Swampland and Geometry in 5d

Alim, BH, Rudelius, 2108.08309 Gendler, BH, McAllister, Moritz, Rudelius, 2212.10573 BH, Rudelius, 2304.xxxxx

String and Geometry 2023 — Mar. 7, 2023

Arkani-Hamed, Motl, Nicolis, Vafa '06 BH, Reece, Rudelius '15, '16, 17', '19

"For every U(1) gauge field, there exists a **superextremal** charged particle, i.e., one with charge-to-mass ratio:

$$\left|\frac{\vec{Q}}{m}\right| \ge \left|\frac{\vec{Q}}{m}\right|_{\text{ext BH}}$$

(In this talk, superextremal **never** means self-repulsive)

Arkani-Hamed, Motl, Nicolis, Vafa '06 BH, Reece, Rudelius '15, '16, 17', '19

For every $Q \in \Gamma_Q$, $\exists k \in \mathbb{N}$ s.t. there is a superext. multiparticle state of charge kQ

BH, Reece, Rudelius '15, '16, '17, '19 Andriolo, Junghans, Noumi, Shiu '18

For every $Q \in \Gamma_Q$, $\exists k \in \mathbb{N}$ s.t. there is a superext. **single-particle** state of charge kQ

- Required to preserve WGC upon compactification
- Related to the emergence of weak (gauge) coupling at low energies

Harlow '15, BH, Reece Rudelius '17, '18, Grimm, Palti, Valenzuela '18

Plays nicely with the Distance Conjecture

Arkani-Hamed, Motl, Nicolis, Vafa '00 BH, Reece, Rudelius '15, '16, '17, '19 Andriolo, Junghans, Noumi, Shiu '18

There exists $k \in \mathbb{N}$ s.t. $\forall Q \in \Gamma_Q$, there is a superext. single-particle state of charge kQ

A theorem in elec. NSNS sector of tree-level ST

Sketch: Arkani-Hamed, Motl
Nicolis, Vafa '06

| Modular invariance | BH, Reece Rudelius '16 | BH, Lotito, 23xx.xxxxx (2x) |
| Montero, Shiu, Soler '16 | (Superextremality) | Compared to the compared to the

- coarseness k "never too large"
 (known k>1 exs are all orbifolds)
- **Strongest** form of WGC without known counterexs (in *d≥5*; *renormalized* version ok in 4d)

BH, Reece, Rudelius '15, '16, '17, '19 Andriolo, Junghans, Noumi, Shiu '18

Most existing evidence is **perturabative**

Are these strong forms "just" special properties of weak coupling limits?

I'll argue that they are not.

The T/sLWGC for BPS particles

Infinite towers of BPS particles **required** in Q directions where BPS = Extremal 02

The T/sLWGC for BPS particles

Infinite towers of BPS particles **required** in Q directions where BPS = Extremal 02

The T/sLWGC for BPS particles

Infinite towers of BPS particles **not required** in *Q* directions where BPS ≠ Extremal (See Timo's talk)

T/sLWGC is linked to geometry

M theory on CY3

L→ 5d N=1 SUGRA EFT

M2s on hol. curves → BPS particles counted by Gopakumar-Vafa invariants

Goal: determine $\mathcal{C}_{\mathrm{BH}}$, compare with GVs strenuous nonpert/geometric test of T/sLWGC

$$\begin{split} S &= \frac{1}{2\kappa_5^2} \int d^5 x \sqrt{-g} \left(R - \frac{1}{2} \mathfrak{g}_{ij}(\phi) \partial \phi^i \cdot \partial \phi^j \right) - \frac{1}{2g_5^2} \int a_{IJ}(\phi) F^I \wedge \star F^J \\ &+ \frac{1}{6(2\pi)^2} \int C_{IJK} A^I \wedge F^J \wedge F^K, \\ g_5^2 &= (2\pi)^{4/3} (2\kappa_5^2)^{1/3} \\ \mathcal{F}[Y] &= \frac{1}{6} C_{IJK} Y^I Y^J Y^K \end{split}$$

$$I &= 0, 1, \dots, n \\ i &= 1, \dots, n \end{split}$$

Exact away from phase transitions

$$S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \left(R - \frac{1}{2} \mathfrak{g}_{ij}(\phi) \partial \phi^i \cdot \partial \phi^j \right) - \frac{1}{2g_5^2} \int a_{IJ}(\phi) F^I \wedge \star F^J + \frac{1}{6(2\pi)^2} \int C_{IJK} A^I \wedge F^J \wedge F^K,$$

