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Supplementary Figure S1. nanorod synthesis and characterization a, Absorption and emission spectra of CdSe core 

NRs recorded in toluene. The inset shows a TEM image (the scale bar is 50 nm) of this sample. b, Absorption and emission 

spectra of CdSe/ZnSe core/shell NRs (circles, dark blue and red) and of CdSe/ZnSe/ZnS core/double shell NRs (triangles, 

light blue and orange). For comparison, the emission of the core NRs is indicated as dashed line. More details are in 

Supplementary Methods. 

 

 
Supplementary Figure S2. Fitting methods for off- and on-time probability densities a, Off-time probability density of 

an individual NR, fitted by a power-law (red line, lin

offαααα  = 1.30) or fitted by a line to the log-log data (blue line, log

offαααα  = 1.69). 

b, On-time probability density of an individual NR, fitted by a truncated power law where both parameters are 

unconstrained (blue line, 
onαααα  = 1.20, onc,τ = 1.43 s) and fitted by a sequential fitting method, where first αon is determined 

by fitting the first four points, followed by the truncated power law fit (red line, 
onαααα  = 1.18,  onc,τ  = 1.36 s). More details 

are in Supplementary Methods.  
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Supplementary Figure S3. Integration methods of fluorescence signals from independent NRs Scaling of a. mean and 

maximum on-times and b. mean and maximum off-times with the cluster size N using two methods of integrating 

independent single NRs, thresholding and digitizing before summing up (red squares) and summing up before thresholding 

and digitizing (black triangles). More details are in Supplementary Methods. 

 

 
Supplementary Figure S4. The total number of "on" events The total number of "on" events vs. the cluster size N 

(black triangles) compared with data obtained from a Monte-Carlo simulation of N non-interacting particles (red squares). 

This number on the y-axis was normalized to the data of N = 1 to account for the different lengths of the movies in the 

Monte-Carlo simulation compared to the cluster data. It shows that the total number of "on" events decreases in clusters of 

N NRs compared to the collection of independent NRs, i.e., fluorescence time traces of clusters consist of a relatively 

smaller number of on-events that are on average longer, as described in the main article. 
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Supplementary Figure S5. Fraction of close-packed NRs vs number of NRs of 74 clusters. Some of the data points are 

overlapping , e.g. there are two N=9 clusters which are having a fraction of 0.56. More details are in Supplementary Note 1.  

 
Supplementary Figure S6. Histogram of the fraction of close-packed NRs in clusters. More details are in 

Supplementary Note 1.  
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Supplementary Figure S7. Inter-particle distance dependence of on-times Mean and maximum on-time vs. inter-

particle separation of cluster with N = 2. 

 

 
Supplementary Figure S8.  Fluorescence micrographs of two silicon nitride chips measured independently. The scale 

bar is 10 µm. We made independent measurements several months apart, under the same experimental conditions on 

samples prepared by spin-casting solutions of the same NRs on two identically prepared silicon nitride chips. Chip 2 was 

prepared with a higher concentration NR solution in order to produce more clusters. The larger red areas correspond to 

extended regions in which individual clusters were not optically resolvable. We only analyzed data from clusters optically 

resolvable from their neighbours, as shown in Figure 7.  
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Supplementary Figure S9. Comparison of the results from two independent measurements a, Scaling of mean and 

maximum on-times with the cluster size N from chip1 (open and solid red squares) compared with on-times obtained from 

chip2 (open and solid black triangles). Chip 1 and 2 are the chips shown in Supplementary Figure S8. b, Scaling of mean 

and maximum off-times with the cluster size N from chip1 (open and solid red squares) compared with off-times obtained 

from chip2 (open and solid black triangles). c, Scaling of τc,on with the cluster size N measured on chip1 (red squares) 

compared with data obtained from chip2 (black triangles). d, Scaling of the integrated intensity with the cluster size N 

measured on chip1 (red squares) compared with data obtained from chip2 (black triangles). 
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Supplementary Figure S10. Effect of segmenting methods on on-times. Scaling of mean and maximum on-times with 

the cluster size N from 42 completely isolated bright spots (half-solid pink squares and cyan circles) compared with on-

times obtained from all 120 bright spots in Figure 4c (open and solid black triangles), integrating signals from N isolated 

NRs located on the same chip (Figure 4c, open and solid green circles) and with results from a Monte-Carlo simulation of N 

non-interacting particles (Figure 4c, open and solid red squares). More details are in Methods in the main text. 

