank needs a smaller number of successful counterparties to refinance
a project in distress. Banks react to this change by decreasing their degree
slowly. As � keeps growing, however, it becomes impossible at a certain point
to face a refinancing shock with high probability. At this point, the contagion
becomes a serious ex-ante problem because a rapidly increasing number of banks
are expected to liquidate their good projects. This is seen in the plot of the
expected fraction of banks that play N in Figure 7. When � reaches the tipping

12Allowing a small P or large k (more specifically P < D + W + kW ) creates a small
technical complication for uniqueness of the strongly stable network. The described network
is still strongly stable but it may not be the unique strongly stable network.

13The parameters used to construct the Figure 7 are k = 100, ↵ = 0.9, L̄ = 3000, ⌘ =
1/k, W = 10, R1 = 0, R2 = 20, m = 1, d = 1, D = 15, P = 615, c = 18.905, l =
0, 0

l = 0.05.
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Figure 7: Smooth change in the network structure when the largest shock is not too large,
and resulting welfare, fragility, and systemic risk

point, the fragility is insurmountable and there is almost certainty of liquidating
a good project with the number of counterparties that banks can a↵ord to have.
Banks stop forming links. The optimal degree falls to zero at � = 0.45 but
the payo↵ to banks and welfare start falling very sharply in advance because of
contagion.

5.3.2. Deposits are large enough
When deposits are small, and thus the resources of individual banks are small

compared to P , isolated banks are destined to play N , which amplifies bailout
costs. Here we show that even when P is relatively small (more specifically, when
D + W > PT0) and banks continue even without counterparties, welfare can
still feature sharp declines around a transition point at which the networks stop
operating. As illustrated in Figure 8, however, the optimal level of regulation in
this case occurs not at the transition point of � = 0.5 (as in the previous cases)
but instead is very close to � = 0.14

6. Mistakes of a Network-Blind Regulator

Here we discuss the mistakes made by a network-blind regulator, who, when
deciding regulation, does not consider that the network structure reacts to �

14The parameters used to construct the Figure 8 are k = 100, ↵ = 0.9, L̄ = 3000, ⌘ =
1/k, W = 10, R1 = 0, R2 = 20, m = 1, d = 1, D = 1, P = 1010, c = 18.791, l =
0.03, 0

l = 0.02.
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and naively maximizes welfare by concluding that the observed level of network
structure is a given.

More specifically, we have shown that for any arbitrary network in cliques
with degrees d and an arbitrary level of liquidity requirement �, there is a
welfare level W (d,�). Suppose that the economy is at a status quo level of
liquidity requirements �0 (not necessarily optimal at this point) that induce an
optimal reaction of banks into a strongly stable network with the optimal degree
d0 = d

⇤(�0). The status quo welfare is then W (d⇤(�0),�0).
Assume now the government decides to adjust � to an optimal level given

the observed network degree d

⇤(�0). If, as has been done in previous analyses,
the government takes network reactions into account, then the government max-
imizes W (d⇤(�),�) over � and � is adjusted to �

⇤⇤ = argmax�{W (d⇤(�),�)}
and all banks have degree d

⇤⇤ = d

⇤(�⇤⇤).
If, however, the government does not acknowledge how the interbank net-

work reacts to changes in policy, and instead it regards the network that has
degrees d0 as given and fixed, what would the unintended consequences be of
such a network-blind policy? Formally, the government takes the network in
clique structure that has degrees d0 as given, and chooses a policy �

⇤(d0) =
argmax�{W (d0,�)} that maximizes welfare for this fixed network that has de-
grees d0. The network reacts to this policy change and the degrees become
d

⇤(�⇤(d0)). The realized welfare is then W (d⇤(�⇤(d0)),�⇤(d0)). The immediate
cost of the network-blind policy is captured by the wedge

W (d0,�0)�W (d⇤(�⇤(d0)),�
⇤(d0)),

while the opportunity cost of the network-blind policy is captured by the wedge

W (d⇤⇤,�⇤⇤)�W (d⇤(�⇤(d0)),�
⇤(d0)).