$$g_5^2 = (2\pi)^{4/3} (2\kappa_5^2)^{1/3}$$

$$I = 0, 1, \dots, n$$

$$i = 1, \dots, n$$

$$i = 1, \dots, n$$

CY3 intersection #s

$$\mathcal{F}[Y(\phi)] = 1 \qquad \qquad \mathfrak{g}_{ij}(\phi) = a_{IJ}(\phi)\partial_i Y^I \partial_j Y^J$$

$$a_{IJ} = \mathcal{F}_{IJ} - \mathcal{F}_I \mathcal{F}_J \qquad C_{IJK} = \mathcal{F}_{IJK}$$

$$\mathcal{F}_I = \mathcal{F}_J, \ \mathcal{F}_{IJ} = \mathcal{F}_{JJ}, \ \dots$$

$$S = \frac{1}{2\kappa_5^2} \int d^5 x \sqrt{-g} \left(R - \frac{1}{2} \mathfrak{g}_{ij}(\phi) \partial \phi^i \cdot \partial \phi^j \right) - \frac{1}{2g_5^2} \int a_{IJ}(\phi) F^I \wedge \star F^J + \frac{1}{6(2\pi)^2} \int C_{IJK} A^I \wedge F^J \wedge F^K,$$

$$g_5^2 = (2\pi)^{4/3} (2\kappa_5^2)^{1/3}$$

$$I = 0, 1, \dots, n$$

$$i = 1, \dots, n$$

BPS particle bound

$$m(\phi) \ge \frac{g_5}{\sqrt{2\kappa_5}} |\zeta(\phi)| = \frac{g_5}{\sqrt{2\kappa_5}} |q_I Y^I(\phi)|$$

BPS string bound ($\tilde{g}_5 = 2\pi/g_5$)

$$T(\phi) \ge \frac{\tilde{g}_5}{\sqrt{2}\kappa_5} |\tilde{\zeta}(\phi)| = \frac{\tilde{g}_5}{\sqrt{2}\kappa_5} |\tilde{q}^I \mathcal{F}_I(\phi)|$$

$$S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \left(R - \frac{1}{2} \mathfrak{g}_{ij}(\phi) \partial \phi^i \cdot \partial \phi^j \right) - \frac{1}{2g_5^2} \int a_{IJ}(\phi) F^I \wedge \star F^J + \frac{1}{6(2\pi)^2} \int C_{IJK} A^I \wedge F^J \wedge F^K,$$

$$g_5^2 = (2\pi)^{4/3} (2\kappa_5^2)^{1/3}$$

$$I = 0, 1, \dots, n$$

$$i = 1, \dots, n$$

Rather than taking a slice $\mathcal{F}[Y] = 1$, can use "homogeneous" (projective) coords:

$$Y^I \cong \lambda Y^I$$

(overall volume lives in a hypermultiplet)

Phase trans: Flops and Weyl flops

N charge Q_I hypers become massless

$$C_{IJK}^{+}=C_{IJK}^{-}+NQ_{I}Q_{J}Q_{K}$$
 "Flop" $Q_{I}Y^{I}>0$ $Q_{I}Y^{I}<0$

 $\mathcal{K} \equiv$ Kähler cone extended via flops

Phase trans: Flops and Weyl flops

N charge Q_I **vectors** become massless $C_{IJK}^+ = C_{IJK}^- + NQ_IQ_JQ_K$ "Weyl Flop"

Corresponds to nonabelian enhancement, e.g., to, *su*(2) → gauge redundant

Phase trans: Flops and Weyl flops

N charge Q_I **vectors** become massless $C_{IJK}^+ = C_{IJK}^- + NQ_IQ_JQ_K$ "Weyl Flop"

Corresponds to nonabelian enhancement, e.g., to, su(2) → gauge redundant

...but attractor point can hide in the Weyl group image!

