The Tameness of Quantum Field Theories

Thomas W. Grimm

Utrecht University

with Mike Douglas, Lorenz Schlechter

Based on:

2302.04275 Part II

2210.10057 Part I

2210.1005/ Part 1

2112.08383 + work in progress

Finiteness as swampland principle

 Explore the idea that a 'finiteness principle' could unifying many swampland conjectures and different parts of physics

Finiteness as swampland principle

- Explore the idea that a 'finiteness principle' could unifying many swampland conjectures and different parts of physics
- Finiteness swampland conjectures about effective theories:
 - Number of distinct effective theories from string theory with bounds on vacuum energy, KK scale, compactification volume are finite

[Douglas '03] [Acharya, Douglas '06]

 Number of distinct effective theories compatible with quantum gravity and valid to (at least) some fixed cut-off scale is finite

[Hamada, Montero, Vafa, Valenzuela '21]

Finiteness as swampland principle

- Explore the idea that a 'finiteness principle' could unifying many swampland conjectures and different parts of physics
- Finiteness swampland conjectures about effective theories:
 - Number of distinct effective theories from string theory with bounds on vacuum energy, KK scale, compactification volume are finite

[Douglas '03] [Acharya, Douglas '06]

 Number of distinct effective theories compatible with quantum gravity and valid to (at least) some fixed cut-off scale is finite

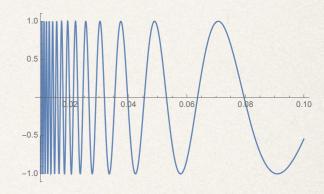
[Hamada, Montero, Vafa, Valenzuela '21]

- Suggested finiteness principle: Tameness ('o-minimality')
 - → finiteness conjectures are implied, but much broader concept

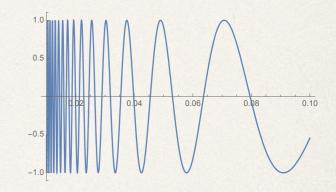
- Tameness is generalized finiteness principle
 - → restricts sets and functions: tame sets + tame functions

- Tameness is generalized finiteness principle
 - → restricts sets and functions: tame sets + tame functions
- Avoid wild functions and sets:
 - → no sets with infinite disconnected components: integers, lattices...

- Tameness is generalized finiteness principle
 - → restricts sets and functions: tame sets + tame functions
- Avoid wild functions and sets:
 - → no sets with infinite disconnected components: integers, lattices...
 - \rightarrow no complicated functions: $f(x) = \sin(1/x)$

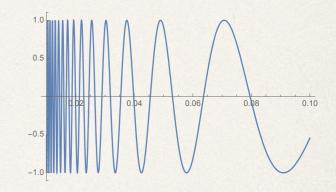


- Tameness is generalized finiteness principle
 - → restricts sets and functions: tame sets + tame functions
- Avoid wild functions and sets:
 - → no sets with infinite disconnected components: integers, lattices...
 - \rightarrow no complicated functions: $f(x) = \sin(1/x)$



Comes from logic: o-minimal structures
 motivated by logical undecidability [Tarski] (Gödel's theorems are over integers)

- Tameness is generalized finiteness principle
 - → restricts sets and functions: tame sets + tame functions
- Avoid wild functions and sets:
 - → no sets with infinite disconnected components: integers, lattices...
 - \rightarrow no complicated functions: $f(x) = \sin(1/x)$



- Comes from logic: o-minimal structures
 motivated by logical undecidability [Tarski] (Gödel's theorems are over integers)
- Grothendieck's dream to develop math. framework for geometry:
 - → tame topology [Esquisse d'un programme]

Tameness from theory of o-minimal structures (model theory, logic)
 intro book [van den Dries]

Recent lectures: 2022 Fields institute program (6 months)

- Tameness from theory of o-minimal structures (model theory, logic) intro book [van den Dries]
 Recent lectures: 2022 Fields institute program (6 months)
- structure S: collect subsets of \mathbb{R}^n , n = 1, 2, ...
 - closed under finite unions, intersections, complements, and products
 'or' 'and' 'not'

- Tameness from theory of o-minimal structures (model theory, logic) intro book [van den Dries]
 Recent lectures: 2022 Fields institute program (6 months)
- structure S: collect subsets of \mathbb{R}^n , n = 1, 2, ...
 - closed under finite unions, intersections, complements, and products
 'or' 'and' 'not'
 - Closed under projections (existential quantifier ∃)

- Tameness from theory of o-minimal structures (model theory, logic) intro book [van den Dries]
 Recent lectures: 2022 Fields institute program (6 months)
- structure S: collect subsets of \mathbb{R}^n , n = 1, 2, ...
 - closed under finite unions, intersections, complements, and products
 'or' 'and' 'not'
 - Closed under projections (existential quantifier ∃)
 - sets defined by all real polynomials included (algebraic sets)

