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Abstract

In this paper we study a neoclassical growth model with idiosyncratic income risk
and aggregate productivity risk in which risk sharing is endogenously constrained
by one-sided limited commitment. Households can trade a full set of contingent
claims that pay off depending on both idiosyncratic and aggregate risk, but limited
commitment rules out that households sell these assets short. The model results,
under suitable restrictions of the parameters of the model, in partial consumption
insurance in equilibrium. With log-utility and idiosyncratic income shocks taking
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the equilibrium can be characterized in closed form, despite the fact that it features
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1 Introduction

In this paper we study a neoclassical growth model with idiosyncratic income risk and ag-
gregate productivity risk (as in Krusell and Smith, 1998) in which risk sharing is endoge-
nously constrained by one-sided limited commitment, as in Krueger and Uhlig (2006).
Households can trade a full set of contingent claims that pay off depending on both id-
iosyncratic and aggregate risk, but limited commitment rules out that households sell
these assets short. The model results, under suitable restrictions of the parameters of
the model, in partial consumption insurance in equilibrium. With log-utility and id-
iosyncratic income shocks taking two values one of which is zero (e.g., employment and
unemployment) we show that the equilibrium can be characterized in closed form, de-
spite the fact that it features a non-degenerate consumption- and wealth distribution.
We use this feature of the model to study, analytically, inequality over the business cycle
and asset pricing.

The paper unfolds as follows. The next section sets up the model and defines equilib-
rium, and Section 3 contains a general characterization of this equilibrium. In Sections
4, 5 and 6 we then analyze the stationary equilibrium, the transition path after a one-
time unexpected shock and the full equilibrium with aggregate shocks of the model,
respectively. Equipped with the results from our model we then relate these results to
the existing literature in Section 7. Sections 8 and 9 apply the model to study, in turn,
inequality over the business cycle and asset pricing. Section 10 concludes, and detailed
derivations and proofs the are contained in the Appendix.

2 Model

Time is discrete, infinite and indexed by t = 0, 1, ... and the economy is populated by
a continuum of individuals of measure 1, a representative, competitive production firm
and a representative, competitive financial intermediary.

2.1 Aggregate Risk

We consider an economy with stochastic aggregate productivity, as well as idiosyncratic
labor productivity shocks. Denote by At current aggregate total factor productivity,
and by At = {A0, A1, · · · , At} the history of productivity with probability distribution
π(At+1|At). We treat the initial productivity level A0 as fixed.

For most of the paper no further restrictions on the productivity process {At} need
to be imposed,1 but for a subset of the results we need to make further assumptions on

1We assume that At takes a positive real value, At ∈ R+, and that the number of possible states in each
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the productivity process.

Assumption 1. Let the productivity process {At}∞t=0 satisfy one of three assumptions:

1. Steady state: At = A0 with probability 1, for all t > 0.

2. MIT shock: {At} is a deterministic, non-constant sequence, but households at time
t = 0 expect that At = A0 with probability 1.

3. Stochastic iid growth rates: At+1

At
∈ {1− ε, 1 + ε}, with equal probability:

At+1

At
=

1 + ε with probability 1
2

1− ε with probability 1
2

for all t ≥ 0 , iid (1)

2.2 Technology

The production side of the economy is described by a completely standard neoclassical
production function of the form

Yt = Kθ
t (AtLt)

1−θ (2)

where θ is the capital share and A denotes the (potentially time-varying) level of ag-
gregate (labor-augmenting) productivity. Capital depreciates at rate δ. This production
technology is operated by a representative and competitive firm hiring labor and capital
at rental rates wt, rt, and the standard optimality conditions read as

wt = (1− θ)At
(
Kt

AtLt

)θ
(3)

rt = θ

(
Kt

AtLt

)θ−1

− δ (4)

2.3 Idiosyncratic Risk, Household Endowments and Preferences

Individuals are indexed by i ∈ [0, 1] and in each period t have idiosyncratic stochastic
labor productivity zit ∈ Z = {0, ζ}, where ζ > 1 is a parameter. Since the identity
of individuals is irrelevant we will suppress the index i whenever there is no scope for
confusion and simply write zt for the current idiosyncratic labor productivity as well as
zt = (z0, z1, .., zt) for the history of productivity realizations. The probability of a given
productivity history is denoted by π(zt).

The idiosyncratic labor productivity process is Markov with time-invariant transition
matrix:

π(zt+1|zt) =

[
1− ν ν

ξ 1− ξ

]
(5)

period is finite. Aggregate shocks are independent of idiosyncratic shocks.
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where ν is the probability of switching from productivity 0 to productivity ζ and ξ is the
probability of switching from ζ to 0. The stationary distribution over labor productivity
is then given by (ψl, ψh) =

(
ξ

ξ+ν
, ν
ξ+ν

)
, and households are assumed to draw their ini-

tial productivity from this stationary distribution (which is then also the cross-sectional
distribution of labor productivity at all future dates t > 0). We normalize average labor
productivity to one, which implies the parameter restriction

ν

ξ + ν
ζ = 1. (6)

This assumption implies that the aggregate supply of labor is Lt = 1 for all t.
In addition to labor productivity a given household is endowed with initial wealth a0,

and we denote the cross-section probability measure over wealth and labor productivity
by Φ(a0, z0).

Each household has preferences representable by a standard intertemporal utility
function u(c) defined over stochastic consumption streams c and given by

U(c) = E0

∞∑
t=0

βt log(ct) (7)

with logarithmic period utility function and time discount factor β.

2.4 Financial Markets and Household Budget Constraint

Households face idiosyncratic and aggregate risk and seek to insure against that risk by
trading a full set of contingent claims. Denote the price a contingent claim that pays
Rt+1(At+1) units of consumption in aggregate history At+1 for an indivdual with history
(At, zt) if and only if tomorrow’s idiosyncratic state is zt+1 as qt(At+1, zt+1|At, zt). For
future reference, we denote the position of these assets such for a household with initial
characteristics (a0, z0) by at+1(a0, z

t+1, At+1). The budget constraint of the household
then reads as

ct(a0, z
t, At)+

∑
At+1

∑
zt+1

qt(At+1, zt+1|At, zt)at+1(a0, z
t+1, At+1) = wt(A

t)zt+Rt(A
t)at(a0, z

t, At)

(8)
The one-sided limited commitment assumption in this context is reflected by the re-
quirement that household contingent claim positions be non-negative, that is, by the
constraint at+1(a0, z

t+1, At+1) ≥ 0, as individuals can walk away, without punishment,
from any negative position (i.e. from state-contingent debt) they have borrowed.2

2Alternatively, we could have introduced financial intermediaries that offer long-term consumption
insurance contracts. These contracts stipulate potentially fully income-history contingent consumption
payments in exchange for delivering all of labor income to the intermediaries whenever the individual
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2.5 Definition of Sequential Market Equilibrium

We now define a sequential market equilibrium with aggregate shocks. Households’
consumption and savings allocations depend on both the history of individual states
zt = (z0, z1, · · · , zt) and the history of aggregate states At = (A0, A1, · · · , At). Aggregate
allocations and prices depend on the history of aggregate shocks At.

Definition 1. For an initial condition (A0, K0,Φ(a0, z0)), an equilibrium is sequences of
wages and interest rates {wt(At), Rt(A

t)}, prices of contingent claims {qt(At+1, zt+1|At, zt)},
aggregate consumption and capital {Ct(At), Kt+1(At)} and individual consumption and
asset allocations {ĉt(a0, z

t, At), ât+1(a0, z
t+1, At+1)} such that

1. Given {wt(At), Rt(A
t), qt(At+1, zt+1|At, zt)}∞t=0,At,zt,At+1,zt+1

, the household consump-
tion and asset allocation {ĉt(a0, z

t, At), ât+1(a0, z
t+1, At+1)} solves, for all (a0, z0),3

max
{ct(a0,zt,At),at+1(a0,zt+1,At+1)}

∞∑
t=0

∑
At

∑
zt

βtπ(At)π(zt) log(ct(a0, z
t, At)) (12)

is productive. The one-sided limited commitment friction implies that whereas intermediaries can fully
commit to long-term contracts, individuals cannot. Specifically, in every period, after having observed
current labor productivity, the individual can leave her current contract and sign up with an alternative
intermediary at no punishment, obtaining in equilibrium the highest lifetime utility contract that allows
a competing intermediary to break even. The lifetime utility from a newly signed contract is the key
(potentially time-varying) endogenous entity in this formulation of the model. In Krueger and Uhlig
(2006) we have shown that these two formulations of the one-sided limited commitment friction are
equivalent, and we therefore here focus on the financial market formulation, in the spirit of Alvarez and
Jermann (2000).

3A familiar way of defining Arrow securities is that households pay a price qb(At+1, zt+1|At, zt) and
receive one unit of non-deflated consumption goods if the state (At+1, zt+1) is realized. If we denote such
an asset by bt+1, the budget constraint (8) instead reads as:

ct(a0, z
t, At) +

∑
At+1

∑
zt+1

qb(At+1, zt+1|At, zt)bt+1(a0, z
t+1, At+1) = wt(A

t)zt + bt(a0, z
t, At) (9)

Because we define a contingent claim that yields Rt+1(At+1) at t+ 1, the relation between the two types
of assets is:

qb(At+1, zt+1|At, zt) =
qa(At+1, zt+1|At, zt)

Rt+1(At+1)
, (10)

and bt+1(a0, z
t+1, At+1) = Rt+1(At+1)at+1(a0, z

t+1, At+1) (11)

Since the return on both contingent claims is given by:

1

qb(At+1, zt+1|At, zt)
=

Rt+1(At+1)

qa(At+1, zt+1|At, zt)
,

two formulations are equivalent. Our formulation of contingent claims gives a simpler and perhaps more
intuitive expression for the capital market clearing condition (17), though.
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subject to the budget constraints (8) and subject to

at+1(a0, z
t+1, At+1) ≥ 0 (13)

2. Factor prices equal marginal products

wt(A
t) = (1− θ)At

(
Kt(A

t−1)

At

)θ
(14)

Rt(A
t) = 1 + θ

(
Kt(A

t−1)

At

)θ−1

− δ (15)

3. The goods market and capital market clear

Ct(A
t) +Kt+1(At) =

(
Kt(A

t−1)
)θ

(At)
1−θ + (1− δ)Kt(A

t) (16)
Kt+1(At) =

∫ ∑
zt+1

ât+1(a0, z
t+1, At+1)π(zt+1)dΦ(a0, z0) ∀At+1 (17)

where
Ct(A

t) =

∫ ∑
zt

ĉt(a0, z
t, At)π(zt)dΦ(a0, z0) (18)

3 Characterization of Equilibrium

This section characterizes a sequential equilibrium with aggregate shocks. We will first
derive optimal household choices of consumption and savings for a given stochastic pro-
cess for interest rates and wages, {Rt(A

t), wt(A
t)}t≥0,At in subsection 3.1, then charac-

terize the equilibrium asset distribution in subsection 3.2 and finally use both results to
determine the aggregate law of motion of the economy in closed form in subsection 3.4.

3.1 Optimal Household Choices

We will show that equilibrium household choices take an especially simple form. As long
as the real interest rate is not too high, wages do not fall too fast and households do not
start life with too many assets, then they do not accumulate state-contingent assets for
the high income state tomorrow and insure against sequences of low idiosyncratic income
realizations through contingent asset purchases such that for these households a stan-
dard complete markets Euler equation holds. The deviation from the complete markets
allocation (which would result in the equilibrium collapsing to that of a representative
agent economy) stems from the fact that currently low-income individuals would want
to borrow against the high-income state, but are prevented from doing so due to limited
commitment to repay their debts. Thus, the best they can do is to set the contingent
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claim for the high idiosyncratic income state to zero. The following proposition makes
this argument formal. It requires the following assumptions on factor prices that will
be validated and can be replaced with Assumption 1 purely on the fundamentals of the
economy once the equilibrium law of motion for capital has been derived.

Assumption 2 (Contingent Claims Prices). The prices of contingent claims are given by4

qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At). (19)

Assumption 3 (No Savings Incentives). The equilibrium interest rate and wage rate pro-
cesses, {Rt(A

t), wt(A
t)} satisfy:

βR0(A0) < 1 (20)

βRt+1(At+1) <
wt+1(At+1)

wt(At)
for all t ≥ 0 and At+1 (21)

Assumption 4 (Initial Distribution). The initial distribution over wealth and labor produc-
tivity, Φ(a0, z0), satisfies:

(i) a0 = 0 if z0 = ζ (high-productivity households (z0 = ζ) have zero initial wealth).

(ii) 0 < a0 < ā0 := β
1−(1−ν−ξ)β ζ if z0 = 0 (the wealth of low-productivity households is

strictly positive but not too high).

We will later show that Assumption 2 on the endogenous contingent claims prices
is always satisfied in equilibrium and Assumption 3 on endogenous equilibrium prices
is satisfied under Assumption 1 stated purely in terms of the exogenous fundamentals
of the model. Furthermore we will demonstrate that under Assumption 1 the steady
state of the model will have an associated asset distribution that satisfies Assumption 4,
although the following proposition characterizing optimal household choices does not
require the initial distribution to be the steady state distribution (as long as it satisfies
Assumption 4).

