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ABSTRACT: A tunable band gap in phosphorene extends
its applicability in nanoelectronic and optoelectronic
applications. Here, we propose to tune the band gap in
phosphorene by patterning antidot lattices, which are
periodic arrays of holes or nanopores etched in the
material, and by exploiting quantum confinement in the
corresponding nanoconstrictions. We fabricated antidot
lattices with radii down to 13 nm in few-layer black
phosphorus flakes protected by an oxide layer and observed
suppression of the in-plane phonon modes relative to the
unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP
antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic
properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects.
Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same
number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement
is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in
a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating
reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of
antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-
nanometer size regime, where quantum confinement is particularly important.

KEYWORDS: phosphorene, black phosphorus, antidot lattice, nanopore array, tunable band gap, anisotropic quantum confinement,
nanoconstriction

Few-layer black phosphorus (BP) has prompted much
interest recently due to the balance it brings between the
semiconducting band gap and large on/off ratio of

transition metal dichalcogenides (TMDs) and the high carrier
mobility of graphene.1 However, in order to make single-layer
black phosphorus (“phosphorene”) more widely applicable in
optoelectronic devices, it is necessary to devise methods to tune
its ∼2 eV electronic (transport) band gap as measured by
scanning tunneling spectroscopy.2 Nanostructures obtained by
dimensionally reducing bulk BP to few-layers, nanoribbons
(NRs), and quantum dots exhibit shifts in the intrinsic band
gap due to quantum confinement.3 An increasing band gap with
decreasing number of layers was predicted theoretically2,4−13

and demonstrated experimentally from photoluminescence
spectroscopy.12,14−18 These theoretical and experimental
studies collectively show that the band gap is direct irrespective
of the number of layers. This is a further improvement over
TMDs, which only have a direct band gap in the single-layer

limit.19 Phosphorene nanoribbons (PNRs) also feature an
increasing band gap with decreasing width for various edge
configurations and dopants.20−30 Additionally, the band gap of
phosphorene quantum dots is predicted to be tunable by
varying the shape, edge configuration, and edge dopant.31−33

A dimensionally reduced form of phosphorene that has yet to
be explored electronically is the antidot lattice,34 which is a
periodic array of holes embedded into a material. From the
simplest perspective, shifts in the energy levels are expected due
to quantum confinement in the nanoconstrictions between the
holes. The entire structure can be also construed as a network
of curved NRs in two dimensions. Effects due to edge
configuration and dopant are also expected, as is the case for
PNRs.20−30 Theoretical studies have already predicted a tunable
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band gap in antidot lattices composed of graphene,35−66

MoS2,
67 and hexagonal BN.47 In the original work on graphene,

nearly circular holes were centered in hexagonal supercells. The
band gap was found to scale with KNR

0.5/NT for values of the
ratio up to around 0.02, where NR is the number of atoms
removed from a supercell with NT total atoms, and K is 25
eV.35 It was later shown that an integral parameter W could be
used to characterize the hexagonal supercell, which revealed
that the odd values had not been previously considered. In
particular, the apparently off-centered placement of the circular
hole in the supercell for odd W results in no band gap despite
the presence of quantum confinement.49 Similar behavior was
shown to occur for rotated triangular, rectangular, and
honeycomb supercells, where only one-third of the possible
structures have a large band gap.46 Furthermore, the band gap
is tunable for triangular and rhombohedral holes with armchair
or zigzag edges in square supercells and oscillates when plotted
against particular geometric indices.41 Note that the band gap
scaling follows the expected quantum confinement trends in
general for the cases where there is no reduction by symmetry
rules; that is, the band gap increases as the constrictions
between the holes are narrowed.41,46,49 To make a connection
to experiments, one theoretical work considered holes deviating
from regular shapes and showed that the symmetry rules
resulting in a small band gap are less applicable as the disorder
increases.57 Experiments have also been used to formally
confirm the opening of a transport gap in graphene antidot
lattices,68−74 where the gap increases as the constriction width
is decreased.71 In addition, Raman spectroscopy has indicated
the presence of systematic p-type doping,73,75−77 which results
from edge doping.77

In this paper, we study BP antidot lattices experimentally and
theoretically. Nanoscale antidots in few-layer BP capped by an
oxide layer are fabricated using plasma thinning along with
electron beam (EB) lithography. The structures are sub-
sequently characterized by Raman spectroscopy. Using first-
principles density functional theory (DFT) calculations, we also
construct a number of realistic phosphorene antidot lattice
(PAL) models, quantify structural stability, and describe the
electronic properties by plotting the density of states. The
density of states results in net and spatial distributions of the
band gap, which elucidate the role of quantum confinement and
its anisotropy, respectively. The impact of edge morphology on
the electronic properties is determined by plotting the charge
density corresponding to states at the edges of the band gap.

RESULTS AND DISCUSSION
Fabrication of Antidots. Figure 1 demonstrates the step-

by-step fabrication procedure we developed to create antidot
lattices in few-layer black phosphorus flakes using electron
beam lithography, which has previously been used to fabricate
similar structures in graphene.68,78,79 Further experimental
details can be found in the Methods section under Antidot
Fabrication. Bulk BP flakes are first mechanically exfoliated
onto SiO2/Si substrates and thinned using a previously
reported oxygen (O2) plasma etching technique (Figure
1a).16 Thickness calibration curves obtained through simulta-
neous thinning, Raman, and atomic force microscopy (AFM)
measurements can be found in Section S1 in the Supporting
Information. The thinning process allows for precise control of
the few-layer BP thickness and introduces a phosphorus oxide
(PxOy) capping layer that greatly improves sample stability
during lithography and in-air Raman measurements (Figure