- Tameness from theory of o-minimal structures (model theory, logic) intro book [van den Dries]
 Recent lectures: 2022 Fields institute program (6 months)
- structure S: collect subsets of \mathbb{R}^n , n = 1, 2, ...
 - closed under finite unions, intersections, complements, and products
 'or' 'and' 'not'
 - Closed under projections (existential quantifier ∃)
 - sets defined by all real polynomials included (algebraic sets)
- tame/o-minimal structure \mathcal{S} : only subsets of \mathbb{R} that are in \mathcal{S} are finite unions of points and intervals

[van den Dries]

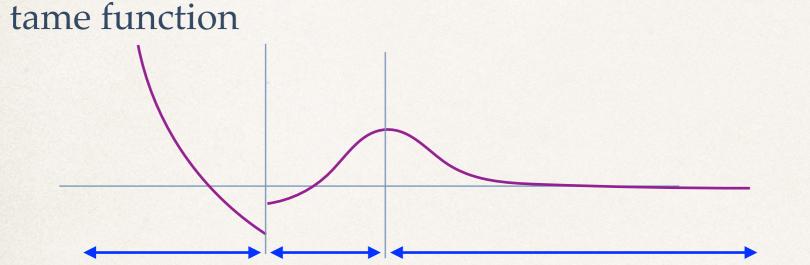
- Tameness from theory of o-minimal structures (model theory, logic) intro book [van den Dries]
 Recent lectures: 2022 Fields institute program (6 months)
- structure S: collect subsets of \mathbb{R}^n , n=1,2,...
 - sets in o-minimal structure \mathcal{S} : tame sets
 - functions with graph being a tame set: tame functions
 - → tame manifold, tame bundles... a tame geometry

finite unions of points and intervals

van den Dries

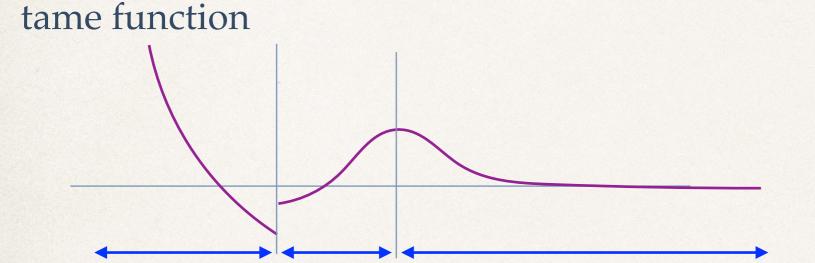
- Consider function: $f: \mathbb{R} \to \mathbb{R}$

- Consider function: $f: \mathbb{R} \to \mathbb{R}$



split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

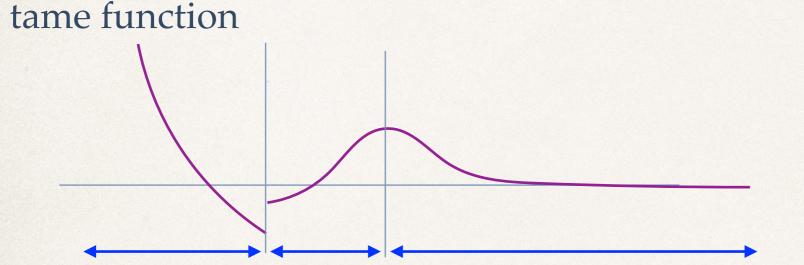
- Consider function: $f: \mathbb{R} \to \mathbb{R}$



split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

→ finitely many minima and maxima, tame tail to infinity

- Consider function: $f: \mathbb{R} \to \mathbb{R}$



split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

→ finitely many minima and maxima, tame tail to infinity

- Periodic functions f(x+n) = f(x) are never tame (when not constant)

$$\sin(x), x \in \mathbb{R}$$



- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Simplest structure: $\mathbb{R}_{\mathrm{alg}}$ (used e.g. in real algebraic geometry)
 - generated by zero-sets of finitely many real polynomials:

$$P_k(x_1, ..., x_n) = 0$$

complete sets obtained by projection, unions,...

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Simplest structure: $\mathbb{R}_{\mathrm{alg}}$ (used e.g. in real algebraic geometry)
 - generated by zero-sets of finitely many real polynomials:

$$P_k(x_1, ..., x_n) = 0$$
 complete sets obtained by projection, unions,...

General structure: add more functions $f_i: \mathbb{R}^m \to \mathbb{R}$ to generate sets $P_k(x_1,...,x_m,f_1(x),...,f_n(x))=0$

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Simplest structure: $\mathbb{R}_{\mathrm{alg}}$ (used e.g. in real algebraic geometry)
 - generated by zero-sets of finitely many real polynomials:

$$P_k(x_1, ..., x_n) = 0$$
 complete sets obtained by projection, unions,...