Proposition 1 (Optimal Household Consumption and Asset Allocation). Suppose As-
sumption 2 on contingent claims prices is satisfied and suppose that the sequence of wages
and interest rates {wt(At), Rt(A

t)}∞t=0 satisfies the no-savings Assumption 3 and that the
initial wealth distribution satisfies Assumption 4. Then the optimal consumption and asset

4Recall that these contingent claims pay Rt+1(At+1) units of consumption in event history At+1. Under
the assumption, the price of a contingent claim that pays one state-contingent unit of consumption is then
takes the perhaps more familiar form qbt (At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At)

Rt+1(At+1) .
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allocation of individual household is given by

ct(a0, z
t, At) =

wt(At)c0, where c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ, if zt = ζ

[1− (1− ν)β]Rt(A
t)at(a0, z

t, At) if zt = 0
(22)

at+1(a0, z
t+1, At+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt = ζ and zt+1 = 0

βRt(A
t)at(a0, z

t, At) if zt = 0 and zt+1 = 0

(23)

where a0(a0, z
0, A0) = w0(A0)a0.

Proof. See Appendix A.1.1

We now discuss the intuition and straightforward implications of Proposition 1. First,
it is easy to verify that (22) and (23) imply:5

ct+1(a0, z
t+1, At+1) = βRt+1(At+1)ct(a0, z

t, At) if zt+1 = 0. (24)

that is, consumption growth between t and t + 1 follows a standard complete markets
Euler equation for those households that are unproductive in period t + 1.6 In contrast,
those that are productive in t + 1 and have zt+1 = ζ have (see Lemma 8 in Appendix
A.1.1)

ct+1(a0, z
t+1, At+1) > βRt+1(At+1)ct(a0, z

t, At) if zt+1 = ζ. (26)

Also note that households with currently positive labor income (i.e., with z = ζ),
consume and save a constant fraction of their current labor income, independent of the
aggregate shock (history) and independent of current or (expected) future interest rates:

ct(a0, z
t, At)

ζwt(At)
=

1− (1− ν)β

1− (1− ν − ξ)β
(27)

at+1(a0, z
t+1, At+1)

ζwt(At)
=

β

1− (1− ν − ξ)β
. (28)

This result depends crucially and not surprisingly on the assumption of log-utility.
As Proposition 1 indicates, optimal consumption and asset holdings are proportional

to wages (either current wages in case s = 0 and the household has high productivity
5The derivation of this result can be found in Appendix A.1.1.
6Another way to write is:

1

ct(a0, zt, At)
= π(At+1, zt+1|At, zt)︸ ︷︷ ︸

prob. of (At+1,zt+1)

Rt+1(At+1)

qt(At+1, zt+1|At, zt)︸ ︷︷ ︸
return on a contingent claim

β
1

ct+1(a0, zt+1, At+1)︸ ︷︷ ︸
discounted marginal utility

if zt+1 = 0. (25)

Independence of At+1 and zt+1 gives π(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At), while Assumption 2
gives qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At). Then, equation (25) simplfies to equation (24).
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today) or to the wage when she last was productive (for s > 0). We therefore define, for
future reference and use, wage-deflated consumption and asset choices as

ct(a0, z
t, At) =

ct(a0, z
t, At)

wt(At)
(29)

at+1(a0, z
t+1, At+1) =

at+1(a0, z
t+1, At+1)

wt+1(At)
(30)

3.2 Cross-Sectional Distribution

The sequential market equilibrium household consumption-asset allocation has a simple
structure. Either the shortsale constraint for a given continuation history zt+1 is not
binding, at+1(a0, z

t+1, At+1) > 0, and the standard complete-markets Euler equation
ct+1(a0, z

t+1, At+1)

ct(a0, zt, At)
= βRt+1(At+1) (31)

applies or the constraint is binding, at+1(a0, z
t+1, At+1) = 0 and the Euler equation turns

into an inequality.
We assert that the equilibrium consumption and asset allocation has a simple struc-

ture in which individual consumption and assets only depend on the length s ≥ 0 of
the most recent spell of low productivities (where s = 0 denotes an agent with currently
high productivity), and potentially calendar time t. When productivity is high, the short-
sale (limited commitment) constraint is binding and assets are zero. Denote this simple
consumption-asset allocation by {cs,t, as,t}∞s,t=0 and note that the Markov process for in-
dividual productivity implies that the cross-sectional distribution of waiting times is time
invariant and given by

φs =

 ν
ξ+ν

if s = 0

ξ
ξ+ν

ν(1− ν)s−1 if s = 1, 2, 3, ...
(32)

Corollary 1. Suppose the initial consumption-asset allocation is given by {cs,0, as,0}s≥0 with
the probability mass of s-agents given by (32). If households’ consumption and saving
rule follows equations (22) and (23), the consumption-asset allocation at any t ≥ 1 is
determined by:

cs,t(A
t) =


1−(1−ν)β

1−(1−ν−ξ)β ζwt(A
t) if s = 0

βRt(A
t)cs−1,t−1 if s ≥ 1

(33)

as,t(A
t−1) =


0 if s = 0

β
1−(1−ν−ξ)β ζwt−1(At−1) if s = 1

βRt−1(At−1)as−1,t−1 if s ≥ 2

(34)

and the probability mass of s-households is time-invariant and given by (32).
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Proof. Apply equation (22)–(24) to the initial allocation {cs,0, as,0}s≥0.

Note that this corollary implies that even though the cross-sectional distribution of
waiting times remains constant over time and across aggregate shocks, the levels of
consumption and assets at these countably many mass points given by (33) and (34)
varies with time and aggregate history At, but only through its effects on aggregate
wages and interest rates. Also note that if the consumption-asset allocation is of the
simple form stipulated above, aggregate consumption and assets in the goods market
clearing condition and the asset market clearing condition can be written as

Ct(A
t) =

∞∑
s=0

φscs,t(A
t) (35)

Kt+1(At) =
∞∑
s=0

φsas,t+1(At) (36)

3.3 Confirming the Conjectured Prices of Contingent Claims on Cap-
ital Returns

Before we explicitly carry out the aggregation we can verify, with the optimal household
allocations in place, that the prices of the contingent claims of capital are of the form
stipulated in Assumption 2.

Fix (At, zt). For all households for which the shortsale constraint for a contingent
claim that pays off in aggregate state At+1 is not binding (the positive mass of indi-
viduals with idiosyncratic state zt+1 = 0, i.e., those with s > 0 in period t + 1), the
first order conditions with respect to consumption and the state-contingent asset claim
can be combined to obtain (see Appendix A.1.1, equation (114)) the standard complete
markets Euler equation:

qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At)βRt+1(At+1)

[
ct+1(a0, z

t+1, At+1)

ct(a0, zt, At)

]−1

(37)

Using the fact that for each of these households (with s > 0) the optimal consumption
allocation satisfies ct+1(a0, z

t+1, At+1) = βRt+1(At+1)ct(a0, z
t, At) (see equation (24)).

Using this result in equation (37) immediately confirms that

qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At) (38)

i.e., that Assumption 2 is satisfied in the equilibrium we are constructing. Finally, note
that at these prices for households with zt+1 = ζ we have (see equation (26))

qt(At+1, zt+1|At, zt) > π(zt+1|zt)π(At+1|At)βRt+1(At+1)

[
ct+1(a0, z

t+1, At+1)

ct(a0, zt, At)

]−1

(39)
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These households, at the posited prices, would like to reduce their consumption
growth between period t and t+1 by borrowing against the contingency of high produc-
tivity tomorrow, but the limited commitment constraints precisely prevent these types of
shortsales.

3.4 Aggregation

Now that we have characterized the cross-sectional distribution of assets, we can use
equation (36) to derive the aggregate law of motion for capital. Since the optimal house-
hold consumption and asset decisions in Proposition 1 are closed-form expressions of the
general equilibrium factor prices (wt, Rt), and these in turn are functions only of the ag-
gregate capital stock and aggregate productivity through the first-order conditions of the
firm, characterizing the law of motion for the aggregate capital stockKt is also sufficient
to fully characterize the distribution of consumption and assets over time. What is special
about this model with nontrivial household heterogeneity is that the model aggregates,
in the sense that the capital stock in period t+ 1 can be expressed exclusively as a func-
tion of the aggregate capital stock in period t (despite the fact that the model features a
non-trivial consumption and wealth distribution), and that this law of motion of capital
can be characterized in closed form. The following proposition is then a straightforward
consequence of the results in the previous subsection and proved in Appendix A.1.2.

Proposition 2 (The Law of Motion for Aggregate Capital). Under the assumptions main-
tained in Proposition 1 and thus the household consumption and saving allocations are
given by (22) and (23), the law of motion for the aggregate capital stock is given by:

Kt+1(At) =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kt(A

t−1)θ + (1− ν)β(1− δ)Kt(A
t−1)

= ŝA1−θ
t Kt(A

t−1)θ + (1− δ̂)Kt(A
t−1) (40)

where

ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ (41)

δ̂ = 1− (1− ν)β(1− δ). (42)

As in the Solow model the aggregate saving rate ŝ is a constant in this model, but in
contrast to the Solow model here it is an explicit function of the fundamental parameters
capturing income risk at the micro level as well as time preferences and the capital share
in production. Note that if ν = ξ = 0 and there is no idiosyncratic risk, then ŝ = βθ. If
furthermore δ = 1, then δ̂ = 1 and the model collapses to the standard representative
agent stochastic neoclassical growth model (which with log-utility and full depreciation
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–and only then– has a closed-form solution for the aggregate law of motion for capital.
We will return to a comparison of our model with the neoclassical growth model and the
Solow model in Section 7.

We now use the general results thus far to characterize analytically a stationary equi-
librium, the transition path after an unexpected (transitory or permanent) productivity
shock and the fully stochastic equilibrium, but under specific assumptions on the aggre-
gate productivity process. This will allow us to show that Assumptions 2 and 3 can be
restated as assumptions purely on fundamentals, and that the steady state distribution
of assets satisfies Assumption 4.

4 Stationary Equilibrium

We derive the stationary equilibrium in this section. For the purpose of this section
we maintain Assumption 1.1 and thus productivity is constant at A0. In a stationary
equilibrium the wage w, the gross interest rate R and the aggregate capital stock K are
constants (over time and across aggregate states).

From Proposition 1 it immediately follows that optimal wage-deflated consumption
and asset choices, as function of the wait time s, are given as

c0

w
= c0 =

1− (1− ν)β

1− (1− ν − ξ)β
ζ (43)

cs
w

= cs = (βR)sc0 for s = 1, 2, · · · (44)
a0

w
= a0 = 0 (45)

a1

w
= a1 =

β

1− (1− ν − ξ)β
ζ (46)

as
w

= as = (βR)as−1 = (βR)s−1a1 for s = 2, 3, · · · (47)

High income agents consume a constant fraction of their labor income, and consumption
of low income agents drifts down at a constant rate, βR, until they switch to a high
income state and renew the contract. As long as βR < 1, consumption converges to zero
in the long run, lims→∞ cs = 0.

4.1 Aggregation

We can of course use the stationary version of the aggregate law of motion (40) in Propo-
sition 2

K = ŝ(A0)1−θKθ + (1− δ̂)K (48)

11



to determine the aggregate capital stock and the associated stationary wage and interest
rate, denoted by (K0, R0, w0). This delivers

K0 = A0

(
ŝ

δ̂

) 1
1−θ

(49)

R0 = θA1−θ
0 Kθ−1

0 + 1− δ = θ

(
δ̂

ŝ

)
+ 1− δ (50)

w0 = (1− θ)A1−θ
0 Kθ

0 = (1− θ)A0

(
ŝ

δ̂

) θ
1−θ

(51)

where (ŝ, δ̂) are defined in (41) and(42).
However, it is instructive to carry out the explicit aggregation in the stationary equi-

librium to obtain some intuition for the aggregate law of motion, and derive a graphical
representation of the capital market clearing condition for our model akin to that in the
Aiyagari (1994) model.

The capital market clearing condition in the steady state reads as

K =
∞∑
s=0

φsasw =
∞∑
s=1

φsasw

=
βζ

1− (1− ν − ξ)β
νξ

ξ + ν
w +

∞∑
s=2

φsasw

=
βζ

1− (1− ν − ξ)β
νξ

ξ + ν
w + βR(1− ν)

∞∑
s=2

φs−1as−1w

=
βζ

1− (1− ν − ξ)β
νξ

ξ + ν
w + βR(1− ν)K (52)

The first row is due to the fact that saving for the high idiosyncratic state z = ζ is zero,
and thus, a0 = 0. The second row splits the demand for assets (supply of capital) into
the part coming from productive agents saving for the low income state (a1) and the
part stemming from unproductive agents rolling over parts of their assets (as) for s > 1.
The third row exploits the optimal asset allocation in equation (47) and the form of the
stationary wait time distribution φs in equation (32), and the last row uses the capital
market clearing condition. Plugging in for (R,w) from the firm’s optimality conditions
and rearranging delivers back the stationary version of the aggregate law of motion in
equation (48).

