Unconventional Gas & Oil Drilling (UGOD) in the Marcellus Shale and Health Disparities

Center of Excellence in Environmental Toxicology: Environmental Health Sciences Core Center <u>http://ceet.upenn.edu/</u>

Director: Trevor M. Penning, Ph.D.

National Institute of Environmental Health Sciences

CENTER OF EXCELLENCE IN ENVIRONMENTAL TOXICOLOGY

What is the Marcellus Shale?

□Half the land mass of Pennsylvania

22,835 sq. miles

84 trillion cubic ft of natural gas

Price is \$8 - \$16 per thousand cu. ft.

Enough for the entire US population for 4 yrs

Shale sedimentary rock

Organic rich and porous

Contains thermogenic methane

The Drill Rig

Drill head and pad 5-10 acre plot

□Ideally one per sq mile

Saturating drilling 8 per square mile

High density drilling in Susquehanna Co, PA

Pennsylvania would need 22,000 to 160,000 drill rigs

Active wells 2008-2014 > 12,000

Unconventional Gas Drilling in PA

The "Fracking" Process

The Holding Ponds for Flow-Back Water

- □Need 5M gallons water per well head
- Each truck carries 4,000 gallons water
- □1250 truck loads
- Proppant: 1.5 M pounds (silica/sand)
- Requires 750 truck loads
- X1 to x10 "frack" episodes per well
- <30% in the flow back water held in pits</p>

Diesel Trucking

Diesel Trucks Deliver:

- ➢Drill-Rigs
- Proppant
- Fracking chemicals
- Compressor parts
- Gas line piping
- **Diesel Trucks Remove:**
- ≻Natural gas
- ➤Waste water

Night-Time Flaring

□Well is tested by flaring

Release of methane: BETEX (benzene, ethylbenzene, toluene and xylene)

Move towards marketing "wet-gas" a larger portion of methane is burned

Release of hydrogen sulfide

2014-Emissions Inventory for UGOD Released in PA

Year	Well-sites reporting	Midstream Facilities reporting	Carbon Monoxide (CO)	Nitrogen Oxides (NOx)	PM ₁₀	Sulfur Dioxide (SO ₂)	VOC's	Methane
2011	9,037	150	6,852	16,542	577	122	2,820	NA
2012	8.996	453	7,350	16,361	600	101	4,024	123,684
2013	10,275	447	6,606	17,659	670	159	4,790	107.945
2014	10,009	508	8,230	21,663	864	263	6,389	109,555

Expressed as Tons per year Released by PA-DEP: 08-19-16

Potential for Air Pollution – VOCs and PM 2.5

Photochemistry between VOCs and nitrogen oxides generate ground level ozone

Ground level ozone exacerbates underlying asthma and COPD and causes lung injury

Diesel Exhaust – Transportation and Compressor Stations -VOCs

-Butadiene, acrolein, formaldehyde

-PM2.5: carbonaecous core adsorbs PAH, nitro-PAH and metals

-PM2.5: lodge in the deep lung (bronchioles and alveoli)

- -PM2.5: invoke an inflammatory response exacerbate lung disease
- -Diesel exhaust: Group 1: carcinogenic in humans (IARC)

Additives in Fracking Fluid

FracFocus.org Chemical Disclosure Registry- 35,957 disclosures; 1,084 different chemicals used; only 9% have RfVs and OSFs - Source US EPA 2016

Common Additives in Fracking Fluid

Additive Type	Main Compound	Common Use of Main Compound		
Acid	Hydrochloric acid or muriatic acid	Swimming pool chemical and cleaner		
Biocide	Glutaraldehyde	Cold sterilant in health care industry		
Breaker	Sodium Chloride	Food preservative		
Corrosion inhibitor	N,n-dimethyl formamide	Used as a crystallization medium in Pharmaceutical Industry		
Friction Reducer	Petroleum distillate	Cosmetics including hair, make-up, nail and skin products		
Gel	Guar gum or hydroxyethyl cellulose	Thickener used in cosmetics, sauces and salad dressings.		
Iron Control	2-hydroxy-1,2,3- propanetricaboxylic acid	Citric Acid it is used to remove lime deposits Lemon Juice ~7% Citric Acid		
Oxygen scavenger	Ammonium bisulfite	Used in cosmetics		
Proppant	Silica, quartz sand	Play Sand		
Scale inhibitor	Ethylene glycol	Automotive antifreeze and de-icing agen		

