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Motivation

Conformal symmetry = exists at the fixed points of renormalization group flows between QFTS

Supersymmetry = certailn quantities are protected from quantum corrections

We study this subspace of the space of all QFTS

— what cah we understand via stringy/geometric techniques?
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Strings, Geometry, and the Landscape of 4d SCFTs

4d SCFTs
N =4 N =72 N =
C?/T" orbifolds Type IIB on Calabi—Yau threefolds
class &
can we use some
Coulomb branch complex geometry geometry here?

[Akhond, Arias-Tamargo, Mininno, Sun, Sun, Wang, Xu]

many, many geometric approaches; see recent reviews Argyres, Heckman, Intriligator, Martone]
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Central Charges

Conformal symmetry becomes anomalous when the CFT 1is
placed i1n an arbitrary background

central charges

/N
/, 3 1672 [ 1672 ’\

stress-energy Euler density
tensor

Weyl tensor

the central charges are “conventional invariants” of the SCFT

Distler, Thursday



The a-th e Or em [Komargodski, Schwimmer]

UV Theory
(ayy: cuv)

there i1is no equivalent statement for c

IR Theory

(aTR-CIR) . .
HRIR 1n thlis sense, a measures

the “degrees of freedom” of the theory
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N =1from N =27

focus on the class & construction

s

can we use the (geometric?) constructions for 4 =2 SCFTS
to learn about (a subsector of) the # =1 landscape?

fone approach: consider =2 SCFT with flavor symmetry G and (/ =1)-gauge G}
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Class é) [Gaiotto], [Gaiotto, Moore, Nietzke]

CSjg<C’g,n>{ }

the 6d (2,00 SCFT

String theory: Type II  fold CT
of type g ing theory: Type IIB on an orbifold g

[Witten]

g of type ADE:
simple, simply-laced Lie algebra
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Class é) [Gaiotto], [Gaiotto, Moore, Nietzke]

data describing punctures =
codimension two defects in the 6d SCFT

/
CSjg<C’g,n>{ }

the 6d (2.0) SCFT — 4d e/’/ — 2 SCFT

of type g

twisted compactification on

an n-punctured genus g Riemann surface ComPlicated physical features

(e.g. S-dualities)
captured by the geometry of C,,
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Class & Building Blocks for ./ = 1 SCFTs

Some known 4d /=2 SCFTs:

fractional Coulomb branch scalinhg dimensions

- - ] [Xie], [del Zotto, Cecotti] — “Argyres—Douglas type”
1) b

[del Zotto, Cecotti, Giacomelli], [Xie, Wang]

Cclass &:

- regular maximal puncture with flavor symmetry G

G SU(N) SO@2N)  E E, Ex

No additional symmetry | (p, N) =1 p & 2Z~og p & 3Z~y p & 2Z~9 p ¢ 30Z~g

— 1rregular puncture
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Some known 4d /=2 SCFTs:

1 ) @p(G) — NoN- Lag ra ng 1ahn [Xie], [del Zotto, Cecotti]

[del Zotto, Cecotti, Giacomelli], [Xie, Wang]

2) (, ) | O Y‘-L er‘ [del Zotto, Heckman, Tomasiello, Vafa]

‘k\\\“ a strongly-coupled generalization of an SU#)x SU) bifundamental hypermultiplet

Class &:

regular maximal punctures each with flavor symmetry G

~\\\\\~\\\\\\\\\\-‘SUbregular puncture

[Ohmori, Shimizu, Tachikawa, Yonekura]
[del Zotto, Vafa, Xie]
[Baume, Kang, CL]
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Class & Building Blocks for ./ = 1 SCFTs

Some known 4d /=2 SCFTs:

1) @p(G) — non—Lag ranglan [Xie], [del Zotto, Cecotti]

[del Zotto, Cecotti, Giacomelli], [Xie, Wang]

2 ) (G, G) con -’: orm a_L M att enr [del Zotto, Heckman, Tomasiello, Vafa]

can we construct new 4d SCFTs using these strongly-coupled
theories as building blocks?

consider # =2 or 4 =1 gauging of all G flavor symmetries

for /=2 there is an ADE classification T (G) [Kang, CL, Song '20]

————_



An ./ = 1 Classification Problem

how can we gauge together all G flavor symmetries
of a collection of Z,(G) such that the result

flows 1in the infrared to an # =1 SCFT? [Kang, CL, Lee, Song *21]