 

 
Supplementary Figure S11. Threshold analysis of a cluster with N=3 a, Intensity trajectory of the cluster with N = 3 in 

Figure 8a and an intensity trajectory of a nearby dark region with a polynomial fit. b, Fluorescence intensity vs. time, I(t), 

after background subtraction from the same cluster and a nearby dark region. Different lines (color) are the different 

threshold levels defined as mdark + 8σdark , mdark + 7σdark , Imin + ∆Idark , mdark + 6σdark , 

Imin − Idark(min) + mdark + 4σdark
, and mdark + 5σdark  from high to low, where mdark , σdark , ∆Idark  and Idark(min)  are the 
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mean, standard deviation, width and the minimum value of the background trajectory, and Imin  is the minimum value of 

the trajectory of a cluster. More details are in Methods in the main text. 

 
Supplementary Figure S12. Threshold analysis of a cluster with N=1 a, Fluorescence intensity vs. time, I(t), after 

background subtraction from a single NR in Figure 8b. Different lines (color) are the different threshold levels defined 

as mdark + 8σdark , Imin + ∆Idark , mdark + 7σdark , Imin − Idark(min) + mdark + 4σdark , mdark + 6σdark , and 

mdark + 5σdark  from high to low. b, Scaling of mean, maximum “on” times and τc,on of the same NR with thresholds 

defined in (a). More details are in Methods in the main text.  

 

Supplementary Figure S13. Effect of thresholds on on-times Scaling of mean and maximum on-times with the cluster 

size N using a range of thresholds defined as mdark + 8σdark , Imin + ∆Idark , mdark + 7σdark , 

Imin − Idark(min) + mdark + 4σdark
, mdark + 6σdark , and mdark + 5σdark . More details are in Methods in the main text.  

 

 

Supplementary Table S1. Fraction of close-packed NRs.  
Number of NRs 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 

Fraction of close-

packed NRs 

1 0 1 0 1 1 0 0 1 0 0 1 1 0.67 1 0 0.67 0 

Number of NRs 3 3 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 7 
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Fraction of close-

packed NRs 

0 0.67 0.5 0 0.75 1 0 0 1 0.8 0.4 0.4 0.5 0.83 1 0.83 0.33 0.71 

Number of NRs 7 7 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 

Fraction of close-

packed NRs 

0.57 0.29 0.5 0.75 0.22 0.44 0.56 0.22 0.56 0.89 0.7 0.6 0.8 0.4 1 0 0.55 0.64 

Number of NRs 12 12 12 13 13 13 14 14 16 16 17 18 22 23 23 29 35 45 

Fraction of close-

packed NRs 

0.5 0.33 0.67 0.54 0.54 0.69 0.86 0.93 0.56 0.63 0.65 0.61 0.86 0.91 0.61 0.83 0.86 0.8 

Number of NRs 56 110                 

Fraction of close-

packed NRs 

0.71 0.89                 

 

 

 

Supplementary Note 1 

 

Estimates of electric field-induced exciton rearrangement and field-driven coordinated 

trapping/detrapping 

a) Field-induced exciton rearrangement: A charge moving a distance a from a NR core to a 

neighboring trap would cause a change E=const⋅ea/εr3 in the electric field at a distance r>>a 

equivalent to a field from a dipole with the dipole moment ea. Even in the case of r~a, which applies 

to NRs very close to each other, this formula would still yield a correct order-of-magnitude estimate. 

Here ε is the effective dielectric constant of the environment, ε=(εsubstr+1)/2≅4, where εsubstr = 7.5 for 

SiN according to Ref 37. The prefactor ‘const’ in the expression for the magnitude of E depends on the 

angle θ between the direction a of the hop and the given directon r, as (1+3cos
2θ)

1/2
, which varies 

between 1 and 2, as well as on the further details of the dielectric environment (the depolarization 

factors, etc), see e.g. Ref. 38.  