How to find $m_{ m ext}(Q)$? (assume spherical symmetry)

see, e.g., Harlow, BH, Reece, Rudelius '22 for review

Find all solutions to PDE

$$Q^2(\phi) = \mathfrak{g}^{ij} W_{,i}(\phi) W_{,j}(\phi) + \frac{1}{3} W(\phi)^2$$

such that gradient flow

$$\frac{d\phi^i}{d\tau} = -\mathfrak{g}^{ij}W_{,j}$$

starting at $\phi^i = \phi^i_\infty$ satisfies

$$W(\phi) > 0 \quad \forall \quad \tau > 0$$

Then:
$$m_{\mathrm{ext}}(Q) = \frac{g_5}{\sqrt{2}\kappa_5} \inf_{\text{"good" } W(\phi)} W(\phi_\infty)$$

How to find $m_{ m ext}(Q)$? (assume spherical symmetry)

see, e.g., Harlow, BH, Reece, Rudelius '22 for review

BPS case:
$$W(\phi) = Q_I Y^I / \mathcal{F}^{1/3}$$

Closed-form solution to gradient flow:

$$T_I = T_I^{\infty} + z \frac{Q_I}{\mathcal{F}^{1/3}}$$

in terms of "dual coords" $T_I = \mathcal{F}_I/\mathcal{F}$

How to find $m_{ m ext}(Q)$? (assume spherical symmetry)

see, e.g., Harlow, BH, Reece, Rudelius '22 for review

BPS case: $W(\phi) = Q_I Y^I / \mathcal{F}^{1/3}$

Closed-form solution to gradient flow:

$$T_I = T_I^{\infty} + z \frac{Q_I}{\mathcal{F}^{1/3}}$$

in terms of "dual coords" $T_I = \mathcal{F}_I/\mathcal{F}$

BPS black holes exist when flow satisfies

$$Q_I Y^I > 0 \quad \forall \quad z > 0$$

Note: dual coordinate map $\mathscr{T}: Y^I \to T_I$ is invertible as a consequence of convexity of extended Kähler cone \mathcal{K} , positivity of a_{IJ}

The good, the bad, ...and the $T_I = T_I^{\infty} + z \frac{Q_I}{\mathcal{F}^{1/3}}$ indeterminate

"Good flow"
BPS black hole

cone of dual coordinates

"Bad flow"
No BPS black hole

The good, the bad, ...and the $T_I = T_I^{\infty} + z \frac{Q_I}{\mathcal{F}^{1/3}}$ indeterminate

The good, the bad, ...and the $T_I = T_I^\infty + z \frac{Q_I}{\mathcal{F}^{1/3}}$ indeterminate

Also a **good** flow

Indeterminate flow

(need to understand BHs in CFT coupled to gravity)

The good, the bad, ...and the $T_I = T_I^\infty + z \frac{Q_I}{\mathcal{F}^{1/3}} \qquad \text{indeterminate}$

Moduli space reconstruction

Gendler, BH, McAllister, Moritz, Rudelius '22

For a given CY3, map out all possible flops to construct \mathcal{K} , $\mathcal{T} = \mathcal{T}(\mathcal{K})$

...then find Weyl boundaries, determine ${
m Vis}(\mathcal{T})$

Moduli space reconstruction

Gendler, BH, McAllister, Moritz, Rudelius '22

For a given CY3, map out all possible flops to construct \mathcal{K} , $\mathcal{T}=\mathcal{T}(\mathcal{K})$

...then find Weyl boundaries, determine $\mathrm{Vis}(\mathcal{T})$

Non-trivial problem when we wish to repeat for a large number of CY3s!

We'll reconstruct everything using only prepotential / genus 0 GV invs of a single phase.

Infinity cone & nilpotent curves

Flopping a nop curve

We simply replace $Q_I \to -Q_I$ for nop curve (leaving GV inv alone) New Mori cone = Span(non-zero GVs)*

Flopping a nop curve

$$\mathrm{GV}_0 = N_H - N_V$$
 (# hypers – # vectors)

Can't always distinguish Weyl flop ($N_V>0$) from std flop ($N_V=0$)

But $\,C_{IJK}' = C_{IJK} - (N_H - N_V)Q_IQ_JQ_K\,$ can still be tracked

In fact, " $\mathcal{N}=4$ " flops with $N_H=N_V$ go completely unnoticed!

...so we might misidentify the Mori cone (in a harmless way)

Wall crossing must occur!

Only possible if there's a tensionless string: must be Weyl flop ('t Hooft-Polyakov monopole string)

Wall crossing must occur!