Fracking Fluid

- 0.49% of fracking fluid contains a mixture of chemicals
- 95 tons of chemicals are used per well base
- **Composition is a trade-secret**
- Some chemicals listed by class and not by CAS registry number
- Multi-Criteria Decision Analysis (MCDA) Framework
 -Toxicity Score (Rfv, TTC, LOC)
 -Occurrence Score (frequency of use)
 -Physiochemical properties (mobility, volatility, persistence)

(Source US-EPA)

Frequency of HF Chemical Use and Critical Oral Effects

Chemical Name	% Disclosures	Rfv (mg/Kg)	Critical Effect	Organ System
Methanol	73%	2	Extra cervical ribs	Skeletal
Ethylene glycol	47%	2	Kidney toxicity	Kidney
Propargyl alcohol	33%	0,002	Renal and heaptotoxicity	Kidney & Liver
2-Butoxyethanol	23%	0.1	Hemosiderin deposition in liver	Liver
Naphthalene	19%	0.02	Decreased terminal body wt	Whole body
1,2,4- trimethylbenzene	13%	0.01	Decreased pain sensitivity	Nervous system
Quaternary ammonium salts	12%	0.44	Decreased body wt	Whole Body
Formic Acid	11%	0.9	Reproductive toxicity	Reproductive
Sodium chlorite	11%	0.03	Neurodevelopmental	CNS

Only 9/31 top used chemicals have established critical oral health effects-US EPA (2016)

Cancer MCDA in Produce Water

Source-US-EPA 2016

Potential for Water Pollution- Flow-Back Fluid

Typical Concentrations of "Flow Back" Constituents in Gas Well Water in Marcellus Shale based on Limited Samples from PA and WV Wells ¹⁴

	1					and the second se
Chemical	Min	Median	Max	Units	MCL ¹⁵	Max Excess
Arsenic	0.09	0.1065	0.123	mg/L	.010	12.3 x
Barium	0.553	661.5	15700	mg/L	2	7,850 x
Benzene	15.7	479.5	1950	ug/L	5	390 x
Cadmium	0.009	0.032	1.2	mg/L	.005	340 x
Chromium	0.122	5.0	5.9	mg/L	0.1	59 x
Ethyl benzene	3.3	53.6	164	ug/L	0.7	234 x
Fluoride	5.23	392.615	780	mg/L	4	195 x
Lead	0.02	0.24	0.46	mg/L	0.015	31 x
Toluene	2.3	833	3190	ug/L	1	3,190 x
Xylene	16	487	2670	ug/L	10	267 x

MCL = maximum contaminant level ppm

Concentrations of NORM Constituents Based on Limited Samples from Pennsylvania and West Virginia Marcellus Shale¹⁷

				USEPA	
Radioisotope	Minimum	Maximum	Units	PRG 18,19	Max Excess
Gross alpha	22.41	18.950	pCi/L	15	1,263 x
Total alpha radium	3.8	7.445	pCi/L	5	362 x
Radium-226	2.58	33	pCi/L	0.000833	40,097 x
Radium-228	1.15	18.41	pCi/L	0.0458	402 x

(NORM = Naturally Occurring Radioactive Material) (PRG = Preliminary Remediation Goals)

EHSCC Hydraulic Fracturing ICWG

- Driven by an emerging environmental public health threat
 Community-driven concern
- Required spectrum of expertise: mechanistic toxicology; epidemiology; exposure science; social science; environmental law; regulatory science; and public health
- Galvanized 16/20 EHSCC to work together
- Resourced with inter-Center Pilot Projects & P30 Supplements

Deliverables

- High profile papers in EHP and PLoS One: Health Care Utilization Study >22,000 downloads
- Consortium of Health and Energy Research (CHER)-Judy Zelikoff-NYU
- Written and oral comments on "EPA Assessment on the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources"- EPA SAB

