
1 
 

Synthesis and Physical Properties of Phase-

Engineered Transition Metal Dichalcogenide 

Monolayer Heterostructures 

Carl H. Naylor,
1
 William M. Parkin,

1
 Zhaoli Gao,

1
 Joel Berry,

2
 Songsong Zhou,

2
 Qicheng 

Zhang,
1
 John Brandon McClimon,

2
 Liang Z. Tan,

3
 Christopher E. Kehayias,

1
 Meng-Qiang 

Zhao,
1
 Ram S. Gona,

1
 Robert W. Carpick,

2,4
 Andrew M. Rappe,

3
 David J. Srolovitz,

2,4
 Marija 

Drndic,
1
 Alan T. Charlie Johnson

1
* 

1
Department of Physics and Astronomy, University of Pennsylvania, 

2
Department of Materials Science and Engineering, University of Pennsylvania, 

3
Department of Chemistry, University of Pennsylvania, 

4
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 

Philadelphia, Pennsylvania 19104, United States  



2 
 

 

Figure S1. SAED and ACSTEM determination of lattice orientation. a) ACSTEM image from Figure 3d. b) 

The orientation of the chalcogen atoms around the hexagonal lattice (in yellow box, chalcogen sites 

have two Te atoms) determines that the edge of the 1H region is chalcogen zigzag. c) Dark-field TEM 

image and SAED images from Figure 3a. The direction of the orthogonal lattice vectors in the 1T' region 

are easily read from the SAED pattern. The angle between the interface and the short real-space lattice 

vector is measured to be either 60deg or 120deg for 1T' regions far from the interface. In the 1H region, 

the real-space lattice vectors are parallel to the (2 -1 -1 0) reflections. The interface is parallel to a 1H 

lattice vector, so the 1H region has zigzag edges. d) Expected lattice orientation at the interface as 

determined by SAED of 1T' regions far from the interface. e) Actual atom arrangement at the interface 

as determined by ACSTEM. 
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Figure S2. Intensity of S and Mo sites in Figure 3e. HAADF is mass contrast, so the sites were labelled 

based on the fact that the intensities should be in order of empty < 1 S or 2 S < Mo < 1 Te and 1 S < 2 Te. 

Site positions were identified by hand, and site intensity plotted is the mean image intensity of the pixels 

within the site. Narrower histograms and better site identification could be achieved with cleaner 

samples and a reduction in hydrocarbon contamination. 

 

CHARACTERIZATION OF 1H/1T’ HETEROSTRUCTURES 

A quasi-2D buckling analysis indicates that the width of the buckled region, ℓ0 ≃ 500 nm, is 

much too large to be caused by interfacial misfit strain alone. Compressive stress localized at the edge of 

a free 2D sheet induces 1D wrinkles oriented perpendicular to the edge that decay into the sheet over a 

length scale ℓ0 ≃ 0.23λ [1]. For λ ≃ 25 nm, the predicted value ℓ0 ≃ 6 nm is much less than the observed 

value ℓ0 ≃ 500 nm. The wrinkling morphology is also generally 2D/worm-like away from the interface, 

which is consistent with biaxial compression induced by Te substitution as opposed to uniaxial 
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compression induced by 1D interfacial misfit.  

Modulations of Te composition in the 1H phase may also result from thermodynamically-driven phase 

separation into Te-rich and Te-poor phases upon quenching below T ≲230°C. Without knowledge of S 

and Te transport rates in this temperature range, it is unclear whether such phase separation is 

kinetically feasible.  Our TERS and DFPT results are consistent with the onset of this phase separation 

process, followed quickly by stagnation at nanoscale domain sizes due to kinetic limitations.  ACSTEM 

observations of small 1H phase subdomains on the T’ side of the interface are also consistent with the 

formation of a phase separated Te-rich 1H phase near the initial interface, followed by incomplete 

transformation of this region to 1T’. 

