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ABSTRACT Since its initial discovery just over a decade ago, blinking of semiconductor nanocrystals has typically been described in
terms of probability distributions for durations of bright, or “on,” states and dark, or “off,” states. These distributions are obtained by
binning photon counts in order to construct a time series for emission intensity and then applying a threshold to distinguish on states
from off states. By examining experimental data from CdSe/ZnS core/shell nanocrystals and by simulating this data according to a
simple, two-state blinking model, we find that the apparent truncated power-law distributions of on times can depend significantly
on the choices of binning time and threshold. For example, increasing the binning time by a factor of 10 can double the apparent
truncation time and change the apparent power-law exponent by 30%, even though the binning time is only 3% of the truncation
time. Our findings indicate that stringent experimental conditions are needed to accurately determine blinking-time probability
distributions. Similar considerations should apply to any phenomenon characterized by time series data that displays telegraph noise.
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The ability to measure fluorescence from individual
emitters has revealed interesting and important phe-
nomena that are obscured in measurements of mac-

roscopic ensembles. A central example is the tendency of
many fluorophores, including single molecules, fluorescent
proteins, and semiconductor nanocrystals in the shape of
spheres, rods, and wires, to switch irregularly under con-
tinuous illumination between bright states and dark states.1-3

Colloidally synthesized semiconductor nanocrystals (NCs)
provide a particularly convenient system to study this
fluorescence intermittency, or “blinking,” because of their
high quantum yield, broad absorption bands, and stability
against photobleaching. Furthermore, understanding and
eliminating blinking4-6 is crucial for the development of
biomedical and optoelectronic applications involving NCs.

Widespread interest in NC blinking was stimulated by the
unexpected observation just over a decade ago that the
durations of bright and dark periods, or “on” and “off” states,
follow power-law statistics over many orders of magnitude,
from microseconds up to seconds or even minutes.7-10

These power-law statistics are most commonly character-
ized by determining distributions, P(ton) and P(toff), for “on”
and “off” periods, respectively.7,11 In practice, the intensity
of light emitted by a single NC is collected as a function of
time, either through a linear detector such as a CCD camera
or by time-resolved single-photon counting. An intensity-
time series is constructed by integrating the measured

intensity (or the number of detected photons) over time bins
of fixed width; that is, one calculates In ) ∫(n-1)∆t

n∆t I(t)dt, where
∆t is the width of the time bins, I(t) is the detected intensity
(or number of photons counted) at time t, and the number
n runs from the beginning to the end of the experiment. An
intensity threshold Ith is chosen such that the NC is said to
be “on” when In > Ith and is said to be “off” when In < Ith. If
In remains below Ith for n sequential time bins, then toff )
n∆t is taken to be the duration of a single off period. A
normalized histogram of all such off periods is taken to
represent the off-time probability distribution P(toff); the on-
time distribution P(ton) is determined in a similar way.

Many such measurements have established that the off-
time distribution follows a power law, P(toff) ) Atoff

-moff, for at
least six decades in time.7 The on-time distributions, on the
other hand, follow a power law for durations from mil-
liseconds up to at most several seconds, but then drop off
more rapidly, following a truncated power-law distribution
P(ton) ) Aton

- mone- ton/τon.12 The qualitative dependence of the
truncation time, τon (also known as the “saturation time”),
on temperature, intensity, and nanocrystal size was reported
in one of the earliest studies of NC blinking.10 More recent
studies have explored the quantitative dependence of both
τon and the exponent mon on excitation intensity,13-17

environment,13,16 NC shape,14 the number of NCs in a
cluster,18 and excitation wavelength.15,19-21

All these studies involved choosing a binning time, ∆t,
for construction of a time series, choosing a threshold level,
Ith, for construction of the on-time distribution and fitting the
resulting distribution, usually using a least-squares proce-
dure. This method is inherently problematic though, because
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it introduces an artificial time scale to the analysis.22 If a NC
blinks on and off several times during a single binning time,
these separate, short blinking periods will be mistaken for
one, longer period; whether this period is considered to be
“on” or “off” will depend on the choice of Ith compared to
the average emitted intensity during the binning time. This
effect can be mitigated by reducing ∆t; however, this
increases the effects of shot noise and instrumental noise,
eventually making it impossible to distinguish photons emit-
ted from the NC from background light and dark counts in
the detector. It has previously been noted that the choice of
bin size can introduce distortions in exponential blinking-
time distributions,23 that is, distributions described by a
single characteristic blinking time, as in the case of many
molecules, and a general theoretical description of this case
has been developed.24 Here, we consider the power-law and
truncated-power-law distributions that are generally ob-
served for semiconductor nanocrystals.