4.2 Existence, Uniqueness and Comparative Statics of Partial Insur-
ance Stationary Equilibrium

Equation (52) can also be used to display the determination of the stationary equilibrium
interest rate and capital stock graphically, derive its comparative statics properties and
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Figure 1: Determination of Market Clearing Interest Rate and Capital Stock

clarify the conditions needed for the existence of a stationary equilibrium with only
partial consumption insurance. To do so, it is instructive to divide both sides of (52)
by the wage w and use the firm’s optimality condition with respect to capital (and the
normalization of expected productivity to one, (6), to write both sides as a function of
the gross interest rate R. This yields

K(R)/w(R) =: κd(R) =
θ

(1− θ)(R− 1 + δ)
=

ξβ

[1− (1− ν)βR] [1− (1− ν − ξ)β]
:= κs(R)

(53)
Figure 1 plots the (wage-normalized) demand for capital κd(R) by the production

firms (the relation between the return and the capital stock determined by the first or-
der condition for capital). It has exactly the same form as in the original Aiyagari (1994)
paper, sloping downward and the capital tock diverging to ∞ as the net interest rate
approaches −δ. The supply of capital κs from the household side is finite at R = 1 − δ,
strictly increasing in the interest rate (something that is hard to prove in the original
Aiyagari (1994) model), and also finite at R = 1/β. Equation (53) also allows to deter-
mine unambiguous comparative statics as the parameters of the model shift either the
demand curve (in case of the production parameters (θ, δ)) or the supply curve (in case
of the idiosyncratic risk parameters (ξ, ν) and the preference parameter β). Finally it also
shows that a necessary and sufficient condition for a unique stationary partial insurance
equilibrium with R0 < 1/β is that κd(1/β) < κs(1/β). This leads to the following
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Assumption 5.

θ

(1− θ)
(

1
β
− 1 + δ

) < ξ

ν
(

1
β
− 1 + ξ + ν

)
This assumption is satisfied if the chance of productivity falling ξ and the risk of it

not recovering quickly (as given by 1 − ν) is sufficiently large.7 The assumption insures
that κd(1/β) < κs(1/β). Equipped with this assumption, defined purely in terms of
exogenous parameters of the model, we can state the following proposition, completely
characterizing the stationary equilibrium of the model.

Proposition 3 (Stationary Equilibrium). Suppose Assumption 5 holds. Then, there exists
a stationary partial insurance equilibrium, where the equilibrium interest rate R0 is given
in a closed form:

R0 =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) (54)

The equilibrium capital and wage are given by:

K0 = A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

, (55)

w0 = (1− θ)A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


θ

1−θ

.

The equilibrium interest rate R0 is strictly increasing in the capital share θ, strictly decreas-
ing in the depreciation rate δ, the time discount factor β as well as the risk of productivity
falling ξ and remaining low 1 − ν and is independent of the level of productivity A0. The
capital stock K0 is strictly increasing in the time discount factor β as well as the risk of
productivity falling ξ and remaining low 1 − ν, strictly decreasing in the depreciation rate
δ, and is proportional to the level of productivity A0. The comparative statics of w0 is the
same as for K0. The stationary equilibrium is unique8 in the sense that there is no other
simple stationary equilibrium in which the stationary consumption and wealth allocation
(and its associated cross-sectional distribution) is just a function of the wait time s.

7Defining the time discount rate ρ by β = 1
1+ρ , we can restate the assumption as

θ

(1− θ) (ρ+ δ)
<

ξ

ν (ρ+ ξ + ν)
.

which coincides with the assumption insuring the existence of a stationary equilibrium of the continuous-
time model in Krueger and Uhlig (2022).

8We have not been able to rule out stationary equilibria in which allocations are more complex functions
of idiosyncratic histories, although we conjecture such equilibria do not exist under Assumption 1.
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Proof. See Appendix A.2 for the formal argument. Intuitively, it follows directly from
Figure 1. That is, existence and uniqueness follows directly from the monotonicity of
κd(R) and κs(R) as well Assumption 5. The comparative statics results with respect to
R0follow directly from the fact that the curve κd(R) shifts to the right with an increase
in θ and a decrease in δ whereas κs(R) is independent of these parameters, and the fact
that κs(R) shifts to the right with an increase in ξ, 1 − ν, β and κd(R) is independent of
these parameters. The comparative statics results with respect to K0 and w0 then follow
from the firm optimality conditions, given the comparative statics with respect to R0

Note that Assumption 5 is also a necessary condition for the existence of a simple par-
tial insurance equilibrium.9 We now characterize, again analytically, the transition path
induced by an unexpected (transitory or permanent) change in productivity, starting
from a partial insurance steady state (R0, K0) and associated asset distribution deter-
mined by the optimal asset allocation in equation (47) and the wait time distribution φs
in equation (32).

5 Transitional Dynamics

5.1 The Thought Experiment

We now assume that starting from a stationary partial insurance equilibrium (i.e., start-
ing with an initial wealth distribution determined by a partial insurance stationary equi-
librium determined in the previous section with Assumption 5 in place), at the beginning
of period t = 1 the economy experiences a completely unexpected, zero probability shock
(a so-called MIT shock) that alters productivity from A0 to a new deterministic sequence
{At}∞t=1. There are no further surprises about productivity (or any other parameters
of the economy) thereafter; that is, aggregate productivity now satisfies Assumption 1,
part 2. The optimal household allocations and the aggregate law of motion for capital
are special cases of Propositions 1 and 2, respectively, and the latter now follows the
deterministic first-order nonlinear difference equation:

Kt+1 =

[
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt

= ŝYt + (1− δ̂)Kt (56)
9The violation of Assumption 5 does not exclude the possibility for the existence of a stationary equi-

librium with βR ≥ 1. The characterization of optimal consumption and asset allocations in Proposition 1
requires, in a stationary equilibrium, that βR < 1 and is no longer valid if βR ≥ 1, and thus the ensuing
aggregation analysis no longer applies.
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where we recall that the constants (ŝ, δ̂) are given by

ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ (57)

δ̂ = 1− (1− ν)β(1− δ) ≈ ν + ρ+ δ. (58)

This expression resembles the law of motion of capital in the classic Solow growth
model, but with a depreciation rate δ̂ that is larger (by ν+ρ) than the physical deprecia-
tion rate δ and a saving rate ŝ that is an explicit function of the structural parameters of
the model and depends negatively on ν + ρ and positively on the risk of income falling
to zero ξ. We discuss the relation to the Solow model, and the literature more broadly,
in Section 7.

Studying the special case of unexpected transitions is useful for three purposes. First,
it will allow us, in Subsection 5.2, to derive a sufficient condition purely on productivity
process such that the no-savings condition βRt+1 <

wt+1

wt
is satisfied for all periods along

the transition. Second, we show in Section 5.3 that (and explain why) the original steady
state allocation (chosen under the assumption by households that wages and interest
rates will never change) remains optimal in period 1, after the MIT shock has hit and
wages and interest rates undergo the unexpected transition. Third, there we will also
clarify why the aggregate transition induced by a change in productivity is independent
from whether this change was unanticipated (as in the MIT shock thought experiment)
or anticipated. This in turn suggests that the model with aggregate shocks in Section
6 remains analytically tractable and retains the same characteristics as the model with
unexpected MIT transitions.

5.2 Sufficient Conditions for βRt+1 <
wt+1

wt
along the Transition Path

Thus far, we have derived the dynamics of the capital stock in equation (40) under the
maintained assumption that the limited commitment constraint of households receiving
high income is always binding along the transition path. Equivalently, phrased in terms
of state-contingent asset accumulation, it was assumed that households have an implied
asset position of zero when starting the period with high idiosyncratic productivity. We
showed in Proposition 1 that such a contract satisfies the optimality conditions when
βRt+1 <

wt+1

wt
for all t ≥ 0. Intuitively, when interest rates are low and/or wages are

expected to be higher in the future than today, individuals have little incentive to save
for the contingency of high idiosyncratic labor productivity tomorrow. In this subsection,
we derive sufficient conditions that insure that βRt+1 <

wt+1

wt
for all t ≥ 0 after a positive

and after a negative productivity shock, respectively. Broadly speaking, the shock to total
factor productivityA cannot be too large in either direction. Furthermore, if depreciation
is 100%, then no further assumptions besides those already made to ensure the existence
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of partial insurance steady state from which the transition starts are necessary, as we
demonstrate next.

5.2.1 Full Depreciation

With full depreciation, δ = δ̂ = 1, the equilibrium law of motion for capital is given from
equation (56), with δ = 1 by

Kt+1 =

[
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ

]
A1−θ
t Kθ

t = ŝA1−θ
t Kθ

t (59)

as long as, along the transition βRt+1 <
wt+1

wt
< 1. Lemma 10 in Appendix A.3.3 shows

that with full depreciation Rt+1
wt
wt+1

= R0, for all t ≥ 0. But since under Assumption 5
there exists a stationary partial insurance equilibrium (with βR0 < 1) and by assumption
this is the starting point for the unexpected transition, along this transition βRt+1 <
wt+1

wt
< 1 is guaranteed by Assumption 5, independent of the sequence of productivity

levels.
Also note that in the limit, as idiosyncratic risk vanishes (ν and ξ converge to zero), the

saving rate ŝ in our model approaches that of the standard representative agent model
with log-utility and full depreciation s = βθ. Finally, with full depreciation the nonlinear
first order difference equation in (59) has a closed-form solution (since it implies that
the log of the capital stock obeys a linear first order difference equation which can easily
be solved in closed form). This immediately leads to the following proposition

Proposition 4. Let Assumption 5 be satisfied and suppose the economy is originally in a
partial insurance steady state (K0, R0, w0) and {(as,0, cs,0)}∞s=0 characterized in Proposition
3. Then the aggregate capital stock in period t of the transition induced by an unexpected
change in productivity after period 0 to the sequence {At}∞t=1 is determined as

Kt = exp

[
(1− θ)

[
t−1∑
τ=1

θt−1−τ logAτ

]
+

1− θt−1

1− θ
log ŝ+ θt−1 logK0

]
, (60)

the factor prices (Rt, wt) are given by the firm’s optimality conditions (14) and (15), and
individual household allocations {(as,t, cs,t)} are as stated in Proposition 1, given the dy-
namics of the capital stock Kt in (60).

Proof. Follows directly from taking logs on both sides of equation (59) and solving the
linear first order difference equation for log(Kt),

logKt+1 = log ŝ+ (1− θ) logAt + θ logKt

and then exponentiating. This delivers (60).
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With less than full depreciation, δ < 1, Assumption 5 is not sufficient to insure that
the no-savings condition βRt+1 <

wt+1

wt
is satisfied. For arbitrary sequences of productivity

it is difficult to establish general conditions purely in terms of the fundamentals of the
economy, but in the case of fully permanent shocks this is possible since for this case we
can establish that the capital stock evolves monotonically over time. To do so it is useful
to distinguish positive technology shocks (which induce positive wage growth along the
transition and temporarily elevated interest rates) from negative technology shocks (with
negative wage growth and depressed interest rates along the transition), since the two
cases differ in the restrictiveness of the assumptions needed to ensure that the no-savings
condition is satisfied.

5.2.2 Permanent Shocks

We first establish the monotone convergence of the capital stock following a permanent
shock to productivity.

Proposition 5 (Monotone Convergence of (Kt, Rt, wt)). Assume the economy is in a sta-
tionary equilibrium associated with aggregate productivity, A0 and associated capitalK0 at
time t = 0, and suppose at time t = 1, productivity unexpectedly and permanently changes
to A1 with A1 > A0. Furthermore, suppose βRt <

wt+1

wt
for all t ≥ 0 (Assumption 3). Then,

aggregate capital Kt and wages wt monotonically increase and converge to their new sta-
tionary equilibrium values, and the interest rate jumps up on impact and then converges
back monotonically to the old (and new) stationary equilibrium from above:

K0 = K1 < K2 < · · · < K∗ =
A1

A0

K0, (61)

w0 < w1 < w2 < · · · < w∗ =
A1

A0

w0, (62)

R0 < R1 > R2 > · · · > R∗ = R0. (63)

Symmetrically, following a permanent negative productivity shock At = A1 < A0 for all
t ≥ 1, the aggregate capital stock and wages monotonically decrease along the transition,
and the interest rate falls on impact before converges back to the old (and new) stationary
equilibrium from below:

K0 = K1 > K2 > · · · > K∗ =
A1

A0

K0, (64)

w0 > w1 > w2 > · · · > w∗ =
A1

A0

w0, (65)

R0 > R1 < R2 < · · · < R∗ = R0. (66)

Proof. See Appendix A.3.1
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Equipped with this result we can now give sufficient conditions, purely in terms of
fundamentals, for the condition βRt <

wt+1

wt
to be satisfied for all t. We first consider

the case of a positive productivity shock. In this case, the capital stock and thus wages
wt = (1 − θ)A1−θ

t Kθ
t are monotonically increasing over time, and so βRt+1 < 1 is a

sufficient condition for βRt+1 <
wt+1

wt
. Furthermore, from the previous proposition the

interest rate jumps up at t = 1 and then monotonically converges to the (old and new)
stationary equilibrium interest rate. Therefore, βR1 < 1 guarantees that βRt+1 < 1 and
thus βRt+1 <

wt+1

wt
for all t ≥ 0. The following proposition provides a sufficient condition

for this to be the case.

Proposition 6 (Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Positive Shock). Let

Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
After a permanent positive MIT productivity shock at t = 1 (At = A1 > A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 0 is satisfied if the shock is not too large, that is, if A1 ∈ [A0, Ā1) where

the threshold Ā1 satisfies

Ā1

A0

=

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

> 1. (67)

Proof. See Appendix A.3.2.

Intuitively, if A1/A0 > 1 is sufficiently small, the initial jump in the interest rate is not
too large, and we can guarantee βRt+1 < 1 along the transition path. This, coupled with
positive wage growth induced by the positive productivity shock insures that βRt+1 <
wt+1

wt
for all t ≥ 0 along the transition path, and high-productivity households have no

incentive to save along the transition, confirming the existence of a simple, no-savings
equilibrium .