 

FIRST-PRINCIPLES CALCULATIONS OF 1T’-MoTe2 EDGE ENERGIES 

First-principles density functional theory (DFT) calculations of 1T’-MoTe2 edge energies were 

performed using the Vienna Ab-initio Simulation Package (VASP) using a plane-wave basis set [2, 3] and 

the projector augmented wave method [4]. The generalized gradient approximation [5] with the 

Perdew-Burke-Ernzerhof functional [6] was used to treat exchange correlation effects. All edge 

structures were fully relaxed until the total force on each atom was less than 0.01 eV/Å. A vacuum layer 

of minimum thickness of 20 Å perpendicular to the monolayer was employed to minimize interactions 

between each monolayer and its periodic images. The kinetic energy cutoff was set to 420 eV, and the Γ-

centered k-point grid up to 12×1×1 was used for Brillouin zone integration. We employed the same 

approach used earlier to determine the 1T’-MoS2 edge energies [7]. 

Zigzag (b axis) edges in the 1T’ unit cell may occur in six different configurations, depending on 

the edge termination (see Figure S3). These edges may be non-stoichiometric (i.e., Mo- or Te-rich), and 

thus their energy is a function of the relative chemical potential of the constituents. Our results (Figure 
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S3) show that the stable zigzag edge energy γZ (that with lowest energy among all six possible 

configurations at a given chemical potential) is 200 meV/Å or less (depending on the chemical potential). 

The armchair (a axis) edge has only one configuration, which is stoichiometric, and thus its energy is 

independent of chemical potential; i.e. γA ≃ 270 meV/Å (green line in Figure S3). This is significantly 

higher than γZ. 

 

Figure S3. Energies of the seven 1T’
 
MoTe2 edges as a function of chemical potential of Te. Dashed lines 

denote zigzag edges that are never the lowest energy of the six zigzag configurations. Vertical gray lines 

enclose the stable range of chemical potentials for zigzag edges, and the horizontal gray line indicates 

zero energy. The lines highlighted in purple indicate the three lowest energy zigzag boundaries and their 

energies over the stable range of µTe. Configurations of each edge are denoted by black lines and arrows. 

Black lines mark the location of the edges (where the unit cell is cut to create the edges), arrows are 

perpendicular to the edge and point from the 1T’ phase toward vacuum. 
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EQUILIBRIUM 1T’-MoTe2 ISLAND SHAPES 

The edge energies computed above and the rectangular symmetry of the 1T’ unit cell are 

sufficient to determine that the equilibrium 1T’ island shape is elongated along the b or zigzag axis of the 

unit cell. The precise shape and degree of elongation depend on the values of γ at all edge orientations 

φ (measured relative to the armchair orientation) for a given chemical potential. Since we do not know 

these dependencies, we will assume a simple functional form of γ(φ) that allows us to generate 

estimates of 1T’ island axial ratios (AR) from a standard equilibrium Wulff construction. The 1T’ lattice 

exhibits a pair of 2-fold rotation axes. We expect in general that the zigzag and armchair orientations 

will correspond to local minima of γ(φ). Since the experimental observations show faceted edges, we 

further assume that these minima correspond to cusps. The following trial functional form of γ(φ) 

ensures cusps, the appropriate symmetry, and has two parameters that are in principle functions of γA 

and γZ: γ(φ) ≃ γ� [1 + B cos(φ + C)] for 0 ≤ φ ≤ π/2. γ�, B, and C are constants; we set C = 0.16 (this gives a 

shallow cusp at φ = 0 and a deeper cusp at φ = π/2) and vary γ� and B such that γ(π/2) = γZ decreases 

while γ(0) = γA remains fixed (see Figure S4). This allows approximate island shapes at various ratios of 

γZ/γA to be determined. By comparing the AR of these shapes with experimental observations, the value 

of γZ and the chemical potential µTe during growth are estimated. 

 

Figure S4. Computed equilibrium 1T' island shapes (the inner contour traced by the pink lines) for 

increasingly anisotropic and cusped edge energy functions of the form γ(φ) ≃≃≃≃ ��[1 + B cos(φ + C)] (blue 

lines). The value of γZ consistent with each shape is noted (γZ is taken as fixed at 270 meV/Å). The cusps 
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in γ(φ) at φ = 0 and π are too shallow to be clearly discernible in some cases. 