Previous investigations into the effects of binning and
thresholding on the blinking statistics of semiconductor
nanocrystals have focused primarily on the off-time distribu-
tions. Measurements8 and simulations12,25 both indicate that
the power-law distributions are unaffected by changes in ∆t
over at least 2 orders of magnitude. Similarly, the distribu-
tions are relatively insensitive to changes in Ith, provided it
is set significantly above the background level.18,26,27 Quali-
tatively, the robustness of the power-law distribution can be
attributed to its self-similar nature: because the power law
has no characteristic time scale, it is not strongly affected
by the introduction of an artificial binning time. The trun-
cated power law that describes the on-time distribution, on
the other hand, has an intrinsic time scale, defined by τon. It
is reasonable to suppose that, if ∆t is similar to this charac-
teristic time, then significant distortion of the distribution
will occur.23 So far, few studies have been made of potential
artifacts in on-time distributions, and those few have focused
on the effect of the threshold level.16,27 Varying Ith over a
limited range, similar to the values typically used, was found
to not significantly affect the calculated distributions.18

Varying the threshold over a much wider range, on the other
hand, produces large changes in apparent values of τon and
mon. This sensitivity to Ith was recently used to motivate a
model of blinking involving multiple emitting states.27

Here, we examine the effect of choices made in analyzing
blinking data in order to distinguish facts from artifacts in
studies of single-emitter blinking. We report the critical
importance of both bin time and threshold in determining
on-time probability distributions for spherical and rod-
shaped core-shell nanocrystals. Both the truncation time
τon and the power-law exponent mon are affected. We
observe this sensitivity of P(ton) to bin time and threshold,
not only for experimental data, but also for simulated data
that assumes a simple two-level system with power-law-
distributed off times and truncated-power-law-distributed on
times. Furthermore, the effects of binning and thresholding

are interrelated, with binning being of primary importance.
This study identifies the stringent experimental require-
ments, both for the signal-to-noise ratio and the number of
recorded events, needed for accurate determination of on-
time probability distributions. The study also reveals that,
for some single-emitter data, it is impossible to confidently
obtain the underlying distribution. Since trends in values of
τon and mon are important for comparison between experi-
ment and theory, the insights of this work are relevant for a
broad range of other nanoscale blinking emitters.

To examine how bin time affects the on-time probability
distributions obtained from experimental data, we measure
the photon emission rate from individual nanocrystals using
a standard epi-fluorescence configuration; details on the
sample preparation and measurement are given in the
Supporting Information. Figure 1a shows an intensity-time
series from a representative core-shell nanocrystal, excited
with 100 W/cm2 of continuous-wave laser light with a
wavelength of 443 nm, using a bin time ∆t ) 3 ms.

To obtain distributions of on and off times from the time
series, we must choose a threshold intensity, Ith. One ap-
proach is to construct a histogram of intensity values, as
illustrated in Figure 1b. When the histogram consists of two
distinct peaks, Ith can be set at the minimum between the
two peaks, as illustrated in the figure; we refer to this as the
“center threshold”. Alternatively, the threshold can be set
based on statistical analysis of the background count rate,
determined by isolating a dark (“off”) region of the binned
time trace I(t). A commonly used method in the blinking
literature is to determine the mean value and standard
deviation for the background level, and then set the thresh-
old a certain number of standard deviations above the
mean.7,8,24,28 Here, we use an alternative threshold defini-
tion, by assuming the background counts are described by
Poisson statistics, and then setting Ith equal to the highest
possible count rate that could be represented in the back-
ground over the duration of the experiment.29 This “Poisson
threshold,” although still phenomenological, is expected to
eliminate nearly all false blinking events induced by noise.
The corresponding threshold levels are also illustrated in
Figure 1b.

