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A Specific Motivation:
Neural Network Calabi-Yau Metrics
“Let the neural network be the metric!”
     - above authors.

Neural network depends on parameters 𝜃,
which provide a variational ansatz:

optimize parameters to minimize some objective,
e.g. to drive the metric towards Ricci-flatness.

See also: NN as variational ansatz for quantum 
many-body wavefunction. Minimize energy, e.g.

Why this is a good idea: NN’s are powerful,
universal approximation theorems, etc.

Evidence this is a good idea:

15 mins NN = 30 years w/ conventional techniques.

[Anderson, Gerdes, Krippendorf, Raghuram, Ruehle]
[Douglas, Lakshminarasimhan, Qi]
[Jejjala, Mayorga Pena, Mishra]

see also: [Ashmore, He, Ovrut]

[Carleo, Troyer] 2017            Infinite NN Context: [J.H., Luo]

[Larfors, Lukas, Ruehle, Schneider]



Broader Motivation:
Playground for ML Modalities

● Applied-ML-for-X, with error.                                         Typical applications you hear about.
                                                                                                            Sometimes error is ok.
                                                                                           Other times we don’t know how to avoid it.

● ML-for-X, rigorous, no error.                                     How do we get rigor and understanding,
there are examples!                                                    hallmarks of math and theoretical physics,
ask, e.g. smooth 4d Poincare,               from techniques that are stochastic, error-prone, and blackbox?
or DeepMind’s knot theorem.

● ML Theory                      Physics / Math Theory                            This talk lives here.



Math and ML Theory Questions for NN Metrics Flows

● Do there exist simplifying limits with increased understanding / tractability?

● Are those limits only simpler / more understandable, 
or also better, e.g. wrt CY metric approximation?

● Does increased understanding let us relate these to math literature?

● What about metric flows?



g0 as a NNg0 as a NN
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Space of Metrics

g0

“NN metric flow”
via gradient of 
scalar functional L.

NN m
etric flow

NN metric flow

Hamilton, 1980s

Ricci Flow

Perelman, 2000s: “Ricci flow is a 
gradient of a scalar functional, and I’ll use 

it to prove the Poincare conjecture.” ?



Main Results: NN metric flow

∞-NN metric flow

Local Metric Flow

X   Ricci Flow

difficult: stochastic, t-dependent, hard to compute.
easier: deterministic, t-indep, fixed function.
easiest: deterministic, t-indep, local



Outline

● Review: 1 Slide on Neural Networks

● Metric Flows with Neural Networks and Infinite-Width Limits

● Kahler Metric Flows and Calabi-Yau Metrics



Review: Neural Networks



Neural Networks
A neural network is a random function,
a composition of simpler functions (architecture),
with parameters drawn from some distribution.

Example: a neural network ϕ

A width-N, depth-one, feedforward
network with (non-linear) activation function σ.

● Neural networks are powerful.

The workhorse of the breakthroughs you’ve 
heard of in deep learning.

Universal approximation theorems.
Opposite of tameness? 

● Modern Neural Networks are BIG!
Hundreds of billions of parameters.

e.g. chat-GPT is a “large language model”
formed out of Transformers.



Metric Flows with 
Neural Networks



Metric Flows with Neural Networks
Q: how does the param-dependent metric change?

under gradient descent, parameters update as

according to scalar loss functional, which may be 
evaluated in the continuum or discretuum:

Putting the pieces together, we have

in the continuous and discrete cases, where

is an object that we call the
metric neural tangent kernel (metric-NTK).  



The metric-NTK is a metric-oriented version
of the NTK appearing in deep learning theory.

It is a fundamental object that governs metric flows
induced by neural network gradient descent.

In general, it depends heavily on initial parameters
and evolves during training, during the metric flow.

The parameter sum and many chain rules make it
very tedious to compute.

[Jacot, Gabriel, Hongler] NeurIPS 2018



Simplified Flows in Infinite Limit
Deterministic NTK in Infinite Limit:
there is very often an N (e.g., N = width), such that

i.e., via law-of-large-numbers, metric-NTK
depends only on P(𝜃), not specific 𝜃 draw.

Linearized Models:

i.e., metric-NTK doesn’t evolve in t.

Frozen NTK-limit:
take both deterministic limit and linearized model,
gradient descent governed by a “frozen” NTK,
which is a deterministic, t-independent function.

Linear models?
Infinite neural nets evolve as linear models.



Metric Flows with Infinite Neural Networks
Recapping: in appropriate limits, our metric-NTK

becomes deterministic and t-independent,
henceforth denoted as 

a function of two variables that may be computed.

In this frozen-NTK limit, the NN metric flow is

the metric flow depends on choice of architecture,
which determines the metric-NTK, and
choice of loss l, e.g. Ricci-flatness itself,
which defines the optimization.

Note: metric-NTK is a smearing function that
defines g-update at x according to the loss and g at 
x’.



Local Metric Flows and Ricci Flow with 
Infinite Neural Networks



NN Metric Flow, Local Flows, and Ricci Flow
Infinite NN Metric Flow:

non-local metric updates with non-trivial 
component mixing, depends on arch. and l.

Ricci Flow a la Hamilton:

local metric updates, no component mixing,
no scalar functional entering at all.

Ricci Flow a la Perelman:

still a local metric update w/o mixing,
but now we have a scalar functional formulation.

Local Metric Flow and Ricci Flow with Infinite NN:
get Perelman’s formulation when



We recover Perelman’s formulation of 
Ricci Flow as Infinite NN gradient descent when

we are free to choose l(x),
but can this form of metric-NTK be realized?

i.e., are there architectures with this metric-NTK?