1b). We find that a few-layer BP thickness of between 8 and 10
nm (13−16 layers) minimizes oxidation effects on the Raman
map while maximizing signal-to-noise ratios. Since thinner BP
samples experience an increased rate of oxidation and a drop in
Raman signal intensity,80 samples thinned to this range allow us
to obtain measurable Raman signals with minimal oxidation
over time scales of 10−12 h (see Figure S2.1). After thinning,
samples are coated with a thin layer of resist and square antidot
arrays are patterned using EB lithography (Figure 1c).
Tetrafluoromethane (CF4) plasma is then used to etch away
the exposed material, resulting in an antidot-patterned few-layer
BP flake passivated with PxOy (Figure 1d). After resist removal,
the flakes are exposed to an additional plasma-cleaning step.
An optical image of a few-layer BP flake containing an

antidot lattice is given in Figure 2a. Due to the thickness,
oxidation, and orientation-dependent properties of black
phosphorus,1,6,12 regions (1) and (5) of the flake were not
subjected to antidot patterning and are referred to as pristine.
Regions (2), (3), and (4) correspond to a few-layer BP antidot
lattice, PxOy, and a strip of the bare SiO2/Si substrate,
respectively. SEM images of multiple samples reveal highly
uniform antidot lattices with superlattice constants (SC) of 60−
65 nm and radii (R) of 13−23 nm (Figure 2c), in line with the
smallest reported graphene antidots fabricated via EB
lithography.79

Characterization of Antidots by Raman Spectroscopy.
It has been shown that graphene antidot lattices exhibit p-type
doping, as evidenced by strong Raman shifts in both the G and
2D peaks.75,76 Here, we use Raman spectroscopy in order to
analyze the effects of forming antidots in few-layer BP. The
Raman spectrum from a 532 nm excitation line for black
phosphorus reveals one out-of-plane mode (Ag

1) and two in-
plane modes that are associated with phonons in the zigzag
(B2g) and armchair (Ag

2) directions. In particular, the frequency
of the Ag

2 mode exhibits a strong thickness dependence with

Figure 1. Schematic of antidot fabrication steps in few-layer black
phosphorus. (a) Exfoliation and O2 plasma thinning of bulk BP on
a SiO2/Si substrate yields (b) a PxOy-capped few-layer BP flake. (c)
After the sample is coated in resist, antidot arrays are patterned
using electron beam lithography and etched in CF4 to remove the
exposed PxOy/BP. (d) Finally, the process yields a PxOy-passivated
few-layer BP antidot lattice. Typical superlattice constants and
antidot radii are 60−65 nm and 13−23 nm, respectively.
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shifts from 466 cm−1 for bulk black phosphorus up to 470−471
cm−1 for monolayer phosphorene.81,82 Thinned BP flakes, such
as those found in region (1) from Figure 2a, exhibit Ag

1 (362
cm−1), B2g (439 cm−1), and Ag

2 (467 cm−1) peaks that are
consistent with a few-layer (8−10 nm) structure (Figure 2b).

Upon patterning, the antidot region (2) exhibits negligible
changes (±0.5 cm−1) in the frequency of all three major Raman
modes. This result is also predicted theoretically by calculating
the normal-mode frequencies for pristine phosphorene and a
phosphorene antidot system using direct diagonalization of the

Figure 2. Characterization of fabricated antidot arrays in few-layer BP. (a) Optical image of columnar regions with (1) pristine few-layer BP,
(2) patterned antidots (SC = 60 nm and R = 23 nm), (3) PxOy, (4) bare SiO2/Si substrate, and (5) pristine few-layer BP. (b) Raman spectra of
(1) pristine few-layer, (2) antidot, and (3) PxOy regions normalized to the Ag

1 peak of (1), showing suppression of the in-plane modes (B2g and
Ag
1) in the antidot region. (c) SEM image of a square antidot array with SC = 65 nm and R = 13 nm. (d) B2g:Ag

1 intensity Raman map from the
sample in (a). Note: SC is the average in-plane superlattice constant and R is the average antidot radius.

Figure 3. Optimized hydrogen-passivated phosphorene antidot lattices with defined edge atoms represented in green and interior atoms
colored in purple.101 The geometric parameters are schematically defined for one of the structures. SCx and SCy refer to the in-plane
superlattice constants along the armchair and zigzag directions, respectively. SC is then defined as the average of these two values, and R is the
antidot radius, which is the average of the radii for the green edge atoms. Rows of atoms across from each other on the edges of the antidot
unit cell are equivalent. (a) Illustration of the atom pair center (APC) symmetry; (b) APC with SC = 1.49 nm and R = 0.56 nm; (c) APC with
SC = 3.02 nm and R = 1.14 nm; (d) APC with SC = 4.56 nm and R = 1.86 nm; (e) Illustration of the open center (OC) symmetry; (f) OC with
SC = 1.49 nm and R = 0.43 nm; (g) OC with SC = 3.02 nm and R = 1.15 nm; (h) OC with SC = 4.56 nm and R = 1.86 nm.
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dynamical matrix and the power spectrum method within DFT
(see Theoretical Methods section and Figure S10). As
suggested by a recent work, the absence of a shift in frequencies
as well as full-widths at half-maximum (see Figure S2.1) rules
out any n-type doping in the antidot lattice but is inconclusive
toward the presence of p-type doping.83 Furthermore, this
result indicates the structure is likely free of any strain since
stretching- and compression-induced Raman frequency shifts
up to 11 cm−1/(% strain) are expected in both phosphorene
and few-layer BP.84,85 We also note that across samples the
Ag
1:Ag

2 intensity ratio (i.e., the ratio of peak heights) remains
between 0.5 and 0.6 from pristine to antidot regions, excluding
the likelihood of thinning or oxidation due to atmospheric
exposure or patterning.82 In fact, overetching results in only
amorphous PxOy (region (3)), which displays no discernible
Raman signature as expected (Figure 2b).16

As shown in Figure 2b, we observe suppression of both in-
plane modes in the antidot lattices in comparison to pristine
few-layer BP. Figure 2d graphically shows that from the pristine
few-layer BP to the patterned antidot region, the normalized
B2g:Ag

1 intensity ratio exhibits a significant drop from roughly
2.0 to 0.9, suggesting relatively strong suppression of the in-
plane zigzag phonon mode. A similar, but comparatively
weaker, effect is also observed for the in-plane armchair mode,
as evidenced by the Ag

2:Ag
1 intensity Raman map in Figure S2.2.