Figure 9, which is based on the benchmark simulation described in the previ-
ous section, illustrates the main result. A network-blind regulator who starts at
a high status quo �0 takes the empty network d

⇤ = 0 as given. Then, he naively
thinks that welfare, in response to regulation, follows the dashed line (labeled
by “Network-Blind: Sparse”). In contrast, a network-blind regulator who starts
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at a low status quo �0 takes the complete network d

⇤ = k � 1 as given. Then
he naively thinks that welfare, in response to regulation, follows the dotted line
(labeled by “Network-Blind: Dense”). A network-conscious regulator consider
the same solid line as in Figure 6.
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Network-Conscious
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Figure 9: Network-conscious welfare and network-blind welfare for given networks, and the
costs network-blind regulation

Imagine that the status quo is given by �0 = 0.1, in which the observed
network is dense. A network-blind government would think that welfare is
maximized at around � = 0.5. However, once a liquidity requirement of � = 0.5
is implemented the network reacts by becoming sparse and the realized welfare
becomes much lower than both the intended level and the starting status-quo
level.

Imagine, in contrast, that the status quo is given by �0 = 0.8, in which
the observed network is sparse. A network-blind government would think that
welfare can be maximized at � = 1. In this case the welfare improves upon the
status quo because the network does not react to this policy. The opportunity
cost, however, is still positive since the optimal for a network-conscious policy
is a much lower requirement, �⇤ = 0.25.

Figure 9 plots the immediate welfare costs and welfare opportunity costs of
a network-blind policy for any status-quo �0. The first panel shows the compar-
ison of the status-quo welfare level with the (unintended) realization of welfare
level under the network-blind optimal policy. For low liquidity requirements the
status-quo always shows higher welfare compared to a network-blind optimal
policy because the latter implies a network collapse. For high liquidity require-
ments the status-quo always displays lower welfare compared to a network-blind
optimal policy because the status-quo network is already given by the empty

25



network so that there is no unintended network collapse. The second panel
compares the welfare that would be achievable by a network-conscious policy
and a network-blind policy for any level of the status-quo. Not surprisingly,
this di↵erence is always positive, and it is larger among low levels of status-quo
requirements.

7. Conclusions

Discussion about the optimal level of liquidity requirements, and more gen-
erally about optimal banking regulations, has generated a fruitful recent debate
among academics and policymakers alike, particularly in the light of many cre-
ative proposals made by Basel III and the Dodd-Frank Act. Given the promi-
nent role that a dense interbank network and complex counterparty relationships
have played during the recent crisis, it is surprising there has been little discus-
sion of how the proposed regulations would a↵ect the density and topology of
interbank lending relations and the banking network more generally.

We show that tightening liquidity requirements above a critical threshold
can induce a sudden collapse in interbank relationships, thus discontinuously
decreasing insurance across banks that face liquidity and refinancing shocks.
We argue this is an endogenous network reaction that should be taken into
account by regulators who propose further tightening of liquidity requirements.
A network-blind tightening in regulation can induce a discontinuous increase in
systemic risk: even though the bailouts needed per bank are smaller, more banks
know they cannot ride refinancing shocks successfully, and thus they choose to
liquidate assets excessively, with the result that the government has to bailout
banks that would have been covered by other banks had a network existed.

Our main goal is to highlight the potentially large unforeseen e↵ects of bank-
ing regulations on network formation and systemic risks. Although we have
focused on liquidity requirements, similar results can be obtained when consid-
ering capital requirements and other forms of leverage constraints, as long as
these restrictions reduce investments to a level that discourages the formation
of networks and the related cross-insurance gains they provide.