Once the threshold has been chosen, intensity data are
converted to a sequence of on and off times. From this
sequence, we then determine the probability distribution of
off or on events. These probability distributions are most
commonly analyzed using least-squares fitting, so we adopt
the same method here.

In order to produce a probability distribution that can be
analyzed using least-squares fitting, we apply the statistical
weighting scheme introduced by Kuno et al.7

P(toff(on)) )
N(toff(on))

Noff(on)
tot

1

δtoff(on)
avg

(1)
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where N(toff(on)) is the number of off (on) events of duration
toff(on), Noff(on)

tot is the total number of off (on) events observed
in the time series, and δtoff(on)

avg ) (a + b)/2, where a and b are
the time differences to the next longest and next shortest
observed event. Figure 1c shows the off-time and Figure 1d
shows the on-time probability distributions obtained using
this weighting scheme. The power-law exponents and trun-
cation times are determined by using a least-squares method
to fit the logarithm of a truncated power law to log[P(ton)]
versus log[ton]. Similarly, off-time power-law exponents are
determined by least-squares fitting of a straight line to
log[P(toff)] vs. log[toff]. Fitting results are summarized in
Figure 1c,d and complete results are given in the Supporting
Information.

It has been noted that maximum-likelihood estimation
has the potential to provide a more accurate analysis of
blinking-time distribution functions than least-squares
fitting.25,30 As described in the Supporting Information, we
also examined the use of maximum-likelihood estimation
to analyze the measured and simulated distributions. We
find that the least-squares fitting and maximum-likelihood
estimation give very similar results if the distributions
include enough events to be considered reliable, as ex-
plained below. (We observed one discrepancy between least-
squares fitting and maximum likelihood estimation that may
be attributable to the distribution lacking long events, even
though it has a large total number of events.)

The results for the off-time distributions confirm the
findings of previous studies:8,12,23 changing the bin size
causes the off-time distributions to shift along the time axis,
but there is no change in the power-law form or the power-
law exponent within confidence intervals as long as ∆t is
long enough that the signal and background levels can be
clearly resolved in the intensity histogram.

The on-time distributions on the other hand show signifi-
cant changes with rebinning. The fitted value of τon qua-
druples over an apparently reasonable range of ∆t, the
absolute value of mon decreases steadily as ∆t increases, and
the uncertainty in mon grows. Specifically, for ∆t ) 3-10 ms
the fitted value of τon (using the center threshold) is constant
within 95% confidence; however, for larger values of ∆t the
fitted value of τon and its uncertainty increase dramatically.

For ∆t ) 1 ms, the center threshold falls below the
Poisson threshold, indicating that this binning time is too
short to clearly resolve the signal and background. However,
simple visual inspection of the on-time distribution (Figure
1c) and the intensity histogram (Figure 1b) does not make
this clear: the on-time distribution has a reasonable shape
and can be fit to a truncated power law, and the intensity
histogram has a distinct two-peak structure. The value of τon

obtained for ∆t ) 1 ms is more than a factor of 4 smaller
than that obtained for ∆t ) 3 ms, reflecting the overlap
between the background and signal.

