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The WGC

Arkani-Hamed, Motl, Nicolis, Vafa ‘06

“For every U(1) gauge field, there exists a
superextremal charged particle, i.e., one
with charge-to-mass ratio:

‘Q’—‘Q’extBH

(In this talk, superextremal never means self-repulsive)
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The WGC

Arkani-Hamed, Motl, Nicolis, Vafa ‘06

Forevery ) € I'g, 3k € Ns.t. thereisa

superext. multiparticle state of charge k()
Q2

m

“Convex Hull Condition”

Cheung, Remmen * 14




The tower WGC

BH, Reece, Rudelius '15, ’19
Andriolo, Junghans, Noumi, Shiu ‘18

Forevery Q € I'g, 3k € Ns.t. thereisa
superext. single-particle state of charge £(Q)

Qxx/m

e Required to preserve WGC upon
compactification

 Related to the emergence of
weak (gauge) coupling at low energies

Harlow 15, BH, Reece Rudelius’17,’18,  Grimm, Palti, Valenzuela ‘18

e Plays nicely with the Distance Conjecture - ——__ My

Ooguri, Vafa ‘06
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The sublattice WGC

BH, Reece, Rudelius ‘15, ’16, '17

There exists k € Ns.t.V(Q) € I'g, thereis a
superext. single-particle state of charge k()

¢ A theorem in elec. NSNS sector of tree-level ST

Sketch: Arkani-Hamed, Motl

BH, Reece Rudelius’16 ~—————— > BH, Lotito, 23xx.xxxxx (2x)

Nicolis, Vafa ‘06 (Modular invariance) Montero, Shiu, Soler 16 (Superextremality)
“« ” \ 2 /l
e coarseness k “never too large N\ /
.\ /0
(known k>1 exs are all orbifolds) \\ /
~_ L §%
. AW gl :
e Strongest form of WGC without e ©

known counterexs (in d>5; renormalized version ok in 4d)
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The tower / sublattice WGC

BH, Reece, Rudelius '15, ’16, 17, '19
Andriolo, Junghans, Noumi, Shiu ‘18

Most existing evidence is perturabative

Are these strong forms “just” special
properties of weak coupling limits?

I’ll argue that they are not.

01



The T/sLWGC for BPS particles

BPS,
not extremal

2
w
>
8 ®
@ g Q1/m
m >
o
Extremal
EXtremal, and BPS
not BPS

Infinite towers of BPS particles required in Q directions

where BPS = Extremal 02



The T/sLWGC for BPS particles

BPS,
not extremal

Cone of BPS
-8 black holes
93]
3 @ (Q space)
QO w C
o BH
E o Ql/m
o 5
Q
Extremal,
not BPS

Infinite towers of BPS particles required in Q directions
where BPS = Extremal
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The T/sLWGC for BPS particles

! I
I Non-BPS superext. 1 BPS nonextremal
Het ST on Sl: : towers :
""""" YR ¥ IR v
5
E BH QL
b - On
¢{ region L,
e |
! I
! I
T I
I

Infinite towers of BPS particles not required
in Q directions where BPS # Extremal  (SeeTimo'stalk) ()5



T/sLWGC is linked to geometry

BH, Reece, Rudelius ‘15

M theory on CY3
L» 5d N=1 SUGRA EFT

M2s on hol. curves — BPS particles
counted by Gopakumar-Vafa invariants

Goal: determine Cgy, compare with GVs
strenuous nonpert/geometric test
of T/sLWGC
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5d N=1 SUGRA

5= 22/do:pr< L

; . 1
igij(sf))adf . 3(;9) ~ 53 ary(@)FI AxF7
95
o I J K
+6(27r)2/CIJKA ANFY NEF?

g3 = (2m)*/3(2k2)/?

I1=0,1,..., n

1 .

FlY] = sCi rY'YJvE
L CY3 intersection #s

Exact away from phase transitions

04



5d N=1 SUGRA

S= 22/d0zf< !

