a = c and Emergent $\mathcal{N} = 4$ from $\mathcal{N} = 1$ Craig Lawrie (DESY)

Based on: 2106.12579 w/ M.J. Kang and J. Song 2111.12092 w/ M.J. Kang, K-H. Lee, and J. Song 2207.05764 w/ M.J. Kang, K-H. Lee, M. Sacchi, and J. Song 2210.06497 w/ M.J. Kang, K-H. Lee, and J. Song 2302.06622 w/ M.J. Kang, K-H. Lee, and J. Song

Strings and Geometry 2023

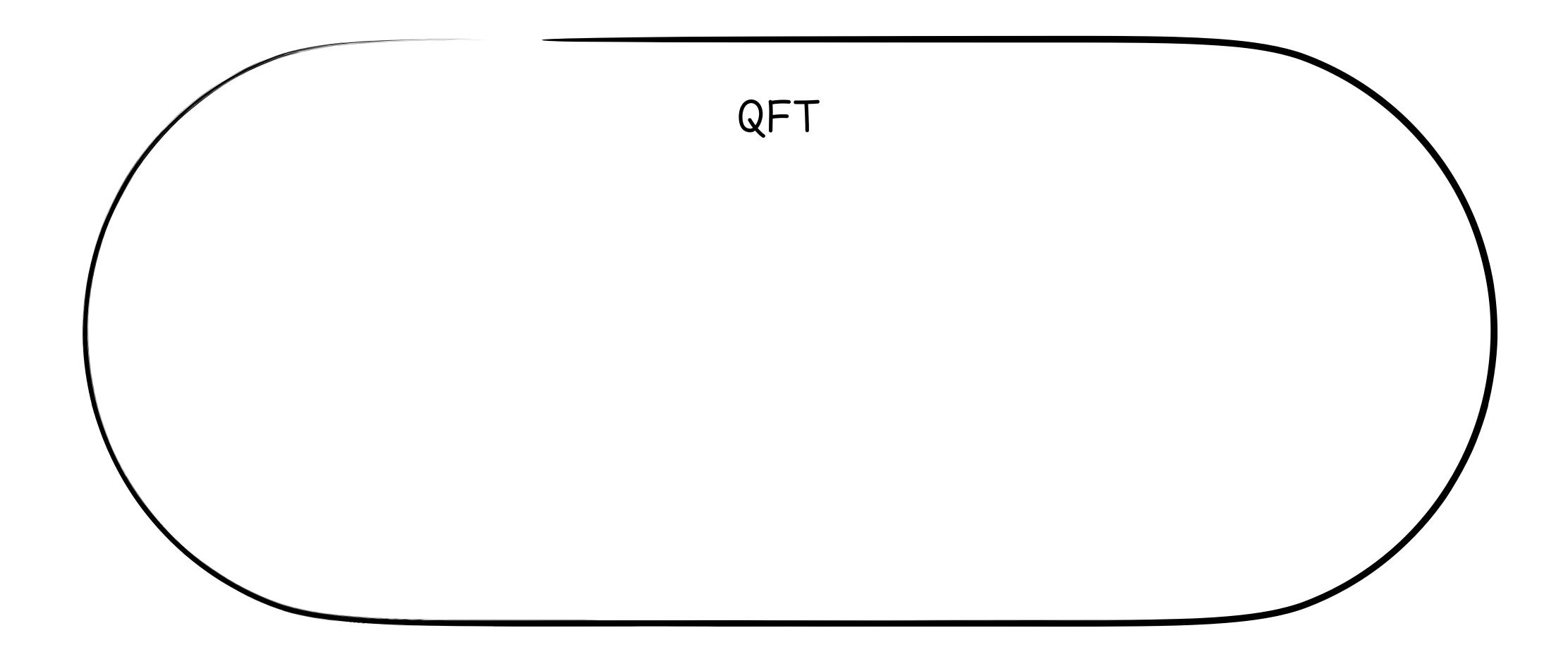
06-03-2023

a = c and Emergent $\mathcal{N} = 4$ from $\mathcal{N} = 1$ Craig Lawrie (DESY)

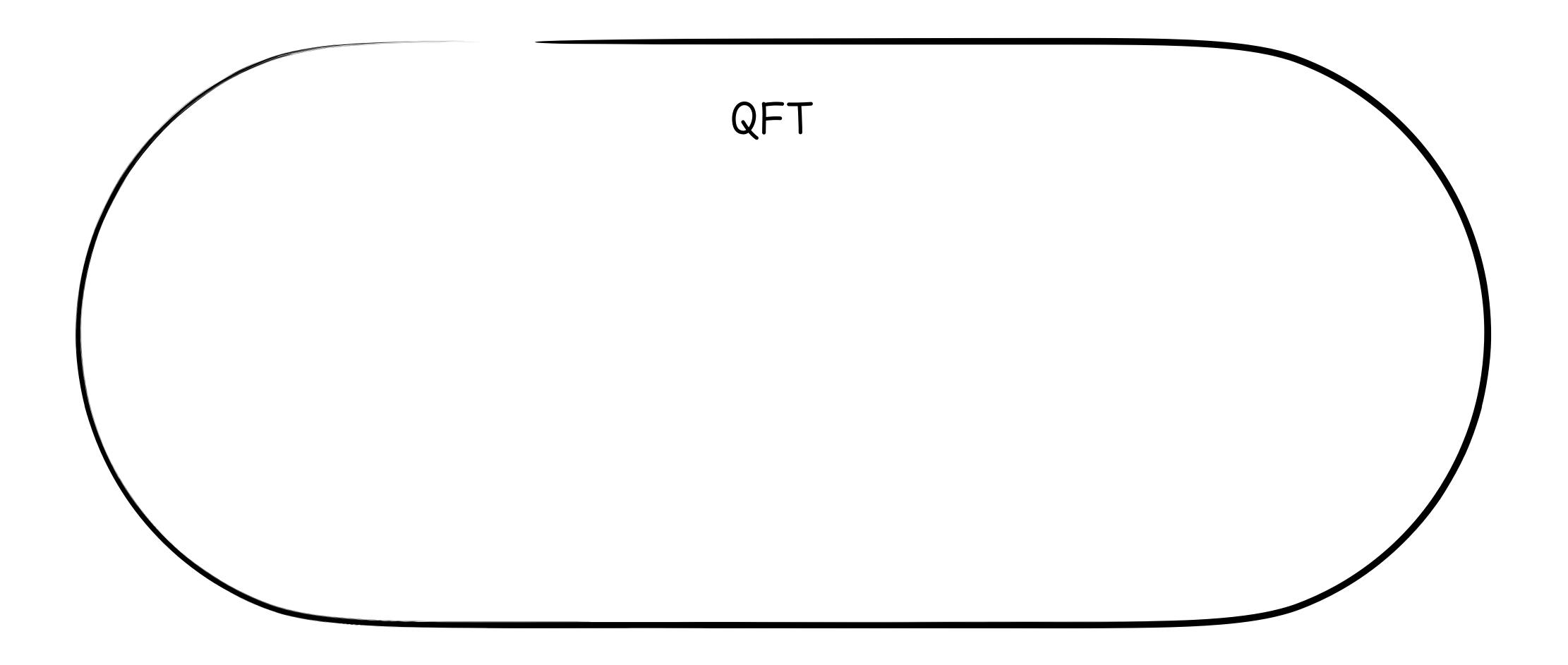
Based on: 06.12579 w/ M.J. Kang and J. Song 2111.12092 // M.J. Kang, K-H. Lee, and J. Song 2207.057 w/ M.J. Kang, K-H. Lee, M. Sacchi, and J. Song 2210.06497 w/ M.J. Kang, K-H. Lee, and J. Song 2302.06622 w/ M.J. Kang, K-H. Lee, and J. Song

Strings and Geometry 2023

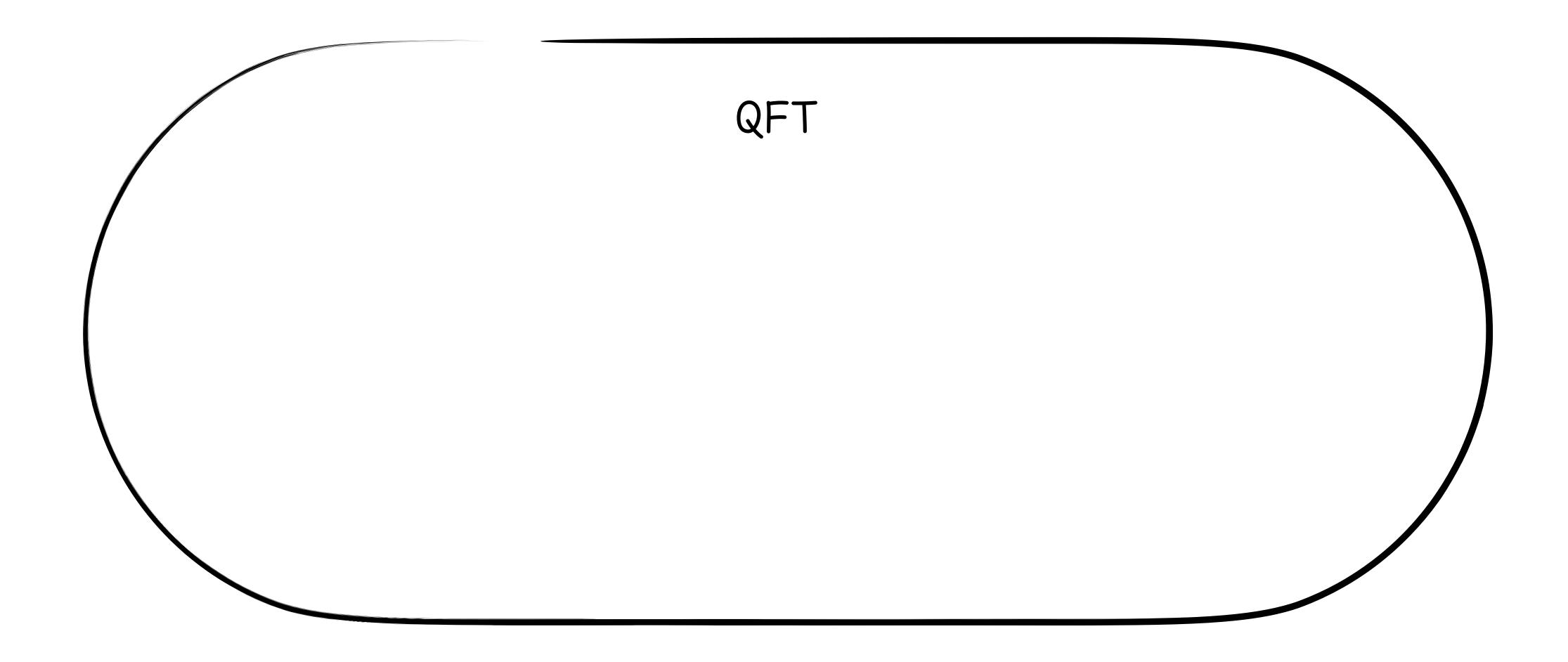
06-03-2023



Quantum field theory is a widely applicable framework for answering diverse questions in physics



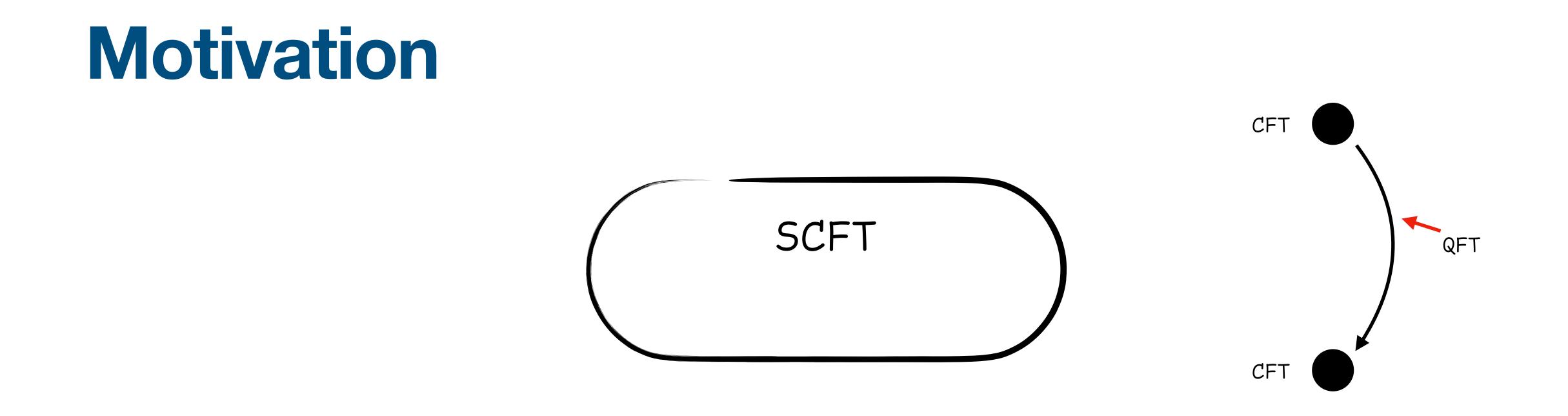
Quantum field theory is a widely applicable framework for answering diverse questions in physics generally hard to study outside of the "perturbative regime"



Quantum field theory is a widely applicable framework for answering diverse questions in physics add new symmetries to make questions tractable