FIGURE 1. (a) Representative excerpt from an intensity time trace, I(t), obtained from a single nanocrystal, using binning time ∆t ) 3 ms. The
total duration of the experiment was 1800 s. (b) Histograms of intensities obtained from the entire duration of the data set excerpted in (a),
for ∆t ) 1, 3, 10, and 100 ms. The Poisson threshold is shown by the heavy dashed line and the center threshold by the dotted line (see text
for threshold definitions). (c) Weighted off-time probability distributions, P(toff), obtained using center thresholding, for different values of ∆t
(see text for explanation of weighting method). Points are experimental values, and lines are the results of least-squares fitting. (d) Weighted
on-time probability distribution, P(ton), together with least-squares fitting results.
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The changes of the on-time distributions with binning
time are largely reproduced in a simulation that employs a
simple, two-state blinking model, indicating that the binning
dependence is primarily an artifact of the data analysis. We
construct a time series by assuming that the nanocrystal
switches randomly between a bright state and a dark state
with off times selected from a power-law distribution and
on times from a truncated power-law distribution. We add
Poisson-distributed noise (shot noise) to the simulated time
series with the amplitudes of signal and noise chosen to
match the data shown in Figure 1. Details on the simulation
method are given in the Supporting Information. Figure 2
shows the on-time distributions obtained from simulated
data for ∆t ) 1-100 ms. The parameters determined by
least-squares fitting, using the center threshold, are sum-
marized in the figure, and further details of the fits are given
in the Supporting Information. For ∆t ) 1 ms, the fitted
parameters do not match the input values for the simulation
at all, because the signal and background are not clearly
distinguishable. For ∆t g 3 ms, we observe the same trend
of the declining power law exponent and increasing uncer-
tainty as for the experimental data. Simulations without the
added noise show nearly identical fitted parameter values
and uncertainties for ∆tg 3ms (see the Supporting Informa-
tion for details).

The simulations also demonstrate that long measure-
ments with a large number of observed blinking events are
required to accurately determine the distribution param-
eters. Accurate determination of a truncated-power-law
distribution, or even a simple power-law distribution, re-
quires that the distribution span many decades in time. In
fact, it is difficult to even distinguish a power-law distribution
from other types of distributions unless three or more
decades are measured.31 This, in turn, requires an extended
measurement in order to observe a sufficient number of long
blinking events. In order to analyze the effect of experiment
duration, we simulated data corresponding to a 20,000 s
measurement (far longer than most reported measurements

of blinking), corresponding to approximately 40,000 events.
We then analyzed segments of that simulation with different
lengths (all taken from the beginning of the simulation).
Figure 3 shows the resulting dependence of the fitted
parameters on the number of observed blinking events, for
∆t) 10 ms. The values of the fitted parameters are relatively
steady for segments with approximately 4000 events or
more, corresponding to about 2000 s. However, for seg-
ments with fewer events, the fit parameters begin to vary
more dramatically and the uncertainties also grow signifi-
cantly as the number of events decreases; for segments with
fewer than about 2500 events, the uncertainties become so
great that the fits are unlikely to be meaningful. For different
values of ∆t, similar trends are observed. Similarly, the
Figure 1 data, when analyzed with ∆t ) 30 ms, has fewer
than 2000 events in the probability distribution, and the on-
time distribution shows significant distortion, even though
one might expect this ∆t to be sufficiently short compared
to the truncation time to give good results.

As has previously been demonstrated, with a fixed bin-
ning time the threshold, Ith, can be varied over a few
standard deviations of the background, consistent with the
different choices generally employed in the literature, with-
outsignificantlyaffectingtrendsintheon-timedistributions.14,18

If, for example, we use the Poisson threshold rather than
the center threshold for the experimental data, the fitted
truncation times, τon, show the same trend with bin time (as
long as the bin time is large enough that the signal and
background are resolved). For the simulated data, using the
Poisson threshold likewise gives a more rapidly declining
exponent with increasing bin time, but an equally good
match to the simulated τon. By varying Ith over a wider range,
as illustrated in Figure 4a for ∆t ) 3 ms, we see that τon is
stable if if Ith falls in the flat region between the background
and signal peaks in the intensity histogram.

On the other hand, significant distortions in the on-time
distributions occur if Ith falls outside of this range;25 τon

increases substantially if the threshold falls within the back-
ground and decreases substantially if the threshold falls

FIGURE 2. On-time probability distributions, P(ton), obtained using
center thresholding, for simulated data with a time resolution of
0.1 ms, truncation time τon ) 1 s, power-law exponents mon ) moff

) 1.5, and signal and noise levels comparable to those for the
experimental data of Figure 1. Points represent the distribution
obtained from the simulated data; lines are the results of least-
squares fitting to these points.