The case of a negative technology shock is more challenging because wages are de-
clining along the transition (see the previous proposition), and thus high-productivity
individuals face stronger incentives to save in anticipation of lower labor income in the
future. We can nevertheless give a sufficient condition on the size of the productivity
decline that guarantees the no-savings condition be satisfied.

Proposition 7 (Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Negative Shock). Let

Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
After a permanent negative MIT productivity shock at t = 1 (At = A1 < A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 0 is satisfied if A1 ∈ (A′1, A0] holds, where the threshold satisfies

A′1/A0 =

1− ν + ν
1− (1− δ)β(1− ν)

βν(1− δ)
ξ(1− θ)− βθν(ξ + ν + 1

β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)
 1
θ−1

< 1.

(68)
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Proof. See Appendix A.3.4.

-

A1 A0 Ā1 A1

a potential reason to save︷ ︸︸ ︷ no reason to save︷ ︸︸ ︷ a potential reason to save︷ ︸︸ ︷Negative Wage Growth High Interest Rate R2

Figure 2: Thresholds for A1

Figure 2 illustrates Propositions 6 and 7 graphically. Note that the conditions stated
in these two propositions are sufficient but not necessary for the household limited com-
mitment constraint to be binding in the high income state.10 To summarize, Proposition
6 and 7 state that if the productivity shock is not too large, A1 ∈ (A′1, Ā1), the condition
on interest rate and wage growth, βRt+1 <

wt+1

wt
, is satisfied for all t ≥ 0.

In Appendix B.3.4 we generalize the results in this subsection to arbitrary monotone
deterministic and convergent sequences {At}∞t=1 with A0 < A1 ≤ A2 ≤ · · · or with A0 >

A1 ≥ A2 ≥ · · · with limt→∞At = A∗. The results are similar to the ones for permanent
shocks (but require a first-order approximation of the capital stock dynamics), in that
they require that the initial productivity shock A1 cannot be too large or too small.

5.3 MIT Shocks, Anticipated Shocks and Consumption on Impact

In Proposition 1 we provided a general characterization of the optimal consumption al-
location under the no-savings in the high-state condition. We now draw out one perhaps
unexpected implication of this general characterization in the context of MIT shocks:
despite the unexpected change in wages and interest rates starting in period t = 1,
the optimal consumption allocation of low-productivity individuals satisfies the standard
Euler equation even through the surprise, i.e., between period t = 0 and t = 1.

Corollary 2 (Consumption at the time of a shock). Consider an unexpected shock to pro-
ductivity at t = 1 and assume that Assumptions 2, 3, and 4 hold. Then consumption of
high-income agents (ch,t) is a constant fraction of their income, and consumption of low-
income agents (cs,t for s ≥ 1) satisfies the Euler equation between periods t = 0 and t = 1:

ch,1 =
1− (1− ν)β

1− (1− ν − ξ)β
zw1

cs,1 = βR1cs−1,0 for s ≥ 1. (69)
10Proposition 24 in Appendix B.3.1 shows a less tight condition on A1 in case of negative shocks. See

Appendix B.3.2 for numerical examples and Appendix B.3.3 for numerical comparative statics with respect
to permanent productivity shocks.
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Proof. Follows directly from the general characterization in Proposition 1. See Appendix
A.3.5 for detail.

The key to this result is that with log-utility, unconstrained households consume a
constant fraction of their assets cum-interest, see (22)

cs,1 := w1cs,1 = [1− β(1− ν)]R1as,1 ∀s ≥ 1,∀t (70)

Two observations are crucial here. First, current consumption (and assets chosen for to-
morrow) does not depend on future interest rates with log-utility.11. Second, the surprise
change in current (period 1) TFP does impact the marginal product of capital and thus
R1 (even though the capital stock in t = 1 is predetermined), and therefore consumption
cs,1 changes in period 1 relative to what the household had planned in the initial steady
state (cs,0), as equation (70) indicates (and even though as,1 is predetermined from the
previous period). But since the impact of R1 on consumption is proportional, it exactly
cancels out with the direct change in R1 in the Euler equation, and thus the adjusted
consumption level cs,1 continues to satisfy the Euler equation between period t = 0 and
t = 1.

In this section we have analyzed the transitional dynamics after an unanticipated
productivity shock (MIT shock) at t = 1, starting from the initial steady state. Finally,
note that the assumption that the TFP changes are completely unanticipated is irrelevant
for the transition dynamics. As we saw from equation (70), low-income agents consume
a constant fraction of their implied asset position regardless of future interest rates, and
high-income agents also consume a constant fraction of their labor income. Therefore,
aggregate consumption in the economy does not depend on future interest rates and
wages, and the law of motion of aggregate capital does not depend on these future prices
either.12 Thus the dynamics of the economy unfolds the same, regardless of whether
future productivity shocks are anticipated or unanticipated. It is important to note that
these results do not hold in our model if households have a CRRA utility function with
σ 6= 1; they also do not hold in the standard neoclassical growth model. We will discuss
each case in the Appendix B.3.5.

11We discuss the relation to the literature also exploiting log-utility to obtain analytical tractability in
heterogeneous-agent macro models in section 7

12As we see in equation (23), savings for the next period do not depend on future interest rates either:

at+1(a0, z
t+1, At+1; zt+1 = 0) =


β

1−(1−ν−ξ)β ζwt(A
t) if zt = ζ

βRt(A
t)at(a0, z

t, At) if zt = 0

With log utility, the effect of a higher return on assets on savings in a state with higher TFP (substitu-
tion effect) is completely offset by the lower marginal utility from consumption (income effect). Thus,
households save the same amount regardless of future aggregate productivity.
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Remark 1. In the case of unexpected shocks, the payoffs of the contingent claims unexpect-
edly change. Is that a problem? Note that there are no negative Arrow securities positions,
and for positive positions, the assets just pay surprisingly little or surprisingly much, fully
in line with the surprise in the marginal product of capital. But this might need further
thought, and will replace the discussion of intermediaries making losses or profits, since we
do not have them explicitly anymore.

6 Aggregate Shocks to Productivity

We now consider an economy with stochastic productivity growth, introducing aggregate
risk into the economy. Assume that the productivity process {At} is stochastic, following
a probability distribution π(At+1|At), which is independent of idiosyncratic shocks.13 In
Section 3, we have considered a general productivity process, where the probability of
At+1 may depend on the entire history of aggregate states At ≡ {A0, A1, · · · , At}. Under
the assumption of βRt+1 <

wt+1

wt
for all t and for all possible states (At, At+1), we have

derived the optimal allocation of households’ consumption and savings and the law of
motion of aggregate capital.

We now verify that under an assumption on fundamentals (exogenous parameters),
βRt+1(At+1) < wt+1(At+1)

wt(At)
holds for all t and (At, At+1). In Section 6.1, we specify a

productivity process with iid growth rates. Productivity growth can take two values,
At+1

At
∈ {1 − ε, 1 + ε}, with equal probability (see equation (1) in Assumption 1). With

this specification, we find a sufficient condition on ε (Assumption G) such that βRt+1 <
wt+1

wt
holds for all t and all (At, At+1). Proposition 9 shows that under Assumption 5

(assumption for a partial insurance stationary equilibrium), there always exists ε̄ > 0

such that Assumption G holds for all 0 ≤ ε < ε̄.

6.1 A Sufficient Condition for βRt+1 <
wt+1

wt
at all t ≥ 0 and At

We will derive a sufficient condition on ε for βRt+1 <
wt+1

wt
for all possible states. The idea

is the following. First, we express the condition (21) in Assumption 3, βRt+1(At+1) <
wt+1(At+1)
wt(At)

, as a function of K̃t := Kt
At

and At+1

At
. Given a value of K̃t, the condition (21)

is tighter for a smaller value of At+1

At
(Lemma 2, see also Figure 3). Besides, Rt+1(At+1)

is decreasing in K̃t, and wt+1(At+1)
wt(At)

is decreasing in K̃t.14 Therefore, we derive an upper
13At takes a positive real value, At ∈ R+, and the number of possible states in each period is finite.
14As seen in Figure 3, βRt+1

wt+1/wt
can be increasing or decreasing in K̃t. Because the argmax of βRt+1

wt+1/wt

with respect to K̃t can be K̃max
t or K̃min

t (or somewhere in between), we focus on a sufficient condition
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Figure 3: βRt+1

wt+1/wt
given K̃t and At+1

At

bound on ε ≥ 0 such that

βRt+1(At+1)
∣∣∣
K̃t=K̃min

t ,
At+1
At

=1−ε
<
wt+1(At+1)

wt(At)

∣∣∣
K̃t=K̃max

t ,
At+1
At

=1−ε
. (72)

Under such a condition on ε, βRt+1(At+1) < wt+1(At+1)
wt(At)

is satisfied for any sequence of
{At}t≥0 that follows a stochastic process (1). Note that although we derive the condition
on ε under a specific stochastic process (1), the same logic goes through if the number of
possible states of At+1 is finite with a bound on At+1 given by At+1 ∈ [(1−ε)At, (1+ε)At],
instead of two values At+1 ∈ {(1 − ε)At, (1 + ε)At}. Moreover, under Assumption G,
βRt+1(At+1) < wt+1(At+1)

wt(At)
holds for any possible states (At, At+1) regardless of the proba-

bility of each state. This implies that we may not need an iid assumption on productivity
growth rate.
on ε derived from equation (72). Note that βRt+1

wt+1/wt
is expressed as

βRt+1

wt+1/wt
=

β

[
θ
{

At
At+1

[
ŝ(K̃t)

θ + (1− δ̂)K̃t

]}θ−1
+ 1− δ

]
(
At+1

At

)1−θ [
ŝ(K̃t)θ−1 + 1− δ̂

]θ (71)

given the law of motion of capital (40).
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6.1.1 Lemmas

We state Lemmas that are useful to find a sufficient condition on ε.

Lemma 1. Define K̃t := Kt
At

. The law of motion of capital (40) is expressed as:

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ̂)K̃t

]
. (73)

The maximum value and the minimum value of Kt
At

are given by:

K̃max =

(
ŝ

δ̂ − ε

) 1
1−θ

and K̃min =

(
ŝ

δ̂ + ε

) 1
1−θ

(74)

Proof. See Appendix A.4.

Lemma 2.
1. The constraint βRt+1 <

wt+1

wt
is tighter at the time of negative shock (At+1

At
= 1− ε).

2. If K̃t = K̃min, K̃t+1 = At
At+1

(1 + ε)K̃min. If K̃t = K̃max, K̃t+1 = At
At+1

(1− ε)K̃max.
3. Suppose At+1

At
= 1− ε and K̃t ∈ [K̃min, K̃max]. Rt+1 is highest at K̃t = K̃min. wt+1

wt
is

lowest at K̃t = K̃max

Proof. See Appendix A.4.

We prove that K̃min < K̃t < K̃max implies K̃min < K̃t+1 < K̃max. This implies that
if the economy starts with aggregate capital satisfying K̃min < K̃0 < K̃max, all future
capital at t ≥ 1 satisfies K̃min < K̃t < K̃max.

Lemma 3. K̃min ≤ K̃t ≤ K̃max implies K̃min ≤ K̃t+1 ≤ K̃max

Proof. See Appendix A.4.

6.1.2 Propositions

We now state a condition on ε to guarantee βRt+1 <
wt+1

wt
for all K̃min < K̃t < K̃max and

At+1

At
.

Assumption G.

β

[
θ

(
1− ε
1 + ε

)1−θ
δ̂ + ε

ŝ
+ 1− δ

]
< 1− ε, (75)

where ŝ :=

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
and 1− δ̂ := (1− ν)β(1− δ).

Proposition 8. Suppose Assumption 2, 4, and 5 hold and the aggregate capital at t = 0

satisfies K̃min < K̃0 < K̃max. Under Assumption G,

βRt+1 <
wt+1

wt
for all t ≥ 0 with probability 1.
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Proof. See Appendix A.4.

The next proposition shows that the set of ε that satisfies condition (75) is non-empty
under Assumption 5.

Proposition 9. Suppose Assumption 5 holds. There exists ε̄ such that Assumption G holds
for all 0 ≤ ε < ε̄. Given such ε̄, 0 ≤ ε < ε̄ and K̃min < K̃0 < K̃max imply βRt+1 <
wt+1

wt
for all t ≥ 0 with probability 1.

Proof. See Appendix A.4.

The corollary below shows that if δ = 1, we have ε̄ in a closed form. Note also that if
δ = 1, we don’t need an assumption on ε as βRt+1 <

wt+1

wt
does not depend on {At}. (See

Section 5.2.1)

Corollary 3. Suppose Assumption 5 holds and capital fully depreciates (δ = 1). If 0 ≤ ε < ε̄,
where

ε̄ :=

(
ŝ
βθ

) 1
θ − 1(

ŝ
βθ

) 1
θ

+ 1

> 0, (76)

Assumption G is satisfied.

Proof. See Appendix A.4.