Further evidence of this effect can be found in Section S2 with
additional Raman maps for fabricated antidot lattices. While
strengthening of the in-plane Raman D mode in graphene
antidot lattices has been shown to be due to fabrication-induced
defects, suppression of the in-plane G mode has been attributed
to a change in the phonon density of states (DOS) resulting
from antidot-induced quantum confinement and follows a
similar trend to what is demonstrated here.53,75,86

Construction of Phosphorene Antidot Lattice Atomic
Models. With the fabrication of few-layer black phosphorus
antidot lattices with dimensions of tens of nanometers in radii
and supercell size established, the rest of this paper explores the
electronic properties of freestanding phosphorene antidot
lattices at the few-nanometer scale, where the impact of
quantum confinement and edge morphology becomes
important. In order to be consistent with the experimental
fabrication, roughly circular perforations placed on a
rectangular superlattice are considered. The starting point is a
phosphorene unit cell with armchair, zigzag, and out-of-plane
directions extending along x, y, and z, respectively. Two
different unit cell symmetries are used, atom pair center (APC)
and open center (OC), as shown in Figure 3a and e,
respectively. For each of these symmetries four different
supercells are formed, with the center of the supercell defined
as the origin. To describe the supercells with one parameter,
the average in-plane superlattice constant SC is calculated (see
Figure 3 for schematic representations of all relevant geometric
parameters): the obtained values are 1.49, 3.02, 4.56, and 5.99
nm. The antidot geometries are formed by only considering the
projection in the xy plane. Consequently, we will label the nth
atom of the supercell as (xn, yn). The nth atom is removed from
the supercell if (ΔR)n > 0 and |(ΔR)n| > Rc where (ΔR)n = R −
Rn, R is the targeted antidot radius, Rn

2 = xn
2 + yn

2, and R = 0.25
Å is a cutoff value that is chosen such that the resulting
structure features as few dangling bonds as possible. In other
words, an atom is removed if it is inside the targeted antidot
circle by more than a cutoff value. The targeted radii are set to
the same values for the APC and OC symmetries. After these

structures are allowed to relax (which can lead to a number of
self-passivation processes governed by edge reconstruction), we
passivate phosphorus atoms with hydrogen to preserve a
coordination number of 3 for each P and relax again. This
procedure implicitly assumes that the lattice relaxation is faster
than the adsorption of hydrogen to the edges, which is
reasonable for a fabrication vessel under good vacuum. Figure 3
(b−d for APC and f−h for OC) provides a number of examples
of optimized geometries, where the edge atoms are shown in
green. Representations of all structures studied are archived in
Section S3. There is clearly a difference between corresponding
(same supercell size and nearly the same radius) APC and OC
structures. A number of previously studied edge configurations
(via PNRs) are found as a result of our optimization procedure,
including the armchair (AC), zigzag single termination (ZZ-1),
2×1 inner-shifted reconstruction of the ZZ-2 edge (ZZRC-i),
and the 2×1 outer-shifted reconstruction of the ZZ-2 edge
(ZZRC-o). ZZ-2 is the zigzag double termination edge.
Schematics for all of these edges are displayed in Figure 2a
from our previous work.87 During our minimization procedure,
we also discovered a number of unreported stable edge
reconstructions present in the edges that have yet to be studied
independently. Our recent review article on black phosphorus
nanostructures discusses other known self-passivating edge
configurations that are not present in the antidot geometries.3

Specific edge configurations impact the stability and electronic
properties, which will be discussed later. Numerical values for
geometric parameters including the supercell size, radius
(calculated as the average of all edge atom radii after
relaxation), and the standard deviation in the radius are
tabulated in Section S4. Details of the calculations and the
edge-passivation process are deferred to the Theoretical
Methods section. In this work the antidots were fabricated by
exposure to CF4 plasma, which would likely result in
passivation of the dangling bonds at the hole edges by F due
to its large electronegativity. The band gap scaling (which is the
primary interest) for H or F passivation in AC and ZZ-1 PNRs
follows the quantum confinement increase in band gap with
decreasing width. The curves nearly overlap, except below
widths of 1 nm, where the difference becomes up to ∼0.5
eV.21,24 A similar trend applies in comparing H to Cl or OH
passivation.21 Therefore, the band gap scaling for the antidots
passivated by H is expected to be similar to what it would be if
the passivation was by F instead, except perhaps shifted for
small constriction widths. The similarity between the edge
dopants can be explained by noting that each requires
interaction with one phosphorus dangling bond to complete
the outer electronic shell.

Thermodynamic Stability (Edge Energy). To quantify
the stability of an antidot structure, the edge energy is defined
as

= − +
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
⎫
⎬
⎭

F
N

F N F N
F1
2edge PAL P P H
H2

(1)

where FP is the free energy per phosphorus atom in an infinite
phosphorene layer, FH2

is the free energy of an isolated
hydrogen molecule, FPAL is the total free energy of the antidot
structure (PAL = phosphorene antidot lattice), NP is the total
number of phosphorus atoms, NH is the total number of
hydrogen atoms, and N is the total number of atoms. In other
words, the total energy of the antidot structure is compared to
the energy the system would have if the phosphorus atoms
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remained in the pristine phosphorene sheet and if the hydrogen
atoms remained in the noninteracting gas phase. This value is
then normalized to the total number of atoms to allow for
comparison between structures. The edge energy was
computed for every structurally relaxed non H-passivated and
H-passivated structure for APC (Figure 4a,b) and OC (Figure
4c,d), respectively. For all cases, passivation stabilizes the
structures (lowers the edge energy). The explicit difference in
edge energy between the non-passivated and passivated cases is
plotted in Figure S5.1. In considering decreasing the supercell
size for a given radius or increasing the radius for a given

supercell size, in general, both operations decrease the stability
and increase the amount of energy by which passivation
stabilizes a given structure. The presence of an edge, which is
the destabilizing factor, represents a larger fraction of the
system when the spacing between the holes is decreased or the
radius of the holes is increased. For seven of the passivated
cases incrementing the radius to the next largest value can
stabilize the system. In each circumstance the number of self-
passivation segments in the edge is larger in the less stable
structure. This informally implies that hydrogen passivation is
energetically preferable to self-passivation. However, this does

Figure 4. Calculated stability as quantified by the defined edge energy (eq 1). (a) APC non-passivated. (b) APC passivated. (c) OC non-
passivated. (d) OC passivated. For all cases, passivation stabilizes the structures (lowers the edge energy). The presence of an edge, which is
the destabilizing factor, represents a larger fraction of the system when the spacing between the holes is decreased or the radius of the holes is
increased (therefore edge energy increases). For seven of the passivated cases incrementing the radius to the next largest value can stabilize
the system. In each circumstance the number of self-passivation segments in the edge is larger in the less stable structure.