FIGURE 3. Dependence of exponent, mon, and truncation time, τon,
on number of on-events in intensity trajectory for simulated data
with Poisson noise with same simulation parameters (other than
duration) as Figure 2, using ∆t ) 10 ms, least-squares fitting, and
center threshold. Solid lines indicate fitted parameter values; shaded
regions indicate 95% confidence intervals.
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within the signal peak. The exponent, mon, is stable for
threshold values up to the signal peak, and then begins to
climb for higher threshold values. The simulated data with
noise show similar threshold dependence for τon, as shown
in Figure 4b. The value of mon from simulations likewise
shows a threshold dependence similar to the experimental
data for Ith up to approximately half the maximum measured
intensity; for larger thresholds, the simulated mon begins to
decline, in contrast to the experimental result. This indicates
that the simulations accurately reproduce the general char-
acteristics of the experimental data and their sensitivity to
binning and thresholding but suggests that there are ad-
ditional fluctuations in the bright states of real nanocrystals
that are not described by the simple model of a two-state
system with Poisson noise.

For the data shown in Figure 1, these additional fluctua-
tions are small enough that it is still possible to treat the data
as if it consisted of only a single bright state and a single dark
state and extract, for certain binning times and thresholds,
meaningful on-time and off-time distributions. This is true
for the majority of the core-shell nanocrystals that we
studied; a second representative example is given in the
Supporting Information. However, for a small fraction of the
nanocrystals and for all of the nanorods studied, the intensity
histograms did not show two distinct peaks for any ∆t, even
though distinct dark periods are visible in I(t). Figure 5 shows
an example of such data from a single nanorod.

In this case, a center threshold cannot be defined, so we
can use only the Poisson threshold. Again, the off-time
distributions are not affected by binning, but the on-time
distributions are; such data sets show steady, substantial
decrease in mon and increase in τon as ∆t increases, as shown
in Figure 5c. Figure 5d shows the variation of fitting param-
eters with threshold for ∆t ) 10 ms; τon, in particular, varies

continuously with Ith. For such data, a binning-independent
of-time distribution cannot be determined.

We attempted to modify our simulations in order to
produce intensity trajectories with single-peak intensity
histograms. In order to obtain a histogram without a clear
two-peak structure from a simulation of a two-state system,
it is necessary either that the signal-to-noise ratio is low, so
that there is substantial overlap between the background and
signal peaks, or else τon is very short, so that the signal peak
is spread out and no longer follows Poisson statistics.
Simulating data with a low signal level but with long τon (100
ms or greater) gives a histogram without a distinct second
peak but also without the long tail at high intensities that is
observed in the experimental data. Simulating data with very
short τon gives an intensity histogram with a clear transition
between a narrow background peak and an extended,
overlapping on-state peak, unlike the smooth peak with a
broad tail that is seen for the experimental data.

This suggests that emission from these nanoparticles
involves more than just a single bright state and a single dark
state. Indeed, other methods of analyzing NC emission have
indicated the presence of multiple bright states.32,33 Yang
and co-workers have applied a changepoint analysis method
to analyze the statistics of switching among these many
levels.34 This alternative method avoids binning the data and
applying a threshold and may thus avoid many of the
difficulties discussed here.35 Nonetheless, the changepoint
method involves various explicit and implicit assumptions,
and a detailed analysis of potential artifacts is still needed.
Alternative statistical analysis methods, particularly calcula-
tion of autocorrelation functions18,36-39 or power spectral
densities,40,41 can be performed directly on the raw data
without requiring arbitrary assumptions. The trade-off for
this is generally a reduced amount of information; power

FIGURE 4. (a) Dependence of exponent, mon, and truncation time, τon, on threshold, Ith, for the experimental data shown in Figure 1, binned
with ∆t ) 3 ms, using least-squares fitting. (b) Dependence of mon and τon, on Ith for the on-time distribution from the simulated data shown
in Figure 2, using the same binning and fitting. For all panels, solid lines indicate parameter values and shaded regions indicate 95% confidence
intervals. Intensity histograms with center and Poisson thresholds indicated are shown for reference in the bottom panels.
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spectra, for example, cannot provide independent informa-
tion about bright and dark states.