An ./ = 1 Classification Problem o sme

First focus on cases without conformal matter

this is an /' =1 gauge nhode
:: For an asymptotically-free gauge coupling

D, (G) D,,(G) S

—>n—3
=1 Vi

equality 1mplies
conformal gauging



An ./ = 1 Classification Problem o sme

First focus on cases without conformal matter

this is an 4 =1 gauge hode

For an asymptotically-free gauge coupling

D, (G) D,,(G) S

n —>n-3
all 1 Pi
solutions
o o o

P1 D2 D3 P4 Ps P1 D2 D3 D4 Ps P1 D2 DP3 P4 D5 eq uality implies
1 1 1 1 ps 1 2 3 10 <14 1 3 3 3 conformal gauging
1 1 1 ps ps 1 2 3 11 <13 1 3 3 4 <11

1 2 2 pi  ps 1 2 4 5 <19 1 3 4 4 <

1 2 3 <6 p; 1 2 4 6 <11 2 2 2 2 ps

1 2 3 7 <41 1 2 4 7 <9 2 2 2 3 3

1 2 3 8 <23 1 2 5 5 <9 2 2 2 3 4

1 2 3 9 <17 1 2 5 6 <7 2 2 2 3 5




An ./ = 1 Classification Problem o sme
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. . . 1 1 1 1 D5 1 2 3 10 <14 1 3 3 3 ps
Not all such dgaugings flow to interacting 11 5 12 31 <13 13 3 4 <1
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1 2 3 9 <17 1 2 5 6 <7 2 2 2 3 5

1) Use a-maximization to determine the superconformal R-symmetry

[Intriligator, Wecht]

2) Check no operator crosses unitarity bound along the flow
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P1 P2 P3 D4 D5 P1 P2 P3 P4 D5 P1 P2 P3 P4 D5

: : : 1 2 3 10 <14 1 3 3 3 p,
Not all such dgaugings flow to 1nteracting 11 5 me01 2 311 <13 13 3 4 §p11
: 1 1 p3 ps ps 1 2 4 4 ps 1 3 3 &6 <7
infrared SCFTs 1 2 2 p p 1 2 4 5 <19 1 3 4 4 <5
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1 ged(p,hg) =1 then IR fixed point has a=c|



An ./ = 1 Classification Problem o sme

P1 P2 DP3 P4 Ps P1r P2 P3 P4 D5 P1r P2 P3 Pa Ps
Not all such dgaugings flow to interacting 1 11 5 meo1 2 311 <13 103 3 4 <1
: 1 1 p3 ps ps 1 2 4 4 ps 1 3 3 &6 <7
lnfr‘ar‘ed SCFTS 1 2 2 py D5 1 2 4 5 <19 1 3 4 4 <5

1 2 3 <6 p; 1 2 4 6 <11 2 2 2 2 ps

1 2 3 7T <41 1 2 4 7 <9 2 2 2 3 3

1 2 3 8 <23 1 2 5 5 <9 2 2 2 3 4

1 2 3 9 <17 1 2 5 6 <7 2 2 2 3 5}

1) Use a-maximization to determine the superconformal R-symmetry

[Intriligator, Wecht]

2) Check no operator crosses unitarity bound along the flow

ﬁ Surprlslng fact |
1 ged(p,hg) =1 then IR fixed point has a=c|

Qwhy? 1sh’t a=c a feature of 4 >3 SUSY?
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/N = 1: Adding Matter

With #/ =1 gauging we can also add one or two adjoint
chiral multiplets while preserving a=c



/N = 1: Adding Matter

With # =1 gauging we can also add one or

[Kang, CL, Lee, Song 21}

adjoint

chiral multiplets while preserving a=c

s 2
s 4
L 4
L 2
L 4
L 2
T 2
P
f”
L 4
ﬁ" /—-
.7 S
A° D. (G |
p |
/I
=y

SCFTs 1living on the Yo
conformal manifold P

of #=2 T(G) theories NN
Dy(G) —{(G)— Ds(G)



[Kang, CL, Lee, Song 21}

/N = 1: Adding Matter

With # =1 gauging we can also add one or adjoint
chiral multiplets while preserving a=c