) . 1
igij(sf))atbl . 8(;5]) ~ 53 ary(@)FI AxF7
95
o I J K
+6(27r)2/CIJKA ANFY NEF?

g2 = (2m)*(2k3)"/?
I1=0,1,..., n

FlY] = %CI rY'YJvE
L CY3 intersection #s

FlY(9)] =1 9ii(¢) = ars(¢)0; Y10,V
arg =Fry—Fi1Fy Crixk = Frik

Fr=Fr1, Fri=Fr5, ---
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5d N=1 SUGRA

S=5 /d z/— <R g](¢)8¢i~8¢j> — Zng/aU(gz))F’A*FJ
5
—— [ Cryx AT ANFI NFE
- 6(27")2 / 7K ’ g = (277)4/3(2/%)1/3
I 0,1,..., n

BPS particle bound
m(¢) =

I
5l = Bl (6)
BPS string boupd (95 = 27r/g5)
T(¢) > ((0)| =

95 ~T
\/51%5 \/_/15‘(] fI( )‘
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5d N=1 SUGRA

1 ; ; 1
5= 5 [ av=d ( 29”(@%2,%]) ~ g2 [ @F A

+7 Crik AT NF7 A FE,
6(27)2 / 1% g2 = (2m)*/3(2k3)/3

Rather than taking a slice F[Y] =

can use “homogeneous” (projective) coords:
vyt

(overall volume lives in a hypermultiplet)
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Phase trans: Flops and Weyl flops

N charge Q1 hypers become massless
C;:]K = C[_JK +NQQ QK “FlOp”

QY <0

IC = Kahler cone extended via flops 05



Phase trans: Flops and Weyl flops

N charge (); vectors become massless
C;:]K = C[_JK +NQ1Q,Qk “Weyl FlOp”

Corresponds to nonabelian enhancement,
e.g., to, su(2) —— gauge redundant
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Phase trans: Flops and Weyl flops

N charge (); vectors become massless
C;:]K = C[_JK +NQQ QK “Weyl FlOp”
Corresponds to nonabelian enhancement,
e.g., to, su(2) —— gauge redundant

) i
...but attractor K@) K g

point can hide
in the Weyl group —

image! B >
Weyl group




HOW to ﬁnd Mext (Q) ? (assume spherical

symmetry)

see, e.g., Harlow, BH, Reece, Rudelius ‘22 for review

Find all solutions to PDE
QX(6) = g W A()W5(0) + 2TV (6)?

3
such that gradient flow
19— g,

starting at ¢' = ¢, satisfies
W(@) >0 V 7>0

Then:|Mext (Q) = \/%—‘;5 inf W(¢oo)

C(good” W<¢>
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HOW to ﬁnd Mext (Q) ? (assume spherical

symmetry)

BPS case: W(¢) = QIYI/]-"l/3
Closed-form solution to gradient flow:

TI — TIOO _I_Zf‘%f?)

in terms of “dual coords” T = F;/F
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HOW to ﬁnd Mext (Q) ? (assume spherical

symmetry)

BPS case: W(¢) = QIYI/]-"l/3
Closed-form solution to gradient flow:

TI — TIOO _I_chgf?)

in terms of “dual coords” T = F;/F

BPS black holes exist when flow satisfies
QY >0 V 2>0

Note: dual coordinate map .7 : Y! — T}
is invertible as a consequence of convexity
of extended Kahler cone K, positivity of a;;
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The good, the bad

Ty =T + 221

F1/3
Q1
J—"
T=7(K) T=7(K)
cone of dual coordinates cone of dual coordinates
“Good flow” “Bad flow”

BPS black hole No BPS black hole



The good, the bad

Ty =T + 221

T = 7(K) T = 7(K)

cone of dual coordinates cone of dual coordinates

Also a good flow “Bad flow”



The good, the bad, ...and the

Ty = T + 2595 indeterminate

Weyl group image

, Q1
/ °
o Q1 ,/ el
/

7 N

/ 00 6%
// T[ 0%/)/
/
/
T=7(K) T=7(K)

cone of dual coordinates cone of dual coordinates

Also a good flow flow

(need to understand BHs
in CFT coupled to gravity) 08



The good, the bad, ...and the

Ty = T + 2595 indeterminate

Weyl group image

_________________

OQI

/ At least:
/ CBH 2 ViS(T)

T=7(K) ¢4
cone of dual coordinates

Weyl-extended region
“visible” from T
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Moduli space reconstruction

Gendler, BH, McAllister, Moritz, Rudelius 22

For a given CY3, map out all possible flops
to construct £, 7 = 7 (K)

..then find Weyl boundaries, determine Vis(7)

09



Moduli space reconstruction

Gendler, BH, McAllister, Moritz, Rudelius 22

For a given CY3, map out all possible flops
to construct £, 7T = 7(K)

..then find Weyl boundaries, determine Vis(7)

Non-trivial problem when we wish to repeat
for a large number of CY3s!

