New tools for analyzing nonperturbative superpotentials in 4D string vacua

Patrick Jefferson (MIT) Based on [2211.00210] and w.i.p. with Manki Kim (MIT)

Kähler moduli stabilization in type IIB on CY3 orientifold

[Kachru Kallosh Linde Trivedi `03]

•
$$W = W_0 + W_{n.p.}$$
 where
 $W_{n.p.} = \sum_{\hat{D}} A_{\hat{D}}(z, \tau) e^{-\frac{2\pi}{c_{\hat{D}}}T_{\hat{D}}}$ [Witten, `96]
[Gukov Vafa Witten `99]

Kähler moduli stabilization in type IIB on CY3 orientifold

[Kachru Kallosh Linde Trivedi `03]

•
$$W = W_0 + W_{n.p.}$$
 where
 $W_{n.p.} = \sum_{\hat{D}} A_{\hat{D}}(z,\tau) e^{-\frac{2\pi}{c_{\hat{D}}}T_{\hat{D}}}$ [Witten, `96]
[Gukov Vafa Witten `99]

• Simplification: $A_{\hat{D}}(z,\tau) = \text{const.} \neq 0$

[Blumenhagen Collinucci Jurke `10]

Kähler moduli stabilization in type IIB on CY3 orientifold

[Kachru Kallosh Linde Trivedi `03]

•
$$W = W_0 + W_{n.p.}$$
 where
 $W_{n.p.} = \sum_{\hat{D}} A_{\hat{D}}(z, \tau) e^{-\frac{2\pi}{c_{\hat{D}}}T_{\hat{D}}}$ [Witten, `96]
[Gukov Vafa Witten `99]

• Simplification: $A_{\hat{D}}(z,\tau) = \text{const.} \neq 0$

[Blumenhagen Collinucci Jurke `10]

•
$$Re(T_{\hat{D}_i}) \approx \frac{\#}{2\pi} log(W_0^{-1})$$

[Demirtas Kim McAllister Moritz `19] [Álvarez-García Blumenhagen Brinkmann Schlechter `20] [Honma Otsuka `21] [Marchesano Prieto Wiesner `21]

Kähler moduli stabilization in type IIB on CY3 orientifold

[Kachru Kallosh Linde Trivedi `03]

F-theory uplift gives geometric insight

- Assume no spacetime filling D3
- Vertical divisor $\pi: \bar{D} \to \hat{D}$

F-theory uplift gives geometric insight

- Assume no spacetime filling D3
- Vertical divisor $\pi: \bar{D} \to \hat{D}$
- $A_{\bar{D}}$ holomorphic section of L, where $c_1(L) = \text{principal}$ polarization of $J_{\bar{D}} = H^3(\bar{D}, \mathbb{R})/H^3(\bar{D}, \mathbb{Z})$ [Witten, `96]

F-theory uplift gives geometric insight

- Assume no spacetime filling D3
- Vertical divisor $\pi: \bar{D} \to \hat{D}$
- $A_{\bar{D}}$ holomorphic section of L, where $c_1(L) = \text{principal}$ polarization of $J_{\bar{D}} = H^3(\bar{D}, \mathbb{R})/H^3(\bar{D}, \mathbb{Z})$ [Witten, `96]
- z, τ dependence is open problem, but

dim
$$J_{\bar{D}} = \sum_{p+q=3} h^{p,q}(\bar{D}) = 2(h^{3,0} + h^{2,1}) = 0 \implies A_{\bar{D}} = \text{ const.}$$

F-theory uplift gives geometric insight

- Assume no spacetime filling D3
- Vertical divisor $\pi: \bar{D} \to \hat{D}$
- $A_{\bar{D}}$ holomorphic section of L, where $c_1(L) = \text{principal}$ polarization of $J_{\bar{D}} = H^3(\bar{D}, \mathbb{R})/H^3(\bar{D}, \mathbb{Z})$ [Witten, `96]
- z, τ dependence is open problem, but

dim
$$J_{\bar{D}} = \sum_{p+q=3} h^{p,q}(\bar{D}) = 2(h^{3,0} + h^{2,1}) = 0 \implies A_{\bar{D}} = \text{ const.}$$

indicates understanding Hodge structure of \overline{D} important!