The equilibrium island shapes corresponding to this function are either rectangular or 

rectangular with rounded corners, as shown in Figure S4 for several possible ratios of γZ/γA (depending 

on the chemical potential). This is consistent with the shapes reported in experimental studies [8–10]. 

The present results suggest that the 1T’ islands will have aspect ratios AR in the range 1.29 ≤ AR ≤ ∞. The 

average aspect ratio extracted from the experimental images in Refs. [8, 9] is AR ≃ 4.5 − 6, which falls 

within this range and is consistent with γZ ≃ 40 − 60 meV/Å. The corresponding chemical potential 

during growth is either µTe ≃ −3 eV or −5.5 eV. The flakes grown in Ref. [10] are somewhat more 

elongated; we find AR ≃ 7 on average. This value is consistent with γZ ≃ 20 − 30 meV/Å and µTe ≃ −2.8 

eV or −5.7 eV. Our findings also indicate that the dual 2-fold symmetry of 1T’ crystals combined with the 

dependence of edge energies on chemical potential can enable direct growth of extremely long 1T’-

MoTe2 nanoribbons at suitably controlled values of µTe (AR → ∞ as γZ → 0). 

The rectangular nature of these islands differs from the triangular or hexagonal flakes seen in 

materials with a hexagonal structure (e.g., graphene, BN, and 1H-TMDs) because of the crystal 

symmetry of the 1T’ unit cell. Like these hexagonal crystals, the observed 1T’ island shapes can be 

understood as a consequence of edge energy anisotropy and the symmetry of the unit cell rather than, 

e.g., strong kinetic effects. The needle-like 1T’ morphologies observed in the MoS2/MoTe2 

heterostructures reported in this work are qualitatively consistent with this finding, though the 

additional effect of misfit strain between the 1H and 1T’ phases also plays a role, as demonstrated in the 

following section. 

 

PHASE FIELD SIMULATIONS OF HETEROSTRUCTURE GROWTH 

The continuum phase field simulations presented in the main text employ a modified version of 
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a phase field microelasticity (PFM) model constructed to describe displacive 1H → 1T’ transformations in 

TMD monolayers [11]. This formulation provides numerical solutions of the piecewise linear elasticity 

equations for coherent, elastically misfitting bodies within a matrix or parent phase. Domains of the 

different phases are described in terms of structural order parameter fields �	(��) that evolve to 

minimize the total energy of the system, which is composed of bulk chemical, interfacial, and elastic 

contributions. The relevant order parameter fields are those that distinguish the different 1T’ 

orientations (variants) and the H structure. The free energy functional Ftot for the structurally 

inhomogeneous monolayer is 

F��� =  � (f���� + f����)dA  (1)!  

where 

f���� = " #a2 �	& − b4 �	*+	 + c6 ." �	&	 /
0

+ " 1P(r�)2 �	& + d3 H6�	7�	0 + 12 8β	(ϕ)∇�	8&<	   (2) 

and 

f���� = h2 λ>?@�ϵ>?ϵ@� + h " B12 λ>?@�ϵ>?C(D)ϵ@�C (D)�	* − λ>?@�ϵ>?(D)ϵ@�C (D)�	&E  (3)	  

fchem is the stress-free energy density of the monolayer, and felas is the elastic energy density which 

contains all self and elastic interaction energy densities associated with the arbitrary configuration of 

structural domains within the monolayer. Summations are taken over the 1T’ variant order parameter 

fields denoted by index p, and strains are measured with respect to the stress-free 1H parent phase. The 

adjustable constants a, b, and c set the magnitude of the chemical driving force for 1T’ growth. P(��) and 

d modulate the energy landscape as described below, and H(�	) is the Heaviside step function. The 

parameter βp(ϕ) is proportional to the interfacial energy and is taken here to be either independent of 
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interface inclination angle ϕ or to have the anisotropy determined from the first-principles calculations 

above. 

