Cobordism and a Modified Gauss Law

Jacob McNamara (Caltech)
Strings and Geometry 2023, UPenn

Based on:
• 1909.10355 with Cumrun Vafa
• 2212.00039 with Matthew Reece
Motivating Example: D-Branes in NS-NS Flux

Textbook Example: The D3-brane worldvolume supports a dynamical $U(1)$ gauge field, under which the ends of D1-strings are magnetically charged particles.

Suppose the D3-brane worldvolume is $\mathbb{R}^1 \times M^3$, and we turn on k units of NS-NS flux through M^3:

$$\int_{M^3} H_3 = k.$$

Then we have a modified Gauss Law: there must be exactly k D1-strings ending at points in M^3. [Maldacena, Moore, Seiberg '01]

Due to anomaly inflow: the $U(1)$ gauge field is charged under B_2.

Goal Today: Replace everything in sight with the spacetime manifold.
Overview

Dictionary:

Magnetic Flux ↔ Geometric Flux
Monopoles ↔ Cobordism defects
NS-NS flux ↔ Normal bundle

Outline:

1. Review the Swampland Cobordism Conjecture
2. Examples: Nelson-Barr Models and F-theory
3. Connection to Adams Spectral Sequence
Swampland Cobordism Conjecture

Based on 1909.10355 with Cumrun Vafa
Topological Charges and Cobordism

Topological charges of the spacetime manifold are classified by cobordism.

Fix structure \mathcal{X} (orientation, spin structure, etc.), study k-dimensional \mathcal{X}-manifolds up to \mathcal{X}-preserving topology changes. Set of equivalence classes forms an abelian group $\Omega^\mathcal{X}_k$ under disjoint union.

Defines a global symmetry of semiclassical gravity.
Swampland Cobordism Conjecture

Cobordism Conjecture: Any UV complete theory of quantum gravity must have trivial cobordism groups, $\Omega_k^{QG} = 0$, once all effects and objects are included.

Suppose the semiclassical cobordism groups are nontrivial, $\Omega_k^X \neq 0$. Then the UV complete theory must include defects that trivialize the cobordism classes.

Examples: Orientifold planes, etc. See also Miguel and Markus’s talks.
Gauge Charge of Cobordism Defects

Defects carry a **topological gauge charge** valued in Ω^X_k. Can be detected inside a black brane by measuring the cobordism class of the horizon manifold.

Gauss Law: Net number of cobordism defects transverse to closed slice must vanish.

$$\sum_i [M_i] = [\bigcup_i M_i] = [\partial W] = 0.$$

Hidden Assumption: Normal bundle is trivial.
Example: Nelson-Barr Models

Based on 2212.00039 with Matthew Reece
Review: Nelson-Barr Models

Strong CP Problem: Our universe has order-one CP violation, yet $\bar{\theta}_{QCD} \approx 10^{-10}$.

Nelson-Barr Models: Promote CP or parity to exact symmetry, spontaneously broken at low energies. [Nelson ’84, Barr ‘84]

In terms of cobordism:

- Low-energy theory is chiral, depends on orientation ($\mathcal{X} = SO$).
- High-energy theory makes sense on non-orientable manifolds ($\mathcal{X} = O$).

Nelson-Barr models contain a cobordism defect, much discussed in pheno community: the **parity domain wall (PDW)**.
Parity Domain Walls as Cobordism Defects

Radiates nontrivial cobordism class: \(2 [\text{pt}] \in \Omega_0^{SO} \). Could detect PDW inside black domain wall!

\[
\begin{array}{ccc}
- & + & + \\
\bullet & \bullet & \bullet \\
& & PDW
\end{array}
\]

Gauss Law: Every 1-manifold is orientable, so net number of PDWs on abstract 1-manifold must vanish mod 2.

Pheno Lesson: PDWs are exactly stable. Big problem for cosmology!
Modified Gauss Law

Modified Gauss Law: Odd number of PDWs transverse to circle C with non-orientable normal bundle:

![Diagram showing PDWs transverse to circle C](image)

Anomaly Inflow: The cobordism class of a point in an ambient oriented manifold suffers an ambiguity: it flips sign under a normal reflection, $[pt] \to -[pt]$.
Example: F-theory

Based on 1909.10355 with Cumrun Vafa
Type IIB and F-theory

Two descriptions (see Miguel and Markus’s talks for more refined version):

• Perturbative Type IIB requires a spin structure \((\mathcal{X} = Spin)\).

• Non-perturbatively, F-theory base requires spin\(^c\) structure \((\mathcal{X} = Spin^c)\).

F-theory contains a cobordism defect relative to perturbative Type IIB: a spin vortex, around which fermions pick up an additional minus sign. Radiates \([S_p^1] \in \Omega^\text{Spin}_1\). Realized by 12 singular fibers (deficit angle \(2\pi\)). [Green, Shapere, Vafa, Yau ’89]
Modified Gauss Law

Gauss Law: Elliptic fibration over a Riemann surface Σ has a multiple of 24 singular fibers. **Ex:** F-theory on $K3 \to \mathbb{P}^1$ has 24 singular fibers, comprising 2 spin vortices.

Modified Gauss Law: Consider elliptic fibration over a (-1)-curve Σ in the base. Normal bundle is non-spin. Only 12 singular fibers: a single spin vortex.

Anomaly Inflow: The cobordism class of a circle in an ambient spin manifold suffers an ambiguity: it flips under twisting the normal framing, $[S_p^1] \to [S_{ap}^1]$.
Adams Spectral Sequence

Based on 2212.00039 with Matthew Reece
Gaunting in Cobordism

In both examples considered, the cobordism defects are measured by a characteristic class:

- Parity domain walls are defects in the orientation, measured by w_1.
- Spin vortices are defects in the spin structure, measured by w_2.

In both cases, the characteristic class is nontrivial in the fundamental description ($\mathcal{X} = 0$ or $\mathcal{X} = Spin^c$) but vanishes on abstract manifolds of the same dimension:

- All unoriented 1-manifolds are orientable, $w_1 = 0$.
- All spinc 2-manifolds are spin, $w_2 = 0$.

While the characteristic classes are nontrivial, they fail to appear in cobordism groups of the same dimension.
The Adams Spectral Sequence

Our motivating example (D-branes in NS-NS flux) is mathematically described by a **spectral sequence** (AHSS) which takes the modified Gauss Law into account.

The same is true for cobordism: our story is described by the **Adams spectral sequence**, a tool for computing cobordism groups given characteristic classes.

Both of our examples are captured by a **differential** on the E_1 page:

$$\chi = 0$$

$$\chi = \text{Spin}^c$$
Thank You For Listening!