- General structure: add more functions $f_i: \mathbb{R}^m \to \mathbb{R}$ to generate sets $P_k(x_1,...,x_m,f_1(x),...,f_n(x))=0$
- Logic perspective: $\mathbb{R}_{\mathcal{F}} = \langle \mathbb{R}; +, \cdot, -, \mathcal{F} \rangle$ $\mathcal{F} = \{f_1, f_2, ...\}$

all formulas using these symbols and \land , \lor , \neg , \exists , \forall

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some examples:
 - · \mathbb{R}_{\exp} : $\mathcal{F} = \{\exp\}$ [Wilkie '96]

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some examples:
 - · \mathbb{R}_{\exp} : $\mathcal{F} = \{\exp\}$ [Wilkie '96]
 - $\mathcal{F} = \{\text{restricted analytic functions}\}$ [Denef, van den Dries '88]

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some examples:
 - · \mathbb{R}_{\exp} : $\mathcal{F} = \{\exp\}$ [Wilkie '96]
 - $\mathcal{F} = \{\text{restricted analytic functions}\}$ [Denef, van den Dries '88]
 - · combine: $\mathbb{R}_{\mathrm{an,exp}}$ [van den Dries, Macintyre, Marker '94]

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some examples:
 - · \mathbb{R}_{\exp} : $\mathcal{F} = \{\exp\}$ [Wilkie '96]
 - $\mathcal{F} = \{\text{restricted analytic functions}\}$ [Denef, van den Dries '88]
 - · combine: $\mathbb{R}_{\mathrm{an,exp}}$ [van den Dries, Macintyre, Marker '94]
 - Pfaffian extension: $\mathcal{P}(\tilde{\mathbb{R}})$ includes solutions to $\partial_{x_i} f = F_i(x, f(x))$ $F_i \text{ functions in o-minimal structure } \tilde{\mathbb{R}} \text{ [Speissegger '97]}$

- Note: There are many known o-minimal structures.
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some examples:
 - · \mathbb{R}_{\exp} : $\mathcal{F} = \{\exp\}$ [Wilkie '96]
 - $\mathcal{F} = \{\text{restricted analytic functions}\}$ [Denef, van den Dries '88]
 - · combine: $\mathbb{R}_{\mathrm{an,exp}}$ [van den Dries, Macintyre, Marker '94]
 - Pfaffian extension: $\mathcal{P}(\tilde{\mathbb{R}})$ includes solutions to $\partial_{x_i} f = F_i(x, f(x))$ $F_i \text{ functions in o-minimal structure } \tilde{\mathbb{R}} \text{ [Speissegger '97]}$

structure including $\Gamma(x)|_{(0,\infty)}$ and $\zeta(x)|_{(1,\infty)}$ [Rolin, Servi, Speissegger '22]

A currently active field of mathematics

 Much recent activity in mapping out the tame parts of mathematics (algebraic geometry, arithmetic geometry, number theory,...)

A currently active field of mathematics

- Much recent activity in mapping out the tame parts of mathematics (algebraic geometry, arithmetic geometry, number theory,...)
- Tameness used in many recent proofs of deep mathematics conjectures:
 - Ax-Schanuel conjecture for Hodge structures [Bakker, Tsimerman '17] several subsequent generalizations, e.g. to mixed Hodge structures
 - Griffiths' conjecture [Bakker,Brunebarbe,Tsimerman '18]
 - · André-Oort conjecture ... [Pila, Shankar, Tsimerman '21]
 - Geometric André-Grothendieck Period Conjecture [Bakker, Tsimerman '22]
- Finiteness of self-dual integral classes (inspired by physics finiteness conjecture)
 [Bakker,TG,Schnell,Tsimerman '21]

Building Structures for physical theories

Idea: associate a structure to any set of physical theories
 [Douglas,TG,Schlechter - Part II]

- Idea: associate a structure to any set of physical theories
 [Douglas,TG,Schlechter Part II]
- Starting point for QFTs:
 - set of QFTs $\,\mathcal{T}$, e.g. specified Lagrangians $\,\mathcal{L}^{(d)}(\phi,\lambda)$

- Idea: associate a structure to any set of physical theories
 - [Douglas, TG, Schlechter Part II]

- Starting point for QFTs:
 - set of QFTs $\,\mathcal{T}$, e.g. specified Lagrangians $\,\mathcal{L}^{(d)}(\phi,\lambda)$
 - set ${\mathcal S}$ of Euclidean spacetimes (Σ,g)

- Idea: associate a structure to any set of physical theories
 [Douglas, TG, Schlechter Part II]
- Starting point for QFTs:
 - set of QFTs $\,\mathcal{T}$, e.g. specified Lagrangians $\,\mathcal{L}^{(d)}(\phi,\lambda)$
 - set ${\mathcal S}$ of Euclidean spacetimes (Σ,g)
 - \rightarrow both sets should be definable in some structure $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$

