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A different corner of the F-theory/lIB landscape

6d AdS Solutions of |IB supergravity

e Dual to 5d superconformal field theories (SCFTs)

* Near-horizon of |IB 5-branes webs

* [hey have non-trivial axio-dilaton

* 5-branes sources have been successfully incorporated
e Solution with perturbative 7-branes are known (D7, O7)

* They enlarge the landscape of |IB vacua
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Main Question & Motivation

In this paper we addressed the following challenge:

Incorporate non-perturbative F-theory 7-branes?
Fers,Ho12 or IV* IIT* II* II,I1I,IV

* Solving a (personal) “longstanding” challenge: AdSs F-theory solutions!

e New construction of 5d SCFTs

* (Generically do not have a low-energy gauge theory description, holography
key to access observables



Outline

L DN

. Holographic Setup

S-folds of brane webs
Back to the near-horizon limit

Observables: Free Energy, Central Charges, Twisted Indices
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* |nputing into the equations that = is a complex surfaces, leads to a more
eXp|ICI1Z C|aSSIfIC3tI0n [D’hoker, Gutperle, Karch, Uhlemann 17-21] [Legramandi, Nunez 21]



AdS holographic dual solutions Adss x. M,

The metric is fully determined by two holomorphic functions A+ (w) of the Disc
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-(w) of the Disc

The metric is fully determined by two holomorphic functions A-
coordinates W and derivatives 0A+, 0A.

ds® = fedsags, + [3dse: + 4p”|dw]? fo(As, Ax),  fa(Ax, Az),
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A
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fG(Ajt7Z::)7 fQ(Ajta“Z::)a p(A::w’Tl::)

The rest of the fields are also fully determined by A+(w) and their derivatives

Fs(Ay, Ar) = Hz + 1F3 T(A

)

AL) Fy =0

The S* collapses at the boundary of the disc to form a closed internal space.
The differential 94+ have poles at the boundary of x, generating 5-brane charge

3 . W=r
Resy—=r, (OwA+) = 1@,(:% +ipe) =  Fg o~
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AdS holographic dual solutions Adss x. M,

The metric is fully determined by two holomorphic functions A+ (w) of the Disc
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The rest of the fields are also fully determined by A+(w) and their derivatives

FB(AZZ7’A::) — H3 =+ ZFS T(A:,ﬁi) F5 =0

The S* collapses at the boundary of the disc to form a closed internal space.
The differential 94+ have poles at the boundary of x, generating 5-brane charge

3 . w=r -
ReSy—r, (O AL) = Z&’(::cn +ipe) =  Fz ~ ' (Fq+ ZPE)VOI(C§3)) C§3) ~ g3 ‘@
D

re

All non-trivial information are captured by X
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need to understand whether 7 has a non-trivial monodromy around the internal
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The SL(2,R) symmetry of lIB supergravity acts as SU(1,1) ® C on A+

at + b A

. L\ : u —U A-l- _1 : : _1 : :
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For a D7 brane close to w = w; the metric takes the form of a flat D7 solution

1 in? a b 1 n, .
ds® ~ (dsidsa 9d8%2> Im(H)‘dw‘za T~ H o~ 27; ln|w — Wy A Mpi (1,00 = (C d) — (O 1> =1
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Solutions with O7-planes

Let us consider a reflection symmetric solution with 5-branes and D7 branes

Taking the 7-branes together

Tk

A rotation by 7 together with the action of —12 € SL(2,Z) on A+ leaves the solution
invariant. We can quotient by this combined Z2-action and we get

f(/\x\ Mo7-+(a—k)p7 = — LT = =T"
-H-@4t-

® = also a Z2 -action fixed point

O7- + (4-k)D7
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S-folds

[Garcia-Etxebarria, Regalado 15] [Aharony-Tachikawa 15] [FA, Giacomelli, Schafer-Nameki 20] [Heckman, Lawrie, Lin, Zhang, Zoccarato 22] [Assel, Tomasiello 18]



S-folds quotient of 5d SCFTs
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Quotient of 5d SCFTs have been studied in the context of M-theory on Calabi-
Yau threefold and |IB branes webs. In this talk | focus on the latter. Strategy:

e Quotient by a Z, symmetry of Web-Plane

» Combined with Zn C SL(2,Z) n = 2,3,4,6 transformation of 5-brane charges
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Quotients of 5d SCFTs

Quotient of 5d SCFTs have been studied in the context of M-theory on Calabi-
Yau threefold and |IB branes webs. In this talk | focus on the latter. Strategy:

e Quotient by a Z, symmetry of Web-Plane
» Combined with Zn C SL(2,Z) n = 2,3,4,6 transformation of 5-brane charges

This procedure leads to a fixed point in the web interpreted as 7-branes.
N

Examples: Z3 quotient of T4 \’