The first three terms in fchem compose the simplest polynomial consistent with the symmetries of 

the 1H → 1T’ transformation, and is the same form previously incorporated into a 2D PFM model of 

hexagonal to orthorhombic transformations [12–14]. Of the twelve total 1T’ variants (three orientations, 

four subvariants at each orientation, see Figure S5b), this functional describes six (two subvariants at 

each orientation) in terms of three order parameter fields. Symmetric energy minima at �	  = −1 and 1 

represent p− and p+ domains, respectively (see Figure S5b), while regions where all �	  = 0 correspond to 

H domains. Since we are more interested in distinguishing between the three 1T’ orientations than 

between the subvariants at each orientation, for simplicity we have added a term proportional 

to �	0 that suppresses the �	  = 1 minima. In this way, all four subvariants at each 1T’ orientation p are 

combined into the single energy minimum at �	  = −1 (Figure S5c). 

 

Figure S5. 1H and 1T’
 
crystal structures and orientational variants. a. Metal and upper/lower chalcogen 

atoms are shown in gray and orange/yellow, respectively. b. The 12 1T’ orientational variants 

designated DKL, where p ∈ {1,2,3}, superscripts (±), and subscripts α ∈ {A,B} distinguish between 

orientation, direction of dimerization, and direction of x-y mirror asymmetry, respectively. c. 

Simplification to three variants used in the present work. Colored boxes indicate the scheme employed 
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for simulation visualization. 

In felas, h is the monolayer thickness, λijkl is the elastic stiffness tensor, ϵ>?C(D) = RSθ	Uϵ>?CRVSθ	U is 

the transformation strain tensor of variant p, and ϵ>?(r�) = ϵ�>? + W& (u>,? + u?,>) is the elastic strain tensor 

(i,j,k,l = x,y). R[θ	] is the 2D rotation matrix, ϵ[[C = (\W]^ − \W_)/\W_ ;  ϵaaC = (bW]^ − bW_)/bW_ ; 

ϵ[aC = 0 ; θW = 0 ; θ& = 2π/3 and θ0 = −2π/3. ui are in-plane displacements and ϵ�>? is the externally 

imposed, applied macroscopic strain. The equations of thermomechanical equilibrium for in-plane 

displacements ui(��) and order parameters �	(��) are 

λ>?@�k?k@ue �6kf�7 =  −i " σ>?C(D)k?�	&h6kf�7  (4)0
	iW  

and 

2λ>?@�ϵ@�C (D)�	Sϵ>?C(D)�	& − ϵ�>? − 1 2⁄ 6u>,? + u?,>7U = 0  (5) 

respectively, where k is wavenumber, ue >6kf�7is the Fourier transform of ue >(r�), σ>?C(D) =  λ>?@�ϵ>?C(D) are the 

elements of the transformation stress tensor, and �	&h6kf�7 is the Fourier transform of �	&(��).  

We explicitly solve for ui and ηp using a combined analytical/numerical approach. Exact analytic 

solutions for ux and uy are first obtained by solving Eq. (4) as 

ue >6kf�7 =  −i ∑ G>?(kf�)σ?@C (D)k@ �	&h(kf�)	  (6) 

where G>?6kf�7 = Ω>?(nf�) k&⁄ , Ω>?qW = λ>@�?n@n�, and nf� =  kf�/|k|. For simplicity, we assume that the elastic 

constants of the material are isotropic and that plane stress conditions apply such that λijkl = µ[δikδjl 
+δilδjk+2ν/(1−ν)δijδkl] and the elastic Green’s function is given by G>?6kf�7 = δ>? μk&⁄ − (1 +
ν)k>k?/2μk*, where kf� is wave vector and k2 = kx2 + ky2. µ and ν are the shear modulus and Poisson’s 

ratio of the monolayer, respectively. 
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All �	  are then iterated toward thermomechanical equilibrium by identical small increments of 

time t using equations of the form 

�	,y = −M	 δF���δ�	 + ν	    (7) 

or 

�	,y = M	∇& δF���δ�	 + ν|	    (8) 

where Mp are mobility constants. Equation (7) phenomenologically describes evolution toward 

thermodynamic equilibrium in the absence of a conservation law for the area of 1T’ phase in the plane 

of the monolayer. This equation is most appropriate when the supply of constituent atoms is not the 

rate limiting factor in 1T’ growth. ν	is a Gaussian noise variable with < ν	 > = 0 and 