WEe’ll reconstruct everything using only

prepotential / genus 0 GV invs of a single phase.
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Infinity cone & nilpotent curves

Q2

nilpotent

Coo = Conv(GV towers)

A:
e e 000 00
e e 00 00
e o0 0 0
® o 0 o ® = Nonzero GV invariant
e 0o 0

\oo

[

¢ > ()

X

nilpotent, outside C (“nop = nilpotent outside potent”)
10



Flopping a nop curve

A
® 6 6 06 06 0 O
® 6 6 06 0 O
® 6 06 0 O
o 6 0 o
o 0 o
o o
[ I ]
° >
Original Mori cone New Mori cone

We simply replace Q; — —Q; for nop curve (leaving GV inv alone)

New Mori cone = Span(non-zero GVs)*

*With caveat to be discussed 11



Flopping a nop curve i

Original Mori cone

|

GVo = Ny — Ny  (# hypers —# vectors)
Can’t always distinguish Weyl flop (Ny > 0) from std flop ( Ny = 0)
But Cp,x =Crix — (Ng — Nv)Q1Q sQk can still be tracked

In fact, “N" = 4” flops with Ny = Ny go completely unnoticed!

...5s0 we might misidentify the Mori cone (in a harmless way)
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Flopping a nilpotent curve in C,

A

?7?

Can’t be right!

A

12



Flopping a nilpotent curve in C

Wall crossing must occur!

Only possible if there’s a
tensionless string: must be Weyl flop
('t Hooft-Polyakov monopole string)  aim s ruceius

12



Flopping a nilpotent curve in C

Wall crossing must occur!

Only possible if there’s a
tensionless string: must be Weyl flop
('t Hooft-Polyakov monopole string)  aim s ruceius

Maybe something like: @ —p @ —p —p .

string carrying
diffuse elec charge

12



Flopping a nilpotent curve in C

Wall crossing must occur!

Only possible if there’s a
tensionless string: must be Weyl flop
('t Hooft-Polyakov monopole string)  aim s ruceius

Maybe something like: @ —Pp» @ —p —p .

Can’t happen without string
because 4d wall crossing always  string carrying
involves magnetic charge diffuse elec charge

12



Stable/unstable Weyl flops

Wey! flops associated to nop curves are “stable”
No wall crossing in the GV invariants

Nipotent gens of C, give “unstable” Weyl flops.
Wall crossing occurs in the GV invariants

Khyp = U w(K)

wewstable
“Hyperextended Kahler cone”

No GV wall crossing within Kyyp
13



Relating Iy, With C

By construction, at every boundary of Kyyp,
either a nilpotent curve in C, flops

or an inf. tower of BPS particles become massless
(clearly lying within C, as well.)

(In the latter case, the boundary is either
(1) at infinite distance or (2) a CFT boundary.)

Neither can occur in the interior of Ky,

Therefore: | Khyp = C(XO

14



Relating Iy, With C

Khyp — C;/o

This implies that Ky has nice properties
analogous to /C, e.g., it is convex

These nice properties don’t persist when we
“overextend” /C via unstable Weyl flops

14



The cone of BPS black holes

Whether Cgy includes all of Thyp = 7 (Khyp)
depends on whether Thyp is convex

Can show that 7 convex »
s0 is Thyp in exs, but no proof yet / o— "

15



The cone of BPS black holes

Whether Cgy includes all of Thyp = 7 (Khyp)
depends on whether Thyp is convex

Can show that 7 convex »
s0 is Thyp in exs, but no proof yet / o— "

Regardless, b/c GVs don’t wall-cross within Ky
we predict infinite GV towers everywhere within

Cou = U Cpu(t) which includes Thyp
t€Thyp because t € Cpu(t)
15



The cone of BPS black holes

We predict infinite GV towers everywhere within

é\BHE U CBH(t)

t€Thyp _ _ Weylgroup image _
which includes Thyp .

o @1

In fact, this includes a (possibly) bigger region:

Vis(Thyp) = U Vis(t

t€Thyp 15



Checking the (sub)lattice WGC

For each CY3 in our search, we should

1. Find Cs, hence Kpyp = CY

2. Determine C'1 j i for each phase therein by
ﬂopplng curves Not yet automated!

3. Compute Thyp = 7 (Knyp) and/or Vis(Thyp)

4. Check whether any GVs vanish within Tyyp,

and/or Vis(7hyp), up to a specified cutoff deg.