Disparities exist when differences in health outcomes or health determinants are observed between populations -race and ethnicity -sexual orientation -age and disability -socioeconomic status -geographic location -exposures

(CDC-Health Disparity and Inequalities Reports)

Health determinants in Marcellus Shale

- Examined residential census tracks In rural areas
- Conducted spatial autocorrelation for health determinants with well density

Yelena Ogneva-Himmelberger, Liyao Huang-

Applied Geography, 60, 2015, 165–174

RESEARCH ARTICLE

Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates

Thomas Jemielita^{1®}, George L. Gerton^{2®}, Matthew Neidell³, Steven Chillrud⁴, Beizhan Yan⁴, Martin Stute⁴, Marilyn Howarth², Pouné Saberi², Nicholas Fausti², Trevor M. Penning², Jason Roy¹, Kathleen J. Propert¹, Reynold A. Panettieri, Jr.²*

1 Department of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 2 Center of Excellence in Environmental Toxicology (CEET), Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 3 Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, New York, United States of America, 4 Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, United States of America

• These authors contributed equally to this work.

* rap@mail.med.upenn.edu

PLoS ONE 10, e0131093. Downloaded > 22,000 times

Increases in health care utilization are associated with number of wells and well-density in Pennsylvania counties and zip codes.

Objectives

- 1. Determine increase in UGOD activity in 3 PA counties matched in demographics for the period 2007-2011 where one county serves as a control
- 2. Examine all inpatient billable insurance records for the 3 counties and group by medical category over 5 years (n= 92,850) obtained from Truven Health Analytics
- 3. Determine whether well number or well density by zip-code is associated with changes in health care utilization
- 4. Can the changes in utilization be associated with suspected air or water pollution

Drilling Activity and Gas Production in PA Counties 2007-2011

Increase in well-density by zip-code in Bradford and Susquehanna Counties

25

Demographics of Populations are Similar

		Bradford	Susquehanna	Wayne
Population		62,622	43,356	51,548
Overall Hospitalizations 2007–201	39,821	22,559	30,425	
Age (median)		43.4	45.1	45.9
Male %		49.5	50.4	52.8
High School Graduate, percent of person a	age 25+ %	86.6	88.1	87.4
Bachelor Degree or Higher, percent of perso	n age 25+ %	16.4	16.1	18.4
Median Income (2008–2012) \$		44,650	46,815	50,153
Race %	White	97.4	98.0	94.7
	Black	0.6	0.4	3.5
	Asian	0.6	0.3	0.5
	Other	1.4	1.3	1.3
Median Number of Wells	2007	0	0	0
	2008	1	0	0
	2009	13	0	0
	2010	81	1	0
	2011	149	6	0
Number of Zip Codes with >0 Wells (%)	2007	4 (19)	2 (9)	0 (0)
	2008	12 (57)	4 (17)	0 (0)
	2009	16 (76)	8 (35)	0 (0)
	2010	20 (95)	12 (52)	0 (0)
	2011	20 (95)	16 (70)	0 (0)

doi:10.1371/journal.pone.0131093.t002

Total Inpatient Rates and Health Economic Impact

Poisson Fixed Effects Models: Number of Wells per Zip Code per Year.