Figure 5. Electronic density of states for SC = 3.02 nm calculated with DFT. The two left columns are for APC, and the two right columns are
for OC (see Figure 3). The left column in each set is the total density of states with normalization to the number of phosphorus atoms (radii
given), and the right column in each set is the site-projected density of states decomposed by edge and interior atoms with normalization to
the respective number of atoms. In some cases, the size of the band gap is limited by contributions due to the edge atoms (for instance APC
with R = 1.14 nm).
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not mean that self-passivated edges will transition to other edge
configurations with dangling bonds and be subsequently
hydrogen passivated and/or that the radius will increment to
the next largest value spontaneously. Such conclusions would
require studying the kinetics via transition state tools such as
the nudged elastic band method, which has been applied to the
edges of phosphorene in other works.87,88 The energy barrier
can then be compared to the thermal energy to determine the
probability of a structural transformation. Furthermore, in
incrementing to the next largest radius the removed
phosphorus atoms do not automatically rearrange into a
pristine phosphorene sheet, which is the free energy value that
goes into the edge energy calculation. Another important
feature to inspect is the difference in edge energy between
corresponding APC and OC structures. For both the non-
passivated (Figure S5.2a) and passivated (Figure S5.2b) cases
the energy difference is less than the order of the thermal
energy at room temperature (25 meV). This implies that there
is no expectation for a preferred symmetry to emerge in
fabricated antidots. The only exception is the non-passivated
SC = 1.49 nm case; however, the radii and shape of the hole
between these two systems are sufficiently different to exclude
this observation.
Electronic Density of States. The electronic properties of

the phosphorene antidot lattices were studied within DFT by
inspecting the density of states and site-projected density of
states (PDOS) for each structure (details of calculations in the
Theoretical Methods section). The PDOS is decomposed into
contributions from the edge (green) and interior (purple)
atoms (see Figure 3 and Section S3 for edge/interior
designation). The DOS and PDOS of the edge/interior are
visualized in Figure 5 for SC = 3.02 nm for both APC (a) and
OC (b) symmetries with all radii considered. All DOS and
PDOS of the edge/interior plots for the different supercell sizes
are given in Section S6. The DOS plots show that a non-
negligible evolution of the band gap occurs as the radius is
varied for a given supercell symmetry. In general, the PDOS
from the edge is smaller than and/or similar in shape to the
PDOS from the interior near the end points of the band gap.
This suggests that the configuration of the edge will not
significantly impact the band gap scaling with size. This is
expected since the saturation of the edge dangling bonds by
hydrogen pushes any in-gap states present in an unsaturated
structure out of the gap. For example for H-passivated PNRs

with AC,20,22,25,30 ZZ-1,20−22,25 ZZRC-o,20 and diagonal20

edges, the conduction band minimum (CBM) and valence
band maximum (VBM) have charge densities that are global
states (i.e., not edge-localized). There are still a few systems that
contain a relatively large contribution from the edge. The
notable feature of these systems is that they contain self-
passivated edges. However, the band gap may not be affected
by some of these edge morphologies because each PDOS curve
is normalized to the respective number of atoms and therefore
does not reflect the behavior of the DOS. Two structures have
metallic signatures (APC SC = 4.56 nm and SC = 5.99 nm both
with R = 1.15 nm; see Section S6), and this quite unexpected
result will be discussed later in a separate section.

Electronic Band Gap Scaling. In order to compare the
different antidot structures more systematically, the band gaps
were calculated from the DOS and plotted against the radius.
The band gap scaling relations for APC and OC are given in
Figure 6a and 6b, respectively. As the nanoconstrictions (NCs)
between the holes decrease in size, the increase in quantum
confinement is expected to increase the band gap.3 This implies
that for a constant radius decreasing the supercell size
(decreasing the spacing between holes) should increase the
band gap. Also, for a constant supercell size increasing the
radius should increase the band gap. This trend is followed by
32/42 of the antidot structures considered here. To obtain
some insight into the 10 deviations, the difference in the band
gap between corresponding APC and OC structures was
computed (Figure S7.1) and is non-negligible in several cases.
Since the geometric parameters that determine quantum
confinement effects are nearly the same, this suggests that the
deviations could result from in-gap states from self-passivated
regions in the edge. For instance, the band structure for PNRs
with the ZZRC-i edge (which is found in a number of the PAL
structures) contains a band below the Fermi energy with charge
density corresponding to the edge.2 A simple approach to
evaluate this claim is to calculate the band gap using the
phosphorus PDOS from all atoms (Figure S7.2) and the
phosphorus PDOS excluding the edge atoms (Figure S7.3) and
then compare the results. The band gap scaling trends differ
negligibly, which suggests edge configuration cannot account
for the deviations. However, when the wave function is
projected onto the interior atoms, it contains the influence of
the edge atoms. This means that the edge contribution cannot
be completely removed using this method. A better approach is

Figure 6. Scaling of calculated band gap with radius for multiple supercell sizes. (a) APC symmetry. (b) OC symmetry. In increasing the radius
or spacing the holes closer together, the nanoconstrictions narrow, which increases the band gap due to quantum confinement. Deviations can
be primarily explained by edge morphology (see next figure). Note that DFT underestimates the band gap due to the structure of the
approximate form of the exchange correlation energy functional.102−104 Only the qualitative scaling is of interest.
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to evaluate the charge density corresponding to two different
energy ranges: the first range is the lower edge of the band gap
minus 0.2 eV (“low”), and the second range is the upper edge
of the band gap plus 0.2 eV (“high”). This is visualized in
Figure 7 for APC SC = 3.02 nm and R = 1.14 nm. The band

gap limiting contribution originates from the self-passivating
ZZRC-i edge on both the lower and upper edge of the band
gap. The charge densities for all deviation cases (except for two
metallic systems) are shown in Section S8. In 5/8 of the
systems at least one of the lower and upper contributions
results in part from self-passivation in the edge. In particular, in
4/5 cases the ZZRC-i edge is involved. For the other 3/8 cases
it could be that the band gap is not underestimated, but rather
the previous structure has an overestimated band gap. Such