6.2 Quantitative Exploration

Corollary 3 shows that under full depreciation of capital (δ = 1), there exists an upper
bound on ε in closed form for Assumption G to hold. If δ < 1, we need to solve a
nonliner equation (75) to compute ε̄. Figure 4 illustrates the relationship between δ

and ε̄. As δ increases, Assumption G can be satisfied for larger ε. Assumption G is a
joint condition for parameters (β, ξ, ν, δ, θ, ε). Since the left hand side of equation (75)
is decreasing in ξ and increasing in ν (since ŝ is increasing in ξ and decreasing in ν,
δ̂ is increasing in ν), Assumption G becomes less tight as ξ increases and ν decreases.
Intuitively, if households are more likely to switch to a zero income state (higher ξ)
and stay unproductive for a long time (lower ν), they save more in a high-income state
through the insurance contract. Larger capital supply leads to lower interest rate in the
economy, so the condition βRt+1 <

wt+1

wt
is likely to be satisfied.

In Figure 5, the economy starts from a steady state at t = 0 with A0 = 1, and the
productivity follows stochastic process in equation (1). Under the parameters chosen
that satisfy Assumption G, βRt+1 is smaller than wt+1

wt
from t = 0 to t = 10, consistent

with Proposition 8.
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Figure 4: δ and ε̄

Figure 5: Path of a Stochastic Economy
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7 Comparison to the Literature

We obtain a closed form for the transitional dynamics of aggregate capital. This is a sur-
prising result given that a neoclassical growth model without a commitment constraint
does not have a closed-form solution unless full depreciation is assumed. We discuss why
it is the case.

We have four findings in this section. First, we consider a limited-commitment model
in which the transition probabilities of income shocks approach zero: ξ → 0 and ν → 0.
With full depreciation of capital (δ = 1), the law of motion of capital in this economy
is the same as a standard neoclassical growth model. This is not the case with partial
depreciation of capital (0 < δ < 1). Second, we consider a modified neoclassical growth
model in which workers earn labor income and capital owners earn capital income. Then,
the law of motion of capital is the same between the modified neoclassical growth model
and a limited-commitment model with ξ → 0 and ν → 0. We relate this result with
Moll (2014). Third, we derive the aggregate capital at arbitrary time t, Kt, in a closed
form using a law of motion of capital for a limited commitment model with δ = 1. We
haven’t found a closed form if capital partially depreciates (0 < δ < 1), in contrast to a
continuous time model with a constant saving rate discussed in Jones (2000). Finally, we
show that a limited-commitment model converges to a steady state faster than a Solow
growth model.

7.1 Comparison with a Standard Neoclassical Growth Model

The transitional dynamics of aggregate capital in an economy with limited commitment
is characterized by equation (40):

Kt+1 =
ξβ

1− (1− ν − ξ)β
(1− θ)A1−θ

t Kθ
t + (1− ν)β

[
θA1−θ

t Kθ
t + (1− δ)Kt

]
.

We consider a limit where idiosyncratic income states do not change over time, ξ → 0

and ν → 0. We see that under full depreciation of capital (δ = 1), the law of motion of
capital is the same as a standard neoclassical growth model.
Proposition 10. In a limited-commitment model, as ξ → 0 and ν → 0, the transitional
dynamics is described by two equations:

Kt+1 = β
[
θA1−θ

t Kθ
t + (1− δ)Kt

]
, (77)

K∗ = A

[
βθ

1− β(1− δ)

] 1
1−θ

. (78)

Under full depreciation of capital (δ = 1), the steady-state capital stock and the law of
motion of capital is the same as a standard neoclassical growth model with full depreciation
of capital and a log utility function.
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Proof. See Appendix A.

Note that a standard neoclassical growth model does not have a closed form for a law
of motion of capital if 0 < δ < 1. Therefore, the law of motion is not the same between
the two models if capital partially depreciates.

7.2 A Modified Neoclassical Growth Model

In general, the law of motion of capital in the standard neoclassical growth model does
not have a closed-form solution. A reason is that a representative agent has two sources
of income (wage and capital income). Thus, she wouldn’t consume a constant fraction of
capital income. In a limited-commitment model, however, high-income agents earn wage
income, and low(zero)-income agents receive insurance payment as an annuity value of
their asset. Under the maintained assumption (Assumption 5 and βRt+1 <

wt+1

wt
), high-

income agents consume a constant fraction of labor income, ch = 1−(1−ν)β
1−(1−ν−ξ)βwtz, and low-

income agents consume a constant fraction of capital income, cs,t = [1− (1− ν)β]Rt as,t.
This property gives rise to a law of motion of capital in a closed form.

As an illustration, we describe a modified neoclassical growth economy which we can
think of as a counterpart of the limited commitment model with ξ → 0 and ν → 0. There
are two types of agents: a worker and a capital owner. A worker earns labor income and
consumes all of the income each period. A capital owner receives capital income and
consumes a 1−β fraction of her income, following the property of a log utility function.
Therefore, consumption functions are given by:

Cworker = wt, (79)
Cowner = (1− β)RtKt. (80)

The market clearing condition implies that:

Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt − Cworker − Cowner

= A1−θ
t Kθ

t + (1− δ)Kt − (1− θ)A1−θ
t Kθ

t − (1− β)[θA1−θ
t Kθ

t + (1− δ)Kt]

= βθA1−θ
t Kθ

t + β(1− δ)Kt (81)

This coincides with (77). Thus, a reason for obtaining a closed-form solution for the law
of motion of capital in the limited commitment model is the separation between wage
income and capital income.
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7.2.1 Comparison with Moll (2014)

Online Appendix to Moll (2014) discusses why his almost standard neoclassical growth
model has a constant saving rate as in a Solow model.15 It is a consequence of three
assumptions: (i) the separation of agents into workers and capitalists, (ii) that workers
cannot save, (iii) that capitalist’s utility is logarithmic. These assumptions imply that
capitalists face individual constant returns and that capitalists save at a constant rate.

7.2.2 Constant Saving Rate in Our Model

Ourmodel has a similar structure as inMoll (2014). High-income agents have zero assets
at the beginning of the period if βRt+1 <

wt+1

wt
for all t and consume a constant fraction

of labor income. Low-income agents have zero labor income and face a constant return
on asset (Rt). The optimal insurance contract implicitly solves the following problem on
behalf of low-income agents:

max
∞∑
u=0

[(1− ν)β]u log(cs+u,t+u)

s.t. (1− ν)as+u+1,t+u+1 = Rtas+u,t+u − cs+u,t+u.

The low-income agents switch to a high-income state with probability ν and renew the
contract. Hence, the effective discount factor is (1−ν)β. If she switches to the high state,
her asset in the next period is zero. Therefore, she needs to save (1 − ν) as+1,t+1 today
to have as+1,t+1 tomorrow in a low-income state. Because of the log-utility function, the
optimal decision rules takes:

(1− ν)as+1,t+1 = (1− ν)βRtas,t. (82)

After aggregating the savings by high-income agents and by low-income agents, we have:

Kt+1 =
ξβ

1− (1− ν − ξ)β
wt + (1− ν)βRtKt,

or equivalently,

Kt+1 = ŝYt + (1− δ̂)Kt,

where ŝ =
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ,

δ̂ = 1− (1− ν)β(1− δ).

Therefore, the model with limited commitment has a constant saving rate as in a Solow
model. Three properties play a role here: (i) the separation between high-income agents

15The law of motion of capital is given by kt+1 = αβAkαt + β(1 − δ)kt. The note is available on his
website: https://benjaminmoll.com/wp-content/uploads/2019/07/capitalists-workers.pdf
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and low-income agents, (ii) that high-income agents have zero capital and consume a
constant fraction of their labor income, (iii) that low-income agents have zero labor
income and consume a constant fraction of their capital income.

7.3 Aggregate Capital in a Closed Form at time t

With full depreciation of capital, we derive aggregate capital at any time t along the
transition in a closed form. By substituting δ = 1 into (40), we have:

Kt+1 = ŝA1−θ
t Kθ

t ,

where ŝ =
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ.

By taking a log and substituting At = A1 for t ≥ 1,

logKt+1 = θ logKt + log(ŝA1−θ
1 ) for t ≥ 1

This is a first-order difference equation and has a closed-form solution:

logKt = θt−1 logK1 + (1− θt−1)
log(ŝA1−θ

1 )

1− θ
for t ≥ 1

whereK1 = K0 is predetermined in a stationary equilibrium. We haven’t found a closed-
form solution for general δ 6= 1. This is in contrast to a continuous time model with a
constant saving rate.16

7.4 Speeds of Convergence

As discussed in Section ??, the speed of convergence is increasing in ν (i.e., the prob-
ability from low-income state to high-income state). In Figure 6, aggregate capital in
a limited-commitment model converges to a new stationary equilibrium faster than the
neoclassical growth model if ν = 0.3 and ξ = 0.7 but slower than the neoclassical growth

16Jones (2000) presents the closed-form solution to a continuous-time Solow model. Under a Cobb-
Douglas production function and a law of motion of capital:

yt = kαt ,

k̇t = skαt − δkt,

the capital at time t is given by:

kt =
[s
δ

(
1− e−(1−α)δt

)
+ k1−α0 e−(1−α)δt

] 1
1−α

. (83)

The note is available from his website: https://web.stanford.edu/~chadj/closedform.pdf
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model if ν = ξ = 0.1.17 The numerical result shows that ξ does not affect the speed of
convergence.18

Compared to a Solow growth model with a save saving rate ŝ and a depreciation rate
δ, a limited-commitment model converges faster. This is because the effective deprecia-
tion rate in a limited-commitmentmodel, δ̂, is higher (since 1−δ̂ = (1−ν)β(1−δ) < 1−δ),
and thus the capital persists less than a Solow model. In Figure 6, ŝ is the same as the
limited commitment-model with ξ = ν = 0.2.

In Section C.5.2, we linearly approximate the transitional dynamics and derive the
aggregate capital at time t. A limited-commitment model has a constant saving rate, ŝ,
with an effective depreciation rate δ̂. The capital at t is approximated by:

Kt ≈
[
1− (1− θ)δ̂

]t−1

(K1 −K∗) +K∗, (396)
where δ̂ = 1− (1− ν)β(1− δ) > δ

This equation shows that the speed of convergence is given by (1 − θ)δ̂. That is, the
aggregate capital converges to the new steady state, K∗, faster if (1− θ)δ̂ is closer to 1.
The speed of convergence depends on the share of capital in a Cobb-Douglas production
function, θ, and the effective depreciation rate, δ̂, but not on the saving rate.19 Since δ̂ >
δ, a limited-commitment model converges faster than a Solow growth model. (See Barro
and Sala-i-Martin (2003) for a discussion about speeds of convergence in a continuous-
time model.)

8 Application 1: Inequality over the Cycle

We have shown that transitional dynamics after a productivity shock are described in
a closed form and that it coincides with the dynamics of the economy with aggregate
risk when the sample path of aggregate productivity displays a one-time positive (or
negative) shock before returning back to its unconditional mean. [This discussion has
to be made more precise]. We now assess the impact of such a shock on consumption-
and wealth inequality, thereby analyzing how inequality evolves over the business cycle

17We normalize the initial capital, K0, to one in order to compare the speed of convergence. The level
of capital in a stationary equilibrium depends on ν and ξ.

18The figure is created by a Julia code “Neoclassical.jl”.
19Equation (??) does not use a linear approximation, and the growth rate of capital depends on δ̂ and θ

but not on the saving rate:

gt,t+1 :=
Kt+1 −Kt

Kt
=

[(
K∗

Kt

)1−θ

− 1

]
[1− (1− ν)β(1− δ)] .

31



Figure 6: Speed of Convergence

in our model. [For the open question section: can we deal with aggregate TFP following
a standard AR(1) process as in the standard RBC literature, or are iid growth shocks
required?]

Five findings are discussed in this section: (i) A deflated consumption distribution in
the long run does not depend on the level of aggregate productivity, At; (ii) With full
depreciation of capital (δ = 1), the deflated consumption distribution is time-invariant
regardless of aggregate shocks; (iii) With partial depreciation (δ < 1), the consumption
inequality expands at the time of a positive productivity shock; (iv) In case of a perma-
nent productivity shock at t = 1, the consumption gaps between high-income agents
and low-income agents expand at t = 1, shrink from t = 2 onwards, and overshoot the
original gaps along the transition for some parameter values. A sufficient condition for
the overshooting phenomenon is also discussed; (v) We have a symmetric result for a
negative productivity shock.

8.1 Consumption Distribution in the Long Run

We saw in Corollary 1 that a consumption distribution follows a simple structure (33),
which gives the following deflated consumption, cs,t = cs,t

wt
,

cs,t(A
t) =

c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ if s = 0

βRt(A
t)wt−1(At−1)

wt(At)
cs−1,t−1(At−1) if s ≥ 1

(84)

Remember that s is the number of periods in a low-income state since the last high
income state. In a stationary equilibrium, the consumption distribution is characterized
by βR∗, which does not depend on productivity (At). This implies that after aggregate
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shocks have subsided, the consumption distribution will be back to the initial stationary
distribution in the long run.
Proposition 11 (Consumption Distribution in the Long Run). Suppose that Assumptions
2, 3, and 4 hold and that an economy is in a steady state at t = 0 with productivity
A0. Suppose also that after a productivity shock, aggregate productivity settles down at
A1. Then, the deflated consumption distribution in the long run is the same as the initial
distribution:

c∗s = (βR∗)sc0 for s = 0, 1, 2, · · · ,

where the steady-state interest rate, R∗, does not depend on productivity A.

Proof. See Appendix A.6.