Action of the quotient on the prepotential

[H. Kim, S. Kim, K. Lee 21]

The Coulomb branch prepotential for the quotient theory is given by

1
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The 1/n factor comes from the fact that the total area of the compact faces of
the webs corresponds to the first derivative of the prepotential wrt the coulomb
branch scalars. The coulomb branch scalars are identified under quotient.
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1
‘FT/Zn — n fT‘¢S(i):¢i
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Other examples

S\ R N Zs, HW
ST(2), SU(2) + 6F
3 Ly 1 3
6Fsv2), =8¢ — 6Fsu(2)/7, = 71X 6F sv(2), = 2¢
Sp.
D) Lo, HW
5 v
SU(2) + 7F
3 L 1 3
6Fsu(2)+2F = 060" —  O6Fsyu@)+2F/zs = = X 6F sy (2)42F = ¢

6

[H. Kim, S. Kim, K. Lee 21]
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Example: Zs action on 2 copies of Ts

gl) _ ¢:())2) _ ¢52) | él) _ ¢§2) _ ¢:())1) | 511) _ ¢é1) _ ¢é2) | él) _ ¢512) _ ¢é2)



Prepotential for Generalized Quotients
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Prepotential for Generalized Quotients

[FA, Bergman, Kim, Uhlemann 22]

The general prepotential formula follows from this definition
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Back to Holography
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For generating new near-horizon solutions we proceed like with the O7. We quotient
by a symmetry of the solution, which involve a symmetry of the disc ¥ and
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6d AdS solutions with F-theory branes

For generating new near-horizon solutions we proceed like with the O7. We quotient
by a symmetry of the solution, which involve a symmetry of the disc ¥ and
Ln C SL(2,Z)-gction n = 2,3,4,6. This leads to a fixed point.

Z3 - quotient of the solution dual to 7~ parent theory [FA, Bergman, Kim, Uhlemann 22]

(17 _1)

X 4

N D5 D5 ——  (ST)'e D5 Mg, = (ST)
wo
%

NS5

N NS5

The fixed point is the Es 7-brane, with 47/3 deficit angle and fixed axio-dilation

T(”(U()) _ 6277@'/3



[FA, Bergman, Kim, Uhlemann 22]

6d AdS F-theory solutions

Other examples include E7, Es 7-branes singularities with deficit angles 37/2,57/3

NS5
N 3
N D5 D5 D5 S3 e D5 ME7 =95
- %
NS5

N NS5

NS5 (-1,-1)

N 5
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6d AdS F-theory solutions

Other examples include E7, Es 7-branes singularities with deficit angles 37/2,57/3

NS5
NS 3
N D5 D5 D5 S3 e >D5 ME7 =95
L] %
NS5
N NS5
NS5  (-1,-1)
N
@) — e e
(1,1) NS5

- 2 ~U 4 2
Can be seen as F-theory solutions: A5 xw (Ms X T7)/Zy, = AdSs Xw (Spuncturea X 1T7)/Zn
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6d AdS solutions from generalized quotients

We can have also solutions with .12 7-branes singularities with deficit angles
m/3,7/2,2n/3  via the generalized quotients

Z3 - quotient of 2 copies of the holographic dual 7~

,—1

(1,-1) (1,-1) (1,-1)
5 5 — -k - 5
NS5 NS5
Z4 and Zs - quotients of 3 and 5 copies of

NS5 NS5 Prrr NS5  (-1,-1) NS5  (-1,-1)

D5 D5 — D5 e, 1D5
N D5 D5 D5 — D5 ” D5 ¢%‘~
X Hi % (1,1) NS5 (1,1)

N NS5
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[FA, Bergman, Kim, Uhlemann 22]

Holographic observables

Observables of the quotient theory are related to the parent theory at large N

* Free energy Is computed by the supergravity on-shell action, and it is proportional
to the volume of M. (# of degrees of freedom)

1 9

Fss(Tn/Z3) = Fss(Tn) = 87r2<(3)N4 Fss[(Tn)?/?] = 2Fgs [T /23]

* Central charges appearing in stress-energy tensor and flavor symmetry current 2-
point functions are related to Fss, therefore they get divided by 1/n

* Field theoretically the free energy is computed by localisation on the 5-sphere.

 The matrix model obtained from localisation takes the form of an integral over the

coulomb branch involving the classical prepotential. At large N instanton
contributions are suppressed.

* Even if we do not know the low-energy gauge theory description for the quotients,
but we can use the prepotential to compute the matrix model integrals.
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Conclusion and Outlook

* We constructed 6d AdS solutions with F-theory 7-branes (via S-folding)
 We defined a generalized S-fold procedure

 We computed holographic observables for these theories

 Can we use the generalized S-folds to construct new S-fold theories in 4d”?

* (Generalized symmetries of these theories from holography?



Thank you!