deviations can be rationalized by noting that the band gap
scaling is slightly different between ZZ-1 and ZZRC-o
hydrogen-saturated PNRs even though the VBM and CBM
charge densities are globally distributed.20 In other words, the
edge atoms can couple to the interior atoms to produce global
changes in the electronic properties. Although 0.2 eV is a
significant fraction of the band gap, a sufficient energy range is
required to generate non-zero values for the charge density.
Even after correcting for edge effects, the band gap scaling laws
would still not form smooth curves in general, as might be
expected from an elementary quantum mechanics calculation.
However, notice that the OC SC = 3.02 nm band gap scaling is
smooth (see Figure 6b). In addition to not hosting any self-
passivation in the edges, these systems have relaxed hole
geometries that are nearly square, not circular. This suggests
that the shape of the quantum well affects the band gap scaling
in addition to the confinement length and edge morphology.
A notable feature with important experimental implications is

the “size effect” in the band gap scaling. The maximum radius
of an antidot that can be formed increases as the size of the
supercell increases. This enables the minimum obtainable
confinement length in the armchair and zigzag NCs to be
roughly the same between different supercell sizes. However,
the maximum increase in the band gap that can be obtained
from the maximal radius decreases as the supercell increases.
This is apparent from the maximal radii in OC SC = 3.02, 4.56,
and 5.99 nm (see Figure 6b) since edge effects do not impact
these data points. To account for this observation, it can be
shown that the limiting confinement length occurs along the
diagonal direction and is dependent on the size of the supercell.
For circular holes (radius R) in square supercells (superlattice
constant L), simple geometric manipulations result in a
diagonal length between the edges of d = √2L − 2R. The
minimum confinement length along armchair and zigzag NCs
occurs when R ≲ L/2. In this case the minimum confinement
length along the diagonal direction is dmin ≳ (√2 − 1)L. This
implies that the minimum confinement length that can be
obtained is proportional to the size of the supercell. More
importantly, the largest possible increase in the band gap

Figure 7. Band gap limiting charge density for APC with SC = 3.02
nm and R = 1.14 nm. The panel labeled “Low” corresponds to the
energy range from the lower edge of the band gap to 0.2 eV lower,
and the panel “High” corresponds to the energy range from the
upper edge of the band gap to 0.2 eV higher. The isosurface values
are 6.4 × 10−4 (low) and 8.2 × 10−4 (high) in units of a0

−3, where
a0 is the Bohr radius. In both cases the self-passivating zigzag
reconstruction ZZRC-i is a limiting factor in the size of the band
gap and describes the deviation in the band gap scaling from what
is expected from quantum confinement. Recently the ZZRC-i edge
was experimentally observed under TEM conditions.105

Figure 8. Spatial distribution of the band gap for OC with SC = 3.02 nm. The radii (in nm) are (a) 0.45, (b) 0.90, (c) 1.15, and (d) 1.37. The
local band gap is defined as the band gap observed in the PDOS plot on each atom of the structure. The largest band gap atoms are present in
the zigzag nanoconstrictions, which is consistent with the strength of quantum confinement effects in phosphorene nanoribbons.20−23,25−29
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decreases with increasing supercell size. This means that, in
order to experimentally observe appreciable shifts in the band
gap due to quantum confinement, the supercell dimensions
need to be on the order of a few nanometers, not tens of
nanometers as was previously considered for graphene.68−74

Moreover, supercell and perforation geometries can be chosen
to optimize the quantum confinement shift in the band gap
using commensurate geometries. For instance, consider square
supercells again, but now with square perforations of side
length l. In this case the diagonal confinement length is d =
√2(L − l). From the relation l ≲ L one obtains d ≳ 0. That is,
there is no expected size effect for square perforations with
square supercells, i.e., when the hole and supercell shapes are
commensurate. However, achieving small square perforations
may be more experimentally challenging since the fabrication
probe is circular.
Spatial Distribution of the Band Gap: Anisotropy of

Quantum Confinement. Since the PDOS was calculated, it is
possible to obtain the effective local band gap and then plot the
spatial distribution. This is shown in Figure 8 for all radii with
the OC symmetry and SC = 3.02 nm and in Section S9 for all
structures. The resulting distribution is approximately bimodal
in all structures. In general, the higher band gap regions are
located in the zigzag NCs and the lower band gap regions are
present in the armchair NCs, both having a similar confinement
width, thus demonstrating the anisotropy of quantum confine-
ment effects in phosphorene. This is also consistent with the
presence of stronger quantum confinement effects in hydrogen-
passivated PNRs of ZZ-1 edge as compared to AC
edge.20−23,25−29 By “stronger” it is meant that for a given NR
width the PAGE quantum-confinement-induced increase in the
band gap is larger, at least in the range of widths considered.
Also, the band gap values decay away from the edge when the
supercell size and radius dimensions result in a sizable “bulk”
region. A possible explanation is that the large gradient in the
potential from the edge of the phosphorene into the empty
hole and/or the curvature of the quantum well at the edge have
a strong effect on the local electronic properties.
Deviations from the general trend can be attributed to

differences in edge configurations. In APC with SC = 3.02 nm
and R = 1.14 nm the spatial distribution of the band gap
becomes inverted, which places the lower band gap atoms along
the zigzag direction and the higher band gap atoms along the
armchair direction. The distinguishing attribute is the ZZRC-i
edge, which is a large fraction of the total edge and the entire
system. This agrees with the previous charge density
calculations shown in Figure 7. In APC with SC = 5.99 nm
and R = 2.63 nm the central part of the zigzag edge has the
lowest band gap regions, but the highest band gap atoms still
remain on the ends of the zigzag NCs. The characteristic
feature is that the central region of the zigzag NC is a complete
reconstruction of the phosphorene lattice due to the very
narrow width. By comparison, the corresponding OC structure
does not contain any significant structural changes, and the
spatial distribution of the band gap is as expected. The metallic
cases will be discussed separately.
So far in this analysis the impact of the diagonal phosphorene