	Wells RR (p-value)	Year RR (p-value)	
Inpatient total	1.0003 (0.076)	0.984 (0.128)	
Cardiology	1.0007 (0.0007)	0.966 (0.029)	
Dermatology	1.0010 (0.039)	0.977 (0.345)	
Endocrine	1.0008 (0.086)	0.963 (0.316)	
Gastroenterology	1.0003 (0.338)	0.992 (0.749)	
General medicine	1.0002 (0.574)	1.037 (0.022)	
Generals surgery	1.0000 (0.849)	1.104 (0.213)	
Gynecology	1.0002 (0.708)	0.860 (<0.0001)	
Hematology	0.9997 (0.657)	1.023 (0.616)	
Neonatology	1.0014 (0.018)	0.959 (0.125)	
Nephrology	0.9998 (0.461)	1.025 (0.250)	
Neurology	1.0006 (0.037)	1.001 (0.948)	
Normal newborns	1.0000 (0.969)	0.963 (0.030)	
Ob/delivery	1.0002 (0.411)	0.968 (0.411)	
Oncology	1.0015 (0.004)	0.956 (0.081)	
Ophthalmology	1.0010 (0.593)	1.084 (0.255)	
Orthopedics	0.9993 (0.011)	0.970 (<0.0001)	
Other/ob	1.0003 (0.727)	0.899 (0.007)	
Otolaryngology	1.0000 (0.982)	0.978 (0.614)	
Psych/drug abuse	1.0004 (0.073)	1.035 (0.006)	
Pulmonary	1.0000 (0.850)	0.989 (0.482)	
Rheumatology	1.0014 (0.043)	0.961 (0.227)	
thoracic surgery	1.0011 (0.100)	0.989 (0.708)	
Trauma	1.0008 (0.174)	1.021 (0.505)	
Urology	1.0010 (0.012)	0.983 (0.464)	
Vascular surgery	0.9997 (0.539)	0.948 (0.024)	

Note: RR = Risk ratio

doi:10.1371/journal.pone.0131093.t004

Poisson Fixed Effects Models: Quantile Analysis of Wells/km²

	Q1 Wells RR (p-value)	Q2 Wells RR (p-value)	Q3 Wells RR (p-value)	Wald Test of all Q Wells = 0	Year RR (p-value
Inpatient total	0.979 (0.475)	1.069 (0.044)	1.108 (0.041)	P = 0.0058	0.977 (0.013)
Cardiology	1.021 (0.667)	1.142 (0.018)	1.27 (0.001)	P = 0.0008	0.957 (0.004)
Dermatology	1.051 (0.572)	1.108 (0.429)	1.454 (0.013)	P = 0.0329	0.972 (0.329)
Endocrine	0.975 (0.862)	1.228 (0.045)	1.391 (0.029)	P = 0.0068	0.942 (0.039)
Gastroenterology	0.943 (0.369)	1.12 (0.168)	1.105 (0.364)	P = 0.1101	0.98 (0.406)
General medicine	0.911 (0.234)	0.993 (0.931)	0.985 (0.872)	P = 0.6373	1.037 (0.006)
Generals surgery	0.875 (0.011)	0.921 (0.228)	0.944 (0.424)	P = 0.0669	1.015 (0.157)
Gynecology	0.887 (0.300)	0.938 (0.606)	0.967 (0.849)	P = 0.7549	0.865 (<0.0001)
Hernatology	1.202 (0.365)	1.21 (0.320)	1.221 (0.429)	P = 0.7145	0.993 (0.868)
Neonatology	0.994 (0.975)	1.301 (0.152)	1.527 (0.100)	P = 0.0745	0.95 (0.052)
Nephrology	1.115 (0.203)	1.143 (0.227)	1.151 (0.211)	P = 0.5566	1.004 (0.871)
Neurology	0.922 (0.344)	1.157 (0.048)	1.188 (0.062)	P = 0.0003	0.99 (0.542)
Normal newborns	0.949 (0.481)	0.978 (0.764)	0.964 (0.731)	P = 0.8980	0.965 (0.064)
Ob/delivery	0.958 (0.524)	1.028 (0.670)	1.029 (0.749)	P = 0.4219	0.956 (0.002)
Oncology	1.217 (0.144)	1.415 (0.028)	1.815 (0.002)	P = 0.0166	0.938 (0.022)
Ophthalmology	0.717 (0.381)	1.014 (0.976)	1.116 (0.836)	P = 0.5215	1.099 (0.263)
Orthopedics	0.996 (0.940)	0.981 (0.740)	0.875 (0.130)	P = 0.3591	0.963 (<0.0001)
Other/ob	0.966 (0.885)	1.176 (0.451)	1.264 (0.502)	P = 0.7209	0.879 (0.001)
Otolaryngology	1.052 (0.744)	1.194 (0.412)	1.004 (0.988)	P = 0.5564	0.966 (0.527)
Psych/drug abuse	0.944 (0.307)	0.927 (0.293)	1.13 (0.145)	P = 0.0535	1.039 (0.008)
Pulmonary	1.05 (0.267)	1.097 (0.202)	1.067 (0.572)	P = 0.3050	0.981 (0.306)
Rheumatology	1.091 (0.601)	1.432 (0.159)	1.866 (0.034)	P = 0.0774	0.94 (0.067)
Thoracic surgery	0.872 (0.391)	1.151 (0.470)	1.13 (0.654)	P = 0.0903	0.987 (0.751)
Trauma	0.997 (0.987)	1.057 (0.761)	1.265 (0.222)	P = 0.4373	1.02 (0.562)
Urology	0.827 (0.117)	1.105 (0.462)	1.24 (0.215)	P = 0.0334	0.977 (0.339)
Vascular surgery	1.103 (0.488)	1.052 (0.788)	0.966 (0.857)	P = 0.8116	0.946 (0.030)