• Combinatorial formulae for $h^{p,q}(\bar{D})$, focusing on rigid case, $h^{\bullet,0}(\bar{D}) = (1,0,0,0)$ (sufficient to generate $W_{n.p.}$)

- Combinatorial formulae for $h^{p,q}(\bar{D})$, focusing on rigid case, $h^{\bullet,0}(\bar{D}) = (1,0,0,0)$ (sufficient to generate $W_{n.p.}$)
- Formulae only depends on geometric data of CY3/ \mathbb{Z}_2 :

- Combinatorial formulae for $h^{p,q}(\bar{D})$, focusing on rigid case, $h^{\bullet,0}(\bar{D}) = (1,0,0,0)$ (sufficient to generate $W_{n.p.}$)
- Formulae only depends on geometric data of CY3/ \mathbb{Z}_2 :
 - Hodge numbers $h^{p,q}(\hat{D}) = h^{p,q}_+(\varphi_I(\hat{D})), h^{p,q}_-(\varphi_I(\hat{D}))$
 - CY3/ \mathbb{Z}_2 divisors: \hat{D} , seven brane, and anticanonical divisor
 - # of O3 planes (terminal \mathbb{Z}_2 singularities) [Collinucci `09,`10]

- Combinatorial formulae for $h^{p,q}(\bar{D})$, focusing on rigid case, $h^{\bullet,0}(\bar{D}) = (1,0,0,0)$ (sufficient to generate $W_{n.p.}$)
- Formulae only depends on geometric data of CY3/ \mathbb{Z}_2 :
 - Hodge numbers $h^{p,q}(\hat{D}) = h^{p,q}_+(\varphi_I(\hat{D})), h^{p,q}_-(\varphi_I(\hat{D}))$
 - CY3/ \mathbb{Z}_2 divisors: \hat{D} , seven brane, and anticanonical divisor
 - # of O3 planes (terminal \mathbb{Z}_2 singularities) [Collinucci `09,`10]
- Does not require an explicit construction of F-theory CY4 uplift

 Hodge numbers from stratification of CY3 (toric hypersurface), combined with action of orientifold involution

- Hodge numbers from stratification of CY3 (toric hypersurface), combined with action of orientifold involution
- Dependence on \hat{D} , S_i , $-K_B$ and N_{O3} fixed using conjectured expression for Euler characteristic:

$$2(h^{1,1} - h^{2,1}) = \chi = \int_{\bar{D}} c_3 + 2N_{O3}$$

- Hodge numbers from stratification of CY3 (toric hypersurface), combined with action of orientifold involution
- Dependence on \hat{D} , S_i , $-K_B$ and N_{O3} fixed using conjectured expression for Euler characteristic:

$$2(h^{1,1} - h^{2,1}) = \chi = \int_{\bar{D}} c_3 + 2N_{O3}$$

 Perturbative O3 planes are prevalent in F-theory models with global Sen limit

- Hodge numbers from stratification of CY3 (toric hypersurface), combined with action of orientifold involution
- Dependence on \hat{D} , S_i , $-K_B$ and N_{O3} fixed using conjectured expression for Euler characteristic:

$$2(h^{1,1} - h^{2,1}) = \chi = \int_{\bar{D}} c_3 + 2N_{O3}$$

- Perturbative O3 planes are prevalent in F-theory models with global Sen limit
- Cross check: Hodge-Deligne numbers in known F-theory uplifts, and heuristic general arguments in local models

Plan for talk

- A. Sketch derivation of Hodge number formulae
- B. Cross checks: local and global geometric models
- C. Conclusions and future directions

Type IIB on coordinate flip CY3 orientifold

CY3 \subset V_4

Type IIB on coordinate flip CY3 orientifold

Type IIB on coordinate flip CY3 orientifold

• Example: orientifold of quintic threefold $\mathbb{P}^4[5]$ (at \mathbb{Z}_2 symmetric locus)

 $\begin{array}{cccc} B & \subset & \hat{V}_4 \\ \downarrow & & \downarrow & \varphi_I \\ \mathbf{CY3} & \mathbf{C} & V_4 \end{array}$

F-theory uplift (admitting global Sen limit)

[Collinucci `08]

F-theory uplift (admitting global Sen limit)

• Example: F-theory uplift of orientifold of quintic threefold $\mathbb{P}^4[5]$

ECY4 $\downarrow \qquad \qquad Y^2 = X^3 + fXZ + gZ^6$ $\downarrow \qquad \qquad \downarrow \qquad \varphi_I$ CY3 $\subset V_4$ $L = \frac{1}{2} [\hat{x}_1] = [\hat{x}_{i\neq 1}]$ $\frac{\hat{x}_1 \ \hat{x}_2 \ \hat{x}_3 \ \hat{x}_4 \ \hat{x}_5 \ X \ Y \ Z \ \hat{P} \ \hat{P}'}{U(1)_1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 2 \ 3 \ 0 \ -5 \ -6}$ $U(1)_2 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 1 \ 0 \ -6$