Supersymmetry \implies certain quantities are protected from quantum corrections

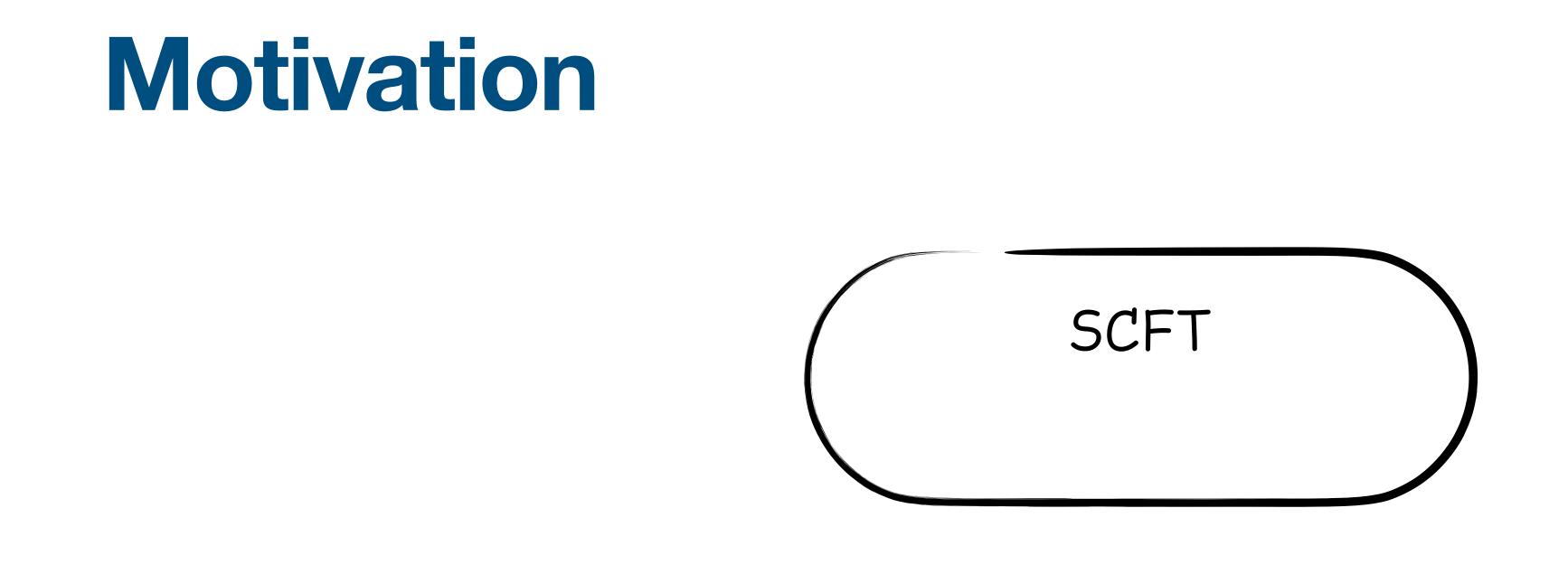
Quantum field theory is a widely applicable framework for answering diverse questions in physics add new symmetries to make questions tractable



Conformal symmetry \implies exists at the fixed points of renormalization group flows between QFTs

Supersymmetry \implies certain quantities are protected from quantum corrections

Quantum field theory is a widely applicable framework for answering diverse questions in physics add new symmetries to make questions tractable



Conformal symmetry \implies exists at the fixed points of renormalization group flows between QFTs

Supersymmetry \implies certain quantities are protected from quantum corrections

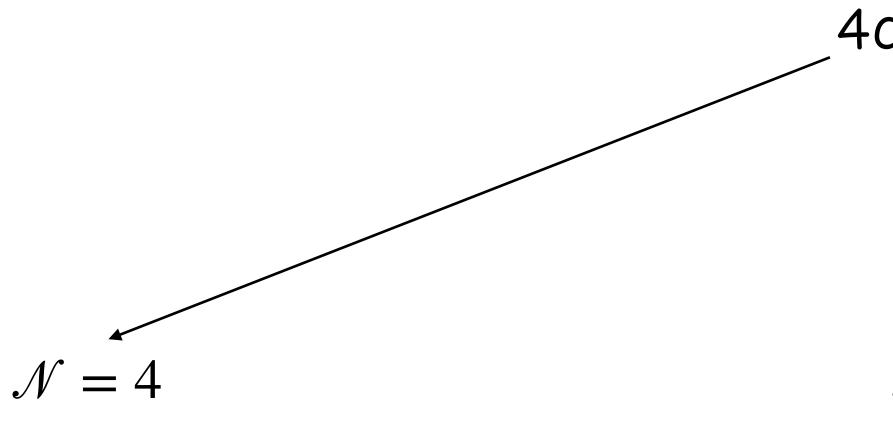
what can we understand via stringy/geometric techniques?

We study this subspace of the space of all QFTs

Strings, Geometry, and the Landscape of 4d SCFTs

4d SCFTs

Strings, Geometry, and the Landscape of 4d SCFTs



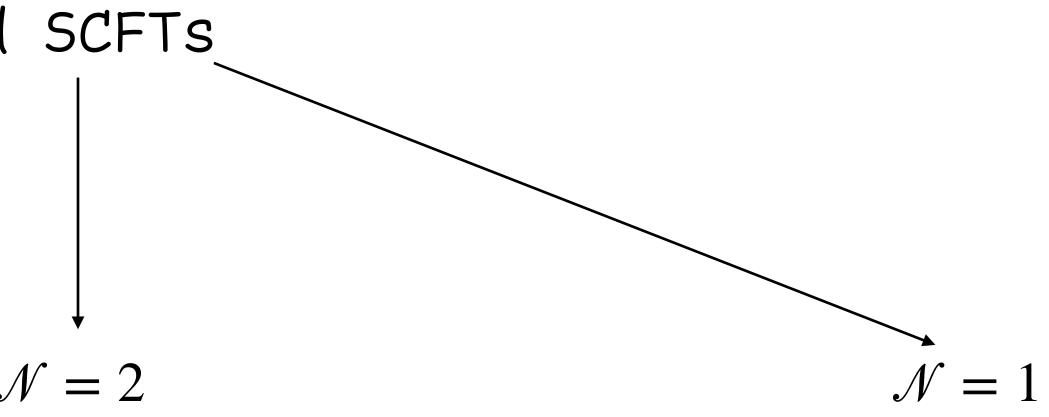
4d SCFTs $\mathcal{N}=2$

Strings, Geometry, and the Landscape of 4d SCFTs 4d SCFTs $\mathcal{N}=4$ $\mathcal{N}=2$ \mathbb{C}^2/Γ orbifolds Type IIB on Calabi-Yau threefolds class S• • • Coulomb branch complex geometry • • •

[Akhond, Arias-Tamargo, Mininno, Sun, Sun, Wang, Xu] many, many geometric approaches; see recent reviews [Argyres, Heckman, Intriligator, Martone]

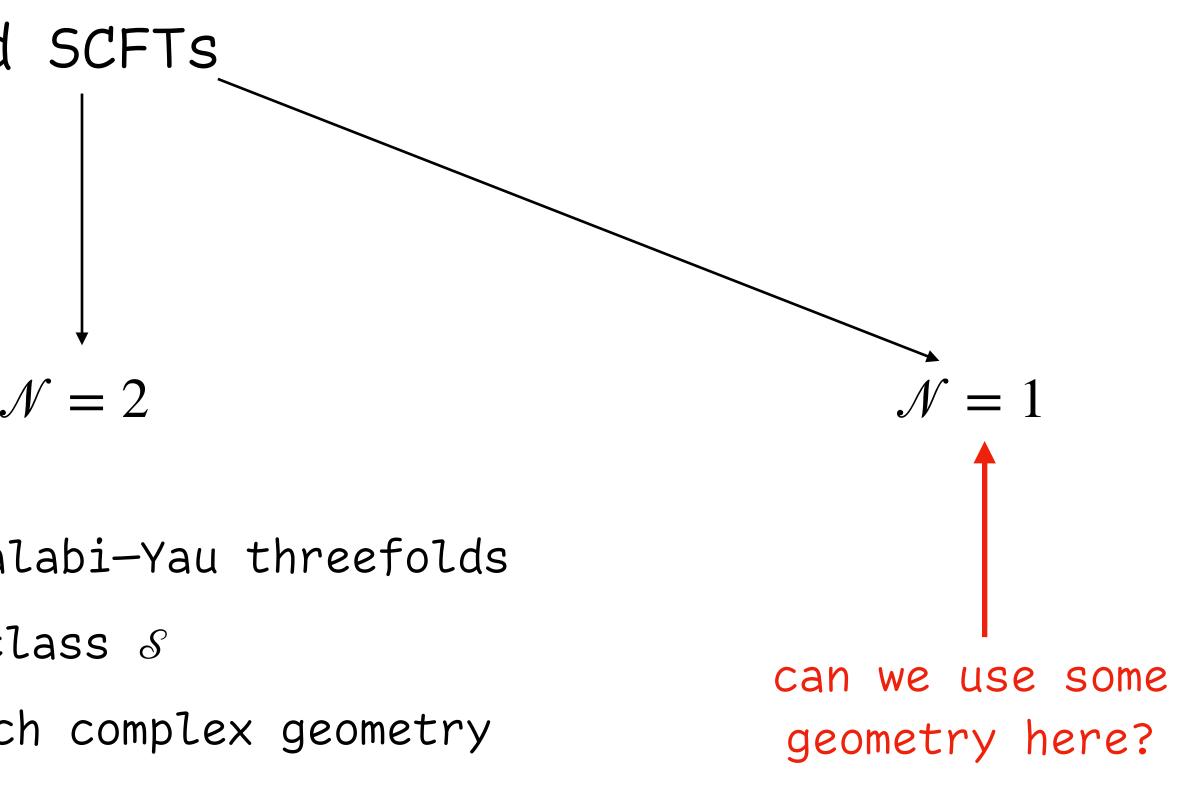
Strings, Geometry, and the Landscape of 4d SCFTs 4d SCFTs $\mathcal{N} = 1$ $\mathcal{N}=2$ $\mathcal{N}=4$ \mathbb{C}^2/Γ orbifolds Type IIB on Calabi-Yau threefolds class S• • • Coulomb branch complex geometry • • •

[Akhond, Arias-Tamargo, Mininno, Sun, Sun, Wang, Xu] many, many geometric approaches; see recent reviews [Argyres, Heckman, Intriligator, Martone]



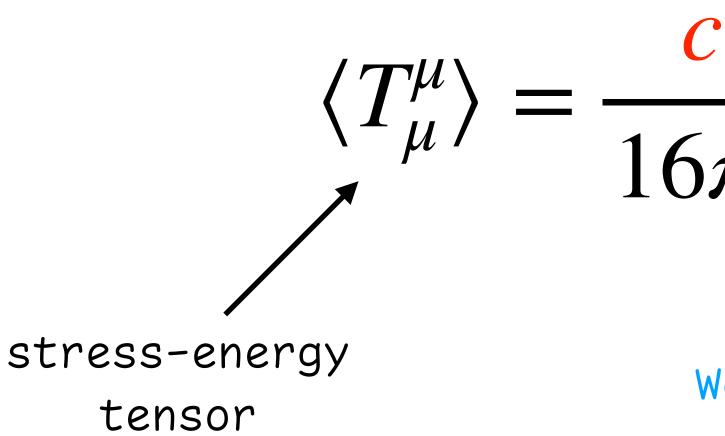
Strings, Geometry, and the Landscape of 4d SCFTs 4d SCFTs $\mathcal{N}=2$ $\mathcal{N} = 1$ $\mathcal{N}=4$ \mathbb{C}^2/Γ orbifolds Type IIB on Calabi-Yau threefolds class S• • • can we use some Coulomb branch complex geometry geometry here? • • •

[Akhond, Arias-Tamargo, Mininno, Sun, Sun, Wang, Xu] many, many geometric approaches; see recent reviews [Argyres, Heckman, Intriligator, Martone]



Central Charges

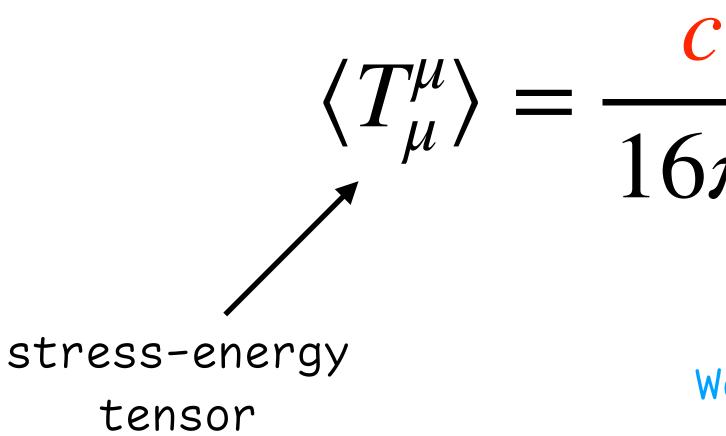
Conformal symmetry becomes anomalous when the CFT is placed in an arbitrary background



central charges $16\pi^{2}$ Euler density Weyl tensor

Central Charges

Conformal symmetry becomes anomalous when the CFT is placed in an arbitrary background



central charges

Weyl tensor

Euler density

the central charges are "conventional invariants" of the SCFT

The a-theorem

UV Theory (a_{UV}, c_{UV}) RG flow IR Theory $(a_{\mathrm{IR}}, c_{\mathrm{IR}})$

in this sense, a measures the "degrees of freedom" of the theory

[Komargodski, Schwimmer]

```
a monotonically decreases
        along any
renormalization group flow
```

there is no equivalent statement for c

N = 1 from N = 2?

can we use the (geometric?) constructions for $\mathcal{N} = 2$ SCFTs to learn about (a subsector of) the $\mathcal{N} = 1$ landscape?

N = 1 from N = 2?

can we use the (geometric?) constructions for $\mathcal{N} = 2$ SCFTs to learn about (a subsector of) the $\mathcal{N} = 1$ landscape?

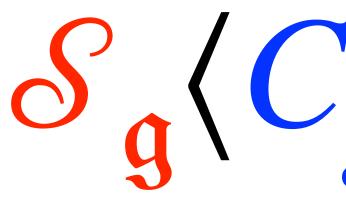
one approach: consider $\mathcal{N}=2$ SCFT with flavor symmetry G and $(\mathcal{N}=1)$ -gauge G

N = 1 from N = 2?

one approach: consider $\mathcal{N}=2$ SCFT with flavor symmetry G and $(\mathcal{N}=1)$ -gauge G

focus on the class \mathcal{S} construction

can we use the (geometric?) constructions for $\mathcal{N} = 2$ SCFTs to learn about (a subsector of) the $\mathcal{N} = 1$ landscape?