Idea: associate a structure to any set of physical theories

[Douglas, TG, Schlechter - Part II]

- Starting point for QFTs:
 - set of QFTs $\,\mathcal{T}$, e.g. specified Lagrangians $\,\mathcal{L}^{(d)}(\phi,\lambda)$
 - set ${\mathcal S}$ of Euclidean spacetimes (Σ,g)
 - \rightarrow both sets should be definable in some structure $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$

Example:

T: polynomial Lagrangians with real valued parameters

 \mathcal{S} : spacetimes \mathbb{R}^d, T^d, S^d with standard metric

$$\longrightarrow \mathbb{R}^{\operatorname{def}}_{\mathcal{T},\mathcal{S}} = \mathbb{R}_{\operatorname{alg}}$$

<u>However</u>: physical constraints on $\mathcal T$ might require to go beyond $\mathbb R_{\mathrm{alg}}$

- Idea: associate a structure to any set of physical theories
- Starting point for QFTs:
 - set of QFTs $\,\mathcal{T}$, e.g. specified Lagrangians $\,\mathcal{L}^{(d)}(\phi,\lambda)$
 - set ${\mathcal S}$ of Euclidean spacetimes (Σ,g)
 - \rightarrow both sets should be definable in some structure $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$
- Extend structure $\mathbb{R}^{def}_{\mathcal{T},\mathcal{S}}$ by physical observables: add correlation/partition functions:

$$f_{\alpha}(y,\lambda) = \langle \mathcal{O}_1(y_1)...\mathcal{O}_1(y_n) \rangle_{\lambda}$$
 new structure

 \rightarrow complicated function on $\Sigma \times ... \times \Sigma$ and parameter space

 $\mathbb{R}_{\mathcal{T},\mathcal{S}}$

- Idea: associate a structure to any set of physical theories
- Starting point for QFTs:
 - set of QFTs $\,\mathcal{T}$, e.g. specified Lagrangians $\,\mathcal{L}^{(d)}(\phi,\lambda)$
 - set ${\mathcal S}$ of Euclidean spacetimes (Σ,g)
 - \rightarrow both sets should be definable in some structure $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$
- Extend structure $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$ by physical observables: add correlation/partition functions:

Example: harmonic oscillator in quantum mechanics (Euclidean) $\mathbb{R}_{\mathcal{T},\mathcal{S}} = \mathbb{R}_{\exp}$

- Logic: language of $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ should be rich enough to formulate statements about the theories and their observables

- Logic: language of $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ should be rich enough to formulate statements about the theories and their observables
- Tameness questions:
 - (1): If $\mathbb{R}^{\text{def}}_{\mathcal{T},\mathcal{S}}$ is o-minimal, when is $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ o-minimal?
 - Are physical observables tame?

- Logic: language of $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ should be rich enough to formulate statements about the theories and their observables
- Tameness questions:
 - (1): If $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$ is o-minimal, when is $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ o-minimal?
 - Are physical observables tame?
 - (2): What are simple conditions on theories such that $\mathbb{R}^{\text{def}}_{\mathcal{T},\mathcal{S}}$ is o-minimal?
 - Tameness of the set of physical theories?

- Logic: language of $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ should be rich enough to formulate statements about the theories and their observables
- Tameness questions:
 - (1): If $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$ is o-minimal, when is $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ o-minimal?
 - Are physical observables tame?
 - (2): What are simple conditions on theories such that $\mathbb{R}^{\text{def}}_{\mathcal{T},\mathcal{S}}$ is o-minimal?
 - Tameness of the set of physical theories?

We consider: $\mathbb{R}_{\mathrm{QFT}d}, \ \mathbb{R}_{\mathrm{EFT}d}, \ \mathbb{R}_{\mathrm{CFT}d}, \ \mathbb{R}_{\mathrm{QG}}, ...$

Tameness of general QFTs?

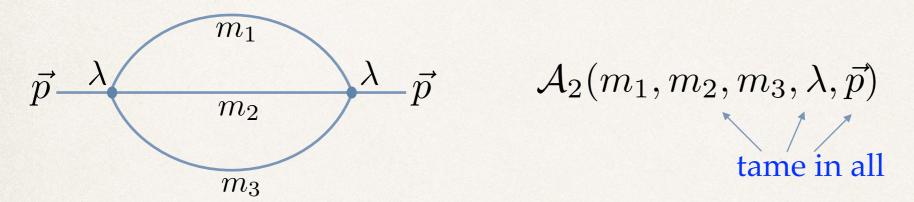
 $\mathbb{R}_{\mathrm{QFT}d}$

Perturbative QFT:

Theorem: For any (renormalizable) QFT with finitely many particles and interactions all finite-loop amplitudes are tame functions in $\mathbb{R}_{an,exp}$ of masses, external momenta, coupling constants. [Douglas,TG,Schlechter - Part I]