< ν	(r�, t)ν	(r�′, t′) > = −2k�Tδ(r� − ��′)δ(t − t�). Equation (8) is a generalized diffusion equation that 

describes evolution toward thermodynamic equilibrium when the area of 1T’ phase in the plane of the 

monolayer is conservatively controlled by an external source. This form is appropriate when the supply 

of constituent atoms and their migration above or on the surface of the monolayer limit 1T’ growth. ν|	  

is a Gaussian noise variable with < ν|	 > = 0 and < ν|	(r�, t)ν|	(���, t�) > = 2k�T∇&δ(r� − ��′)δ(t − t�) See 

Ref. [11] for further details of numerical implementation. 

Simulations of the nucleation and growth of elastically misfitting 1T’ domains that are 

coherently bound to a parent 1H crystal were performed as follows. Each simulation begins with a single 

crystal monolayer of 1H phase. A central triangular region with side length 960∆x is designated as the 

as-grown 1H island by setting P(��) = 0.01 within the triangle (this maintains �	  = 0 inside the triangle 

throughout the simulation). Elsewhere P(��) is set to zero, allowing 1T’ domains to nucleate and grow 

beyond the initial triangular 1H phase island. 
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Input parameters employed for MoS2/MoTe2 were ϵ[[C = 0.0058 , ϵaaC = 0.0584 , μ = 100 GPa, 

ν = 0.24, and h = 0.35 nm. Parameters common to all simulations were βp = 0.01225, a = 0.0007, b = 

0.0042825, c = 0.0021, d = 1/30, Mp = 1, kBT = 0.00001, a discrete grid spacing ∆x = 1, and a system size 

of 2000∆x*1600∆x. Simulations employing Eq. (7) used a time step ∆t = 15 while those employing Eq. (8) 

used ∆t = 5. 

Nucleation and growth of the 1T’ phase occurs as follows. In simulations employing Eq. (7), 

linear gradients in a and b, from (a,b) = (0.0007,0.0042825) in the bulk to (a,b) = (−0.0003,0.0032825) at 

the triangle edge, were imposed within a 150∆x wide region outside the 1H triangle. This increases the 

driving force for 1T’ formation directly at the edges, ensuring initial nucleation and outward growth of 

1T’ domains from the triangle edges. 

Simulations employing Eq. (8) involved no such gradients in a and b, but were instead supplied 

with a steady, homogeneous flux of each 1T’ variant, representing free Te and Mo. The �	  flux was 

introduced along the 1H triangle edges during the initial growth phase at a rate of −1 × 10−5/∆t/(∆x)2. 

Once 1T’ domains completely covered the 1H triangle edges, the source region was expanded with the 

growing 1T’ domain fronts. This setup describes a steady flux of source material attaching to the 1H 

triangle edges and/or the top of the monolayer and diffusing toward the edges of the 1T’ domains to 

drive growth. 

Representative 1T’ morphologies from growth simulations under various conditions are shown 

in Figure S6. In a-c, the misfit strain corresponding to Te compositions ��1H= 0.75 and ��1T'= 0.94 on the 

1H and 1T’ sides of the interface, respectively, was used, as inferred from the TEM-derived lattice 

parameters. The configuration shown in the main text is reproduced in Figure S6a for convenience of 

comparison. This simulation employed Eq. (7) dynamics and constant βp. The resulting morphology 

demonstrates that elastic misfit between the 1H and 1T’ phase alone can induce a needle-like 1T’ 
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growth mode in the present experimental system. Anisotropy in 1T’ edge energies also leads to elonged 

rectangle-like domains (see Figure S3 and S4), but the specific 1T’ orientations observed in the 

experiments along each edge of the triangle and the enhanced elongation relative to isolated 1T’ islands 

can be attributed to this elastic misfit effect. 