[Gaiotto], [Gaiotto, Moore, Nietzke]

$S_{g}(C_{g,n})\{\dots\}$

$S_{g}(C_{g,n})\{\ldots\}$ the 6d (2,0) SCFT String theory: Type IIB on an orbifold \mathbb{C}^2/Γ_q of type g

g of type ADE: simple, simply-laced Lie algebra [Gaiotto], [Gaiotto, Moore, Nietzke]

$S_{g}(C_{g,n})\{\cdots\}$ the 6d (2,0) SCFT of type g

twisted compactification on an n-punctured genus g Riemann surface [Gaiotto], [Gaiotto, Moore, Nietzke]

the 6d (2,0) SCFT of type g

twisted compactification on an n-punctured genus g Riemann surface [Gaiotto], [Gaiotto, Moore, Nietzke]

data describing punctures = codimension two defects in the 6d SCFT $S_{g}(C_{g,n})\{\cdots\}$

data describing punctures = codimension two defects in the 6d SCFT $S_{q}(C_{g,n})\{\ldots\}$ = 4d $\mathcal{N} = 2$ SCFT the 6d (2,0) SCFT of type g

twisted compactification on an n-punctured genus g Riemann surface [Gaiotto], [Gaiotto, Moore, Nietzke]

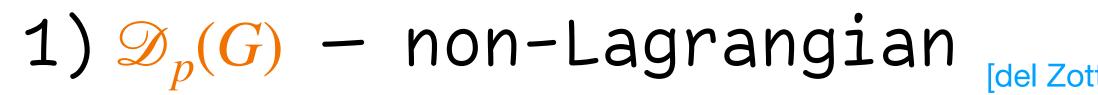
Complicated physical features (e.g. S-dualities) captured by the geometry of $C_{g,n}$

Some known 4d $\mathcal{N} = 2$ SCFTs:

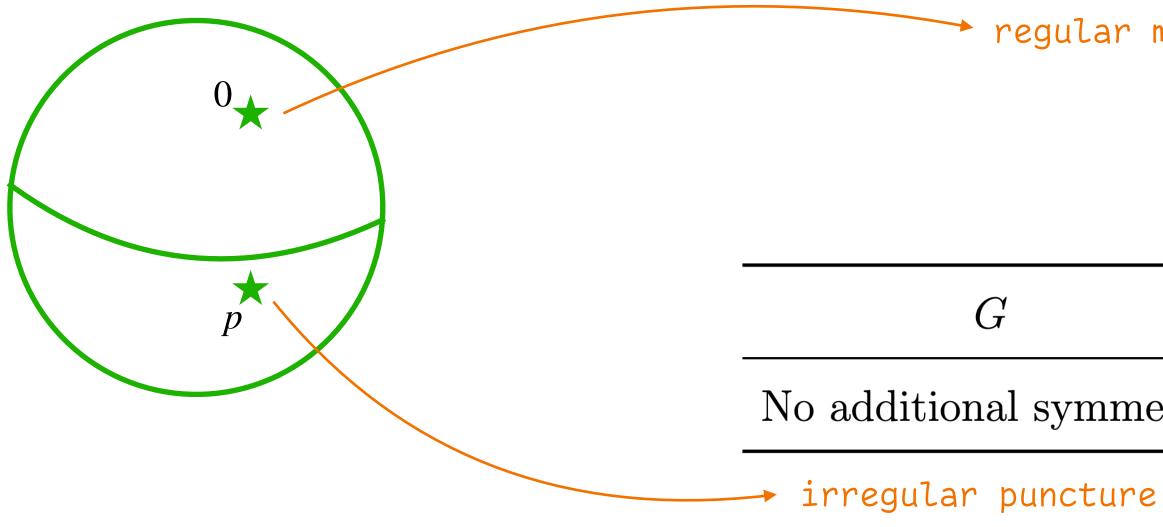
1) $\mathcal{D}_p(G) - \text{non-Lagrangian} \begin{bmatrix} Xie \end{bmatrix}, [del Zotto, Cecotti] \\ [del Zotto, Cecotti, Giacomelli], [Xie, Wang] \end{bmatrix}$

fractional Coulomb branch scaling dimensions \rightarrow "Argyres-Douglas type"

Some known 4d $\mathcal{N} = 2$ SCFTs:



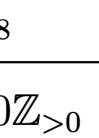
Class S:

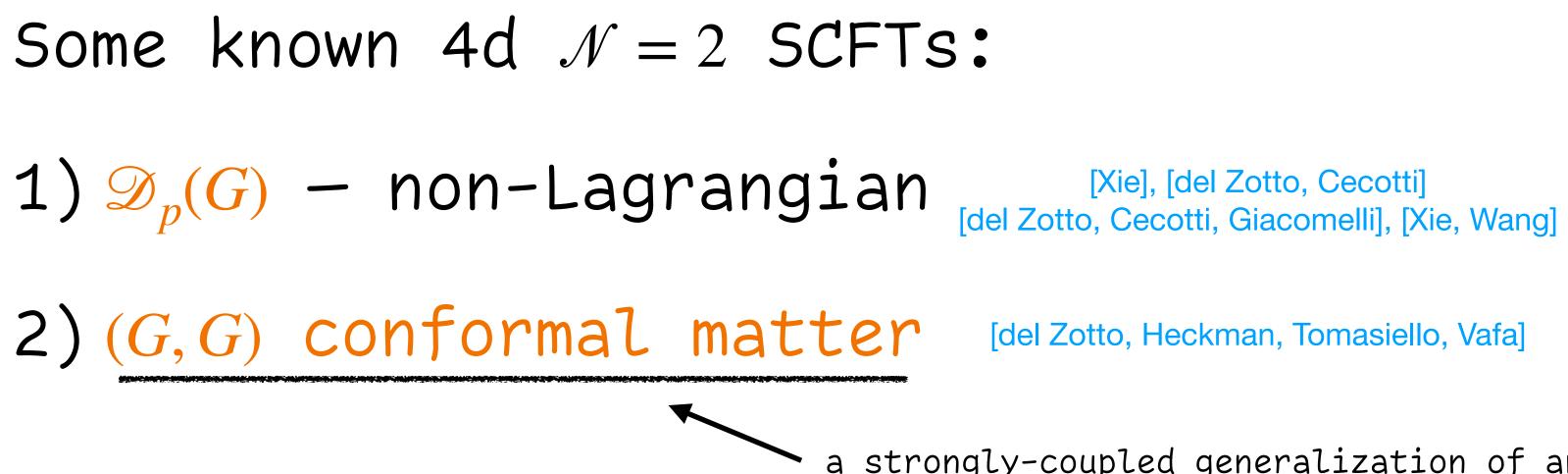


fractional Coulomb branch scaling dimensions [Xie], [del Zotto, Cecotti] [del Zotto, Cecotti, Giacomelli], [Xie, Wang] \rightarrow "Argyres-Douglas type"

 \bullet regular maximal puncture with flavor symmetry G

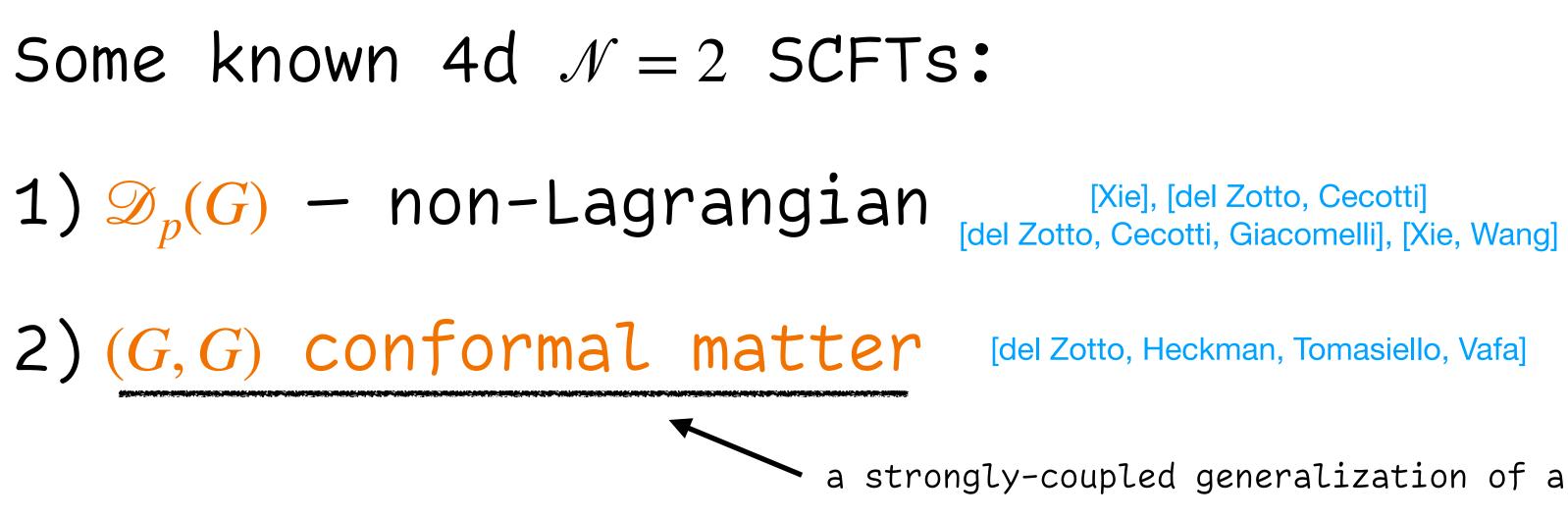
$SU(N)$ $SO(2N)$	•	•	E_8
l symmetry $ (p, N) = 1 p \notin 2\mathbb{Z}_{>}$	$_{>0} p \notin 3\mathbb{Z}_{>0}$	$p \notin 2\mathbb{Z}_{>0}$	$p \notin 302$





[del Zotto, Heckman, Tomasiello, Vafa]

a strongly-coupled generalization of an $SU(\ell) \times SU(\ell)$ bifundamental hypermultiplet



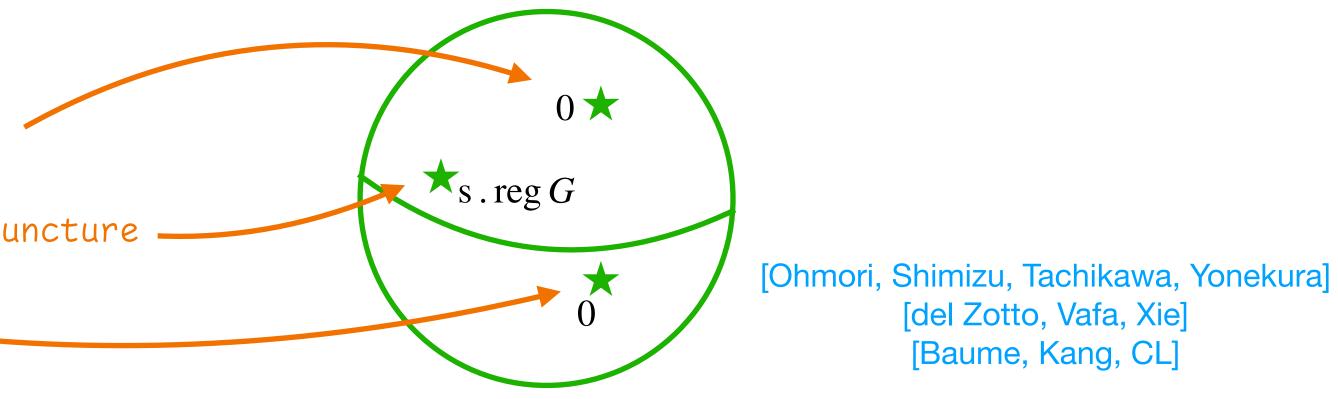
Class S:

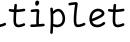
regular maximal punctures each with flavor symmetry G

subregular puncture

[del Zotto, Heckman, Tomasiello, Vafa]

a strongly-coupled generalization of an $SU(\ell) \times SU(\ell)$ bifundamental hypermultiplet





Some known 4d $\mathcal{N} = 2$ SCFTs: 1) $\mathcal{D}_{p}(G) - \text{non-Lagrangian} \begin{bmatrix} Xie \end{bmatrix}, [del Zotto, Cecotti] \\ [del Zotto, Cecotti, Giacomelli], [Xie, Wang] \end{bmatrix}$ 2) (G, G) conformal matter

> can we construct new 4d SCFTs using these strongly-coupled theories as building blocks?

[del Zotto, Heckman, Tomasiello, Vafa]

consider $\mathcal{N} = 2$ or $\mathcal{N} = 1$ gauging of all G flavor symmetries

Some known 4d $\mathcal{N} = 2$ SCFTs: 1) $\mathcal{D}_{p}(G)$ - non-Lagrangian [Xie], [del Zotto, Cecotti] [del Zotto, Cecotti, Giacomelli], [Xie, Wang]

2) (G, G) conformal matter [del Zotto, Heckman, Tomasiello, Vafa]

can we construct new 4d SCFTs using these strongly-coupled theories as building blocks?

consider $\mathcal{N} = 2$ or $\mathcal{N} = 1$ gauging of all G flavor symmetries

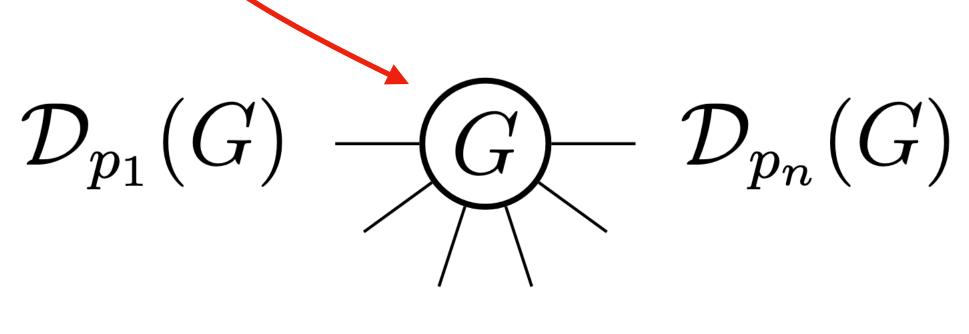
 \rightarrow for $\mathcal{N} = 2$ there is an ADE classification $\widehat{\Gamma}(G)$ [Kang, CL, Song '20]

An N = 1 Classification Problem

how can we gauge together all G flavor symmetries of a collection of $\mathcal{D}_p(G)$ such that the result flows in the infrared to an $\mathcal{N} = 1$ SCFT? [Kang, CL, Lee, Song '21]