Architectures for Local Metric Flows and Ricci Flow

requires 3 properties: frozen, local, and no mixing. 

By choosing any architecture (see lit.) with frozen 
NTK limit, and choosing metric components to 
each be an independent NN, we achieve:

a frozen, non-local metric-NTK without mixing.

The non-trivial step is to get locality!

Technical, but sufficient choices are: 

1) NTK of an architecture only last layer weights evolving 
frozen is a NN Gaussian Process kernel K(x, x’).

2) There are architectures with

which when normalized give the locality-inducing 
δ-function in the 𝜎 → 0 limit.



Example Architectures
both architectures have

which of course has Gaussian Fourier transform,
gives locality-inducing δ-function in the 𝜎 → 0 limit.

(interestingly: 
as field theories, exhibit duality at infinite-N, but at 
finite-N, theories and symmetries are different!)

Cos-net:

Gauss-net:

[J.H.]

[J.H., Maiti, Stoner]



Main Results: NN metric flow

∞-NN metric flow

Local Metric Flow

X   Ricci Flow

difficult: stochastic, t-dependent, hard to compute.
easier: deterministic, t-indep, fixed function.
easiest: deterministic, t-indep, local



Kahler Metric Flows and Calabi-Yau Metrics
If we want numerical CY metrics via infinite-width and NTK,

it’s useful to specify the story further.



Kahler Potential Flows
Naive Kahler Potential Flow: Kahler Potential Flow

where we have varied with respect to the Kahler 
metric to avoid Kahler transformation redunds.

Relationship between better and naive NTK
makes the former tractable.

Both can have frozen NTK limits.



Kahler Metric Flows



Implementation: Infinite-Width Metric Flows to CY
● explicitly compute metric updates from

our kernel regression equations,
no NN parameters b/c of infinite-width limit.

● use great ML packages from Google teams,
neural-tangents, JAX, TensorFlow.
and cymetric from our community.

Preliminary result:

Simple metric  flow with Gaussian kernel,
infinite width limit. 10000 pts on the Fermat quintic.

Caveat: this is train loss from last week, 
currently overtraining, stay tuned!s 

Interesting TBD: better or worse than finite NN?
Interesting ML Q related to large-scale Google study.

[Lee et. al.]



Conclusions
I’ve explained how ML theory helps us understand and

characterize NN metric flows by opening up
a new duality frame at infinite width.

I’ve specialized to Kahler metrics,
for the purpose of approximating CY metrics at infinite width,

and showed preliminary results.



Interested? Here are seminars at this interface.

Institute for Artificial Intelligence 
and Fundamental Interactions (IAIFI)

Physics Meets ML

one of five original NSF AI research institutes, 
this one at the interface with physics! 

MIT, Northeastern, Harvard, Tufts.

ML for physics / math discoveries?
Can physics / math help ML?

Sign up for our mailing list: www.iaifi.org.

virtual seminar series, “continuation” of 2019 
meeting at Microsoft Research.

Bi-weekly seminars from physicists and CS, 
academia and industry.

Organizers: Bahri (Google), Krippendorf 
(LMU Munich), J.H., Paganini (DeepMind), 
Ruehle (CERN), Shiu (Madison), Yang (MSR)

Sign up at www.physicsmeetsml.org.

http://www.iaifi.org
http://www.physicsmeetsml.org


Interested? Upcoming Meetings at this Interface
● IAIFI Summer School 2023

ML + Physics education for students,
postdocs, and faculty.

● IAIFI Summer Workshop 2023
great talks across physics,
industry and academia.

● Mathematics and Machine Learning 2023         Caltech, December 10-12, 2023.
● String Data 2023                                                       Caltech, December 13-15,  2023.



Thanks!
Questions?

Or get in touch after:
e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com

mailto:jhh@neu.edu
http://www.jhhalverson.com


Ricci Flow
Hamilton’s Formulation:

In the 1980’s, Richard Hamilton introduced
a flow in the space of metrics known as Ricci flow.

Proved numerous critical theorems, e.g. 
uniqueness and existence for arbitrary init. cond.

Perelman’s Formulation:

In the 2000’s, Perelman famously showed that 
Ricci flow is a gradient of a scalar functional,
via t-dependent diff. relating above to Hamilton’s.

Introduced “Ricci flow with Surgery” to deal with 
singularities, prove Poincare conjecture.



A Generalized Ricci-Flow
Generalized Ricci Flow:
Take σ small but finite,
sets scale of non-locality for the generalized Ricci 
flow that may be made parametrically small.

Examples: (Cos-net, e.g.)

σ small limit is σb large limit.

Implementation: easy to take into account
this generalized Ricci flow.

recall 3 properties: frozen, local, and no mixing,
and that it was locality that was harder.

Recall that frozen and no-mixing gives us:

and that our in our examples

gives the locality-inducing δ-function as 𝜎 → 0.



Remarks: Algebraic Geometry ∩ NTK
Upshot: we cast the story of NN reps of CY metrics, and 
especially their learning process,
in the language of ∞-NN and NTK theory.

This introduces a connection between algebraic
geometry and deep learning theory.

Interesting connections are immediate by simple
thought and relating to literature.

● flat directions of loss function
= CY moduli space, 
embedded in infinite dim. parameter space.

● ∞-NN trained with mean square error 
will memorize (learn perfectly) target metric.

● develop theory of NTK spectrum to facilitate 
learning CY metrics? (c.f. computer vision).



Finite vs. Infinite: Large-Scale Study by Google