The model we have introduced captures the intricate strategic considerations
that banks and financial institutions face when they choose counterparties. The
model’s tractability opens doors to the study of other interesting questions,
which we leave for future research. For example, in the model we abstract
from potentially interesting trade-o↵s between liquid and illiquid assets. As a
consequence banks choose to invest in illiquid assets as much as possible. Having
an optimal amount of liquid assets as a fraction of illiquid assets would allow
understanding how networks evolve during periods of scarce liquidity or high
returns of illiquid assets.

Similarly, introducing aggregate refinancing shocks, or a correlation among
banks’ assets (coming, for example, from securitization), also would a↵ect how
the network structure evolves. We conjecture that just as there is a level of
regulation beyond which a network collapses, there also may be a level of secu-
ritization that leads to similar fragility results.
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Finally, we have assumed that the government bails out depositors in cases
of distress, but we leave open the question of what happens when a government
instead bails out banks directly. Indeed, Erol (2016) considers capital injections
into banks and shows that the anticipation of bailouts relaxes the market dis-
cipline during network formation, and so the network structure is completely
dissolved into an arbitrarily interconnected network. He calls this change, which
results in higher systemic risk, “network hazard.” It remains to be determined
how network hazard interacts with regulation.

References

Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., 2015. Systemic risk and stability
in financial networks. The American Economic Review 105, 564–608.

Aldasoro, I., Delli Gatti, D., Faia, E., 2015. Bank networks: Contagion, systemic
risk and prudential policy. Working Paper, Goethe University Frankfurt.

Allen, F., 2014. How Should Bank Liquidity be Regulated? Speech at Federal
Reserve Bank of Atlanta .

Allen, F., Gale, D., 2000. Financial contagion. Journal of Political Economy
108, 1–33.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., Stiglitz, J., 2012.
aisons dangereuses: Increasing connectivity, risk sharing, and systemic risk.
Journal of Economic Dynamics and Control 36, 1121–1141.

Calomiris, C.W., Heider, F., Hoerova, M., 2014. A theory of bank liquidity
requirements. Columbia Business School Research Paper .

Cooper, R., Ross, T.W., 1998. Bank runs: Liquidity costs and investment
distortions. Journal of monetary Economics 41, 27–38.

Diamond, D., Kashyap, A., 2016. Liquidity requirements, liquidity choice and
financial stability. NBER Working Paper 22053.

Diamond, D.W., Dybvig, P.H., 1983. Bank runs, deposit insurance, and liquid-
ity. Journal of Political Economy 91, 401–19.

Ennis, H.M., Keister, T., 2006. Bank runs and investment decisions revisited.
Journal of monetary Economics 53, 217–232.

Erol, S., 2016. Network hazard and bailouts. working paper .

Erol, S., Vohra, R., 2016. Network formation and systemic risk. Working Paper,
University of Pennsylvania.

Farboodi, M., 2015. Intermediation and voluntary exposure to counterparty
risk. working paper .

27



Farhi, E., Golosov, M., Tsyvinski, A., 2009. A theory of liquidity and regulation
of financial intermediation. The Review of Economic Studies 76, 973–992.

Goodfriend, M., 2016. Liquidity regulation, bank capital, and monetary policy.
Testimony before the Committee on Banking, Housing, and Urban A↵airs
U.S. Senate .

van den Heuvel, S., 2016. The welfare e↵ects of bank liquidity and capital
requirements. Working Paper, ECB.

Holmström, B., Tirole, J., 1998. Private and public supply of liquidity. Journal
of Political Economy 106, 1–40.

Nosal, J., Ordonez, G., 2016. Uncertainty as commitment. Journal of Monetary
Economics 80, 124–140.

Ordonez, G., 2016. Sustainable shadow banking. Working Paper, University of
Pennsylvania.

Paddrik, M., Park, H., Wang, J.J., 2016. Bank networks and systemic risk:
Evidence from the national banking acts. Working Paper, Arizona State
University.

Santos, J., Suarez, J., 2015. Liquidity standards and the value of an informed
lender of last resort .

Wang, J.J., 2016. Distress dispersion and systemic risk in networks. Working
Paper, Arizona State University.

28