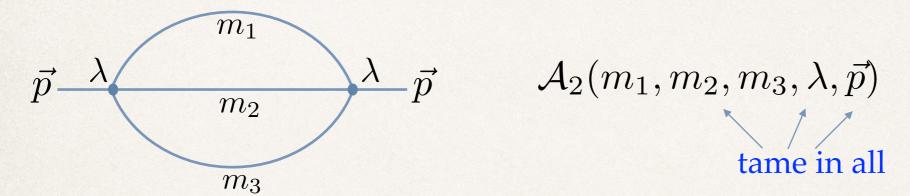
Perturbative QFT:

Theorem: For any (renormalizable) QFT with finitely many particles and interactions all finite-loop amplitudes are tame functions in $\mathbb{R}_{an,exp}$ of masses, external momenta, coupling constants. [Douglas,TG,Schlechter - Part I]



Perturbative QFT:

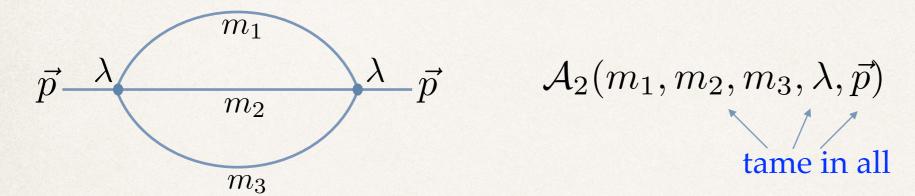
Theorem: For any (renormalizable) QFT with finitely many particles and interactions all finite-loop amplitudes are tame functions in $\mathbb{R}_{an,exp}$ of masses, external momenta, coupling constants. [Douglas,TG,Schlechter - Part I]



hidden finiteness property in all QFT amplitudes

Perturbative QFT:

Theorem: For any (renormalizable) QFT with finitely many particles and interactions all finite-loop amplitudes are tame functions in $\mathbb{R}_{\mathrm{an,exp}}$ of masses, external momenta, coupling constants. [Douglas,TG,Schlechter - Part I]



hidden finiteness property in all QFT amplitudes

- Remarks: proof uses relation of Feynman integrals and period integrals tameness of periods [Bakker,Klingler,Tsimermann]...[Bakker,Mullane '22]
 - theorem is non-trivial: interesting implications for Feynman amplitudes (symmetry ← relations) [in progress]

Tameness at non-perturbative level?

simple examples: tameness of partition functions of solvable theories

Tameness at non-perturbative level?

- simple examples: tameness of partition functions of solvable theories
 - 1d theory: harmonic oscillator (finite temperature partition function)

$$Z(\beta, m) = \frac{1}{2\sinh\beta/(2m)}$$
 \longrightarrow tame in β, m

- 2d free Yang-Mills: SU(2) example $Z_{SU(2)} = e^{\frac{A\lambda}{16}} (\theta_3(e^{-\frac{A\lambda}{16}}) 1)$
 - \rightarrow tame in λ, A , theta tame on fundamental domain [Peterzil, Starchenko]
- 2d theories: (2,2) GLSMs appearing in Type II CY compactifications $Z_{S^2} = e^{-K} = \bar{\Pi} \eta \Pi \qquad \text{tame due to relation to periods}$

Tameness at non-perturbative level?

- simple examples: tameness of partition functions of solvable theories
 - 1d theory: harmonic oscillator (finite temperature partition function)

$$Z(\beta, m) = \frac{1}{2\sinh\beta/(2m)}$$
 \longrightarrow tame in β, m

- 2d free Yang-Mills: SU(2) example $Z_{SU(2)} = e^{\frac{A\lambda}{16}} (\theta_3(e^{-\frac{A\lambda}{16}}) 1)$
 - \rightarrow tame in λ, A , theta tame on fundamental domain [Peterzil, Starchenko]
- 2d theories: (2,2) GLSMs appearing in Type II CY compactifications $Z_{S^2} = e^{-K} = \bar{\Pi} \eta \Pi \qquad \text{tame due to relation to periods}$

General statements about 0d QFTs (QFTs on points)

→ path integrals reduce to ordinary integrals

Consider in 0d:
$$S = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 \rightarrow Z = \sqrt{\frac{3}{\lambda}}e^{\frac{3m^4}{4\lambda}} m K_{\frac{1}{4}}\left(\frac{3m^4}{4\lambda}\right)$$

Consider in 0d:
$$S = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 \rightarrow Z = \sqrt{\frac{3}{\lambda}}e^{\frac{3m^4}{4\lambda}} m K_{\frac{1}{4}}\left(\frac{3m^4}{4\lambda}\right)$$
 tame?