direction has been neglected. Note that the “diagonal” edge
does not bisect the armchair and zigzag axes but is 36 degrees
from the armchair direction. Hydrogen-passivated diagonal
PNRs have a quantum confinement strength that falls in
between AC and ZZ-1 PNRs.20,28 This observation predicts a
roughly trimodal spatial distribution of the band gap. However,

in looking at the spatial distributions of the band gap, it is
apparent that the lowest band gap atoms are contained within
both the armchair and diagonal NCs. One explanation is that
the larger strength of the quantum confinement effects in the
diagonal NCs is offset by the fact that the armchair NCs have a
smaller width. This assessment results in a contradiction since
earlier the “size effect” in the band gap scaling was attributed to
the fact that the limiting confinement length is along the
diagonal and is proportional to the size of the supercell. This
means the limitation in the band gap range should be
unconnected to the armchair NCs. A simple way to reconcile
the two observations is to consider the fact that the armchair,
diagonal, and zigzag NCs are not independent, but are
interacting with each other. In particular, the strong coupling
between the armchair and diagonal NCs results in the quantum
confinement limitations of the diagonal NCs being transferred
to the armchair NCs. The strong coupling could originate from
two sources. First, the phosphorene diagonal direction is closer
to the armchair direction than the zigzag direction. Second,
there are two diagonal NCs for every armchair NC per
supercell. The full explanation is likely a combination of the two
factors since there are also two diagonal NCs for every zigzag
NC. Although the armchair and diagonal NCs contain the
lowest band gap atoms, they are not necessarily the only
limiting factors in the size of the net band gap. Put simply, the
PDOS for each atom is not necessarily centered at the Fermi
energy. This means that the largest band gap atoms could limit
the size of the total band gap if they contribute states only at
either the lower or higher energy end point of the net band gap.
Lastly, it is interesting to note that rotating the antidot pattern
on the phosphorene lattice would result in different edge
morphologies in general. More importantly, the band gap
scaling and spatial distribution of the band gap could be much
different due to the anisotropy of quantum confinement effects.
By forcing the zigzag edges to be along the diagonal of the
antidot, it may be possible to increase the band gap shifts due
to quantum confinement. This discussion highlights that using
the band gap as a single number to characterize complex
nanostructures can be misleading since spatial variations in the
electronic properties can emerge.
The band gap scaling laws with width in hydrogen-passivated

PNRs (AC ∼1/w2 and ZZ-1 ∼1/w) imply that charge carriers
along the armchair and zigzag directions are relativistic-like and
non-relativistic, respectively.26 This has been observed
experimentally in black phosphorus via the ambipolar carrier
mobility, which is an order of magnitude larger along the
armchair as compared to the zigzag direction.89 It is then
expected that the NCs in the antidots will have similar
transport properties, with the high mobility direction along the
armchair direction. Conclusions can also be made about the
concentration of charge carriers available for transport. From
elementary solid-state theory, the electron or hole carrier
concentration of an intrinsic semiconductor has a proportion-
ality to exp(−Eg/2kBT). Since the atoms along the armchair
direction have a lower band gap, a greater concentration of
carriers is thermalized along the armchair as compared to the
zigzag direction.
Furthermore, sophisticated calculations of the optoelectronic

properties of PNRs using the GW-BSE method can be
performed to predict the optical properties of the PALs. For
hydrogen-passivated AC and ZZ-1 PNRs it was found that with
decreasing width the electronic band gap, optical band gap, and
exciton binding energies all increase (i.e., the quantities all
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follow the quantum confinement trends).29 Since an antidot
lattice is closely related to a network of curved NRs, it is
reasonable to assume that the scaling of the optoelectronic
properties with the geometric features in the PNRs and the
PALs will be similar. Furthermore, it is expected that the spatial
distribution of the optical band gap in the PALs will also be
bimodal. The resulting experimental spectrum would display
energetic splitting or false-broadening, depending on the line
shape. The value of this splitting would be about equal to the
difference between the largest and smallest band gaps, which is
displayed in Figure 9 for APC (a) and OC (b). The values
range from ∼0.12 eV (APC SC = 3.02 nm, R = 1.14 nm) up to
∼1.20 eV (OC SC = 5.99 nm, R = 1.14 nm). In general, the
splitting increases with increasing radius and is independent of
the supercell size. To explain this result, consider circular
perforations in square supercells again. First, recognize that the
minimum band gap is mainly determined by the diagonal NC
width (ld = √2L − 2r) and that the maximum band gap
primarily comes from the zigzag NC width (lz = L − 2r).
Consider the following derivatives:
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From the first set of derivatives, both length parameters
change by the same amount in response to a change in radius
with the supercell size held constant. However, since quantum
confinement effects are stronger in the zigzag NCs, the
quantum confinement induced change in the maximum band
gap will be larger than in the minimum band gap when the
radius is increased. This implies that the splitting will increase
for an increasing radius with the supercell size held fixed. From
the second set of derivatives, the diagonal NC width will change
more than the zigzag NC width for a change in the supercell
size with the radius held fixed. However, the stronger quantum
confinement effects in the zigzag NCs can offset the larger
change in the diagonal NC width. It follows that the minimum

Figure 9. Energy splitting (defined as the largest band gap minus the smallest band gap from the spatial distribution) as a function of the
radius for multiple supercell sizes. (a) APC symmetry. (b) OC symmetry for a range of radii.

Figure 10. Analysis of the electronic properties of metallic PAL system (APC with SC = 4.56 nm and R = 1.15 nm). (a) Atomic model with
edge atoms shown in green. (b) Total DOS. (c) PDOS decomposed by edge (green) and interior (purple) atoms shown in panel (a). (d) Band
structure along the high-symmetry directions: armchair (Γ − X) and zigzag (Γ − Y). (e) Band decomposed charge density for the two bands
in (d) near the Fermi energy. The isosurface value is 9.5 × 10−3 in units of a0