[Collinucci `08]

Setting the stage Vertical divisor of F-theory uplift

- $h^{p,q}$ from Hodge-Deligne numbers $e^{p,q} = \sum_{k} (-1)^k h^{p,q} (H_c^k)$
- HD characters $e = \sum_{p,q} x^p \bar{x}^q e^{p,q}$ additive over \coprod , multiplicative over \times

- Equivariant Hodge numbers $h^{p,q}_{\pm}(\varphi(\hat{D}))$ from toric data
- Cohomology splits into eigenspaces of $I,\,h^{p,q}(\hat{D})=h^{p,q}_+(\varphi_I(\hat{D}))$

• We construct \bar{D} using Weierstrass model defined by line bundle $\mathcal{O}(-K_B)|_{\hat{D}}$

• We construct \bar{D} using Weierstrass model defined by line bundle $\mathcal{O}(-K_B)|_{\hat{D}}$

• We then classify \overline{D} according to litaka dimension of $\mathcal{O}(-K_B)|_{\hat{D}}$

- litaka dimension, dim $\mathcal{O}(-K_B)|_{\hat{D}} = -\infty, 0, ..., 2 = \dim \hat{D}$
- Characterizes dimension of subspace of \hat{D} over which fibration \bar{D} varies nontrivially, computed as dimension of Newton polytope of $-K_B|_{\hat{D}}$

- litaka dimension, dim $\mathcal{O}(-K_B)|_{\hat{D}} = -\infty, 0, ..., 2 = \dim \hat{D}$
- Characterizes dimension of subspace of \hat{D} over which fibration \bar{D} varies nontrivially, computed as dimension of Newton polytope of $-K_B|_{\hat{D}}$
- Using

 $h^{p,q}(\bar{D}) \geq h^{p,q}_+(\varphi_I(\hat{D})) + h^{p-1,q}_-(\varphi_I(\hat{D})) + h^{p,q-1}_p(\varphi_I(\hat{D})) + h^{p-1,q-1}_+(\varphi_I(\hat{D}))$

and physical assumption (fermion zero mode matching)

$$\sum_{i=0}^{3} h^{i,0}(\bar{D}) = \sum_{i=0}^{2} h^{i,0}_{\pm}(\varphi_{I}(\hat{D}))$$

we derive formulae for $h^{p,q}(\bar{D})$ in each case, except $h^{2,1}(\bar{D})$

• Recall that $A_{\bar{D}} = \text{const.}$ when $h^{3,0} = h^{2,1} = 0$

- Recall that $A_{\bar{D}} = \text{const.}$ when $h^{3,0} = h^{2,1} = 0$
- Strategy: Euler characteristic $\chi = 2(h^{1,1} h^{2,1})$

- Recall that $A_{\bar{D}} = \text{const.}$ when $h^{3,0} = h^{2,1} = 0$
- Strategy: Euler characteristic $\chi = 2(h^{1,1} h^{2,1})$
- Using Weierstrass model:

$$\chi \stackrel{?}{=} \int_{\bar{D}} c_3 = \int_{\hat{D}} 12 \left(c_1(\hat{D}) \cdot (-K_B|_{\hat{D}}) + 6(-K_B|_{\hat{D}})^2 + \sum_i 6((-K_B|_{\hat{D}}) \cdot S_i - 2S_i^2) \right)$$
[Esole Jefferson Kang `17]
[Jefferson Turner, `22]

- Recall that $A_{\bar{D}} = \text{const.}$ when $h^{3,0} = h^{2,1} = 0$
- Strategy: Euler characteristic $\chi = 2(h^{1,1} h^{2,1})$
- Using Weierstrass model (with $L = -K_B|_{\hat{D}}$)

$$\chi \stackrel{?}{=} \int_{\bar{D}} c_3 = \int_{\hat{D}} 12 \left(c_1(\hat{D}) \cdot L + 6L^2 + \sum_i 6(L \cdot S_i - 2S_i^2) \right)$$
[Esole PJ Kang `17]
[PJ Turner, `22]

- Formula must be corrected in presence of O3 planes (terminal \mathbb{Z}_2 singularities)
- Conjecture: $\chi = \int_{\bar{D}} c_3 + 2N_{O3}$, passes numerous checks