16



Checking the (sub)lattice WGC

For each CY3 in our search, we should
1. Find Cs, hence Kpyp = CY

2. Determine C'1 j i for each phase therein by
flopping curves

Not yet automated!

3. Compute Thyp = 7 (Knyp) and/or Vis(Thyp)

4. Check whether any GVs vanish within Tyyp,
and/or Vis(7hyp), up to a specified cutoff deg.

(If none vanish, then the lattice WGC is satisfied;
in all our examples so far, it is!) 16



Symmetric flops

Sometimes flopped phase isomorphic to original,
e.g., via a reflection
QsY’

YI 5yl — 22 Q!

where “symmetric” flop lies at Q;Y! = Q'T; =0

e.g., Weyl flops are always symmetric

We can improve the efficiency of our search by
restricting to fund. domain F for these symms G

17



Symmetric flops

For example:

Base figure: N. Gendler
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Symmetric flops

For example:

Base figure: N. Gendler
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Symmetric flops

For example:

Base figure: N. Gendler
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Symmetric flops

For example:

Base figure: N. Gendler

17



Symmetric flops

As this example illustrates
can easily get infinitely many
phases when multiple such
reflection symmetries (not commuting)

are present Brodie, Consantin, Lk, Ruehle 21

Base figure: N. Gendler

So we really need to restrict to the fundamental
domain to make problem computable

17



Some examples

|-’I1 To9 Tz T4 s $6-|
CY hypersurface in toric variety: |0 0 0 -1 1 1

1 1 1 2 -1 0
o o 1 2 3 4 5
0 56 —272 3240 —58432 1303840
1 (20 )2635 2760 —45440 1001340 —26330880
2 N0 /5040 541930 933760 —18770880 490600080
3 190 2973660 277421695 563282580 —11813767700
4 | OB —40 2454600 2644224240 208000930200 470459159880
510 3 67980 5829698942 2855250958116  193028959075965
6 |0 0  —14960 3084577280 11119027471400 3465883673329200
710 0 3420 75341270  14592676836440 19950547779012810
8 |0 0 —760  —13884400 5711374027440  45586693863580200
9]0 0 100 2767590 132960571500  42020108300555745
10| 0 0 —6 — 783664 —21741657848  13122339863069280

hyp

<

nop curve flops to non-toric phase

Coo

18



Some examples
|_$1 Ty T3 Xy Ts IG-I

CY hypersurface in toricvariety: [0 1 1 0 -2 1
1 0 0 1 1 0

20 1 2 3 4 5 6 7 8

0 177 186 177 17

1 20291 317172 2998628 21195310 123413576 622393836 2806637500

2 73458379 3048964748 67638465983 1034258133329 12232084778113 ; h

3 710345698242  46445530268176  1663087069097865 yp
4 75225 10524250865224651

5 110271 —7157586

6 157734 —11253268 676476353

7 231979 —18701330 1241479305 —87415077360

8 356005 —32878062 2432078638 —172868371620 10041154974639

«

Vis(ﬁlyp)

Coo is entire Mori cone
Unstable Weyl flop

18



Number

Results of scan

Looked at every Kreuzer-Skarke CY3 w/ pbt <4
plus certain favorable ones w/ h''! = 5

B Toric phases
Non-toric phases

Polytope ID
(c) Kt =4

Our algorithm reconstructs
many non-toric phases
(an increasing fraction
of all phases for larger h''1)

From our 2062 seed geometries, found no
counterexamples to the lattice WGC!

19



Summary and Future Dirs

We found compelling evidence for the
lattice WGC for BPS particles in our data set

Surprising that we found no counterexs
to lattice WGC, given that orbifold counterexs
are known to exist e reece, rudeiis, 16

Perhaps a hint of an underlying principle??

Stay tuned for more on geometry & swampland!

e.g., BH, Rudelius, 2304.xxxxx on WGC for BPS strings
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