First focus on cases without conformal matter

- this is an $\mathcal{N} = 1$ gauge node



[Kang, CL, Lee, Se

For an asymptotically-free gauge coupling

 $\sum_{i=1}^{1} \frac{1}{p_i} > n - 3$ equality implies conformal gauging

Song	'21]
------	------

First focus on cases without conformal matter

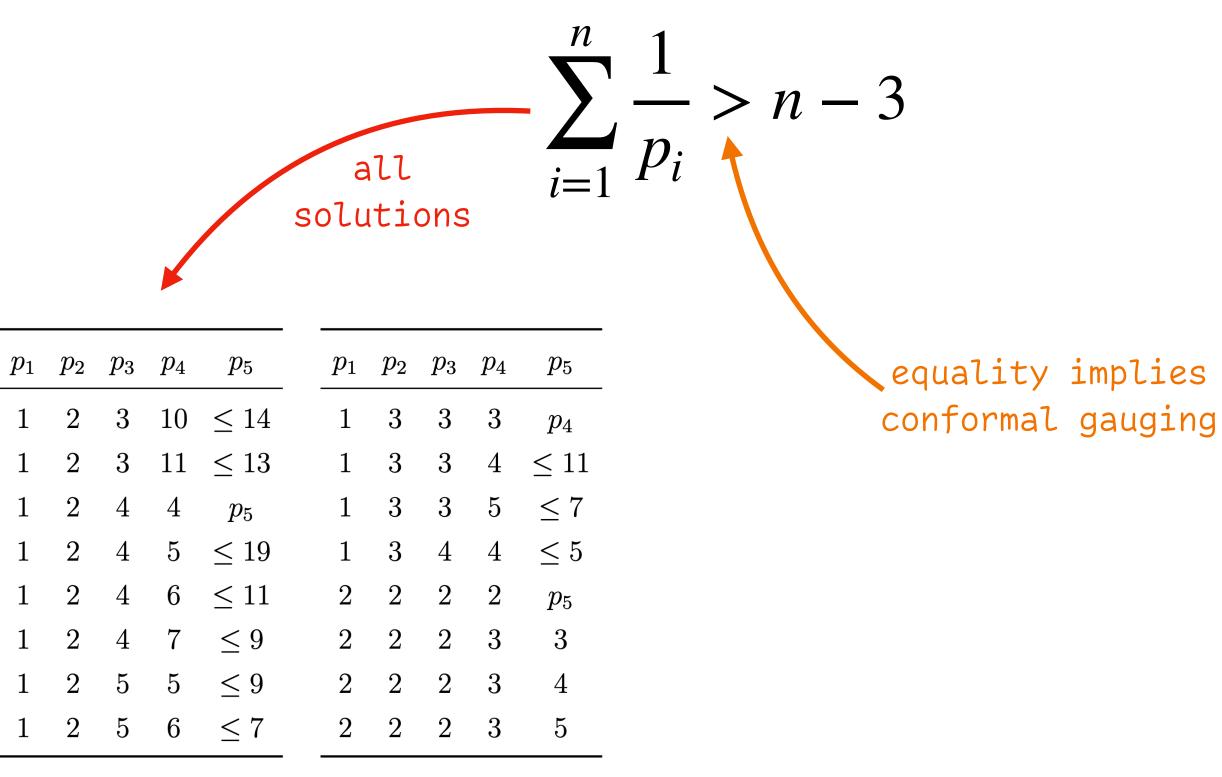
- this is an $\mathcal{N} = 1$ gauge node

 $\mathcal{D}_{p_1}(G)$ $\mathcal{D}_{p_n}(G)$ G

p_1	p_2	p_3	p_4	p_5
1	1	1	1	p_5
1	1	1	p_4	p_5
1	1	p_3	p_4	p_5
1	2	2	p_4	p_5
1	2	3	≤ 6	p_5
1	2	3	7	≤ 41
1	2	3	8	≤ 23
1	2	3	9	≤ 17

[Kang, CL, Lee, Se

For an asymptotically-free gauge coupling



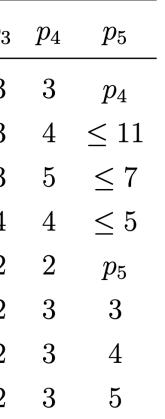
Song	'21]
------	------

Not all such gaugings flow to i infrared SCFTs

1) Use a-maximization to determine the superconformal R-symmetry 2) Check no operator crosses unitarity bound along the flow

[Kang, CL, Lee, Song '21]

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	 p_1	p_2	p_3
	1	1	1	1	p_5	1	2	3	10	≤ 14	1	3	3
interacting	1	1	1	p_4	p_5	1	2	3	11	≤ 13	1	3	3
	1	1	p_3	p_4	p_5	1	2	4	4	p_5	1	3	3
	1	2	2	p_4	p_5	1	2	4	5	≤ 19	1	3	4
	1	2	3	≤ 6	p_5	1	2	4	6	≤ 11	2	2	2
	1	2	3	7	≤ 41	1	2	4	7	≤ 9	2	2	2
	1	2	3	8	≤ 23	1	2	5	5	≤ 9	2	2	2
	1	2	3	9	≤ 17	1	2	5	6	≤ 7	2	2	2

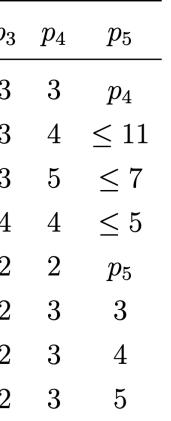


Not all such gaugings flow to i infrared SCFTs

1) Use a-maximization to determine the superconformal R-symmetry 2) Check no operator crosses unitarity bound along the flow

[Kang, CL, Lee, Song '21]

	p_1	p_2	p_3	p_4	p_5	_	p_1	p_2	p_3	p_4	p_5	-	p_1	p_2	p_3
• • •		1		1	p_5	_	1	2	3	10	≤ 14		1	3	3
interacting	1		1		$p_5 > 2$	2								3	3
	1	1	p_3	p_4	p_5		1	2	4	4	p_5		1	3	3
	1	2	2	p_4	p_5		1	2	4	5	≤ 19		1	3	4
	1	2	3	≤ 6	p_5		1	2	4	6	≤ 11		2	2	2
	1	2	3	7	≤ 41		1	2	4	7	≤ 9		2	2	2
	1	2	3	8	≤ 23		1	2	5	5	≤ 9		2	2	2
	1	2	3	9	≤ 17	_	1	2	5	6	≤ 7		2	2	2



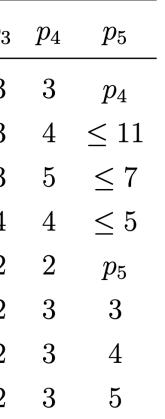
An $\mathcal{N} = 1$ Classification Problem

Not all such gaugings flow to i infrared SCFTs

1) Use a-maximization to determine the superconformal R-symmetry 2) Check no operator crosses unitarity bound along the flow

> Surprising fact: if $gcd(p_i, h_G^{\vee}) = 1$ then IR fixed point has a = c

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	1	o_1	p_2	p_3
•	-1-	1	-1	- 1	P_5	1	2	3	10	≤ 14		1	3	3
Interacting	1	1	1	p_4	$p_5 > 2$	1	2	3	11	≤ 13		1	3	3
	1	1	p_3	p_4	p_5	1	2	4	4	p_5		1	3	3
	1	2	2	p_4	p_5	1	2	4	5	≤ 19		1	3	4
	1	2	3	≤ 6	p_5	1	2	4	6	≤ 11		2	2	2
	1	2	3	7	≤ 41	1	2	4	7	≤ 9		2	2	2
	1	2	3	8	≤ 23	1	2	5	5	≤ 9		2	2	2
	1	2	3	9	≤ 17	1	2	5	6	≤ 7		2	2	2
														/



An $\mathcal{N} = 1$ Classification Problem

Not all such gaugings flow to i infrared SCFTs

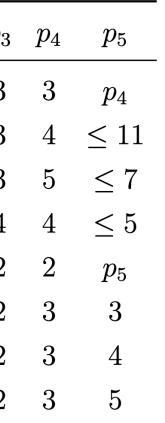
1) Use a-maximization to determine the superconformal R-symmetry 2) Check no operator crosses unitarity bound along the flow

> Surprising fact: if $gcd(p_i, h_G^{\vee}) = 1$ then IR fixed point has a = c

[Kang, CL, Lee, Song '21]

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	1	p_1	p_2	p_3
•	1	1	-1	1	P_5	1	2	3	10	≤ 14		1	3	3
interacting	1	1	1	p_4	$p_5 > 2$, 1	2	3	11	≤ 13		1	3	3
	1	1	p_3	p_4	p_5	1	2	4	4	p_5		1	3	3
	1	2	2	p_4	p_5	1	2	4	5	≤ 19		1	3	4
	1	2	3	≤ 6	p_5	1	2	4	6	≤ 11		2	2	2
	1	2	3	7	≤ 41	1	2	4	7	≤ 9		2	2	2
	1	2	3	8	≤ 23	1	2	5	5	≤ 9		2	2	2
	1	2	3	9	≤ 17	1	2	5	6	≤ 7		2	2	2

why? isn't a = c a feature of $\mathcal{N} \ge 3$ SUSY?



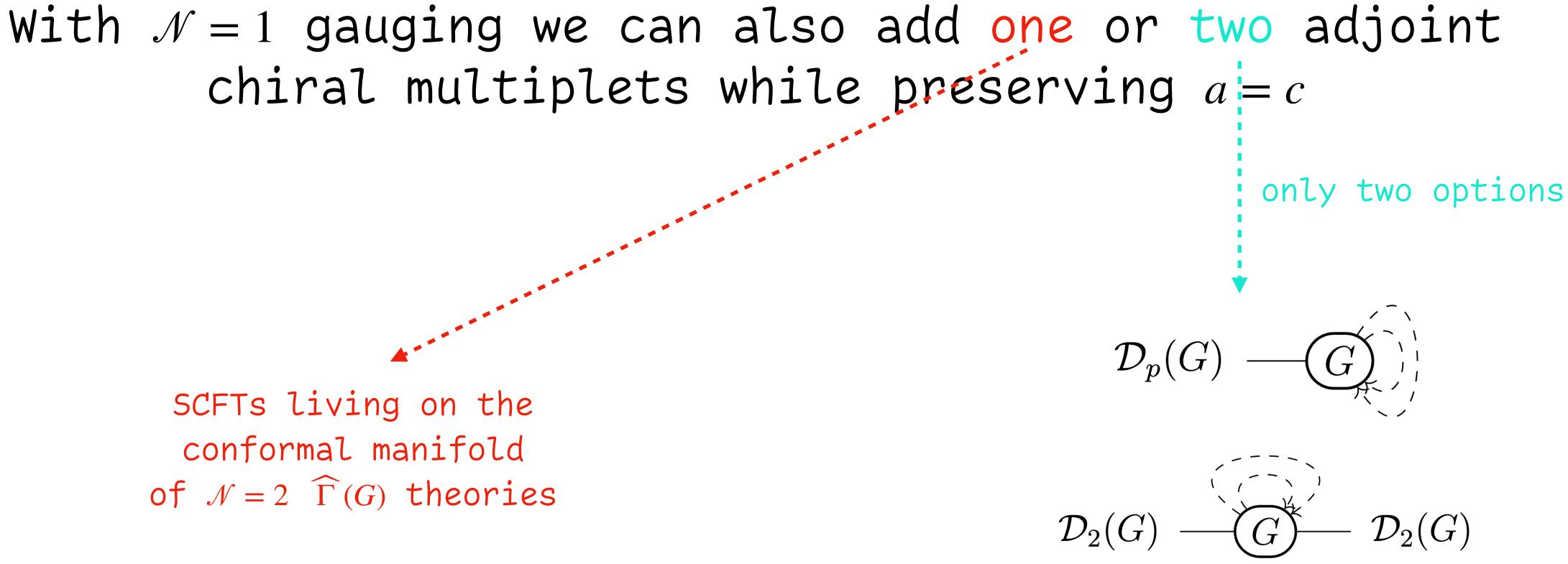
$\mathcal{N} = 1$: Adding Matter

With $\mathcal{N} = 1$ gauging we can also add one or two adjoint chiral multiplets while preserving a = c

$\mathcal{N} = 1$: Adding Matter

SCFTs living on the conformal manifold of $\mathcal{N} = 2$ $\widehat{\Gamma}(G)$ theories

[Kang, CL, Lee, Se



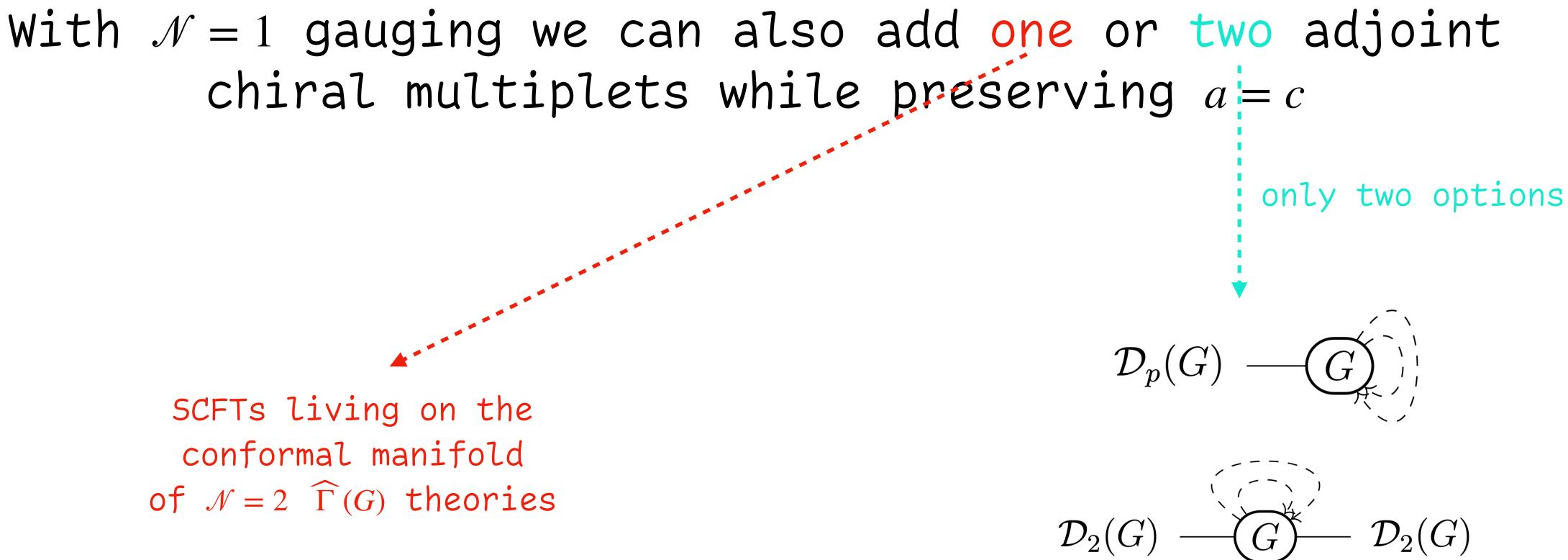
Song	'21]
------	------

$\mathcal{N} = 1$: Adding Matter

SCFTs living on the conformal manifold of $\mathcal{N} = 2$ $\widehat{\Gamma}(G)$ theories

also three adjoint chiral multiplet + zero $\mathscr{D}_p(G)s \longrightarrow$ conformal manifold of $\mathscr{N} = 4$ SYM