8.2 Consumption Distribution with δ = 1

We consider a case with full depreciation of capital, δ = 1. In this case, the deflated
consumption distribution is constant over the cycle.
Proposition 12. Suppose Assumptions 2, 3, and 4 hold. Suppose that an economy is in a
stationary equilibrium at t = 0 with a deflated consumption distribution {c∗s}s≥0. With full
depreciation of capital (δ = 1), the deflated consumption distribution is time-invariant for
any sequence of {At}t≥0:

cs,t(A
t) = c∗s for any s ≥ 0 at allt ≥ 0 and At. (85)

Proof. See Appendix A.6.

8.3 Consumption Inequality after a Positive Shock with δ < 1

We analyze the consumption inequality over the transitional dynamics after anMIT shock
at t = 1. As discussed in Section ??, it does not matter whether a productivity shock
is anticipated or unanticipated. Therefore, the same result goes through in the case
of a stochastic economy with a particular realization of productivity shocks {At}t≥0 =

(A0, A1, · · · , A1, · · · ).

8.3.1 Consumption Inequality on Impact (t=1)

The deflated consumption of low-income agents declines at the time of a positive shock
(t = 1) if capital partially depreciates (δ < 1), whereas the deflated consumption of
high-income agents is constant over time. Therefore, the inequality expands when an
economy faces a positive productivity shock.
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Proposition 13. Consider an economy in a stationary equilibrium at t = 0 and a positive
productivity shock at t = 1 (A1 > A0), where βRt+1 <

wt+1

wt
for all t ≥ 0. Under 0 < δ < 1

and 0 < θ < 1, the degree of inequality rises at the time of a shock (t = 1) in the sense that
the consumption of all low-income agents (s = 1, 2, · · · ) declines relative to high-income
agents:

cs,1 < cs,0, (86)

while c0,t = c0 :=
1− (1− ν)β

1− (1− ν − ξ)β
ζ for all t ≥ 0.

Proof. See Appendix A.6.

8.3.2 Consumption Inequality after t=2

From time t = 2 onwards, aggregate capital adjusts, following the law of motion of
capital (40). Given a sequence of {wt, Rt}t≥0, consumption gaps between high-income
agents and low-income agents evolve over time.

Because low-income agents (s ≥ 1) earn zero labor income and consume a fraction
of savings made in the last high-income state, consumption gaps depend crucially on
whether their last high income happened before or after the productivity shock. The
low-income agents with s ≥ t haven’t experienced high income after the shock, and
their wages in the last high-income state are given by w0. On the other hand, the low-
income agents with s < t have experienced high income after the shock, and wages in
the last high-income state are wt−s with wt−s > w0. With this intuition in mind, the
consumption gap is characterized as follows.

Proposition 14. Suppose an economy is in a stationary equilibrium at t = 0, and a produc-
tivity shock is realized at t = 1. Suppose Assumption 3 holds. The evolution of consumption
gap between high-income and low-income agents relative to the stady state is described by:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
for all s ≥ 1 if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
if s ≥ t and t ≥ 2∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
if s < t and t ≥ 2

(87)

Assume 0 < δ < 1. Then, the consumption gap expands at time 1, since log
(
w1

w0

R0

R1

)
>

0. From time 1 until time s ≥ 2, the consumption gap continues to be higher than the
stationary equilibrium if log

(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
> 0. From time s+1 onwards,

the consumption gap is smaller than the stationary equilibrium if
∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
<

0.
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Proof. See Appendix A.6.

Figure 7 shows the evolution of consumption gaps. The gap is determined by three
factors: (i) wage at time t compared to time 0 benefits high-income agents, which ex-
pands the consumption gap; (ii) wage at time t − s compared to time 0 benefits s-th
low-income agents; and (iii) higher interest rate from time t − s + 1 to time t benefits
s-th low-income agents because of the higher return on savings.

This decomposition facilitates Figure 8. Because wage increases monotonically after
the positive productivity shock, the wage effect: log

(
wt
w0

)
− log

(
wt−s
w0

)
= log

(
wt
wt−s

)
ex-

pands the consumption gap. On the other hand, because interest rate is higher than the
stationary equilibrium along the transition path, the interest rate effect:∑t

u=t−s+1 log
(
Ru
R0

)
shrinks the consumption gap. The overall impact depends on the relative magnitude of
the two effects.

In Figure 7, the consumption gap starts to shrink at time t = 2 and overshoots the
original gap before converging to a new stationary equilibrium. In Proposition 19 in
Appendix A.6, we derive a sufficient condition for the overshooting phenomenon in terms
of {Rt, wt}. The evolution of the key term, wt+1

wt
R0

Rt+1
, in Proposition 19 is expressed in

terms of capital in Proposition 20.

8.4 Consumption Inequality after a Negative Shock

The evolution of the deflated consumption distribution is symmetric for a permanent neg-
ative productivity shock. The symmetric results are stated in Corollaries 6–8 in Appendix
A.6.

There are two differences between a positive shock and a negative shock. The first
difference is in sufficient conditions for βRt+1 <

wt+1

wt
for all t ≥ 1. After a positive shock,

βRt+1 < 1 is sufficient since wages are increasing along the transition path. After a
negative shock, agents may have an incentive to save even under βRt+1 < 1, as wages
are declining over time. The sufficient condition (138) is derived in Appendix A.3.3.

Second, low-income agents may experience higher consumption at the time of a neg-
ative shock than high-income agents. This is because high-income agents unexpectedly
suffer from lower wages due to the shock, and the decline in wages is larger in magnitude
than the decline in interest rates at time t = 1 if 0 < δ < 1.

9 Application 2: Asset Pricing

We examine asset pricing in the economy with aggregate shocks. The risk-free rate and
the risk premium in the limited-commitment model and the representative agent model
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Figure 7: Transition of the Consumption Distribution

Figure 8: Decomposition of the Consumption Gap
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are compared. We examine a conjecture that the presence of idiosyncratic shocks with a
limited-commitment constraint lowers the return on risk-free assets but does not impact
the risk premium. (cf. Krueger and Lustig, 2010)

In Section 9.1, we derive the risk-free rate and the risk premium as a function of
interest rates and aggregate consumption in the two models. In Section 9.2, we show
in an economy with full depreciation of capital (δ = 1), the limited-commitment model
has a lower risk-free rate, but the risk premium is the same as the representative-agent
model. In Section 9.3, we discuss the intuition and why the same conclusion would not
follow in an economy with δ 6= 1, while providing a result in an endowment economy.

9.1 The Risk-Free rate and the Risk Premium in the Two Models

We derive the price of risk-free bonds qB(At) and the risk premium 1 + λt(A
t), defined

as the ratio of the expected return on risky assets and the risk-free rate, in the limited-
commitment model (Lemma 4) and in the representative-agent model (Lemma 5).

Lemma 4. In the limited commitment model, the price of risk-free bonds and the risk pre-
mium at aggregate state At is given by:

qB,LCt (At) = Et
[

1

Rt+1(At+1)

]
(88)

1 + λLCt (At) :=
Et[Rt+1(At+1)]

Et[1/qB(At)]
= Et[Rt+1(At+1)] Et

[
1

Rt+1(At+1)

]
> 1. (89)

Et[·] denotes the expectation conditional on At, Et[·] := E[·|At]

Proof. See Appendix A.7.1.

Lemma 5. In the representative agent model, the price of risk-free bonds and the risk pre-
mium at aggregate state At is given by:

qB,Rept (At) = Et
[
β

Ct(A
t)

Ct+1(At+1)

]
(90)

1 + λRept (At) :=
Et[Rt+1(At+1)]

Et[1/qB(At)]
= Et[Rt+1(At+1)] Et

[
β

Ct(A
t)

Ct+1(At+1)

]
. (91)

Proof. See Appendix A.7.1.

9.2 Economy with Full Depreciation of Capital (δ = 1)

We analyze the case with full depreciation of capital (δ = 1). In this case, both the
limited-commitment economy and the representative agent economy have a law of mo-
tion of capital in closed form, which allows us to derive the risk-free rate and the risk
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Table 1: Asset Pricing in the Two Economies with δ = 1

LC Rep
Low of Motion KLC

t+1 = ŝLCA1−θ
t Kθ

t > KRep
t+1 = βθA1−θ

t Kθ
t

Interest Rate RLC
t+1 = θ

(
KLC
t+1

At+1

)θ−1

< RRep
t+1 = θ

(
KRep
t+1

At+1

)θ−1

Risk-Free Rate
(

1
qB(At)

)
1

Et[1/RLCt+1(At+1)]
< 1

Et[1/RRept+1 (At+1)]

Risk Premium
(

Et[Rt+1]
1/qB(At)

)
Et
[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
= Et

[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
With δ = 1, Assumption 5, θ

(1−θ)( 1
β
−1+δ)

< ξ

ν( 1
β
−1+ξ+ν)

, is equivalent to βθ <

ŝLC
(

:= ξβ
1−(1−ν−ξ)β (1− θ) + (1− ν)βθ

)
. Assumption 5 and δ = 1 implies

βR∗LC < 1 and βRLC
t+1(At+1) <

wLCt+1(At+1)

wLCt (At)
for any (t, At, At+1). Kt is given by:

logKt = (1 + θ+ · · ·+ θt−2) log s+ (1− θ)
[∑t−1

τ=1 θ
τ−1 logAt−τ

]
+ θt−1 logK0,

where s ∈ {ŝLC , sRep := βθ}.

premium explicitly. We show that the limited-commitment model has a lower risk-free
rate, but the risk premium is the same as in the representative agent model.

Proposition 15. Consider an economy with full depreciation of capital δ = 1. Given the
same amount of aggregate capital Kt, the risk-free rate, which is the inverse of the price
of risk-free bonds, is lower in the limited-commitment model than a representative-agent
model:

1

qB,LCt (At)
<

1

qB,Rept (At)
for all At. (92)

The risk premium is the same in the two models and is given by:

1 + λt = Et[A1−θ
t+1 ]Et

[
1

A1−θ
t+1

]
> 1. (93)

If the productivity growth rate At+1

At
follows an iid process, the risk premium 1+λt is constant

over time.

Proof. See Appendix A.7.2.

Table 1 summarizes the results in this subsection. The limited-commitment model
has a higher saving rate and hence a lower interest rate. However, since the interest
rates move proportionally in the two models, the risk premium is the same. Appendix
A.7.2 shows that the limited-commitment model accumulates more capital than the rep-
resentative agent model.
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9.3 Intuition: Different Risk Premia if δ 6= 1

We have seen that the two models (Rep and LC) have the same risk premium in the
economy with δ = 1. We provide intuition why it is the case and why it will not go
through in an economy with δ 6= 1. Detailed discussions can be found in Appendix
A.7.4.

9.3.1 Endowment Economy

To help understand intuition, we provide the result in an endowment economy. In this
economy, the aggregate consumption {Ct(At)}t,At is exogenous, and the interest rate is
proportional to aggregate shocks. Then, the risk premium is the same in the two models.
The details are in Appendix A.7.3.

Proposition 16. Consider an endowment economy with exogenous aggregate endowment
{Ct(At)}t,At. Lucas tree yields α fraction of aggregate endowment at all (t + 1, At+1) and
is priced at qLTt (At) at state At. Assume that parameters satisfy:

α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) , (94)

so that Assumption 3 is satisfied. The risk-free rate, which is the inverse of the price of
risk-free bonds, is lower in the limited-commitment model:

1

qB,LCt (At)
<

1

qB,Rept (At)
for all At. (95)

The risk premium is the same in the two models and is given by:

1 + λt = Et[Ct+1(At+1)]Et
[

1

Ct+1(At+1)

]
> 1 (96)

If the growth rate of exogenous consumption Ct+1

Ct
follows an iid process, the risk premium

1 + λt is constant over time.

Proof. See Appendix A.7.3.

9.3.2 Multiplicative Stochastic Discount Factors

In Krueger and Lustig (2010),20 a key property is that the stochastic discount factors
in the two models differ only by a non-random multiplicative term. In our case, the
stochastic discount factor β ct

ct+1
in the twomodels is proportional to Ct

Ct+1
or 1

A1−θ
t+1K

θ−1
t+1

in the
20They show the same risk premium between a representative agent model and an Arrow model with

uninsurable idiosyncratic risks in an endowment economy.
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endowment economy or in the production economy with δ = 1, respectively. However,
this is not the case in a production economy with δ 6= 1. In fact, there is no closed-form
solution to aggregate consumption Ct+1 in the representative agent economy.

Proposition 17. Consider the representative agent model and the limited commitment
model with aggregate shocks. Exogenous shocks, {At}t≥0, follow a common stochastic pro-
cess with probability of At+1 given by π(At+1|At) that potentially depends on the entire
history At = (A0, A1, · · · , At). In an endowment economy, the total resources available in
the economy, denoted by Υt, is exogenous and depends only on At. In a production economy,
Υt is the sum of produced output, Kθ

tA
1−θ
t , and undepreciated capital, (1− δ)Kt, where Kt

depends on the history of aggregate shocks At−1 and the initial capital K0. Thus, we denote
Υt as a function of At.