−3, where a0 is the Bohr radius. (f) Spatial distribution of the
band gap, which shows that most of the structure is metallic.
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and maximum band gaps change by the same amount. This
results in a net zero change in the value of the splitting energy
when the supercell size is varied at constant radius. Both
conclusions from the simple arguments are consistent with the
first-principles calculations. Rather than trying to measure the
splitting, more sophisticated techniques could be used to
spatially map the optical signal and compare it to the calculated
spatial distribution.
Metallic Systems. We now return to the two PAL systems

with DOS signatures for metals: APC with SC = 4.56 nm and
SC = 5.99 nm both with R = 1.15 nm. Only the smaller system
is studied (SC = 4.56 nm) since the two hole edge
configurations are identical. The atomic structure is visualized
in Figure 10a. The metallic behavior is apparent from the
electronic DOS (Figure 10b) and PDOS edge/interior (Figure
10c). The edge (green) and interior (purple) decomposition of
the PDOS in Figure 10c indicates that the dominant
contribution of states at the Fermi energy originates from the
edge atoms since the edge peak is significantly larger than the
interior peak. The band structure was also computed along the
high-symmetry lines X − Γ − Y (Figure 10d). To gain insight
into the origin of the two metallic bands, the charge density
corresponding to each was calculated. Since the two results are
similar, they were simply added together, and the total result is
visualized in Figure 10e. The charge density emanates from the
self-passivating 4×1 reconstruction of the zigzag edge, which
suggests that this particular edge configuration is the origin of
the unexpected metallicity. To our knowledge, this edge state
has not been considered previously. Furthermore, from a plot
of the spatial distribution of the band gap (Figure 10f) the
majority of the structure is metallic. However, in the regions in
the unit cell furthest away from the hole edges (i.e., the unit cell
corners) the material remains semiconducting with a band gap
slightly larger than unmodified phosphorene. Despite the
interesting prediction of metallic states in a phosphorene
nanostructure, the bands that produce this behavior are nearly
flat (high effective mass), which suggests that electronic
transport will not be supported.
The metallic cases also illustrate that edge effects have a

stronger impact on the total system properties when the edge
represents a larger fraction of the entire system. The edge
configuration that results in the metallic property only causes
the atoms to have a zero band gap for about six rows along the
diagonal direction in both cases. Since the hole is exactly the
same for both metallic systems, the semiconducting islands are
larger in the system with the larger supercell. That is, the effect
of the edge configuration on the electronic properties decays
away from the edge so that edge-mediated global states in large
systems are not possible. However, next-generation technolo-
gies will scale down to the few-nanometer scale, so under-
standing the interplay between edge configuration and
electronic properties is instrumental in designing effective
devices.

CONCLUSION
Using electron beam lithography and plasma-based etching, we
demonstrated the fabrication of antidots down to radii of 13
nm in PxOy-passivated few-layer BP flakes and observed in-
plane phonon suppression via Raman spectroscopy. Further
studies are needed to clarify the size- and polarization-
dependence of these properties in phosphorene and few-layer
BP antidot lattices. With first-principles DFT calculations,
initial geometries using two different unit cell symmetries were

defined, and a “rastering” approach was used to remove atoms.
A quantum-confinement-induced increase in the band gap
occurs as the nanoconstrictions between holes decrease in
width. Most deviations from this trend can at least be partially
attributed to self-passivating edge configurations. It is also
possible that the edge atoms couple to the interior atoms to
produce global changes in the electronic properties. For one set
of antidots with square-shaped holes, the band gap smoothly
follows the quantum confinement trend. This suggests that the
shape of the quantum well determines the electronic properties
in addition to quantum confinement and edge configuration.
The band gap scaling displays a size effect, where the maximum
obtainable shift in the band gap from the intrinsic value
decreases as the size of the supercell increases. This results from
the fact that when circular perforations are put into nearly
square supercells, the minimum obtainable confinement length
along the diagonal is proportional to the size of the supercell.
The spatial distribution of the band gap gives insight into local
electronic properties. In general, the lower band gap atoms
occur in the armchair NCs and the higher band gap atoms
occur in the zigzag NCs. This is indicative of anisotropic
quantum confinement effects in phosphorene. Electrical
transport is expected to be favored along the armchair
direction. If the electronic and optical band gaps follow similar
scaling behavior, then spectra should exhibit a splitting or false
broadening due to the bimodality of the spatial distribution of
the band gap. The spatial variations in the electronic properties
highlight that using the band gap as a single number to
characterize complex nanostructures is oversimplified. Two of
the systems are partially metallic, which results from a new 4×1
self-passivating reconstruction of the zigzag edge. However, the
associated bands are nearly flat, which suggests transport is not
favorable. The interesting results from the DFT calculations
provide motivation to develop fabrication techniques that can
reach down to the few-nanometer scale. The tunable and
spatially dependent electronic properties in phosphorene
antidot lattices resulting from anisotropic quantum confine-
ment, edge configuration, and quantum well shape have
potential applications in next-generation devices. One could
imagine fabricating LEDs with tunable emission in addition to
photocells and photodetectors with tunable resonant absorp-
tion simply by varying only the geometric parameters of antidot
lattices in phosphorene.

METHODS
Antidot Fabrication. Bulk BP flakes were exfoliated onto 150 nm

SiO2/Si substrates with blue Nitto tape and cleaned with acetone and
2-propanol followed by annealing at 180 °C to remove residual
solvents. The flakes were thinned down to a few layers (8−10 nm)
with an Oxford Plasmalab 80 Plus reactive ion etcher under an O2 gas
flow of 30 sccm and an RF power of 150 W. An initial pressure of 10
mTorr was used to induce the formation of the PxOy capping layer
followed by layer-by-layer etching at 45 mTorr (see Section S1).
Before thinning, total air exposure time was limited to less than 5 min
to minimize oxidation and water condensation.5 Passivated flakes were
coated at 4000 rpm with a layer of ZEP520A EB resist, and antidot
arrays were patterned using an Elionix ELS-7500EX operating at 50
kV, which was also utilized for SEM imaging. This was followed by an
additional etch under a CF4 gas flow of 25 sccm and an RF power of
150 W to remove the exposed few-layer BP. Following liftoff in N-
methylpyrrolidone, samples were gently cleaned under a short
exposure to O2 plasma.