[Kang, CL, Lee, Se



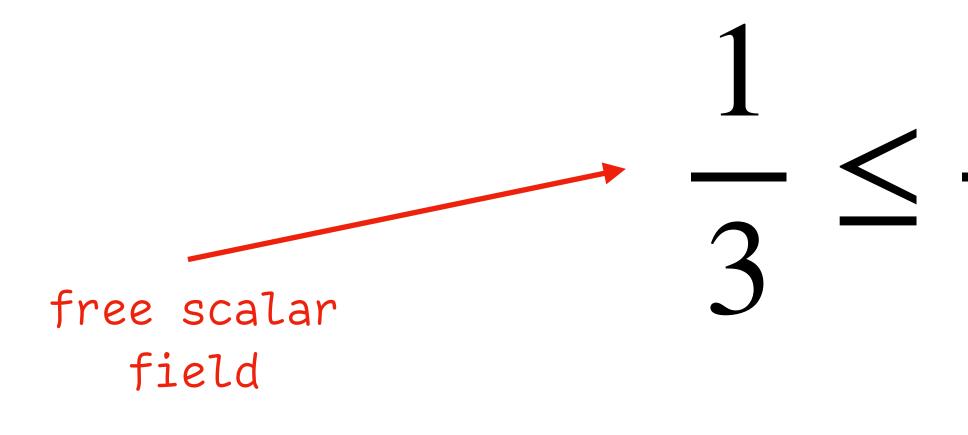
Song	'21]
------	------

Surprising fact: if $gcd(p_i, h_G^{\vee}) = 1$ then IR fixed point has a = c

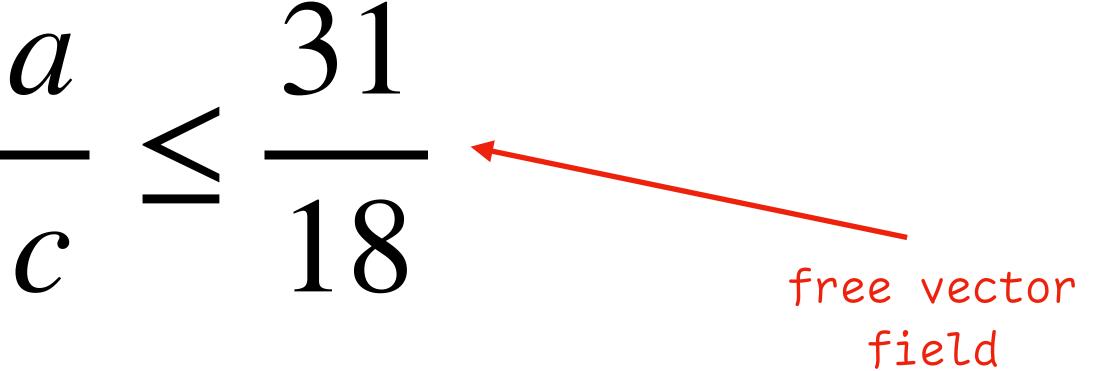
why? isn't a = c a feature of $N \ge 3$ SUSY?

only unitarity, no supersymmetry

Unitarity fixes the ratio:



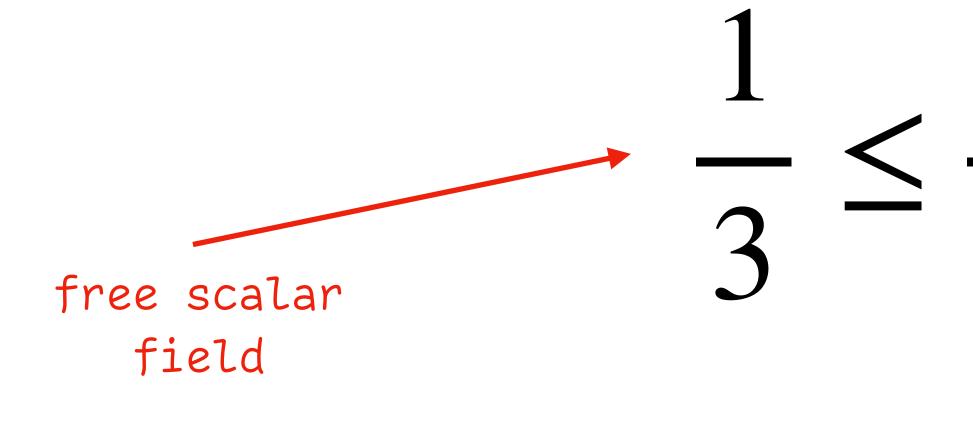
[Hofman, Maldacena] [Hofman, Li, Meltzer, Poland, Rejor



n-Barrera	
-----------	--

only unitarity, no supersymmetry

Unitarity fixes the ratio:



[Hofman, Maldacena] [Hofman, Li, Meltzer, Poland, Rejor

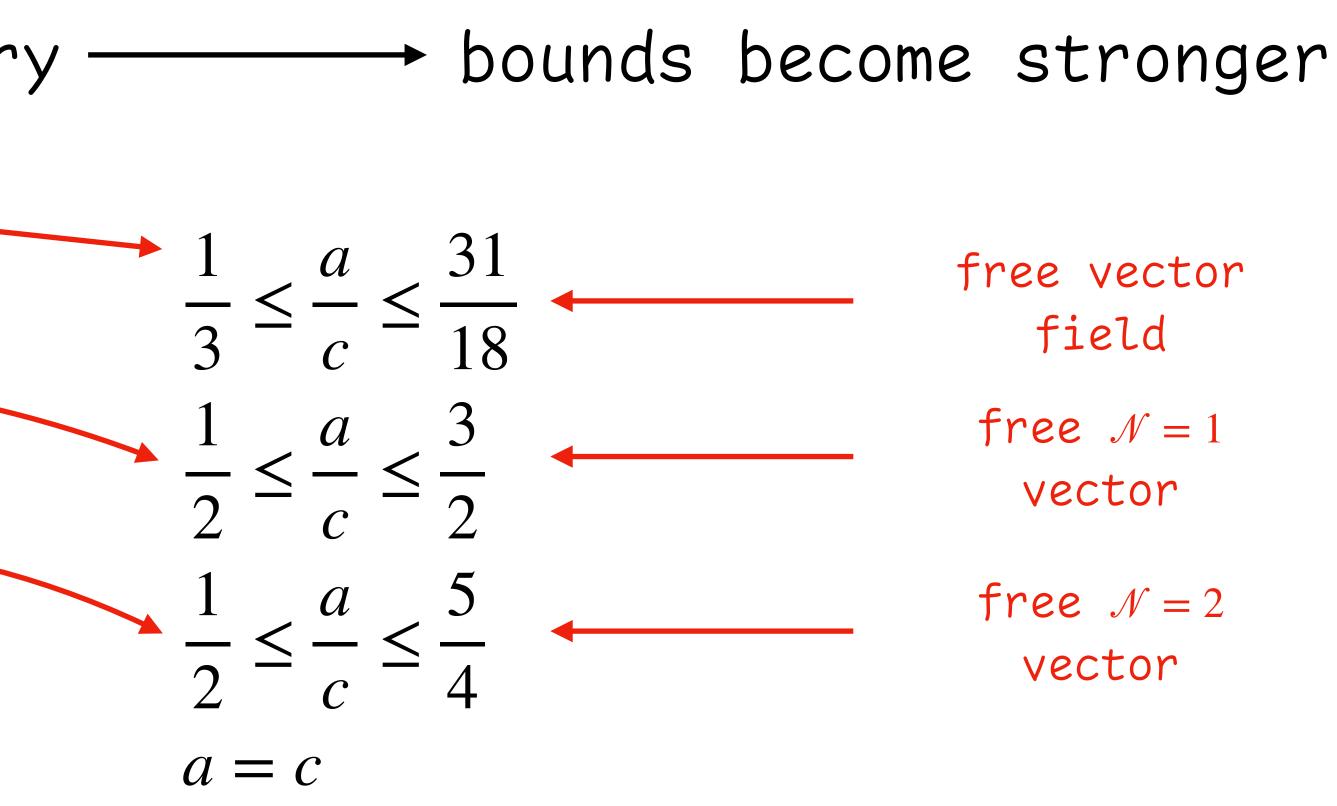


+ supersymmetry ------- bounds become stronger

n-Barrera	
-----------	--

Unitarity fixes the ratio: + supersymmetry free scalar field $\mathcal{N} = 0$: free chiral multiplet $\mathcal{N} = 1$: free = 2 : hypermultiplet N = 3, 4:

[Hofman, Maldacena] [Hofman, Li, Meltzer, Poland, Rejor



n-Barrera]

Holography: if 4d SCFT has $AdS_5 \times X_5$ dual then $a = c \sim O(N^2)$ to leading order in a large N limit

The subleading terms are

$c - a = \rho N + \sigma$

open string contributions i.e. branes if a = c at finite N then ρ and σ must conspire to cancel!

closed string contributions $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$

Why a = c?

- c-a controls many interestin
- Cardy limit of superconform

Entropy-viscosity ratio bout

- Mixed current-gravitational anomaly
- Single trace higher spin gap for large N

ig quantities in a CFT
nal index:
$$I \rightarrow \exp\left(\frac{16\pi^2}{3\beta}(c-a)\right)$$
 [di Pietro, Komargodski]

Ind:
$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{c-a}{c} + \cdots \right)$$
 [Kovtun, Son, [Katz, Peression]
[Buchel, Myres]

[Anselmi, Freedman, Grisaru, Johansen]

[Edelstein, Maldacena, Zhiboedov]

The Story Thus Far

- We have constructed a broad collection of truly $\mathcal{N} = 1$ and $\mathcal{N} = 2$ SCFTs with exactly a = c[Kang, CL, Song '20]
- They form a generalization of affine quivers and have intriguing connections to $\mathcal{N} = 4$ super-Yang-Mills

The Story Thus Far

They form a generalization of affine quivers and have intriguing connections to $\mathcal{N} = 4$ super-Yang-Mills

We have constructed a broad collection of truly $\mathcal{N} = 1$ and $\mathcal{N} = 2$ SCFTs with exactly a = c[Kang, CL, Song '20] [Kang, CL, Lee, Song '21]

> Schur index of $\mathcal{N} = 2$ gauging is rescaled $\mathcal{N} = 4$ Schur index [Kang, CL, Song '20] graded vector space isomorphism between $\widehat{\Gamma}(G)$ and $\mathcal{N} = 4$ VOAs [Buican, Nishinaka] Nekrasov partition function has the same structure as $\mathcal{N} = 4$ [Kimura, Nishinaka]

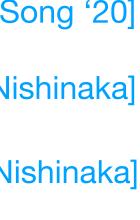
The Story Thus Far

They form a generalization of affine quivers and have intriguing connections to $\mathcal{N} = 4$ super-Yang-Mills

We have constructed a broad collection of truly $\mathcal{N} = 1$ and $\mathcal{N} = 2$ SCFTs with exactly a = c[Kang, CL, Song '20] [Kang, CL, Lee, Song '21]

> Schur index of $\mathcal{N} = 2$ gauging is rescaled $\mathcal{N} = 4$ Schur index [Kang, CL, Song '20] graded vector space isomorphism between $\widehat{\Gamma}(G)$ and $\mathcal{N} = 4$ VOAs [Buican, Nishinaka] Nekrasov partition function has the same structure as $\mathcal{N} = 4$ [Kimura, Nishinaka]

> > can we push the connection to $\mathcal{N} = 4$ further?

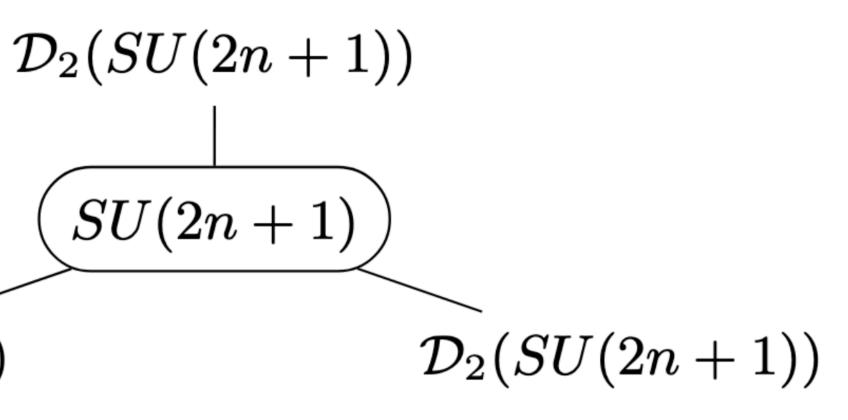


A non-Lagrangian $\mathcal{N} = 1$ dual to $\mathcal{N} = 4$ SYM [Kang, CL, Lee, Song '23]

Consider the $\mathcal{N} = 1$ QFT:

 $\mathcal{D}_2(SU(2n+1))$

Flows to infrared CFT with a = c since gcd(2,2n + 1) = 1



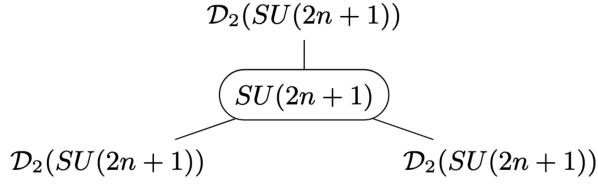
let's work out the central charges!