- Consider in 0d: $S = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 \rightarrow Z = \sqrt{\frac{3}{\lambda}}e^{\frac{3m^4}{4\lambda}} m K_{\frac{1}{4}}\left(\frac{3m^4}{4\lambda}\right)$ tame?
 - \rightarrow [Douglas,TG,Schlechter Part I]: no proof that $K_{\alpha}(x)$ is tame...

- Consider in 0d: $S = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 \rightarrow Z = \sqrt{\frac{3}{\lambda}}e^{\frac{3m^4}{4\lambda}} m K_{\frac{1}{4}}\left(\frac{3m^4}{4\lambda}\right)$ tame?
 - \rightarrow [Douglas,TG,Schlechter Part I]: no proof that $K_{\alpha}(x)$ is tame...
 - \rightarrow after WHCGP colloquium: van den Dries sent a proof that $K_{\alpha}(x)$ is tame in Pfaffian structure but not in $\mathbb{R}_{\mathrm{an,exp}}$

QFTs on points

recently e.g. [Gasparotto, Rapakoulias, Weinzierl]

correlation functions in 0d are ordinary integrals

$$\langle \mathcal{O}_1...\mathcal{O}_n \rangle_{\lambda} = \int d\phi_1...d\phi_k \,\mathcal{O}_1...\mathcal{O}_n \,e^{-S^{(0)}(\phi,\lambda)}$$

QFTs on points

recently e.g. [Gasparotto, Rapakoulias, Weinzierl]

correlation functions in 0d are ordinary integrals

$$\langle \mathcal{O}_1...\mathcal{O}_n \rangle_{\lambda} = \int d\phi_1...d\phi_k \,\mathcal{O}_1...\mathcal{O}_n \,e^{-S^{(0)}(\phi,\lambda)}$$
 tame?

QFTs on points

recently e.g. [Gasparotto, Rapakoulias, Weinzierl]

correlation functions in 0d are ordinary integrals

$$\langle \mathcal{O}_1...\mathcal{O}_n \rangle_{\lambda} = \int d\phi_1...d\phi_k \,\mathcal{O}_1...\mathcal{O}_n \,e^{-S^{(0)}(\phi,\lambda)}$$
 tame?

Conjecture [van den Dries][Kaiser]: Given a real-valued tame function $f(\lambda,\phi)$ (in some o-minimal structure $\mathcal S$) the integral

$$g(\lambda) = \int d\phi_1 ... d\phi_k f(\phi, \lambda)$$

is also a tame function (in some o-minimal structure ${\cal S}$).

QFTs on points

recently e.g. [Gasparotto, Rapakoulias, Weinzierl]

correlation functions in 0d are ordinary integrals

$$\langle \mathcal{O}_1...\mathcal{O}_n \rangle_{\lambda} = \int d\phi_1...d\phi_k \,\mathcal{O}_1...\mathcal{O}_n \,e^{-S^{(0)}(\phi,\lambda)}$$
 tame?

Conjecture [van den Dries][Kaiser]: Given a real-valued tame function $f(\lambda,\phi)$ (in some o-minimal structure $\mathcal S$) the integral

$$g(\lambda) = \int d\phi_1 ... d\phi_k f(\phi, \lambda)$$

is also a tame function (in some o-minimal structure ${\cal S}$).

Note: Theorem for $S = \mathbb{R}_{an} \to \widetilde{S} = \mathbb{R}_{an,exp}$. [Comte,Lion,Rolin]

However, for non-perturbative results, we need exponential to be in \mathcal{S} .

QFTs on points

recently e.g. [Gasparotto, Rapakoulias, Weinzierl]

correlation functions in 0d are ordinary integrals

$$\langle \mathcal{O}_1...\mathcal{O}_n \rangle_{\lambda} = \int d\phi_1...d\phi_k \,\mathcal{O}_1...\mathcal{O}_n \,e^{-S^{(0)}(\phi,\lambda)}$$

⇒ math. conjecture implies:

[Douglas,TG,Schlechter - Part II]

in order that physical observables $\langle \mathcal{O}_1...\mathcal{O}_n \rangle_{\lambda}$ are tame functions of parameters λ if one needs to require:

 $S^{(0)}(\phi,\lambda)$ is tame function of λ,ϕ

- No!