SCFTs 1living onh the <
conformal manifold P

of #=2 T(G) theories NN
Dy(G) —{(G)— Ds(G)

also adjoint chiral multiplet + zero 2,(G)s — conformal manifold of # =4 SYM



SUSY and a/c

| Surprlslng fact |
1 ged(pphy) =1 then IR fixed pomt has a=c

L_/why? 1sh’t a=c a feature of 4 >3 SUSY?
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field field
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[Hofman, Maldacena]
an a c [Hofman, Li, Meltzer, Poland, Rejon-Barrera]

Unitarity fixes the ratio:
+ supersymmetry — > bouhds become stronger

free gcalar

field —— ——ou

=0 - l<ﬁ<3_1 | free vector

free chiral 3 ¢ 18 field
multiplet -_—_——__————-~§§\\“\\\* | a 3 free 4 =1

A =1: ES;SE vector
/\1 a 5 free N =2

free N =2 : — < —-—< =
hypermultiplet 2 ¢ 4 vector
./’/:3,42 a = C



Why a = ¢?

Holography: 1if 4d SCFT has AdSs;x X. dual then a=c¢~ OW") to
leading order 1n a large N limit

The subleading terms are

1f a=c at finite N
then p and o

C - a —_— pN + 0 must conspire to cancel!
open string contributions closed string contributions

l.e. branes R, ,-R""°



Why a = ¢?

c—a controls many i1nteresting quantities in a CFT

. : 1672
QCaY‘dy limit of superconfor‘mal index: 1—>€Xp( 3 (C—a)> [di Pietro, Komargodski

C —d ) [Kovtun, Son, Starinet]

: : : n |
® EﬂtY‘ODY‘VlSCOSlty ratio bound: — = (1 Foeee [Katz, Petrov]

[Buchel, Myres, Sinha]

o Mixed Cur‘Y‘eht—gY‘aVitatiOhal aﬂOma_Ly [Anselmi, Freedman, Grisaru, Johansen]

e Single trace higher spin gap for large N [Edelstein, Maldacena, Zhiboedo
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They form a generalization of affine quivers
and have i1intriguing connections to ./ =4 super-Yang—Mills
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The Story Thus Far

We have constructed a broad collection of truly # =1 and
N =2 SCFTs with exactly a=c [ [Kang, CL, Song 20 ]
Kang, CL, Lee, Song 21
They form a generalization of affine quivers
and have i1intriguing connections to ./ =4 super-Yang—Mills

Schur index of # =2 gauging 1s rescaled /=4 Schur index [Kang, CL, Song ‘20]
graded vector space isomorphism between T (G) and . =4 VOAs  [Buican, Nishinaka]

Nekrasov partition function has the same structure as 4 =4 [Kimura, Nishinakal

can we push the connection to # =4 further?



A non-Lagrangian ./ = 1 dual to ./ = 4 SYM

[Kang, CL, Lee, Song 23]

Consider the #' =1 QFT: D> (SU(2n + 1))

|
}SU(Z’IZ + 1)L
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Flows to infrared CFT with a=c¢ since gcd(22n+1)=1

\let’s work out the central charges!
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[Kang, CL, Lee, Song 23]

Flows to infrared CFT with a=c¢ sSince gcd22n+1)=1 Da(SUEn + 1))

|
}SU(ZR—F 1)L
D2(SU(2n + 1)) D2 (SU(2n + 1))
let’s work out the central charges!

Gauging breaks the R-symmetry of ecach 92,(G):

three U(1) flavor symmetries

UQ)g = Uy % U(1)F;/

/

UV #/ =1 R-symmetry



A non-Lagrangian ./ = 1 dual to ./ = 4 SYM

[Kang, CL, Lee, Song 23]

Flows to infrared CFT with a=c¢ sSince gcd22n+1)=1 Da(SUEn + 1))
|

}SU(Zn - 1)L

D2(SU(2n + 1)) D2 (SU(2n + 1))

let’s work out the central charges!

Gauging breaks the R-symmetry of ecach 92,(G):

three U(1) flavor symmetries
UQ2)z = U(1)g X U(1)

/

mix with U(l), in IR R-symmetry
UV #/ =1 R-symmetry ’

mixing coefficients:

fix via a-maximization
[Intriligator, Wecht]



A non-Lagrangian ./ = 1 dual to ./ = 4 SYM

[Kang, CL, Lee, Song 23]

Flows to infrared CFT with a=c¢ sSince gcd22n+1)=1 Da(SUEn + 1))
|

}SU(Zn - 1)L

D2(SU(2n + 1)) D2 (SU(2n + 1))

let’s work out the central charges!