Flows to infrared CFT with a = c since gcd(2,2n+1) = 1

Gauging breaks the R-symmetry of each $\mathcal{D}_{2}(G)$:

UV $\mathcal{N} = 1$ R-symmetry

[Kang, CL, Lee, Song '23]



let's work out the central charges!

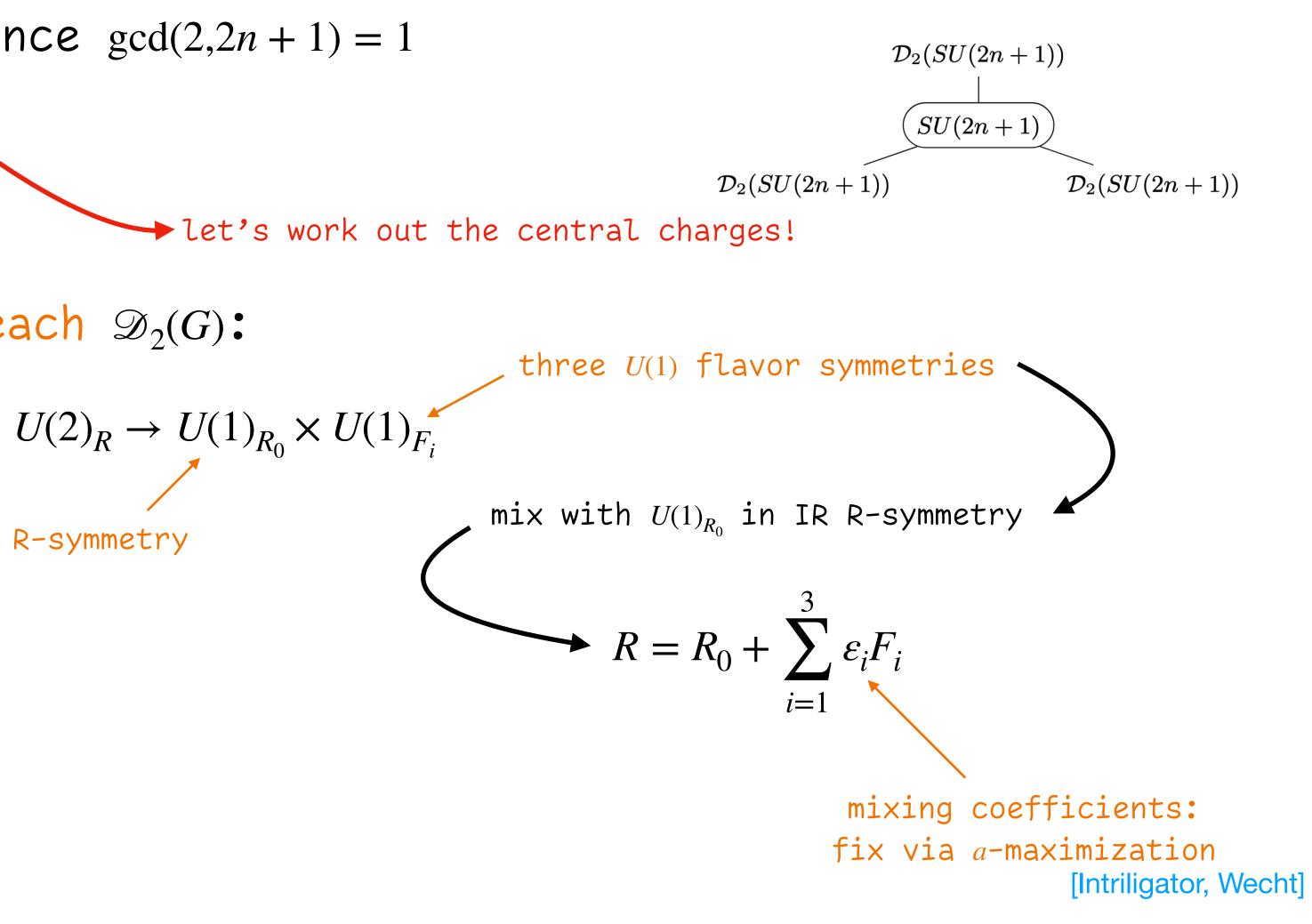
three U(1) flavor symmetries

 $U(2)_R \to U(1)_{R_0} \times U(1)_{F_i}$

Flows to infrared CFT with a = c since gcd(2,2n+1) = 1

Gauging breaks the R-symmetry of each $\mathcal{D}_2(G)$:

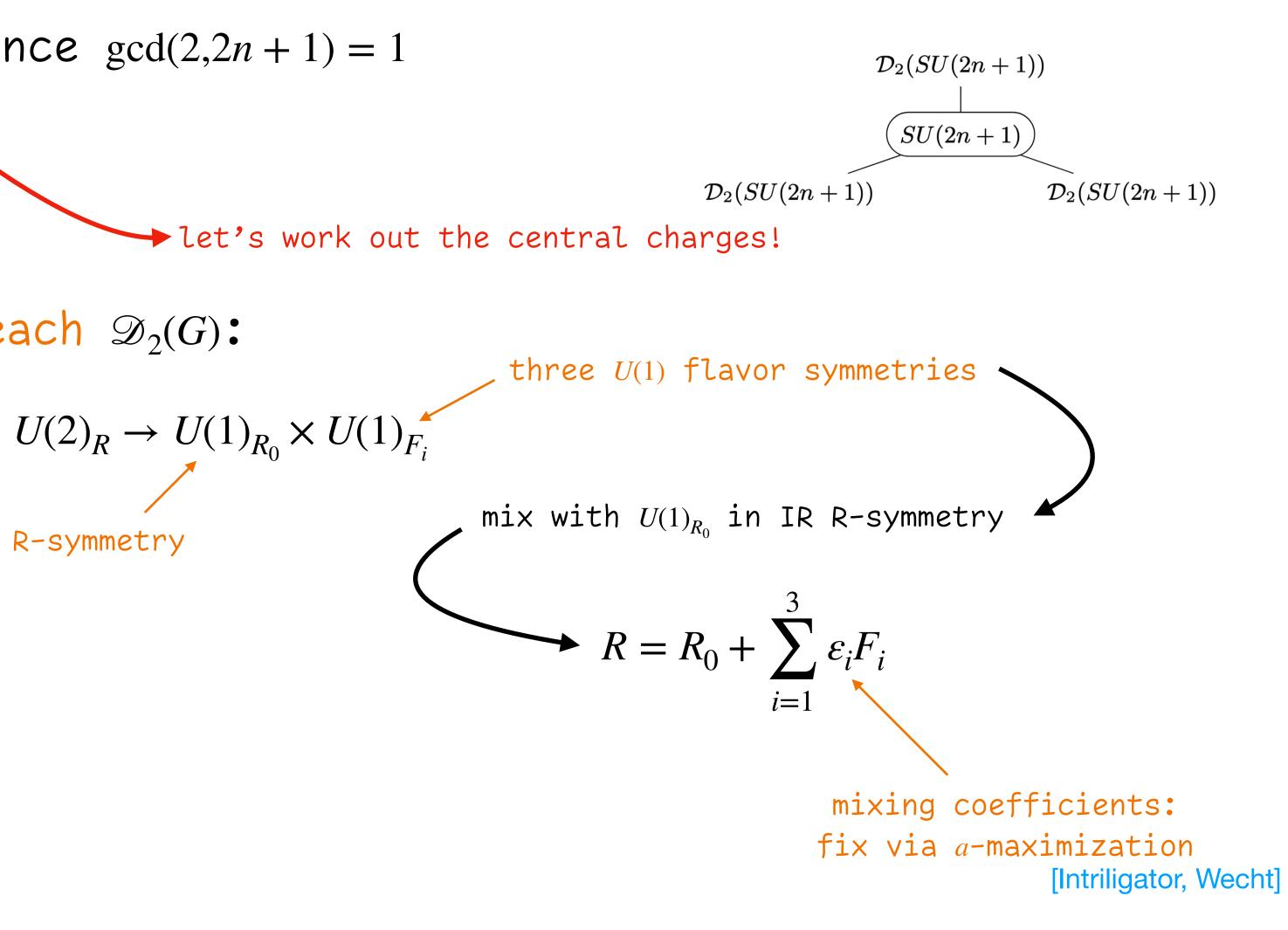
UV $\mathcal{N} = 1$ R-symmetry



Flows to infrared CFT with a = c since gcd(2,2n + 1) = 1

Gauging breaks the R-symmetry of each $\mathcal{D}_2(G)$:

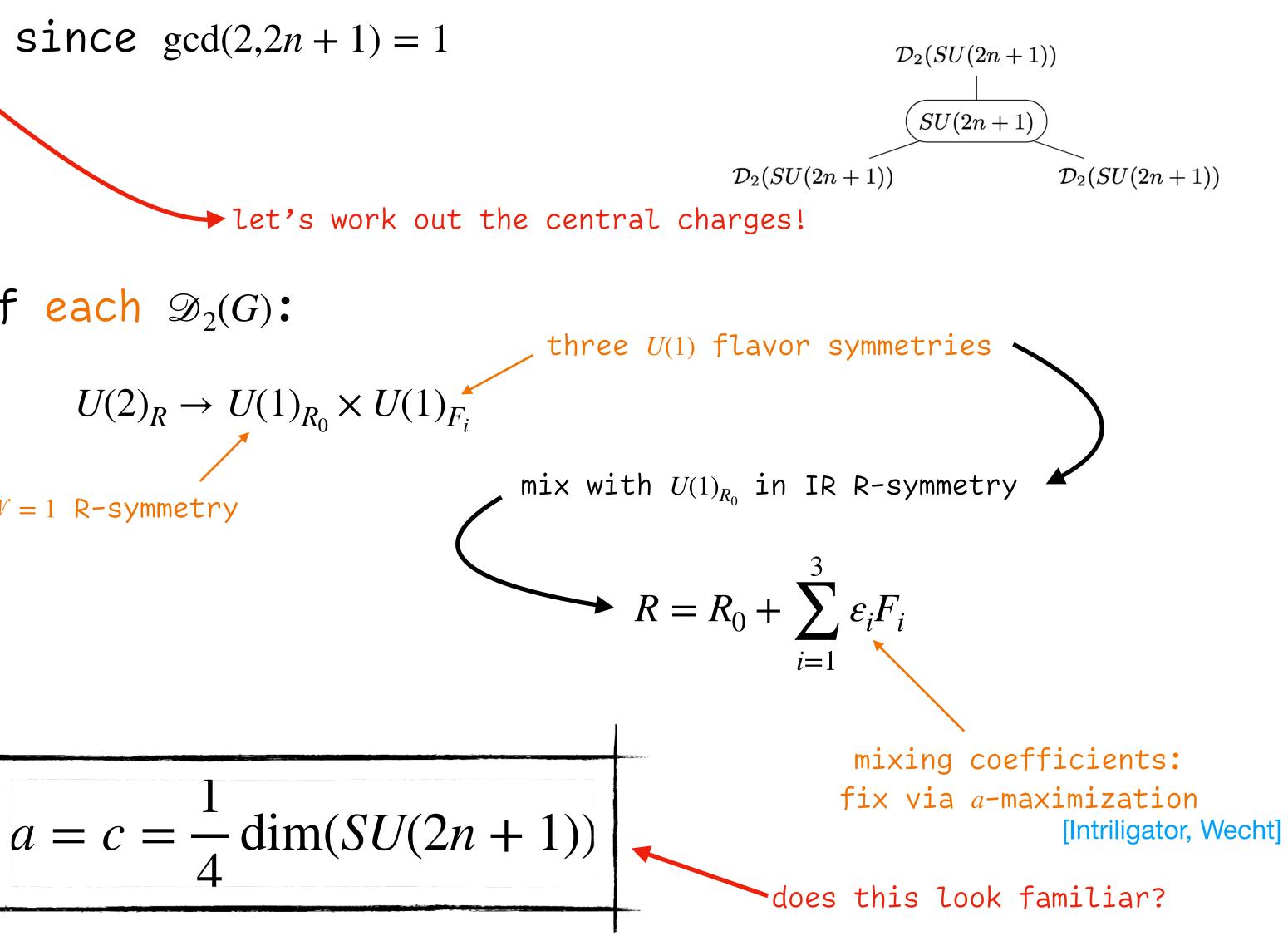
 $a = \frac{3}{32}(3k_{RRR} - k_R)$ $U(2)_R \rightarrow U$ $u(2)_R \rightarrow U$

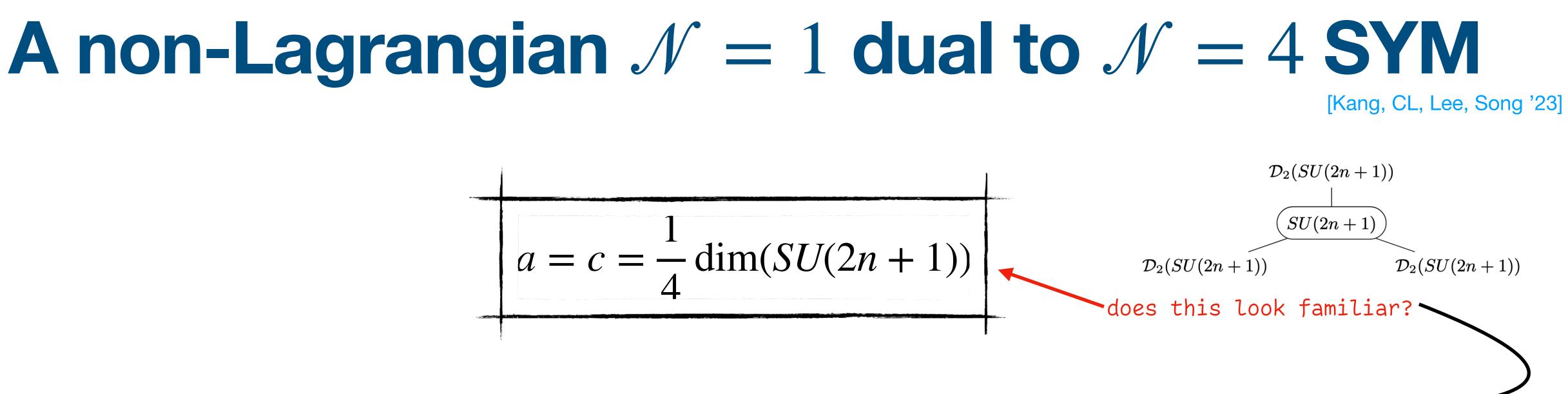


Flows to infrared CFT with a = c since gcd(2,2n + 1) = 1

Gauging breaks the R-symmetry of each $\mathscr{D}_2(G)$:

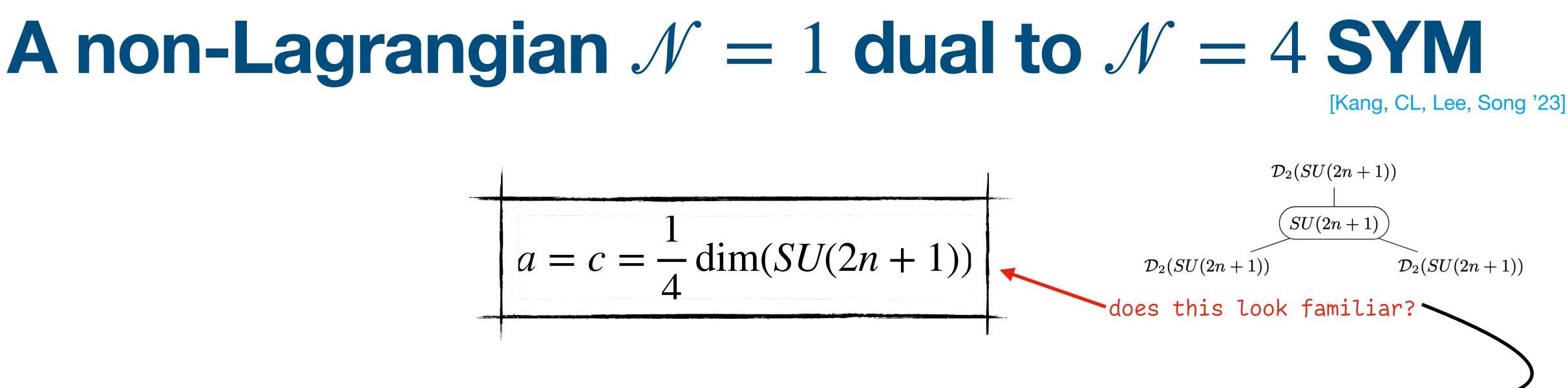
 $a = \frac{3}{32}(3k_{RRR} - k_R)$ $UV 't Hooft \qquad UV \mathcal{N} = 1 \text{ R-symmetry}$ $a = \frac{d}{32}\left(13 - 9\sum_{i=1}^{3}\varepsilon_i^2(\varepsilon_i + 2)\right)$ $a = c = \frac{1}{4}$ $a = c = \frac{1}{4}$





conformal anomalies of $\mathcal{N} = 4$ SYM with gauge group SU(2n+1)

recall: these are conventional invariants



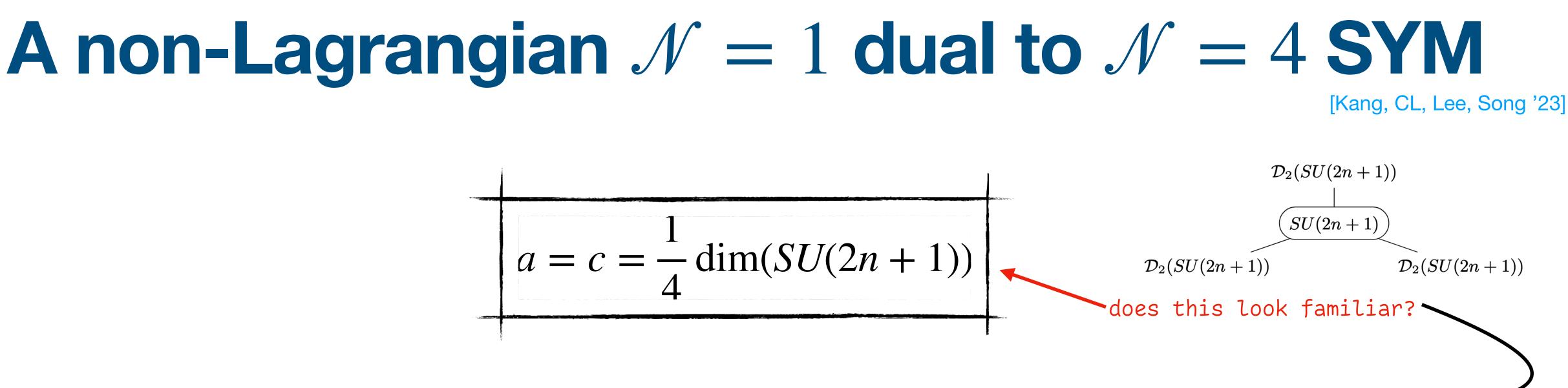
recall: these are conventional invariants

we can also compare the chiral operator spectrum \mathcal{N} = 4 Casimir operator $\longrightarrow \operatorname{Tr} \phi_i^k$ — $\mathcal{N}_i, Q^2 u_i$ $\mathcal{D}_2(G)$ Coulomb branch operators + superdescendents $\mathcal{N} = 4$ single-trace operators $\longrightarrow \operatorname{Tr} \phi_i \phi_i \cdots$ $\longrightarrow \operatorname{Tr} \mu_i \mu_j \cdots$ $\swarrow \mathcal{D}_2(G)$ moment-map operators

dimension of conformal manifold =3, same as $\mathcal{N} = 4$ SYM

conformal anomalies of $\mathcal{N} = 4$ SYM with gauge group SU(2n+1) -

[Leigh, Strassler] [Green, Komargodski, Seiberg, Tachikawa, Wecht]



recall: these are conventional invariants

we can also compare the chiral operator spectrum \mathcal{N} = 4 Casimir operator $\longrightarrow \operatorname{Tr} \phi_i^k$ — $\mathcal{N}_i, Q^2 u_i$ $\mathcal{D}_2(G)$ Coulomb branch operators + superdescendents $\mathcal{N} = 4$ single-trace operators $\longrightarrow \operatorname{Tr} \phi_i \phi_i \cdots$ $\longrightarrow \operatorname{Tr} \mu_i \mu_j \cdots$ $\swarrow \mathcal{D}_2(G)$ moment-map operators

dimension of conformal manifold =3, same as $\mathcal{N} = 4$ SYM

conformal anomalies of $\mathcal{N} = 4$ SYM with gauge group SU(2n+1) -

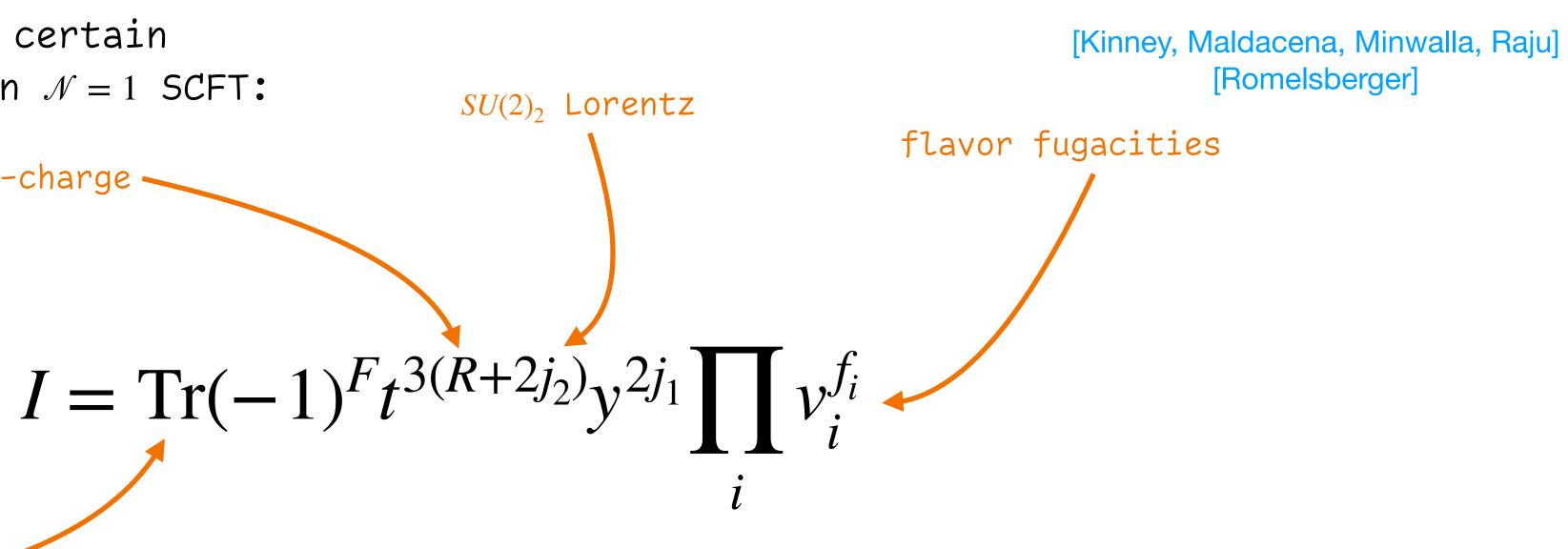
[Leigh, Strassler] [Green, Komargodski, Seiberg, Tachikawa, Wecht]

how else can we verify this proposed duality?

The superconformal index counts certain short superconformal multiplets of an $\mathcal{N} = 1$ SCFT:

 $U(1)_R$ R-charge

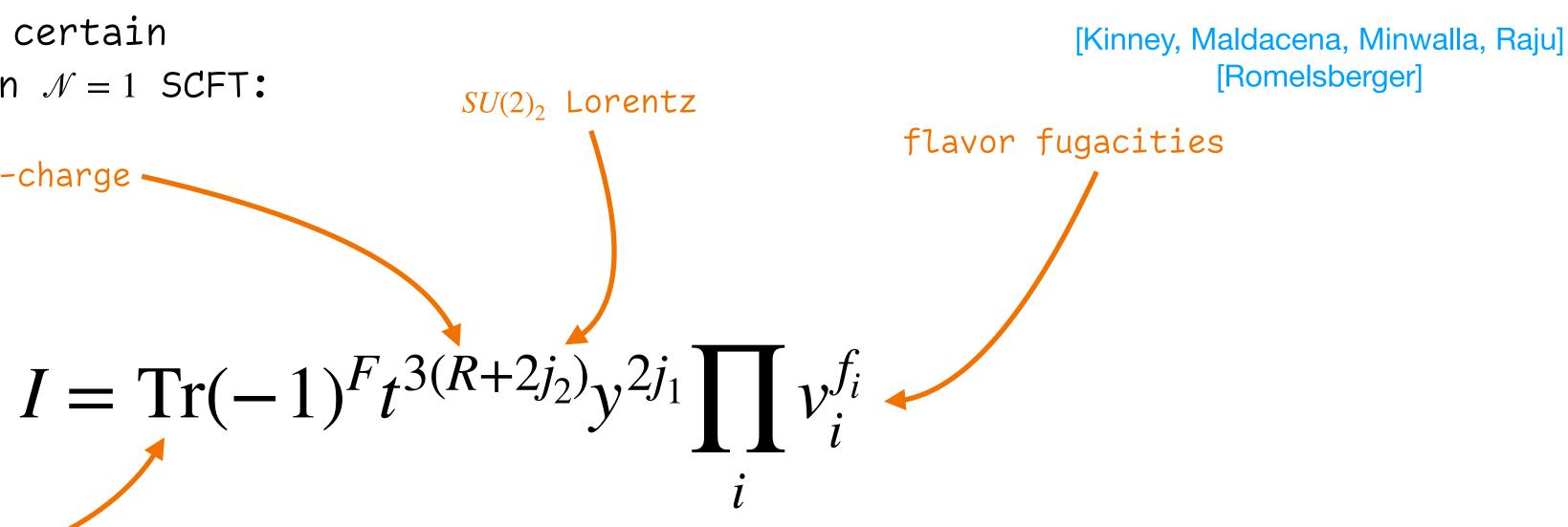
trace over states satisfying $\Delta = \frac{3}{2}R + 2j_2$



The superconformal index counts certain short superconformal multiplets of an $\mathcal{N} = 1$ SCFT:

 $U(1)_R$ R-charge

 $\mathcal{D}_2(SU(3))$ itself has an $\mathcal{N} = 1$ Lagrangian description [(Agarwal,) Maruyoshi, Song] \longrightarrow superconformal index of $\mathcal{D}_2(SU(3))$ can be determined \longrightarrow superconformal index of gaugings of $\mathcal{D}_2(SU(3))$ can be determined



 $\mathscr{D}_{2}(SU(3))$ itself has an $\mathscr{N} = 1$ Lagrangian description [Maruyoshi, Song], [Maruyoshi, Song], [Agarwal, Maruyoshi, Song] \longrightarrow superconformal index of $\mathscr{D}_{2}(SU(3))$ can be determined \longrightarrow superconformal index of gaugings of $\mathscr{D}_{2}(SU(3))$ can be determined

$$\begin{split} \widehat{I}^{\mathfrak{su}_3} &\equiv (1 - t^3 y)(1 - t^3 / y)(I^{\mathfrak{su}_3} - 1) \\ &= t^4 \chi_{\mathbf{6}}^{\mathfrak{su}_3} - t^5 \chi_{\mathbf{2}}^{\mathfrak{su}_2} \chi_{\mathbf{3}}^{\mathfrak{su}_3} + t^6 (\chi_{\mathbf{10}}^{\mathfrak{su}_3} - \chi_{\mathbf{8}}^{\mathfrak{su}_3} + 1) \\ &- t^7 \chi_{\mathbf{2}}^{\mathfrak{su}_2} (\chi_{\mathbf{6}}^{\mathfrak{su}_3} - \chi_{\mathbf{\overline{3}}}^{\mathfrak{su}_3}) + t^8 (\chi_{\mathbf{15}'}^{\mathfrak{su}_3} - \chi_{\mathbf{15}}^{\mathfrak{su}_3} + \chi_{\overline{\mathbf{6}}}^{\mathfrak{su}_3} \\ &+ 2\chi_{\mathbf{3}}^{\mathfrak{su}_3}) - t^9 \chi_{\mathbf{2}}^{\mathfrak{su}_2} (\chi_{\mathbf{10}}^{\mathfrak{su}_3} + 1) + t^{10} \chi_{\mathbf{3}}^{\mathfrak{su}_2} \chi_{\mathbf{\overline{3}}}^{\mathfrak{su}_3} \\ &+ t^{10} (\chi_{\mathbf{\overline{21}}}^{\mathfrak{su}_3} - \chi_{\mathbf{\overline{15}}}^{\mathfrak{su}_3} + 2\chi_{\mathbf{6}}^{\mathfrak{su}_3} - 2\chi_{\mathbf{\overline{3}}}^{\mathfrak{su}_3}) + \cdots, \end{split}$$