Antidot Characterization. AFM and Raman measurements were
taken before, during, and after the thinning process in order to
monitor the BP and PxOy thicknesses. AFM measurements were taken
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in air using a Bruker Dimension Icon AFM. Unpolarized Raman
measurements were obtained using an NTEGRA Spectra with 1800
lines/mm grating (0.5 cm−1 resolution) attached to a Si CCD detector.
The 532 nm (green) Nd:YAG laser excitation had a spot size of
roughly 400 nm and was kept at a power below 150 μW to avoid laser-
induced heating.81 Spectral maps were taken using a dwell time of 10 s
per pixel and analyzed with custom-scripted MATLAB software.
Theoretical Methods. Plane-wave DFT calculations were

performed using the Vienna Ab Initio Simulation Package (VASP).90

To include local and nonlocal effects (including the van der Waals
interaction), the optB86b functional was used.91−93 Projector-
augmented wave pseudopotentials94 were used with an energy cutoff
of 350 eV. Gaussian smearing of 0.05 eV was employed. The cutoff for
electronic convergence was set to 10−5 eV. For bulk BP a Monkhorst−
Pack k-point sampling95 of 6 × 8 × 2 was used. The atoms and cell
relaxed to a force cutoff of 0.01 eV/Å, which gave a = 4.36 Å
(armchair), b = 3.33 Å (zigzag), and c = 10.48 Å for the lattice
constants. This force cutoff was used for all relaxations. By removing
four atoms from the bulk unit cell, extending c to 12 Å, and relaxing
again the optimized phosphorene layer was obtained.
The supercells used for the PALs were constructed using the

phosphorene lattice vectors and atomic coordinates. After removing
atoms (as described in the text) each system was relaxed using an in-
plane k-point sampling of 2 × 2 for SC = 1.49 nm and 1 × 1 for the
larger supercells. Next the coordination number (CN) was computed
for each atom, which is defined as the number of atoms within a cutoff
distance of 2.5 Å from the given atom. If CN = 1, then passivation was
by two H atoms, and if CN = 2, then the passivation was by one H
atom. The H atoms were placed on a line joining the origin (center of
the hole) and the P atom, at a distance of about 1 Å from the P atom
and at the same z coordinate. When passivating with two H atoms, the
H atoms were initially separated by 60 degrees. After relaxing the
systems, the coordination numbers were checked again to make sure
that the systems were passivated. In some cases the H atoms were
rejected from the edge and formed H2 molecules. To force passivation
of the edges, the H atoms were reattached and rotated apart from each
other and/or out-of-plane before relaxing again to create a more stable
starting configuration. The only P atoms requiring double passivation
were directly along the x axis. The P atoms were bent away from the
edge, the two H atoms were bent out-of-plane toward the center of the
phosphorene layer, and then the systems were re-relaxed. If passivation
corrections were needed, the coordination numbers were checked
again before declaring geometries finalized. Passivation not only
stabilizes the edges but also removes any potential in-gap states, which
would interfere with calculation of the band gap for a realistic system.
The frequencies for the Raman-active modes of interest were

calculated for one antidot system (OC with SC = 1.49 nm and R =
0.43 nm) and the corresponding pristine supercell (OC with SC =
1.49 nm and R = 0 nm) using Phonopy.96 The frequencies
corresponding to Ag

1, B2g, and Ag
2 are 356.4, 416.1, and 441.2 cm−1

for the pristine phosphorene and 352.6, 414.6, and 440.9 cm−1 for the
antidot, respectively. The differences are more significant than was
observed experimentally, which could be due to application of the
harmonic approximation at zero temperature.
The power spectrum method can be used to determine the normal-

mode frequencies of a system with anharmonic phonon potentials at
non-zero temperature. The power spectrum P(ω) is obtained by first
performing a molecular dynamics run and then calculating the Fourier
transform of the total velocity autocorrelation Av(τ):
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The summation is over the number of atoms in eq 2, ⎯→vn(t) is the
nuclear velocity of the nth atom at time t, and m is the reduced mass of
the system. This method was carried out for the same systems that
were studied with Phonopy. The time-dependent positions were

calculated using ab initio molecular dynamics in VASP with a time step
of 0.5 fs (with the other parameters described previously). The
temperature was maintained at 300 K using the Nose−́Hoover chain
thermostat.98−100 The system was equilibrated for the first 5 ps, and
the subsequent 50 ps of data were used for the power spectra. The
velocities were calculated from the positions using a centered-
difference formula with seven points. The frequencies corresponding
to Ag

1, B2g, and Ag
2 shift by ≲ 2, 0.3, and 0.1 cm−1, respectively, which is

in better agreement with the experimental results. Note that the power
spectrum method does not provide information about the Raman
selection rules and the peak intensities are not physically related to the
Raman intensity. The calculated power spectra are shown in Figure
S10.

The density of states calculations were performed using in-plane k-
point grids of 11 × 11 for SC = 1.49 nm, 5 × 5 for SC = 3.02 nm, 3 ×
3 for SC = 4.56 nm, and 1 × 1 for SC = 5.99 nm with 1000 energy grid
points in the range EF ± 3 eV. The DOS is normalized to the total
number of phosphorus atoms. The PDOS plots are normalized to the
respective number of atoms; that is, the edge PDOS is normalized to
the number of edge phosphorus atoms, and the interior PDOS is
normalized to the number of phosphorus interior atoms. The band gap
is calculated by starting as close to the Fermi energy as possible and
finding the energy range where the normalized DOS is less than a
cutoff value of 0.001 eV−1. The DOS can be normalized to only the
number of phosphorus atoms for the band gap calculation since
decomposing the PDOS into contributions from phosphorus and
hydrogen atoms indicates that the hydrogen atoms contribute
negligibly near the band gap edges. The band gaps from Section S7
were calculated using the normalized PDOS with the same cutoff
criterion. Note that the PDOS is given in arbitrary units since the site
projection includes only s, p, and d orbitals.

Band structures were computed using at least five bands per
phosphorus atom, at least two bands per hydrogen atom, and 51 k-
points along each high-symmetry direction. For band-decomposed
charge density calculations all k-points were used. Since the band
structure calculations were performed 3 k-points at a time, band-
decomposed charge density calculations were partitioned likewise. For
a given band or set of bands of interest all partial charge densities from
the separate calculations were added together successively to get the
final result.

A justification for neglecting spin-polarization is given in Section
S11.
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Lundqvist, B. I. Van der Waals Density Functional for General
Geometries. Phys. Rev. Lett. 2004, 92, 246401.
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