Gauging breaks the R-symmetry of ecach 92,(G):

three U(1) flavor symmetries

UQR)g = U)g X U()y

a = _(3kRRR _ kR) / mix with U1), 1nh IR R-symmetry
32 W ’t Hooft UV A/ =1 R-symmetry ’

anhomalies

d & , i=1
a:3—2<13—9i2218i(8i+2)) \

mixing coefficients:

fix via a-maximization
1 [Intriligator, Wecht]

a-maximization



A non-Lagrangian ./ = 1 dual to ./ = 4 SYM

[Kang, CL, Lee, Song 23]

Flows to infrared CFT with a=c¢ sSince gcd22n+1)=1 Da(SUEn + 1))
|

}SU(%L - 1)L

D2(SU(2n + 1)) D2 (SU(2n + 1))

let’s work out the central charges!

Gauging breaks the R-symmetry of ecach 92,(G):

three U(1) flavor symmetries

UQR)g = U)g X U()y

a = _(3kRRR _ kR) / mix with U1), 1nh IR R-symmetry
32 uv ’t Hooft UV A/ =1 R-symmetry ’

ahomalies

mixing coefficients:
fix via a-maximization

1 |
_ l F ad=C = Z dlm(SU(Zn —|— 1)) [Intriligator, Wecht]

| ik\\\\\‘does this look familiar?

a-maximization
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[Kang, CL, Lee, Song 23]

D2(SU(2n+ 1))

}SU(%L - 1)L

D2(SU(2n + 1)) D2 (SU(2n + 1))

1
a=c=—dmSU2n+ 1)) |
4 - “\\\\\“does this look familiar?

conformal anomalies of 4 =4 SYM with gauge group SUQ2n+1) 4—)

recall: these are conventional 1nvariants




A non-Lagrangian ./ = 1 dual to ./ = 4 SYM

[Kang, CL, Lee, Song 23]

D2(SU(2n+ 1))

}SU(%L - 1)L

d = C = ‘ D2 (SU(2n + 1)) D2 (SU(2n + 1))

does this look familiar?

conformal anomalies of #/ =4 SYM with gauge group SUQ2n+ 1)

recall: these are conventional 1nvariants

we canh also compare the chiral operator spectrum

.. 2
N =4 Casimir operator — TI‘ gblk — l/li, Q l/tl- +«—— 9,(G) Coulomb branch operators + superdescendents

AN =4 single-trace operators — TI' ¢l¢] ———- Tr:“i:“j’” +— J,(G) moment-map operators

. ‘ : _ . [Leigh, Strassler]
dimension of conformal manifold =3, same as /=4 SYM ‘Green, Komargodski, Seiberg, Tachikawa, Wechi]



A non-Lagrangian ./ = 1 dual to ./ = 4 SYM

[Kang, CL, Lee, Song 23]

D2(SU(2n+ 1))

}SU(Zn - 1)L

d = C = ‘ D2 (SU(2n + 1)) D2 (SU(2n + 1))

does this look familiar?

conformal anomalies of #/ =4 SYM with gauge group SUQ2n+ 1)

recall: these are conventional 1nvariants

we canh also compare the chiral operator spectrum

L 2
N =4 Casimir operator — Tr gblk — l/li, Q l/tl- +«—— 9,(G) Coulomb branch operators + superdescendents

AN =4 single-trace operators — TI' ¢l¢] ———- Tr:“i:“j’” +— 9,(G) moment-map operators

. ‘ : _ . [Leigh, Strassler]
dimension of conformal manifold =3, same as /=4 SYM ‘Green, Komargodski, Seiberg, Tachikawa, Wechi]

how else can we verify this proposed duality?
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The superconformal index counts certain [Kinney, Maldacena, Minwalla, Raju]

short superconformal multiplets of an # =1 SCFT: SUQ), Lorentz [Romelsberger]

flavor fugacities
U(l), R-charge
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. . 3
trace over states satisfying A::EJ%+25



Superconformal Index

The superconformal index counts certain [Kinney, Maldacena, Minwalla, Raju]

short superconformal multiplets of an # =1 SCFT: SUQ), Lorentz [Romelsberger]

flavor fugacities
U(l), R-charge

[ =Tr(-1)" t3(R+2j2)y2j1 H Vlfi

. . 3
trace over states satisfying A::EJi+2@

2,(SU(3)) itself has an 4 =1 Lagrangian description [(Agarwal,) Maruyoshi, Song]
— superconformal index of 2,(SUB)) canh be determined
— superconformal index of gaugings of 92,(SU(3)) can be determined