Only possible if there's a tensionless string: must be Weyl flop ('t Hooft-Polyakov monopole string)

Alim, BH, Rudelius '21

string carrying diffuse elec charge

Maybe something like:

Wall crossing must occur!

Only possible if there's a tensionless string: must be Weyl flop ('t Hooft-Polyakov monopole string)

Alim, BH, Rudelius '21

Maybe something like:

<u>Can't happen without string</u> <u>because 4d wall crossing always</u> <u>involves magnetic charge</u>

string carrying diffuse elec charge

Stable/unstable Weyl flops

Weyl flops associated to nop curves are "stable"

No wall crossing in the GV invariants

Nipotent gens of \mathcal{C}_{∞} give "unstable" Weyl flops. Wall crossing **occurs** in the GV invariants

$$\mathcal{K}_{\text{hyp}} \equiv \bigcup_{w \in \mathcal{W}_{\text{stable}}} w(\mathcal{K})$$

"Hyperextended Kähler cone"

No GV wall crossing within $\mathcal{K}_{\mathrm{hyp}}$

Relating $\mathcal{K}_{\mathrm{hyp}}$ with \mathcal{C}_{∞}

By construction, at every boundary of $\mathcal{K}_{\mathrm{hyp}}$, either a nilpotent curve in \mathcal{C}_{∞} flops or an inf. tower of BPS particles become massless (clearly lying within \mathcal{C}_{∞} as well.)

(In the latter case, the boundary is either (1) at infinite distance or (2) a CFT boundary.)

Neither can occur in the interior of $\mathcal{K}_{\mathrm{hyp}}$

Therefore: $\left|\mathcal{K}_{\mathrm{hyp}}=\mathcal{C}_{\infty}^{\vee}\right|$

Relating $\mathcal{K}_{\mathrm{hyp}}$ with \mathcal{C}_{∞}

$$\mathcal{K}_{\mathrm{hyp}} = \mathcal{C}_{\infty}^{\vee}$$

This implies that \mathcal{K}_{hyp} has nice properties analogous to \mathcal{K} , e.g., it is **convex**

These nice properties don't persist when we "overextend" ${\mathcal K}$ via unstable Weyl flops

The cone of BPS black holes

Whether $\mathcal{C}_{\mathrm{BH}}$ includes all of $\mathcal{T}_{\mathrm{hyp}} = \mathscr{T}(\mathcal{K}_{\mathrm{hyp}})$ depends on whether $\mathcal{T}_{\mathrm{hyp}}$ is convex Can show that \mathcal{T} convex so is $\mathcal{T}_{\mathrm{hyp}}$ in exs, but no proof yet

The cone of BPS black holes

Whether $\mathcal{C}_{\mathrm{BH}}$ includes all of $\mathcal{T}_{\mathrm{hyp}} = \mathscr{T}(\mathcal{K}_{\mathrm{hyp}})$ depends on whether $\mathcal{T}_{\mathrm{hyp}}$ is convex

Can show that ${\mathcal T}$ convex so is ${\mathcal T}_{\mathrm{hyp}}$ in exs, but no proof yet

Regardless, b/c GVs don't wall-cross within $\mathcal{K}_{\mathrm{hyp}}$ we predict infinite GV towers everywhere within

$$\widehat{\mathcal{C}}_{\mathrm{BH}} \equiv \bigcup_{t \in \mathcal{T}_{\mathrm{hyp}}} \mathcal{C}_{\mathrm{BH}}(t)$$

which includes $\mathcal{T}_{\mathrm{hyp}}$ because $t \in \mathcal{C}_{\mathrm{BH}}(t)$

The cone of BPS black holes

We predict infinite GV towers everywhere within

$$\widehat{\mathcal{C}}_{\mathrm{BH}} \equiv igcup_{t \in \mathcal{T}_{\mathrm{hyp}}} \mathcal{C}_{\mathrm{BH}}(t)$$
 which includes $\mathcal{T}_{\mathrm{hyp}}$.