No! e.g. consider discrete symmetry group *G*

$$Z(g \cdot \lambda) = Z(\lambda)$$

No! e.g. consider discrete symmetry group *G*

$$Z(g \cdot \lambda) = Z(\lambda)$$
 \rightarrow never tame if dim(G) is infinite

No! e.g. consider discrete symmetry group *G*

$$Z(g \cdot \lambda) = Z(\lambda)$$
 \rightarrow never tame if dim(G) is infinite

- \rightarrow tameness requires that all such symmetries are gauged or eventually broken in full Z
 - → Fits with best understood conjectures about Quantum Gravity: 'No global symmetries in QG'

[Banks, Dixon] [Banks, Seiberg]

Non-tameness of Lagrangian: easy to get non-tame Lagrangian by picking non-tame potential V(x)

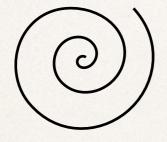
Non-tameness of Lagrangian: easy to get non-tame Lagrangian by picking non-tame potential V(x)

Simple: $V(\theta) = A\cos(\theta) + B\cos(\alpha \theta)$ α irrational

Non-tameness of Lagrangian: easy to get non-tame Lagrangian by picking non-tame potential V(x)

Simple:
$$V(\theta) = A\cos(\theta) + B\cos(\alpha \theta)$$
 α irrational

Fancy:



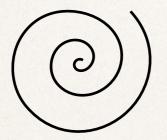
vacuum locus is infinite spiral

→ existence would also challenge Distance Conjecture [TG,Lanza,Li]

Non-tameness of Lagrangian: easy to get non-tame Lagrangian by picking non-tame potential V(x)

Simple:
$$V(\theta) = A\cos(\theta) + B\cos(\alpha \theta)$$
 α irrational

Fancy:



vacuum locus is infinite spiral

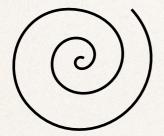
→ existence would also challenge Distance Conjecture [TG,Lanza,Li]

More Fancy:
$$W_{\xi} = Y P_{\xi}(X_1, \dots, X_k)^2 + \sum_a Z_a (\sin 2\pi i X_a)^2$$
 [Tachikawa]

Existence of supersymmetric vacua is undecidable!

Non-tameness of Lagrangian: easy to get non-tame Lagrangian by picking non-tame potential V(x)

Simple:
$$V(\theta) = A\cos(\theta) + B\cos(\alpha \theta)$$
 α irrational



vacuum locus is infinite spiral

→ existence would also challenge Distance Conjecture [TG,Lanza,Li]

More Fancy:
$$W_{\xi} = Y P_{\xi}(X_1, \dots, X_k)^2 + \sum_a Z_a (\sin 2\pi i X_a)^2$$
 [Tachikawa]

Existence of supersymmetric vacua is undecidable!

• in general: \mathbb{R}_{QFTd} not o-minimality/tame → tameness depends on the UV origin of the theory

Effective field theories compatible with quantum gravity

 $\mathbb{R}_{\mathrm{EFT}d}$

A tameness conjecture

Conjecture [TG '21]:

All effective theories valid below a fixed finite energy cut-off scale Λ that can be coupled to QG are labelled by a tame parameter space and have scalar field spaces and Lagrangians that are tame in an o-minimal structure.

A tameness conjecture

Conjecture [TG '21]:

All effective theories valid below a fixed finite energy cut-off scale Λ that can be coupled to QG are labelled by a tame parameter space and have scalar field spaces and Lagrangians that are tame in an o-minimal structure.

- Conjecture implies several finiteness conjectures proposed in the past e.g. [Douglas][Acharya,Douglas][Vafa][Hamada,Montero,Vafa,Valenzuela]
- relates to absence of global symmetries, distance conjecture...

A tameness conjecture

Conjecture [TG '21]:

All effective theories valid below a fixed finite energy cut-off scale Λ that can be coupled to QG are labelled by a tame parameter space and have scalar field spaces and Lagrangians that are tame in an o-minimal structure.

- Conjecture implies several finiteness conjectures proposed in the past e.g. [Douglas][Acharya,Douglas][Vafa][Hamada,Montero,Vafa,Valenzuela]
- relates to absence of global symmetries, distance conjecture...

Conjecture [Douglas, TG, Schlechter - Part II]:

 $\mathbb{R}_{\mathrm{EFT}d}[\Lambda]$ are o-minimal structures, i.e. also EFT observables are tame.

Tameness of CFTs

CFTs require no UV completion with quantum gravity

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local

- CFTs require no UV completion with quantum gravity
- ullet CFTs are axiomatically well-defined theory set containing \mathcal{T} assume: CFT is unitary and local
- In [Douglas,TG,Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local
- In [Douglas,TG,Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

Conjecture 1 (Tame observables):

All observables of a tame set \mathcal{T} of CFTs are tame functions.

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local
- In [Douglas,TG,Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

Conjecture 1 (Tame observables):

All observables of a tame set \mathcal{T} of CFTs are tame functions.

Alternative: Structure $\mathbb{R}_{\mathcal{T},\mathcal{S}}$ for such theories is o-minimal.