As a result, using e
2
/(1 nm) = 1.44 eV, we obtain for the electric field E ~ (1…2)⋅ 1.44⋅ (a/r

3
)/ε V/nm, 

where a and r are in nm. Note that 1 V/nm = 10 MV/cm; with the hop distance a = 4 nm compatible 

with the wave function size within a NR, and r = 8 nm the distance to a neighbouring NR, find E ~ 

11…22 mV/nm =110…220 kV/cm applied (unscreened) field depending on the direction, which, 

according to the measurements of Rothenberg et al,
39 

could cause switching of a neighbouring NR at a 

distance r. 

b) Field-driven coordinated trapping/detrapping: Now let us consider a dynamic effect of a sudden 

change in the electric field on an electron trapped in a vicinity of a given NR, due to switching off of a 

neighboring NR casued by the hop of its electron onto the corresponding nearby trap. This sudden field 

change can potentially cause the release  (a “shake-up”) of the trapped electron back on a given NR, 

thereby switching it on. 

While any precise calculation would require detailed information about the character of a trapping 

potential, we may still make some order-of-magnitude estimates. First, assume a trapped electron in a 

ground state of an approximately harmonic oscillator potential with the oscillator frequency (potential 

curvature) ω0. Under a sudden change of an electric field E at the position of an oscillator, the 

probability Pk to get excited to the k
th

 oscillator level is given by the Poissonian distribution Pk = 

(λk
/k!)⋅exp(−λ),  where λ = (eE)

2
/(2mħω0

3
), see Ref. 40. As a realistic trap potential likely has only one 

or a few bound states, one can qualitatively assume that the shake-up occurs with a notable probability 
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if the corresponding oscillator shake-up parameter λ ~ 1 (i.e. not small). For an estimate, we would 

also assume that the trap binding energy is of the order of oscillator energy spacing, Etrap ~ ħω0, 

consistent with the above assumption of only a few eigenlevels in a trap. From the condition λ ~ 1 we 

obtain the maximal depth Etrap of the trap that could be depleted by the shake-up over a distance r: Etrap 

~ (eE(r))
2/3

 (ħ
2
/2m)

1/3
. Since ħ

2
/(2m) = 38 meV⋅nm

2
 [m is the electron mass; the effective mass may be 

notably smaller depending on where the trap is located which would increase Etrap], and eE ~ 10 

meV/nm for r and a as above (depending on the effective dielectric constant and orientation), obtain 

Etrap ~ 10-100 meV, which is compatible with energies of shallow traps. When r ~ 1 nm rather than 10 

nm, i.e. NRs are very close, Etrap can exceed 0.1 eV, covering a wider portion of the trap energies.  

Overall, we expect the dynamic field-driven effect acts on a similar distance scale as direct charge 

tunneling (~2 nm). The short-range character of both effects is fundamentally due to the fact that both 

the dipole field (in the first case) and its square entering the shake-up matrix element (in the second 

case), decrease faster than 1/r
d
, thereby being effectively short-ranged in the d=2-dimensional 

geometry of our clusters. Our estimates indicate that static field-driven distortion may be somewhat 

longer ranged (up to ~8 nm). 

 

Fraction of close-packed NRs within clusters  

We analyzed the TEM images of the clusters to determine the fraction of close-packed NRs in each. 

Supplementary Figure S5 shows the fraction of close-packed NRs vs the number of NRs in the cluster 

for 74 clusters. There is a broad distribution of the fraction of close-packed NRs; nearly all clusters 

have at least a few close-packed NRs (60 out of 74 clusters). Some of the data points are overlapping, 

e.g. two N=9 clusters each have the same fraction (0.56) close-packed. Supplementary Figure S6 

shows the histogram of the fraction of close-packed NRs of the 74 clusters. Most clusters have 

between 50% and 80% of NRs close-packed with at least one neighbor. However, almost none of the 

clusters for N > 2 are fully close-packed. We also show the fraction of close-packed NRs in Table S1 

for reference. 

 

Supplementary Methods 

 

Experimental details of nanorod synthesis and characterization 

CdSe/ZnSe/ZnS core/double shell semiconductor nanorods (NRs) are prepared in a two-step 

procedure.  