Figure S6b further supports this conclusion by showing that only a modest accentuation of the 

average needle length to width ratio is observed when a 2-fold anisotropic 1T’ interfacial energy similar 

to that computed from first-principles is included. Conditions are otherwise identical to those in Figure 

S6a. The degree of anisotropy employed corresponds to the lower bound estimated from the DFT 

results in Figure S3. A larger anisotropy would presumably further accentuate the needle morphologies, 

but we are unable to reliably simulate growth kinetics at the estimated degree of edge energy 

anisotropy due to issues with numerical implementation. The faceted interfaces that appear with large 

anisotropy tend to alter growth kinetics in unphysical ways, prohibiting direct comparison with results at 

small anisotropy. 

Figure S6e simply confirms the necessary absence of 1T’ needles when both misfit strain 

between 1H and 1T’ phases and interfacial anisotropy are absent. Figure S6f further shows that 

anisotropy of the degree corresponding to the lower bound estimated from the DFT results in Figure S3 

leads to edge orientation-dependent variant selection as in a-c, but that rounded wedge-shaped 1T’ 

protrusions rather than distinctly oriented needle-shaped protrusions are obtained when elastic misfit is 

absent. Conditions in e and f are otherwise identical to those in a. Again, the tendency toward needle-

like structures should increase with the degree of anisotropy. 

Under different growth conditions either Eq. (7) or Eq. (8) may be the more appropriate 

description of the experimental system. However, comparison of the results from both approaches 

(compare Figure S6a and c) shows that both lead to qualitatively similar 1T’ growth morphologies, albeit 
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with somewhat different needle lengths and widths. Hence, the morphologies observed in these 

simulations and the experiments are dominated by elastic misfit energies and edge energy anisotropies 

rather than kinetic details. 

Comparison of Figure S6a and d shows that the nature of the elastic misfit between the 1H and 

1T’ phases can also qualitatively affect the growth morphology. Conditions in d are as in a except a 

shear-dominant misfit strain (i.e., |R| = 8(ϵ[[C + ϵaaC ) (ϵ[[C − ϵaaC )� 8 ≲ 0.5) corresponding to Te 

compositions x = 0 and 1 on the 1H and 1T’ sides of the interface, respectively, is employed. A relatively 

compact growth morphology is observed whenever the misfit strain is shear-dominant rather than 

dilatation-dominant (|R| ≥ 0.5). A crossover from needle-like to compact 1T’ structures occurs here for 

��1H≤ 0.11 if ��1T' = 1. 

These results together demonstrate that dilatation-dominant elastic misfit alone can induce 

needle-like growth morphologies in the absence of anisotropic 1T’ edge energies and growth rates. 

Sufficiently large anisotropy also leads to needle-like structures. At the estimated misfit strains and 

computed anisotropy levels in the present systems, both effects are expected to drive the needle-like 

growth morphologies seen in our experiments (see the main text). 
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Figure S6. Simulated 1T’
 

growth/transformation morphologies under various growth conditions 

designed to determine which factors dominate the experimentally observed island structures. In a-c 

the misfit (transformation) strain corresponding to ��1H= 0.75 and ��1T'= 0.94 on the 1H and 1T’ sides of 
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the interface, respectively (ϵ[[C = 0.58%, ϵaaC = 5.84%), is used. a. Equation (7) and constant βp(φ) = 

0.01225 (as shown in the main text). The color scheme employed for 1T’ domains is shown on the right. 

b-f. As a but with: b. 2-fold anisotropic interfacial energies βp(φ) = 0.01225[1 +0.149cos(2φ + θp)], c. 

Dynamics given by Eq. (8), d. Shear-dominant misfit ϵ[[C = −2.99% and ϵaaC = 3.74%, corresponding to 

��1H= 0 and ��1T'= 1 on the 1H and 1T’ sides of the interface, respectively. e. Zero misfit ϵ[[C = ϵaaC = 0. f. 
Zero misfit ϵ[[C = ϵaaC = 0 and 2-fold anisotropic interfacial energies βp(φ) = 0.01225[1 + 0.149cos(2φ + 

θp)]. 
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