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local
- In [Douglas, TG, Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

Conjecture 1 (Tame observables):

All observables of a tame set \mathcal{T} of CFTs are tame functions.

evidence from considering expansion into conformal partial waves

implications: conditions on gaps for operators finite radius of convergence of conformal perturbation

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local
- In [Douglas,TG,Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

Conjecture 2 (Tame theory spaces):

Theory space \mathcal{T} of CFTs in d=2 is tame set if

- central charge is bounded by \hat{c}
- lowest operator dimensions bounded from below by Δ_{\min}

implies conjectures by [Douglas, Acharya] [Kontsevich, Soibelman]

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local
- In [Douglas,TG,Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

Conjecture 2 (Tame theory spaces):

Theory space \mathcal{T} of CFTs in d>2 is tame set if

- appropriate measure of degrees of freedom is bounded by \hat{c}
- theories differing by discrete gaugings are identified

- CFTs require no UV completion with quantum gravity
- CFTs are axiomatically well-defined theory set containing T assume: CFT is unitary and local
- In [Douglas, TG, Schlechter II] we argue that CFT observables are tame and discuss various conditions which we believe ensure that \mathcal{T} is tame set

Conjecture 2 (Tame theory spaces):

Theory space \mathcal{T} of CFTs in d>2 is tame set if

- appropriate measure of degrees of freedom is bounded by \hat{c}
- theories differing by discrete gaugings are identified
- many challenging cases: e.g. 3d Chern-Simons matter theories
 - → show that there are no infinite discrete families

Outlook: Complexity

• Question: Can we assign measure of complexity to a function/set in structure?

- Question: Can we assign measure of complexity to a function/set in structure?
- simplest structure: \mathbb{R}_{alg} sets: $P_k(x_1,...,x_n)=0$ or $P_k(x_1,...,x_n)>0$
 - \rightarrow complexity captured by degree $D = \sum_{k} d_k$ and format F (# of x_i)

- Question: Can we assign measure of complexity to a function/set in structure?
- simplest structure: \mathbb{R}_{alg} sets: $P_k(x_1,...,x_n)=0$ or $P_k(x_1,...,x_n)>0$
 - \rightarrow complexity captured by degree $D = \sum_{k} d_k$ and format F (# of x_i)
- **¬** commonly used structure: $\mathbb{R}_{an,exp}$ contains all (restricted) analytic → huge analytic function: infinitely many free coefficients → sets have 'infinite complexity'

- Question: Can we assign measure of complexity to a function/set in structure?
- simplest structure: \mathbb{R}_{alg} sets: $P_k(x_1,...,x_n)=0$ or $P_k(x_1,...,x_n)>0$
 - \rightarrow complexity captured by degree $D = \sum_{k} d_k$ and format F (# of x_i)
- **¬** commonly used structure: $\mathbb{R}_{an,exp}$ contains all (restricted) analytic → huge analytic function: infinitely many free coefficients → sets have 'infinite complexity'
- ► Sharply o-minimal structures: special set of o-minimal structures with notion of (*D*,*F*), finite complexity [Binyamini,Novikov '22]

- Question: Can we assign measure of complexity to a function/set in structure?
- simplest structure: \mathbb{R}_{alg} sets: $P_k(x_1,...,x_n)=0$ or $P_k(x_1,...,x_n)>0$
 - \rightarrow complexity captured by degree $D = \sum_k d_k$ and format F (# of x_i)
- **-** commonly used structure: $\mathbb{R}_{an,exp}$ contains all (restricted) analytic → huge analytic function: infinitely many free coefficients → sets have 'infinite complexity'
- ► Sharply o-minimal structures: special set of o-minimal structures with notion of (*D*,*F*), finite complexity [Binyamini,Novikov '22]

Proposal: Tameness in physics is definability in a sharply o-minimal structure.

→ physical observables have finite complexity

 Suggested that tameness of set of well-defined physical theories and their observables is a general principle

- Suggested that tameness of set of well-defined physical theories and their observables is a general principle
- Showed tameness of perturbative QFT amplitudes and certain non-perturbative settings

- Suggested that tameness of set of well-defined physical theories and their observables is a general principle
- Showed tameness of perturbative QFT amplitudes and certain non-perturbative settings
- Evidence for tameness from effective theories arising in String Theory
 - → tameness theorem for self-dual integral classes, 'flux vacua'

- Suggested that tameness of set of well-defined physical theories and their observables is a general principle
- Showed tameness of perturbative QFT amplitudes and certain non-perturbative settings
- Evidence for tameness from effective theories arising in String Theory
 → tameness theorem for self-dual integral classes, 'flux vacua'
- Discussed tameness of space of Conformal Field Theories and their correlation functions

- Suggested that tameness of set of well-defined physical theories and their observables is a general principle
- Showed tameness of perturbative QFT amplitudes and certain non-perturbative settings
- Evidence for tameness from effective theories arising in String Theory
 → tameness theorem for self-dual integral classes, 'flux vacua'
- Discussed tameness of space of Conformal Field Theories and their correlation functions

Much left to be explored:

implications of tameness (computational + understanding QFTs) relation to other QG conjectures,..., connection with complexity/information

Thanks!