 $\mathcal{D}_2(SU(3))$ itself has an $\mathcal{N} = 1$ Lagrangian description [Maruyoshi, Song], [Maruyoshi, Song], [Agarwal, Maruyoshi, Song] \longrightarrow superconformal index of $\mathcal{D}_2(SU(3))$ can be determined \longrightarrow superconformal index of gaugings of $\mathcal{D}_2(SU(3))$ can be determined

supe

 $\mathcal{D}_2(SU(3))$ itself has an $\mathcal{N} = 1$ Lagrangian description [Maruyoshi, Song], [Maruyoshi, Song], [Agarwal, Maruyoshi, Song] \longrightarrow superconformal index of $\mathcal{D}_2(SU(3))$ can be determined \longrightarrow superconformal index of gaugings of $\mathcal{D}_2(SU(3))$ can be determined

$$\begin{split} \widehat{I}^{\mathfrak{su}_{3}} &\equiv (1 - t^{3}y)(1 - t^{3}/y)(I^{\mathfrak{su}_{3}} - 1) & \text{[Kang, CL, Lee, Sc} \\ &= t^{4}\chi_{6}^{\mathfrak{su}_{3}} - t^{5}\chi_{2}^{\mathfrak{su}_{2}}\chi_{3}^{\mathfrak{su}_{3}} + t^{6}(\chi_{10}^{\mathfrak{su}_{3}} - \chi_{8}^{\mathfrak{su}_{3}} + 1) \\ &- t^{7}\chi_{2}^{\mathfrak{su}_{2}}(\chi_{6}^{\mathfrak{su}_{3}} - \chi_{\overline{3}}^{\mathfrak{su}_{3}}) + t^{8}(\chi_{15'}^{\mathfrak{su}_{3}} - \chi_{15}^{\mathfrak{su}_{3}} + \chi_{\overline{6}}^{\mathfrak{su}_{3}} \\ &+ 2\chi_{3}^{\mathfrak{su}_{3}}) - t^{9}\chi_{2}^{\mathfrak{su}_{2}}(\chi_{10}^{\mathfrak{su}_{3}} + 1) + t^{10}\chi_{3}^{\mathfrak{su}_{2}}\chi_{\overline{3}}^{\mathfrak{su}_{3}} \\ &+ t^{10}(\chi_{\overline{21}}^{\mathfrak{su}_{3}} - \chi_{\overline{15}}^{\mathfrak{su}_{3}} + 2\chi_{6}^{\mathfrak{su}_{3}} - 2\chi_{\overline{3}}^{\mathfrak{su}_{3}}) + \cdots, \end{split}$$
erconformal index of $\mathcal{N} = 4$ SYM with gauge group $SU(3)$ [Kang, CL, Lee, Song '23]

supe

ong '22]

nd SU(3)?

spectrum

for $\mathcal{D}_2(SU(2n+1))$ no known Maruyoshi-Song flow from an $\mathcal{N}=1$ Lagrangian description \longrightarrow can we test the duality beyond SU(3)?

for $\mathscr{D}_2(SU(2n+1))$ no known Maruyoshi-Song flow from an $\mathcal{N}=1$ Lagrangian description \longrightarrow can we test the duality beyond SU(3)?

[Xie, Yan, Yau] the Schur limit of the superconformal index of $\mathscr{D}_2(SU(2n+1))$ is known [Song, Xie, Yan]

$$I_S^{\mathcal{D}_2(SU(2n+1))}(q;z) = \operatorname{PE}\left[\frac{q}{1-q^2}\chi_{\operatorname{adj}}(z)\right]$$

for $\mathcal{D}_2(SU(2n+1))$ no known Maruyoshi-Song flow from an $\mathcal{N}=1$ Lagrangian description \rightarrow can we test the duality beyond SU(3)?

[Xie, Yan, Yau] the Schur limit of the superconformal index of $\mathcal{D}_2(SU(2n+1))$ is known [Song, Xie, Yan]

$$I_S^{\mathcal{D}_2(SU(2n+1))}(q;z) = \operatorname{PE}\left[\frac{q}{1-q^2}\chi_{\operatorname{adj}}(z)\right]$$

to compare the $(\mathcal{N} = 1)$ -gauged theory: index contribution of the three chiral multiplets

$$I_{\rm chi}(z) = {\rm PE}\left[\frac{(pq)^{1/3} - (pq)^{2/3}}{(1-p)(1-q)}\chi_{\rm adj}(z)\right] \xrightarrow{\rm Schur \ limit} PE\left[\frac{q}{1-q^2}\chi_{\rm adj}(z)\right]$$

there exists a limit of the superconformal index for an $\mathcal{N} = 1$ deformed $\mathcal{N} = 2$ SCFT that reproduces the Schur index [Buican, Nishinaka]

for $\mathcal{D}_2(SU(2n+1))$ no known Maruyoshi-Song flow from an $\mathcal{N}=1$ Lagrangian description \rightarrow can we test the duality beyond SU(3)?

[Xie, Yan, Yau] the Schur limit of the superconformal index of $\mathcal{D}_2(SU(2n+1))$ is known [Song, Xie, Yan]

$$I_S^{\mathcal{D}_2(SU(2n+1))}(q;z) = \operatorname{PE}\left[\frac{q}{1-q^2}\chi_{\operatorname{adj}}(z)\right]$$

to compare the $(\mathcal{N} = 1)$ -gauged theory: index contribution of the three chiral multiplets

$$I_{\rm chi}(z) = {\rm PE}\left[\frac{(pq)^{1/3} - (pq)^{2/3}}{(1-p)(1-q)}\chi_{\rm adj}(z)\right] \xrightarrow{\text{Schur limit}} {\rm PE}\left[\frac{q}{1-q^2}\chi_{\rm adj}(z)\right]$$

there exists a limit of the superconformal index for an $\mathcal{N} = 1$ deformed $\mathcal{N} = 2$ SCFT that reproduces the Schur index [Buican, Nishinaka]

Schur limit of superconformal index matches for all n

We constructed a non-Lagrangian $\mathcal{N} = 1$ gauge theory that flows to a point on the conformal manifold of $\mathcal{N} = 4$ SYM _____ verified the duality by matching anomalies, chiral operators, and the superconformal index



We constructed a non-Lagrangian $\mathcal{N} = 1$ gauge theory that flows to a point on the conformal manifold of $\mathcal{N} = 4$ SYM reverified the duality by matching anomalies, chiral operators, and the superconformal index

exhibits maximal SUSY enhancement to a Lagrangian theory

We constructed a non-Lagrangian $\mathcal{N} = 1$ gauge theory that flows to a point on the conformal manifold of $\mathcal{N} = 4$ SYM reverified the duality by matching anomalies, chiral operators, and the superconformal index

exhibits maximal SUSY enhancement to a Lagrangian theory

can we use the powerful techniques to study maximally-supersymmetric Lagrangian theories to learn about Argyres-Douglas SCFTs?

What are the supergravity duals to a = c theories?

why do higher derivative corrections vanish? delicate cancellation between Kaluza-Klein modes

What are the supergravity duals to a = c theories?

why do higher derivative corrections vanish? delicate cancellation between Kaluza-Klein modes

a = c theories have many relevant operators

- do they trigger flows to new interacting SCFTs?
- do they preserve a = c?

[Kang, CL, Lee, Song to appear]

do they all flow to $\mathcal{N} = 4$ SYM?

a = c theories have many relevant operators

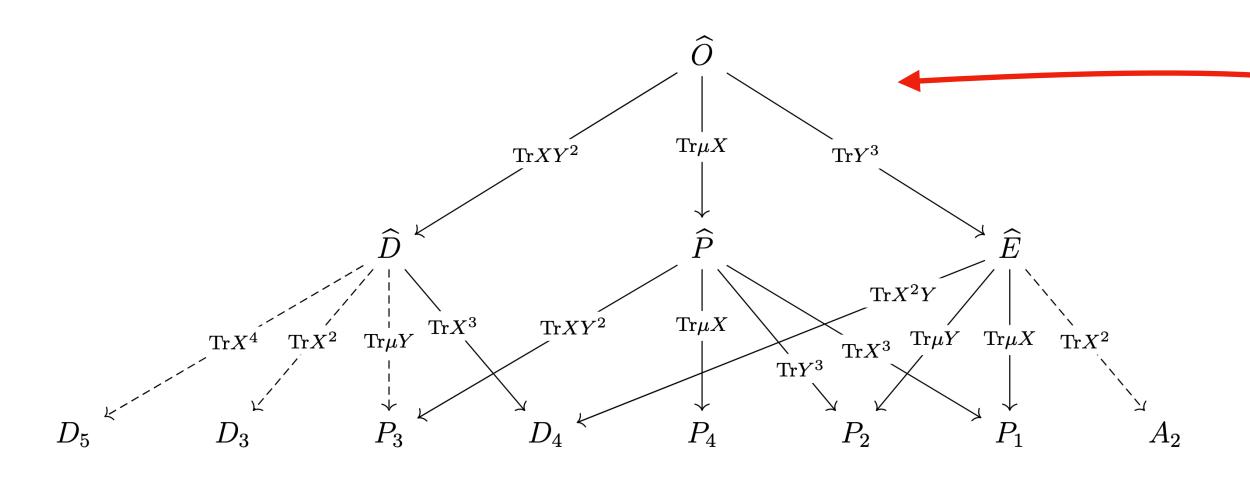
- do they trigger flows to new interacting SCFTs?
- do they preserve a = c?

[Kang, CL, Lee, Song to appear]

do they all flow to $\mathcal{N} = 4$ SYM?

new SUSY-enhancing infrared dualities?

a = c theories have many relevant operators



- do they trigger flows to new interacting SCFTs?
- do they preserve a = c?

[Kang, CL, Lee, Song to appear]

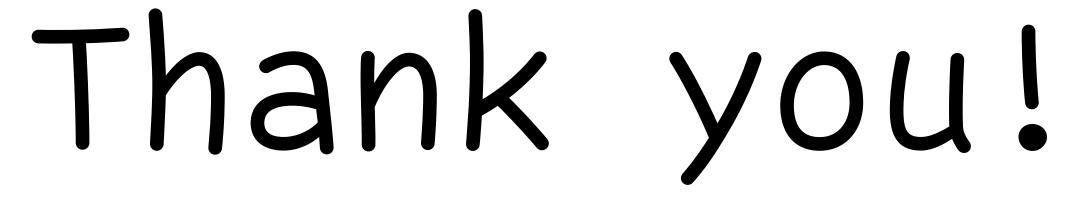
do they all flow to $\mathcal{N} = 4$ SYM?

new SUSY-enhancing infrared dualities?

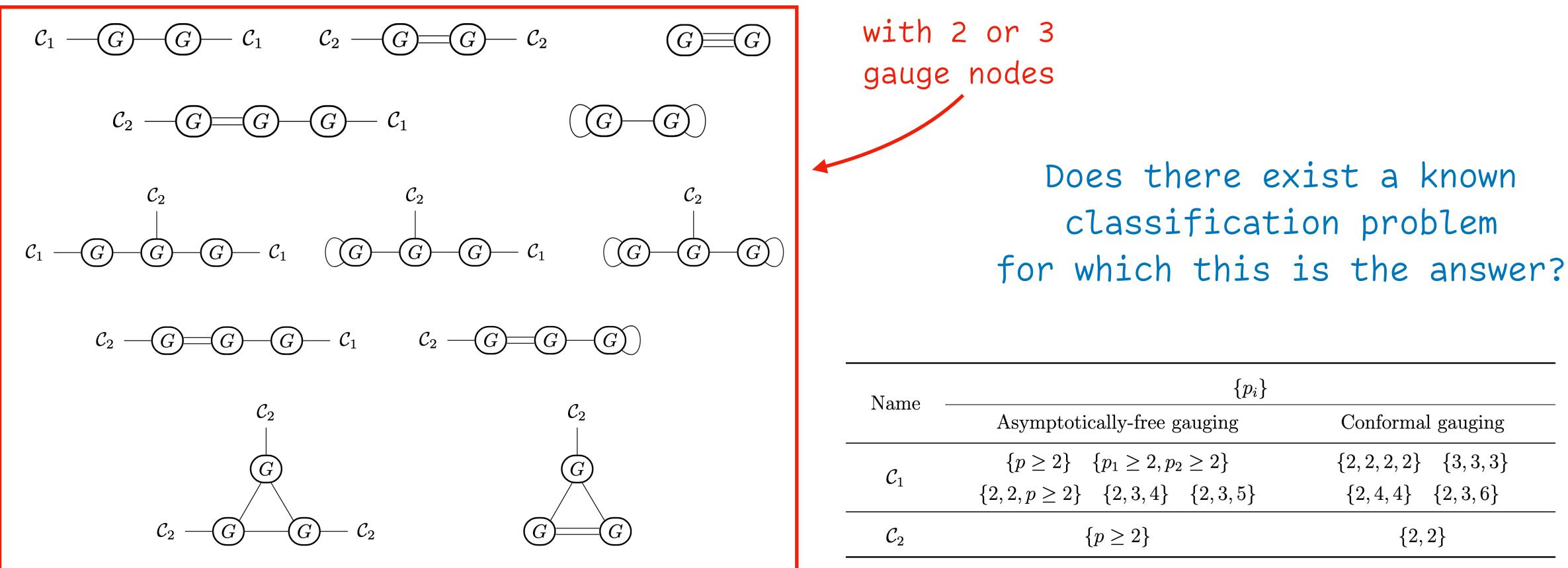
landscape of superpotential deformations of

$$\mathcal{D}_p(G) \longrightarrow G$$

cf. adjoint SQCD [Intriligator, Wecht]



An $\mathcal{N} = 1$ Classification Problem



[Kang, CL, Lee, Song]

To see the ADE classification for $\mathcal{N} = 2$ we needed conformal matter