In fact, this includes a (possibly) bigger region:

$$\operatorname{Vis}(\mathcal{T}_{\operatorname{hyp}}) \equiv \bigcup_{t \in \mathcal{T}_{\operatorname{hyp}}} \operatorname{Vis}(t)$$

Checking the (sub)lattice WGC

For each CY3 in our search, we should

- 1. Find \mathcal{C}_{∞} , hence $\mathcal{K}_{\mathrm{hyp}} = \mathcal{C}_{\infty}^{\vee}$
- 2. Determine C_{IJK} for each phase therein by flopping curves Not yet automated!
- 3. Compute $\mathcal{T}_{\mathrm{hyp}}=\mathscr{T}(\mathcal{K}_{\mathrm{hyp}})$ and/or $\widetilde{\mathrm{Vis}(\mathcal{T}_{\mathrm{hyp}})}$
- 4. Check whether any GVs vanish within $\mathcal{T}_{\mathrm{hyp}}$ and/or $\mathrm{Vis}(\mathcal{T}_{\mathrm{hyp}})$, up to a specified cutoff deg.

Checking the (sub)lattice WGC

For each CY3 in our search, we should

- 1. Find \mathcal{C}_{∞} , hence $\mathcal{K}_{\mathrm{hyp}} = \mathcal{C}_{\infty}^{\vee}$
- 2. Determine C_{IJK} for each phase therein by flopping curves Not yet automated!
- 3. Compute $\mathcal{T}_{\mathrm{hyp}}=\mathscr{T}(\mathcal{K}_{\mathrm{hyp}})$ and/or $\widetilde{\mathrm{Vis}(\mathcal{T}_{\mathrm{hyp}})}$
- 4. Check whether any GVs vanish within $\mathcal{T}_{\rm hyp}$ and/or ${\rm Vis}(\mathcal{T}_{\rm hyp})$, up to a specified cutoff deg.

(If **none** vanish, then the **lattice** WGC is satisfied; in all our examples so far, it is!)

Sometimes flopped phase isomorphic to original, e.g., via a reflection

$$Y^I o Y^I - 2 \frac{Q_J Y^J}{\tilde{Q}^K Q_K} \tilde{Q}^I$$

where "symmetric" flop lies at $Q_I Y^I = \tilde{Q}^I T_I = 0$ e.g., Weyl flops are **always** symmetric

We can improve the **efficiency** of our search by restricting to fund. domain \mathcal{F}_G for these symms G

Base figure: N. Gendler

Base figure: N. Gendler

Base figure: N. Gendler

Base figure: N. Gendler

As this example illustrates can easily get **infinitely** many phases when multiple such reflection symmetries (not commuting) are present

Brodie, Constantin, Lukas, Ruehle '21

So we really **need** to restrict to the fundamental domain to make problem computable

Some examples

CY hypersurface in toric variety:
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ 1 & 1 & 1 & 2 & -1 & 0 \end{bmatrix}$$

q_1	0	1	2	3	4	5	
0	*	56	-272	3240	-58432	1303840	_
1	20	2635	2760	-45440	1001340	-26330880	T
2	0	5040	541930	933760	-18770880	490600080	
3	0	190	2973660	277421695	563282580	-11813767700	σ
4	0	-40	2454600	2644224240	208000930200	470459159880	Thun
5	0	3	67980	5829698942	2855250958116	193028959075965	, ny p
6	0	0	-14960	3084577280	11119027471400	3465883673329200	
7	0	0	3420	75341270	14592676836440	19950547779012810	
8	0	0	-760	-13884400	5711374027440	45586693863580200	
9	0	0	100	2767590	132960571500	42020108300555745	
10	0	\ 0	-6	-783664	-21741657848	13122339863069280	
		- 1	4				
		- 1				0	
		١				\mathcal{L}_{∞}	
		١				\sim	

nop curve flops to non-toric phase

Some examples

CY hypersurface in toric variety:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 0 & 1 & 1 & 0 & -2 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Results of scan

Looked at every Kreuzer-Skarke CY3 w/ $h^{1,1} \le 4$ plus certain favorable ones w/ $h^{1,1} = 5$

Our algorithm reconstructs **many** non-toric phases (an increasing fraction of all phases for larger $h^{1,1}$)

From our 2062 seed geometries, found **no** counterexamples to the **lattice** WGC!

Summary and Future Dirs

We found compelling evidence for the **lattice** WGC for BPS particles in our data set

Surprising that we found no counterexs to lattice WGC, given that orbifold counterexs are **known to exist**BH, Reece, Rudelius, '16

Perhaps a hint of an underlying principle??

Stay tuned for more on geometry & swampland!

e.g., BH, Rudelius, 2304.xxxxx on WGC for BPS strings