First, CdSe core NRs having a diameter of 5.8 nm and a length of 34 nm are synthesized using a 

multiple injection method.
41

 In detail, 45.1 mg of cadmium oxide (CdO, Aldrich, 99%) have been 

placed with 140.9 mg of decylphosphonic acid (DPA, Alfa Aesar, 99%) and 5.5 g of tri n-

octylphosphine oxide (TOPO, Aldrich, 90%) under nitrogen atmosphere and were heated to 300°C for 

approximately 2 hours until the initially red-brown suspension turned colorless. Independently, a 

solution of 563 mg of selenium powder (Se, Aldrich, 99.99%) was dissolved in 7 mL of tri n-

octylphosphine (TOP, Aldrich, 99%). The TOPSe solution was injected slowly into the Cd-precursor 

solution in aliquots of 0.1 mL (5 times, 2 minute waiting between each injection), 0.2 mL (5 times, 

every 3 minutes), and finally 0.4 mL (10 times, every 5 minutes). The initial injection temperature was 
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295°C, which was gradually reduced via 280°C (during the 0.2 mL injections) to 270°C (for the 0.4 

mL injections). The reaction was stopped after 80 minutes by removing the heating source and the 

growth solution was allowed to cool to 60°C, when 20 mL of methanol were added to precipitate the 

NRs. After centrifugation and washing additionally with methanol (three times), the NRs were 

dispersed in toluene for optical characterization (Supplementary Figure S1a).  

The absorption spectrum (USB-2000 spectrometer, Ocean Optics) is characterized by an excitonic 

peak at 640 nm. Concentration dependent absorption measurements allowed us to determine an 

absorption cross-section at 488 nm to be 4.22·10
-14

 cm
2
.
6
 The emission (USB-4000FL spectrometer, 

Ocean Optics, excitation: 470 nm LED, 35 µW) of these NRs is centered at 665 nm with a full-width at 

half medium (FWHM) of 38 nm, i.e., this sample exhibits a Stokes shift of 15 nm. Comparing the area 

of the emission peak to the one of an aqueous solution of rhodamine 6G adjusted to an identical optical 

density at the excition wavelength allows us to estimate a fluorescence quantum yield of 0.3%. 

These NRs were further characterized by high-resolution transmission electron microscopy (HR-

TEM, JEOL 2010F) after deposition on holey carbon grids from a dilute solution. From the TEM 

images (Supplementary Figure S1a inset) we determined a NR size of ~ 5.8×34 nm, meaning the 

aspect ratio is ~ 5.9.  

Subsequently, the CdSe core NRs were capped with a thin intermediate ZnSe shell and a thicker 

ZnS outer shell to prepare the CdSe/ZnSe/ZnS core/double shell system.
42

 In particular, 4.4·10
-9

 mol of 

the CdSe core rods have been mixed with 5.0 g of TOPO and 3 g of hexadecylamine (HDA, Aldrich, 

90%). Solutions of 0.08 M TOPSe (6.4 mg Se in 1 mL TOP) and 50 mg of zinc stearate (ZnSt, 

Aldrich, 99%) in 1 mL of dioctylamine (DOA, Aldrich, 99%) are prepared and mixed together. These 

quantities should correspond to the formation of 1 monolayer (ML) of ZnSe. At 225°C, this solution is 

slowly injected over a period of 10 min. The reaction mixture is allowed to stir for another 15 minutes.  

To half to the above reaction mixture, still at 225°C, a total of 7 mg bis-(trimethylsilyl)-sulfur 

((TMS)2S, Aldrich, 99%) and 125 mg of ZnSt in 6 mL DOA are injected over a period of 30 minutes. 

These quantities should lead to the growth of 5 ML of ZnS. The reaction mixture is allowed to 

continue stirring for 10 minutes after complete injection and finally to cool. Purification is carried out 

by precipitating the sample in methanol. 

The absorption and emission spectra of the core/shell(s) systems are summarized in Supplementary 

Figure S1b. The absorption of all three samples is very similar with the main difference being an 

increase in absorption at higher energies (i.e., at smaller wavelengths) with increasing shell thickness. 

The width of the emission peak remains unchanged upon shell growth and is slightly red-shifted (with 

increasing shell(s) thickness) compared to the core NRs. The fluorescence quantum yield increases 

significantly during the shell growth: from 0.3% for the CdSe core sample to 1.7% for the CdSe/ZnSe 

core/shell NRs and 1.6% for the CdSe/ZnSe/ZnScore/double shell NRs. These values are obtained for 

the extensively purified samples. For samples taken at intermediate stages of the shell growth, recorded 

in solutions containing still excess surface ligands such as HDA or DOA, fluorescence quantum yields 

of up to 14% for the core/shell NRs and 6.1% in the case of the core/double shell NRs have been 

measured.  
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Fitting methods of probability densities for on- and off-times 

From the intensity time-traces, I(t), of the fluorescent segments, we determined the probability 

densities for off- and on-events of duration toff and ton, respectively, using a weighted method to 

estimate the true probability of rare events.12 
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(((( ))))