Υt(A
t) =

Ct(At) in an endowment economy

Kθ
tA

1−θ
t + (1− δ)Kt in a production economy

(97)

A stochastic discount factor mt,t+1(At+1) satisfies:

Et
[
mt,t+1(At+1)Rj

t,1(At+1)
]

= 1 (98)

for any asset j with one-period return Rj
t,1(At+1). In our setup with logarithmic utility, the

stochastic discount factor is given by:

mt,t+1(At+1) = β
ct
ct+1

(99)

where ct is the consumption of unconstrained agents (representative households in the Rep
model or low-income households in the LC model). If unconstrained agents consume a non-
random fraction (determined at t) of total resources, the stochastic discount factor is pro-
portional to Υt

Υt+1
and satisfies:

mt,t+1(At+1) := β
ct
ct+1

= γt
Υt(A

t)

Υt+1(At+1)
, (100)

where non-random variable γt is potentially time-varying but does not depend on At+1.
First, in the endowment economy and the production economy with δ = 1, equation

(100) is satisfied in both models.
Second, in the endowment economy and the production economy with δ = 1, Υt

Υt+1
is

proportional between the two models, meaning there is a non-random variable γ′t satisfying:

ΥLC
t (At)

ΥLC
t+1(At+1)

= γ′t
ΥRep
t (At)

ΥRep
t+1(At+1)

, (101)

where γ′t = 1 in the endowment economy.
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Then, (100) and (101) imply that mLC
t,t+1

m
Rep
t,t+1

is non-random at t, meaning there exists an-
other non-random variable γ′′t that does not depend on At+1 and satisfies:

mLC
t,t+1(At+1)

mRep
t,t+1(At+1)

= γ′′t

(
:= γ′t

γLC
t

γRep
t

)
(102)

In this case, the two models have the same risk premium.

Proof. See Appendix A.7.4.

If the two models do not have multiplicative stochastic discount factors, i.e., γ′′t in
equation (102) depends on At+1, then the risk premia are generally different.21

In the production economy with δ 6= 1, the risk premia are generally different be-
tween the two models. This is because: (a) consumption of unconstrained agents is not
proportional to total resources in the economy due to a non-constant saving rate. Thus,
(100) does not hold; (b) total resources are not proportional to aggregate shocks (Ct(At)
or A1−θ

t ) due to undepreciated capital. Hence, (101) does not hold; (c) the interest rate
is not proportional to aggregate shocks (Ct(At) or A1−θ

t ) due to undepreciated capital.
We can say that the fundamental reason is (b): non-proportional total resources in the
economy so that (a) agents do not have a constant saving rate and that (c) the interest
rate depends on aggregate capital.

10 Conclusion

21To be more precise, γ′′t needs to be mean independent of At+1, i.e., Et+1[γ′′t ] = Et[γ′′t ], to have the
same risk premium. Denote mLC

t,t+1 = γ′′t m
Rep
t,t+1 and RLCt+1 = γ̃tR

Rep
t+1 . In the endowment economy and

the production economy with δ = 1, both γ′′t and γ̃t are mean independent of At+1. Therefore, the risk
premium satisfies:

1 + λLCt =
Et[RLCt+1]Et[mLC

t,t+1]

Et[RLCt+1m
LC
t,t+1]

=
Et[γ̃t]Et[RRep

t+1]Et[γ′′t ]Et[mRep
t,t+1]

Et[γ̃t]Et[γ′′t ]Et[RRep
t+1m

Rep
t,t+1]

= 1 + λRept , (103)

where the second equality utilizes the law of iterated expectations. (e.g., Et[γ′′t m
Rep
t,t+1] =

Et[Et+1[γ′′t m
Rep
t,t+1]] = Et[Et+1[γ′′t ]mRep

t,t+1] = Et[γ′′t ]Et[mRep
t,t+1])
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11 Open Questions and Concerns

11.1 Open questions discussed by Yoshiki and Dirk

1. Uniqueness of the optimal contract

• Given the sequence of prices {wt(At), Rt(A
t)}t≥0,At that satisfies Assumption

3 and the Arrow security price with Assumption 2 (and under the initial con-
dition 4), is the optimal choice of the households unique?
We want to show uniqueness of the optimal choice by arguing that both
the Kuhn-Tucker conditions and the TVC are necessary, and that the pro-
posed allocation is the only allocation satisfying these conditions. See
Appendix B.1.

• Is the competitive equilibrium unique given the assumptions on parameters
(Assumption 5 and Assumption G)?

2. In Section 8.2, we show that consumption distribution is constant over the cycle if
δ = 1. Does this hold in the Bewley model with δ = 1?

11.2 Comments and Concerns from the presentation

1. When making assumption on q(At+1|At) = π(At+1|At) need to give intuition imme-
diately why this is true, perhaps quickly arguing that it is true in the representative
agent model

→ The price of interest rate strip that pays Rt+1(At+1) at At+1 (and zero in other
aggregate states) is given by:

q(At+1|At) = β
ct(A

t)

ct+1(At+1)
π(At+1|At)Rt+1(At+1), (104)

where ct(At) is consumption of unconstrained agents. In the optimal alloca-
tion in Proposition 1, households trade assets only for a low-income state (the
limited-commitment constraint binds in a high-income state). Consumption
in a low-income state satisfies:

β
ct(A

t)

ct+1(At+1; zt+1 = 0)
=

1

Rt+1(At+1)
(105)

The two equations give:

q(At+1|At) = π(At+1|At). (106)
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Therefore, the conjectured price of the interest rate strips will be supported
in an equilibrium.
I misunderstood (I’m sorry) about the price in the complete-market/rep-agent
model. The Euler equation in the rep-agent model implies:

1 = Et
[
β

ct(A
t)

ct+1(At+1)
Rt+1(At+1)

]
, (107)

but (105) does not hold state-by-state unless δ = 1.22 Therefore, (106) is not
true in the rep-agent model.

2. Related, so not call these assets Arrow securities, but immediately relate them to
Arrow securities (I think we do so in the paper in an extensive footnote).

3. Clearer discussion on the relation to the Solow model. What is the right notion of
the saving rate in that model, what is used in the literature? Saving out of net or
gross (including nondepreciated) output.

→ The standard Solow model is:

Kt+1 = sYt + (1− δ)Kt, (108)

meaning the constant saving rate out of the net output. On the other hand,
the law of motion in the limited-commitment model is:

Kt+1(At) =

[
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ

]
A1−θ
t Kt(A

t−1)θ + (1− ν)β(1− δ)Kt(A
t−1)

= ŝA1−θ
t Kt(A

t−1)θ + (1− δ̂)Kt(A
t−1).

Here, low-income agents save a constant fraction of their asset income (at+1 =

βRtat), where the return on assets includes the return from undepreciated
capital (Rt = θA1−θ

t Kθ−1
t + 1− δ).

4. Is the direction of themovement of the Lorenz curve (less inequality after a negative
technology shock) a theoretical result that we can prove?

→ Proposition 13 states that consumption of all low-income agents declines rel-
ative to high-income agents at the time of a positive productivity shock (if

22If δ = 1, CRept = (1− βθ)A1−θ
t Kθ

t , KRep
t+1 = βθA1−θ

t Kθ
t . This implies:

β
ct(A

t)

ct+1(At+1)
= β

A1−θ
t Kθ

t

A1−θ
t+1K

θ
t+1

=
1

θA1−θ
t+1K

θ−1
t+1

=
1

Rt+1(At+1)
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δ < 1). Consumption of all low-income agents move proportionally, since
ct = [1− (1− ν)β]Rtat and at is pre-determined at t− 1 (equation 23).

5. MIT shock versus full stochastic dynamics: can we use the model’s analytical solu-
tion to show whether it makes a big difference here whether we have a sequence of
MIT shocks versus a sequence of realizations of the aggregate shocks in the model
with aggregate shocks

6. Do our results generalize to more general aggregate shock processes (i.e., what
depends on the aggregate shock process being a two state iid growth process and
what does not?)

→ I think this generalization is promising. Since we have checked the most ex-
treme case (infinitely many negative shocks followed by a positive shock, and
vice versa), we should be able to allow any magnitude of shocks bounded by
1 − ε and 1 + ε: At+1

At
∈ [1 − ε, 1 + ε] as well as any (non-iid) probability for

each aggregate state 0 ≤ π(At+1|At) ≤ 1 for all At+1 ∈ [At(1− ε), At(1 + ε)].

7. More general results with respect to asset pricing away from the δ = 1 case. For δ <
1, is equity premium smaller than than in the representative agent model? Because
then the asset pricers (the low productivity, high wealth agents) face income that
is less risky than aggregate income because the depreciation bit is not hit by the
aggregate productivity shock.

→ We need to be clever to prove a conjecture that the risk-free rate and the
risk premium are lower in the limited commitment model, as we don’t have a
closed form of the law of motion in the rep-agent model. For example, there
must be larger savings in the limited-commitment model than in the rep-agent
model, but we don’t have a closed form for the savings in the rep-agent model.
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A Proofs of Propositions

A.1 Proofs: Section 3 (Characterization of Equilibrium)

A.1.1 Proof of Proposition 1

We prove Proposition 1 in several steps. First, we propose a candidate optimal con-
sumption and asset allocation. We then show in a sequence of steps that this proposed
allocation is indeed an optimal choice of the household. To do so, Lemma 6 derives the
Kuhn-Tucker conditions for the household optimization problem (12)–(13) for given a
sequence of prices {Rt(A

t), wt(A
t), qt(At+1, zt+1|At, zt)}t≥0,At,At+1,zt,zt+1. Then, Lemmas 7

and 8 show that the proposed allocation satisfies the household’s budget constraint and
the Kuhn-Tucker conditions. Finally, Proposition 1 shows that an allocation that satisfies
the Kuhn-Tucker conditions and a transversality condition, it is an optimal choice of the
maximization problem.

We conjecture that, under the maintained assumptions on prices stipulating suffi-
ciently low interest rates/sufficiently high wage growth, individuals have no incentives
to save for the high-income state tomorrow, and for the low-income state tomorrow con-
sumption and asset choices are governed by a standard complete-markets Euler equation.
That is, we conjecture that the optimal household consumption-asset choice is given by:

at+1(a0, z
t+1, At+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt = ζ and zt+1 = 0

βRt(A
t)at(a0, z

t, At) if zt = 0 and zt+1 = 0

(23)

ct(a0, z
t, At) =

wt(At)c0, where c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ, if zt = ζ

[1− (1− ν)β]Rt(A
t)at(a0, z

t, At) if zt = 0
(22)

where a0(a0, z
0, A0) = w0(A0)a0 are the initial asset holdings of the household (an ex-

ogenous initial condition).
It is straightforward to verify that (23) and (22) imply that under the proposed al-

location for currently low-income individuals (zt = 0) the standard complete markets
Euler equation for consumption holds (a fact that will be useful below for some of the
derivations):

ct(a0, z
t, At) = βRt(A

t)ct−1(a0, z
t−1, At−1). (24)

To see this consider first an individual with zt−1 = 0. Then

at(a0, z
t, At) = βRt−1(At−1)at−1(a0, z

t−1, At−1)

= βRt−1(At−1)
ct−1(a0, z

t−1, At−1)

[1− (1− ν)β]Rt−1(At−1)
,
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where the first line follows from equation (23), while the second line stems from equation
(22). Therefore

ct(a0, z
t, At) = [1− (1− ν)β]Rt(A

t)at(a0, z
t, At)

= βRt(A
t)ct−1(a0, z

t, At).

Now consider an individual with zt−1 = ζ. Then

at(a0, z
t, At) =

β

1− (1− ν − ξ)β
ζwt−1(At−1)

=
β

1− (1− ν)β
ct−1(a0, z

t−1, At−1)

∴ ct(a0, z
t, At) = [1− (1− ν)β]Rt(A

t)at(a0, z
t, At)

= βRt(A
t)ct−1(a0, z

t, At).

We now derive the Kuhn-Tucker condition for the household maximization problem
in the following Lemma.

Lemma 6. Given a sequence of prices {Rt(A
t), wt(A

t), qt(At+1, zt+1|At, zt))}t≥0,At,At+1, FOCs
to the household’s optimization problem (12)–(13) give the following Kuhn-Tucker condi-
tion:

ct+1(a0, z
t+1, At+1)

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(At+1) + λ(a0, z

t+1, At+1)ct+1(a0, z
t+1, At+1)

]
(109)

with λ(a0, z
t+1, At+1)at+1(a0, z

t+1, At+1) = 0, λ(a0, z
t+1, At+1) ≥ 0, at+1(a0, z

t+1, At+1) ≥ 0,

(110)

where λ(a0, z
t+1, At+1) denotes a Lagrangian multiplier for a shortsale constraint at state

(zt+1, At+1).

Proof. Households’ Lagrangian problem is given by:

U(a0, z0) = max
{ct(a0,zt,At),at+1(a0,zt+1,At+1)}∞t=0

∞∑
t=0

∑
At

∑
zt

βtπ(At)π(zt) log(ct(a0, z
t, At))

+
∞∑
t=0

∑
At

∑
zt

µ(zt, At)

[
wt(A

t)zt +Rt(A
t)at(a0, z

t, At)

− ct(a0, z
t, At)−

∑
At+1

∑
zt+1

qt(At+1, zt+1|At, zt)at+1(a0, z
t+1, At+1)

]

+
∞∑
t=0

∑
At+1

∑
zt+1

βtπ(At+1)π(zt+1)λ(a0, z
t+1, At+1)at+1(a0, z

t+1, At+1), (111)
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where µ(zt, At) and λ(a0, z
t+1, At+1) are Lagrangian multipliers for budget constraints

and shortsale constraints. FOCs with respect to ct(a0, z
t, At) and at+1(a0, z

t+1, At+1) are:

[ct(a0, z
t, At)] : βtπ(At)π(zt)

1

ct(a0, zt, At)
= µ(zt, At) (112)

[at+1(a0, z
t+1, At+1)] : µ(zt+1, At+1)Rt+1(At+1) + βtπ(At+1)π(zt+1)λ(a0, z

t+1, At+1)

= µ(zt, At)qt(At+1, zt+1|At, zt) (113)

By substituing µ(zt, At), we obtain the following Kuhn-Tucker condition:

1

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(At+1)

1

ct+1(a0, zt+1, At+1)
+ λ(a0, z

t+1, At+1)

]
(114)

where λ(a0, z
t+1, At+1)at+1(a0, z

t+1, At+1) = 0, λ(a0, z
t+1, At+1) ≥ 0, at+1(a0, z

t+1, At+1) ≥ 0.