Superconformal Index

P,(SUB)) itself has an 4 =1 Lagrangian description [Maruyoshi, Song], [Maruyoshi, Song], [Agarwal, Maruyoshi, Song]
— guperconformal index of 92,(SUB3)) can be determined
— superconformal index of gaugings of 92,(SU(3)) canh be determined

f5u3 — (]_ — tgy)(]_ —_ tg/y) (IsuB — ]_) [Kang, CL, Lee, Song ’22]
=t'x6" — "x3"x5° + (0’ — X8 + 1)
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+2x5") — X537 (Xi0" + 1) + x5 xg"

10
+H10(x B — e gy EMe 9y Sua) .



Superconformal Index

P,(SUB)) itself has an 4 =1 Lagrangian description [Maruyoshi, Song], [Maruyoshi, Song], [Agarwal, Maruyoshi, Song]
— guperconformal index of 92,(SUB3)) can be determined
— superconformal index of gaugings of 92,(SU(3)) canh be determined

f5u3 — (]_ — tgy)(]_ —_ tg/y) (IsuB — ]_) [Kang, CL, Lee, Song ’22]
=t'x6" — "x3"x5° + (0’ — X8 + 1)
— 0" (6" — x5 ) O — X5 TG
+2x3") — x5 (X1’ +1) + 1 x5  xg"

10
+H10(x B — e gy EMe 9y Sua) .

superconformal index of # =4 SYM with gauge group SU(3) [Kang, CL, Lee, Song 23]

(\____________J,,a refined comparison of the short operator spectrum



Superconformal Index

P,(SUB)) itself has an 4 =1 Lagrangian description [Maruyoshi, Song], [Maruyoshi, Song], [Agarwal, Maruyoshi, Song]
— guperconformal index of 92,(SUB3)) can be determined
— superconformal index of gaugings of 92,(SU(3)) canh be determined
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for 2,(SU2n+1)) no khown Maruyoshi—-Song flow from an /=1 Lagrangian description

—— canh we test the duality beyond SU®3)?
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Superconformal Index forn > 1?

for 2,(SU2n+1)) no khown Maruyoshi—-Song flow from an /=1 Lagrangian description

—— canh we test the duality beyond SU®3)?

[Xie, Yan, Yaul]

the Schur limit of the superconformal index of 2,(SUQ2n+ 1)) 1s Knhown & .Sl vay

Dz SU(2n q
Ik (SU(2 +1))(q; z) = PE g2 Xadj(2)

there exists a limit of the superconformal index for an
A =1 deformed # =2 SCFT that reproduces the Schur index [Buican, Nishinakal

to compare the (#/ =1)-gauged theory:
index contribution of the three chiral multiplets

()3 — (pg)*/?
 (1-p)(1—gq)

I Schur limit of |
| superconformal index |

Ieni(2) = PE | matches for all n |

Xadj (Z) Schur limit PE
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Future Directions

[Kang, CL, Lee, Song 23]

We constructed a non-Lagrangian /4 =1 gauge theory that
flows to a point on the conformal manifold of /' =4 SYM

L_/ verified the duality by matching anomalies, chiral operators, and the superconformal 1ndex

exhibits maximal SUSY enhhancement to a Lagrangian theory

can we use the powerful techniques to study maximally-supersymmetric
Lagrangian theories to learn about Argyres—Douglas SCFTs?
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Future Directions

a=c theories have many relevant operators

do they trigger flows to new interacting SCFTs?

do they preserve a= c? [Kang, CL, Lee, Song to appear]

do they all flow to /' =4 SYM?

<:~*»new SUSY-enhancing infrared dualities?
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Thank you!



An ./ = 1 Classification Problem Kang, L. Lo, Song

To see the ADE classification for 4 =2 we needed conformal matter

with 2 or 3
gauge nhodes

Does there exist a known
classification problem
for which this is the answer?

{pi}

Name

Asymptotically-free gauging Conformal gauging
c {p=>2} {p12>2,p>2} 2,2,2,2} {3,3,3}
: 2,2,p>2} {2,3,4} {2,3,5) {2,4,4) 12,36}

Cs {p>2} 12,2}