Note: RR = Risk ratio

doi:10.1371/journal.pone.0131093.t005

Gas Production Since 2011

Solid and Liquid Waste Produced in PA 2014

Source:https://www.paoilandgasreporting.state.pa.us/publicreports/Modules/DataExports/DataExports.aspx

Where does the waste go?

Tioga County: Waste-water Treatment

Each red dot identifies an active well which Sends waste water to a centralized waste water treatment (CWT) plant

- In PA 6 deepwater injection wells exist
- **2013-PA reuses 65% of its HF water waste**
- □ 2013-20% goes to CWT facilities
- 39 CWT facilities in PA
- 30 zero-discharge and 9 are discharge
- 90% goes to zero-discharge
- TDS waste goes to 51 landfills
- 34 have radium-226 and radium-228 leachates that exceed the PRG by 65,000 and 52-fold respectively

Summary

- UGOD pose a public health threat
- UGOD occurs in communities that have subpockets of vulnerable populations
- Association between increases in inpatient hospitalization rates with number of wells and well density shows that health disparity exists between exposed and non-exposed groups
- Cardiology inpatient rates were significantly associated with wells per zip-code and and wells per km²
- Dermatology, neurology, oncology and urology inpatient rates supported an association with wells per km²
- Cardiology inpatient rates might be associated with exposure to PM2.5
- Dermatology inpatient rates night be associated with exposure to water pollutants
- Large number of uncertainties exist
 - -lack of base line water monitoring
 - -lack of real time air monitoring
 - -lack of human exposure data (biosensors or biomarkers)
 - -lack of complete toxicology data on 90% of the chemicals used -need for alternative approaches

Preliminary Report July 2015: "The effect of HF on the nation's drinking water resources was neither widespread or systemic"

□ Final Report December 2016:

"HF can impact drinking water resources under some circumstances. Impacts can range in frequency and severity.."

Chemoinformatics

- FracFocus has >35,957 HF disclosures matched to well location
- **1,173 different chemicals used**
- Cluster analysis of chemical use with toxic-endpoint e.g. REPROTOX Data base (Elliot et al., J. Exposure Sci and Eng. 2016 1-10)
- Provide health end-points for epidemiological studies
- https://bioinf.ceet.upenn.edu/fracking/

Matching Use to Toxic End-Points

Developmentally and/or Reproductively Toxic Chemicals

Chemicals which have been proven health affects in human reproduction or development.

Acknowledgements

Reynold Panettieri, M.D. Thomas Jemielita Kathleen Propert, Ph.D. Nicholas Fausti George Gerton, Ph.D. Poune Saberi, M.D. Marilyn Howarth, M.D. Steve Vitale, B.S.

Medicine CEET

CENTER OF EXCELLENCE IN ENVIRONMENTAL TOXICOLOGY

- Beizhan Yan, Ph.D.
- Steven Chillrud, Ph.D
- Martin Stute, Ph.D.

- Truven Inc.
- NIEHS
- INTER-ESHCC Pilot Project
- P30-ES013508 (Penn)
- P30-ES009089 (COLUMBIA)