Sample result

Case: dim $\mathcal{O}(-K_B)|_{\hat{D}} = 2$

- $h^{\bullet,0}(\bar{D}) = h^{\bullet-1,0}_{-}(\varphi_I(\hat{D})) + h^{\bullet,0}_{+}(\varphi_I(\hat{D}))$
- $h^{1,1}(\bar{D}) = h^{1,1}(\hat{D}) + 1 + 4N_{SO(8)}$, where $h^{1,1}(\hat{D}) = h^{1,1}_+(\varphi_I(\hat{D}))$
- $h^{2,1}(\bar{D}) = 2 + h^{1,1}(\hat{D}) + 4N_{SO(8)} N_{O3} \frac{1}{2} \int_{\bar{D}} c_3$, for rigid case
- $h^{p,q}(\hat{D}) = h^{p,q}_+(\varphi_I(\hat{D})), h^{p,q}_-(\varphi_I(\hat{D}))$ expressed in terms of stratification using toric data

- We use local geometry to give heuristic argument for χ .
- First model:

```
 \begin{array}{l} \bar{D} \\ \downarrow \\ \hat{D} \\ I \\ I \\ \mathbb{P}_{[1,1,2]} \end{array}  line bundle L = \alpha H
```


- We use local geometry to give heuristic argument for χ .
- First model: \hat{D} \hat{D} \hat{D}

• Second model: local ECY4

$$\bar{E}_{12} \subset \operatorname{ECY4}^{\operatorname{asym}} \leftrightarrow \operatorname{ECY4}^{\operatorname{sym}} \xrightarrow{}_{E_{12}} \overset{O7}{\downarrow} \overset{O7}{\downarrow} \xrightarrow{}_{E_{12}} \overset{O7}{\downarrow} \overset{O7}{\downarrow} \xrightarrow{}_{E_{12}} \overset{O7}{\downarrow} \overset{O7}$$

• Asymmetric phase: $\chi(\bar{E}_{12}) = \int_{\bar{E}_{12}} c_3$

- Asymmetric phase: $\chi(\bar{E}_{12}) = \int_{\bar{E}_{12}} c_3$
- Symmetric phase: $\chi(\bar{E}_{12}) = \int_{\bar{E}_{12}} c_3 + 2N_{O3}$

Examples

Explicit computation of $h^{p,q}(\overline{D})$

- E.f. over orientifold quintic
- E.f. over orientifold $\mathbb{P}_{[1,1,1,6,9]}[18]$
- E.f. over orientifold $\mathbb{P}^2 \times \mathbb{P}_{[1,1,2]}$
- Mirror dual of e.f. over orientifold $\mathbb{P}_{[1,1,1,6,9]}[18]$
- Various others

Summary

 Derived combinatorial formulae for Hodge numbers of vertical divisors, focusing on rigid case

Summary

- Derived combinatorial formulae for Hodge numbers of vertical divisors, focusing on rigid case
- Formulae do not require explicit construction of F-theory uplift

Summary

- Derived combinatorial formulae for Hodge numbers of vertical divisors, focusing on rigid case
- Formulae do not require explicit construction of F-theory uplift
- Immediate applications to finding divisors that generate $W_{n.p.}$

Summary

- Derived combinatorial formulae for Hodge numbers of vertical divisors, focusing on rigid case
- Formulae do not require explicit construction of F-theory uplift
- Immediate applications to finding divisors that generate $W_{n.p.}$
- New insights into stringy geometry in presence of orientifold singularities

Future directions

• W.i.p.: deriving a "proof" of Euler characteristic formula (orbifold Euler character? Modification of Witten index for sigma models on singular targets/D3 brane tadpole?)

- W.i.p.: deriving a "proof" of Euler characteristic formula (orbifold Euler character? Modification of Witten index for sigma models on singular targets/D3 tadpole?)
- Moduli dependence of Pfaffian

- W.i.p.: deriving a "proof" of Euler characteristic formula (orbifold Euler character? Modification of Witten index for sigma models on singular targets/D3 brane tadpole?)
- Moduli dependence of Pfaffian
- F-theory with more general orientifolds (terminal $\mathbb{Z}_{k>2}$ singularities?)

- W.i.p.: deriving a "proof" of Euler characteristic formula (orbifold Euler character? Modification of Witten index for sigma models on singular targets/D3 brane tadpole?)
- Moduli dependence of Pfaffian
- F-theory with more general orientifolds (terminal $\mathbb{Z}_{k>2}$ singularities?)
- Heterotic dual dictionary

- W.i.p.: deriving a "proof" of Euler characteristic formula (orbifold Euler character? Modification of Witten index for sigma models on singular targets/D3 brane tadpole?)
- Moduli dependence of Pfaffian
- F-theory with more general orientifolds (terminal $\mathbb{Z}_{k>2}$ singularities?)
- Heterotic dual dictionary
- F-theory uplifts using vex triangulations to resolve toric complete intersections

Thank you!