2
      with      

1
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)()(
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tN

tN
tP average

onoffaverage

onoff

total

onoff

onoff

onoff

++++
====∆∆∆∆
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⋅⋅⋅⋅====       Eq. S1 

where N toff (on )( ) is the number of off (on) events of duration )(onofft , total

onoffN )(  is the total number off 

(on) events, observed from that fluorescent segment, and average

onofft )(∆∆∆∆  is related to the duration of the 

measurement frames. In the case of common event durations, a and b (time differences to the next 

longest and next shortest observed event) equal this frame duration and consequently average

onofft )(∆∆∆∆ = 100 

ms. However, in the case of rare events, a or b exceeds 100 ms and average

onofft )(∆∆∆∆  increases.  

In our previous paper,
6
 we discussed how different fitting approaches influence the off-time power 

law exponents.  

The probability densities are commonly plotted on a log10-log10 scale as they largely follow a 

power law behavior. However, there is a more or less pronounced deviation from that behavior at long 

times. When fitting the data on a linear scale with a power law, the short events dominate in the fitting. 

The power law exponent ~1.3 (Supplementary Figure S2a) is relatively robust with respect to changes 

of samples, environment or laser intensity. However, a linear fit to the log10-log10 plot accounts better 

for the long time data, leading to an increase in the exponent, log

offαααα  ~1.7, in the case of individual NRs. 

The on-time probability densities deviate from the power law and are described by a “truncated 

power law”, the product of a power law and an exponential, 

 

P ton( )∝ ton

−α one
−ton /τ c,on ,       Eq. S2 

 

where the truncation time, onc,τ , describes the transition between the two regimes. We previously used 

a fitting method where both the on-time exponent, onαααα , and the truncation time, onc,τ , were left 

unconstrained.
6
 However, a two-step fitting method, where first, onαααα  is determined by fitting a line to 

the log of the data (i.e., for on-times, ton < 0.5 s) and second, where onc,τ  is determined while keeping 

onαααα  constant, was found to be more appropriate: the fitting parameters show higher consistency within 

one sample, and the associated errors are smaller. Supplementary Figure S2b compares the two fitting 

methods for the on-time probability density of an individual NR. For this particular NR trace, both 

fitting methods yield consistent results. However, in many cases, the first method underestimates the 

truncation time. 

 

Integration of fluorescence signals from independent NRs and Monte-Carlo simulation 
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We compare the mean and maximum on-times of the integrated N independent single NRs to those 

of clusters with N NRs on the same chip. To compute the integrated data, two distinct approaches were 

used: In the first approach (“digitizing before summing”), we add trajectories digitized to be 0 or 1 by 

a threshold of N single NRs selected randomly from 14 single NRs found on the chip. We then 

determine the "on" events by setting a threshold of 0.5. In order to maximize the sampling size, we 

repeat a random selection and data analysis 30 times for N = 1-10 and take the average. In the second 

approach, (“summing before digitizing,”) we sum up the raw trajectories prior to background 

subtraction and digitization. We subsequently subtract the appropriate polynomial fit to the 

background and a threshold determined from the integrated background signal.  

Next, we compare the maximum and mean on- and off-times using the two methods. 

Supplementary Figure S3a shows that the mean on-times of the two methods agree well, while the 

maximum on-times are smaller using the second method (black open triangles). In Supplementary 

Figure S3b, both mean and maximum off-times using the second method (black triangles) are larger 

than those results from the first method (red squares). The reason could be that the threshold in the 

second method was determined the same way as described in Methods in the main text, and it was 

elevated up too high due to the integration of background signals so that we lost some signals which 

should be considered “on”, which shortened the on-times and extended the off-times. The on-times 

from both methods are substantially lower than those of clusters data (Figure 4c shows on-times from 

the first method) and both support the conclusion in the main paper.  

We do the Monte-Carlo simulation for a single NR by generating successive "on" and an "off" 

intervals  according to the probability density function of the form of  Eq. 1 in the main article for on- 

and off-times, respectively. We set τc,on = 1 s, τc,off = 1000 s, and αon  =αoff  = 1.5, and assign 1 and 0 to 

“on” and “off” states correspondingly. For N independent NRs, we generate the single trajectories 

independently as described above, add them to form a net signal, and then digitize the result by 

assigning 1 for any time interval where the net signal is nonzero, and 0 otherwise.   
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