In summary, our simulations and experimental data
show that on-time distributions for blinking quantum dots
are described by a truncated power law whose apparent
exponent, mon, and truncation time, τon, can be strongly
affected by the choice of binning time, ∆t, and threshold,
Ith, in the data analysis. If ∆t is too small, the signal-to-noise
ratio is insufficient to allow the on states and off states to be
clearly distinguished from one another. If ∆t is too large, on
the other hand, multiple blinking events are likely to occur
during a single binning period, distorting the probability
distributions. In addition, even an appropriate choice of ∆t
may not allow accurate determination of the probability
distributions if the experiment is too short and too few
blinking events are recorded.

Our findings suggest that rather stringent experimental
criteria must be met in order that useful probability distribu-
tions can be recovered. Specifically, experimental data
should be rebinned using a large range of binning times, ∆t.
Any particular value of ∆t has the potential to produce a
meaningful blinking-time distribution only if (1) the calcu-
lated intensity histogram exhibits clear, nonoverlapping
peaks reflecting bright and dark states, and (2) the time
trajectory includes several thousand blinking events. If these
criteria are met for at least a decade of different ∆t values,
the resulting blinking-time distributions can be analyzed

using least-squares fitting or maximum-likelihood estima-
tion. If the fitted exponent, mon, and truncation time, τon, are
consistent over a range of values of ∆t, and if the apparent
value of τon is at least 10 times greater than the largest ∆t
used, then the fitting results can be considered reliable.

Although in practice it is challenging and therefore rare
to measure intensity trajectories for well over 1200 s, our
results suggest that experimental durations of at least 2000 s
may be required in order to accumulate enough blinking
events, and even longer measurements may be required if
τon is greater than 1 s. It is also a significant experimental
challenge to obtain data with signal-to-noise ratio high
enough that binning can reliably be performed over a decade
of ∆t values. Among 14 data sets that we obtained from
single NCs, only four allowed for the accurate determination
of τon according to our criteria. These were the data sets with
the highest count rates, which raises the issue of whether
selecting data that can be analyzed in this manner biases
the analysis toward the brightest NCs. Furthermore, increas-
ing the excitation rate in order to boost the count rate has
been observed to decrease τon.15 In their recent study of the
excitation rate dependence of blinking statistics,15 Peterson
and Nesbitt reported an unusually high signal-to-noise ratio,
which allowed them to use ∆t ) 1 ms; most of their study
was performed using very high excitation rates, and the
truncation times they report are 2.5 s or less. This suggests
that accurately measuring longer truncation times, which

FIGURE 5. (a) Representative excerpt from an intensity time trace, I(t), obtained from a single nanorod, using binning time ∆t ) 3 ms. The
total duration of the experiment was 1200 s. (b) Histograms of intensities obtained from entire duration of the data set excerpted in (a), for
∆t ) 1, 3, 10, and 100 ms. The Poisson threshold is shown by the heavy dashed line. (c) On-time probability distributions, P(ton), obtained
using the Poisson threshold, for different values of ∆t. Points are experimental values, and lines are the results of least-squares fitting. (d)
Dependence of power-law exponent mon, and truncation time, τon, on threshold, Ith, using ∆t ) 10 ms. Solid lines are parameter values and
shaded lines indicate 95% confidence intervals. The intensity histogram is shown, for reference, in the bottom panel.
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most likely correspond to lower excitation rates, may be very
difficult. Many reported values of τon are substantially
longer10,18-21 and may be affected by these considerations.

Although our work has focused on semiconductor nano-
crystals, many other single fluorophores also display com-
plex blinking behavior, including certain fluorescent mol-
ecules, fluorescent proteins, and polymer segments.2 Our
results indicate that care must be taken in analyzing such
data in order to ensure that the measured statistics are not
distorted by the choice of binning time. Furthermore, a wide
range of electrical and optical phenomena display switching;
the considerations explored here apply to any time series
data that displays apparent telegraph noise.
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