Here we use the conditional probability: π(At+1|At) = π(At+1)
π(At)

, where At+1 = (At, At+1),
and π(zt+1|zt) = π(zt+1)

π(zt)
, where zt+1 = (zt, zt+1). Because the idiosyncratic shocks follow

Markov, only the current state zt matters for the probability of zt+1. Hence, π(zt+1|zt) =

π(zt+1|zt). Since ct+1(a0, z
t+1, At+1) takes non-zero value (otherwise the utility would be

negative infinite), (114) can be expressed as:

ct+1(a0, z
t+1, At+1)

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(At+1) + λ(a0, z

t+1, At+1)ct+1(a0, z
t+1, At+1)

]

The next two lemmas show that the conjectured allocation satisfies the budget con-
straint and the Kuhn-Tucker condition for households’ optimization problem.

Lemma 7. Suppose Assumption 2 on contingent claim prices is satisfied. Then, the alloca-
tion defined in equations (22) and (23) satisfies the household’s budget constraint (8) and
the Euler equation between the current state and a future low-income state (and hence the
Kuhn-Tucker condition 109):

1

ct(a0, zt, At)
= βRt+1(At+1)

1

ct+1(a0, zt+1, At+1; zt+1 = 0)
for all At+1. (115)

Proof. We first check the budget constraint. In a high-income state (zt = ζ), substituting
the conjectured consumption and asset choice (22) and (23) into equation (8) gives:

wt(A
t)c0 +

∑
At+1

∑
zt+1

qt(At+1, zt+1|At, zt)
β

1− (1− ν − ξ)β
ζwt(A

t) = wt(A
t)ζ

∴ wt(A
t)

 1− (1− ν)β

1− (1− ν − ξ)β
ζ +

∑
At+1

π(At+1|At) π(zt+1 = 0|zt = ζ)︸ ︷︷ ︸
=ξ

β

1− (1− ν − ξ)β
ζ

 = wt(A
t)ζ
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where the second line uses Assumption 2: qt(At+1, zt+1|At, zt) = π(At+1|At)π(zt+1|zt).
The equality holds since∑At+1

π(At+1|At) = 1.
In a low-income state (zt = 0), equation (8) becomes:

[1− (1− ν)β]Rt(A
t)at(z

t, At)

+
∑
At+1

∑
zt+1

π(At+1|At)π(zt+1 = 0|zt = 0)︸ ︷︷ ︸
=1−ν

βRt(A
t)at(z

t, At) = Rt(A
t)at(z

t, At)

⇔ Rt(A
t)at(z

t, At)− (1− ν)β

1−
∑
At+1

π(At+1|At)

Rt(A
t)at(z

t, At) = Rt(A
t)at(z

t, At)

This holds with equality since∑At+1
π(At+1|At) = 1.

Second, we examine the Euler equation for low-income households.23 The condition
on Lagrangemultiplies (110) implies λ(a0, z

t+1, At+1) = 0, since λ(a0, z
t+1, At+1)at+1(a0, z

t+1, At+1) =

0 and at+1(a0, z
t+1, At+1) > 0 in the proposed allocation. Under qt(At+1, zt+1|At, zt) =

π(At+1|At)π(zt+1|zt), the Kuhn-Tucker condition (109) is given by:
1

ct(a0, zt, At)
= βRt+1(At+1)

1

ct+1(a0, zt+1, At+1; zt+1 = 0)
.

ct+1 at a low-income state given by (22) satisfies this Euler equation.

The claim that households make no savings for high-income states follows the logic
in Lemmas 19 and 20 (which is shown in a deterministic case).24 We show below that
under Assumption 3: βRt+1(At+1) < wt+1(At+1)

wt(At)
at all t ≥ 0 and At+1, the Kuhn-Tucker

conditions for high-income states are satisfied if households do not save for high-income
states.

Lemma 8. Suppose Assumption 2 on contingent claim prices is satisfied and suppose that
the sequence of wages and interest rates {wt(At), Rt(A

t)}∞t=0 satisfies the no-savings Assump-
tion 3 and that the initial wealth distribution satisfies Assumption 4. Then, the allocation
defined in equations (22) and (23) satisfies the Kuhn-Tucker conditions for high-income
states at any time t ≥ 0. It also implies equation (26):

ct+1(a0, z
t+1, At+1) > βRt+1(At+1)ct(a0, z

t, At) if zt+1 = ζ.

23Since households always save for a low-income state, the Euler equation holds with equality. If house-
holds enter a low-income state with zero assets, their period utility would be negative infinite.

24At t = 0, given an initial state (a0 = 0, z0 = ζ) or (a0 ≤ ā0 := β
1−(1−ν−ξ)β ζ, z0 = 0), households

cannot achieve higher utility at t = 1 by saving for a high-income state at t = 1 if βR1
w0

w1
< 1. Since

consumption choice ct(a0, zt; zt = ζ) cannot be larger than c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ at any t ≥ 0, making

positive savings for a high-income state at t = 1 wouldn’t give higher utility at any time t ≥ 1, under
Assumption 3: βRt+1(At+1) < wt+1(A

t+1)
wt(At)

at all t ≥ 0 and At+1. By induction, households at any time
t ≥ 1 do not save for a high-income state at t+1, since they enter a state at time t ≥ 1 with (at = 0, zt = ζ)

or (at ≤ ā0, zt = 0).
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Proof. We check the Kuhn-Tucker conditions, (109) and (110), for a high-income state
(zt+1 = ζ) under Assumption 2, qt(At+1, zt+1|At, zt) = π(At+1|At)π(zt+1|zt), and Assump-
tion 4, βRt+1(At+1) < wt+1(At+1)

wt(At)
. Substituting ct+1(zt+1, At+1; zt+1 = ζ) = wt+1(At+1)c0

and at+1(zt+1, At+1) = 0 into equation (109) gives:
1

wt(At)ct(a0, zt, At)
= βRt+1(At+1)

1

wt+1(At+1)ct+1(a0, zt+1, At+1; zt+1 = ζ)
+ λ(a0, z

t+1, At+1)

⇔ βRt+1(At+1)
wt(A

t)

wt+1(At+1)︸ ︷︷ ︸
<1

ct(a0, z
t, At)

c0

+ λ(a0, z
t+1, At+1)wt(A

t)ct(a0, z
t, At) = 1

As long as ct(a0, z
t, At) ≤ c0 for all (a0, z

t, At), which we will show below, the Lagrangian
multiplier λ(a0, z

t+1, At+1) that solves equation (109) satisfies λ(a0, z
t+1, At+1) > 0. Then,

the Kuhn-Tucker condition for a high-income state is satisfied. Specifically, the Kuhn-
Tucker condition for a high-income state with λ(a0, z

t+1, At+1) > 0 implies:
1

ct(zt, At)
> βRt+1(At+1)

1

ct+1(zt+1, At+1; zt+1 = ζ)
. (116)

This gives equation (26). Because the marginal utility of consumption at time t is higher
than the discounted marginal utility of consumption at state (zt+1, At+1) with zt+1 = ζ,
households do not have incentives to save for a high-income state.

Under βRt+1(At+1) < wt+1(At+1)
wt(At)

for all (t, At, At+1), we will show that ct(a0, z
t, At) ≤ c0

for all (a0, z
t, At). We prove by induction. At t = 0, the initial wealth distribution satisfies

Assumption 4. Given the consumption rule (22) and βR0 < 1, the initial consumption
satisfies c0(a0, z0, A0) ≤ c0 for all (a0, z0), as we see the following:

w0c0(a0, z0 = 0, A0) =: c0(a0, z0 = 0, A0) = [1− (1− ν)β]R0(A0)a0(a0, z0, A0)

< [1− (1− ν)β]R0(A0)w0
β

1− (1− ν − ξ)β
ζ

< βR0c0w0

< c0w0

Suppose ct(a0, z
t, At) ≤ c0 for all (a0, z

t, At) at time t ≥ 0. ct+1(a0, z
t+1, At+1) is given

by equation (22):

ct+1(a0, z
t+1, At+1) =

c0 if zt+1 = ζ

βRt+1(At+1) wt(At)
wt+1(At+1)

ct(a0, z
t, At) if zt+1 = 0

Since βRt+1(At+1) wt(At)
wt+1(At+1)

< 1 and ct(a0, z
t, At) ≤ c0, we have ct+1(a0, z

t+1, At+1) ≤ c0

for all (c0, z
t+1, At+1).

Finally, given that the conjectured allocation satisfies the Kuhn-Tucker conditions, we
prove that the conjectured allocation is indeed optimal.
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Proposition 1 (Optimal Household Consumption and Asset Allocation). Suppose As-
sumption 2 on contingent claims prices is satisfied and suppose that the sequence of wages
and interest rates {wt(At), Rt(A

t)}∞t=0 satisfies the no-savings Assumption 3 and that the
initial wealth distribution satisfies Assumption 4. Then the optimal consumption and asset
allocation of individual household is given by

ct(a0, z
t, At) =

wt(At)c0, where c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ, if zt = ζ

[1− (1− ν)β]Rt(A
t)at(a0, z

t, At) if zt = 0
(22)

at+1(a0, z
t+1, At+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt = ζ and zt+1 = 0

βRt(A
t)at(a0, z

t, At) if zt = 0 and zt+1 = 0

(23)

where a0(a0, z
0, A0) = w0(A0)a0.

Proof. In Lemmas 7 and 8, we have shown that under Assumptions 3 and 4, the con-
jectured allocation (22)–(23) satisfies the budget constraints and the Kuhn-Tucker con-
ditions. The shortsale constraints are also satisfied. Now we want to show that the
conjectured allocation maximizes the objective (12) under the constraints (8) and (13).
We apply the standard proof (e.g., Sims (2002) and Krusell (2014)) to our setup. The
upshot is that since the utility function is concave and the constraint set is convex (the
constraint at+1(zt+1, At+1) ≥ 0 is linear in at+1(zt+1, At+1)), the Kuhn-Tucker conditions
and a transversality condition (130) are jointly sufficient for optimality.

Wewill show that the conjectured allocation (22)–(23), denoted by ({c∗t (zt, At), a∗t+1(zt+1, At+1)}),
gives (weakly) higher expected utility than any other feasible allocations:

lim
T→∞

T∑
t=0

βtE
[
log(c∗t (z

t, At))
]
≥ lim

T→∞

T∑
t=0

βtE
[
log(ct(z

t, At))
]
, (117)

where feasible allocations ({ct(zt, At), at+1(zt+1, At+1)}) satisfy the budget constraints
and the shortsale constraints. Since ct(z

t, At) is uniquely determined by the budget con-
straint given (at(z

t, At), {at+1(zt+1, At+1)}zt+1,At+1), denote:

ut(at, {at+1}) := log(ct(z
t, At))

= log
(
wt(A

t)zt +Rt(A
t)at(z

t, At)

−
∑
At+1

∑
zt+1

π(At+1|At)π(zt+1|zt)at+1(zt+1, At+1)
)
.
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With this notation, the Kuhn-Tucker condition implies the following:25

D2ut(at, {at+1}) + βEt [D1ut+1(at+1, {at+2})] + Et
[
λ(zt+1, At+1)

]
= 0 (123)

Define the difference in the sum of expected utility up to time T:

ṼT (a) :=
T∑
t=0

βtE
[
ut(a

∗
t , {a∗t+1})− ut(at, {at+1})

] (124)

25Lagrangian is given by:

L =

∞∑
t=0

βt
∑
At,zt

π(zt)π(At)ut
(
at(z

t, At), {at+1(zt+1, At+1)}zt+1,At+1|zt,At
)

+

∞∑
t=0

βt
∑

At+1,zt+1

π(zt+1)π(At+1)λt+1(zt+1, At+1)

=:

∞∑
t=0

βtE [ut(at, {at+1})] +

∞∑
t=0

βtE [λt+1]

From Lemma 8, we know that the Kuhn-Tucker condition is satisfied for any (zt+1, At+1):
1

ct(zt, At)
= βRt+1(At+1)

1

ct+1(zt+1, At+1)
+ λ(zt+1, At+1) (118)

This implies, since∑zt+1,At+1|zt,At π(zt+1|zt)π(At+1|At) = 1,

1

ct(zt, At)
=

∑
zt+1,At+1|zt,At

π(zt+1|zt)π(At+1|At)
[
βRt+1(At+1)

1

ct+1(zt+1, At+1)
+ λ(zt+1, At+1)

]
(119)

=: Et
[
βRt+1(At+1)

1

ct+1(zt+1, At+1)

]
+ Et

[
λ(zt+1, At+1)

] (120)

We define the derivative of the flow utility as:

D1ut(at, {at+1}) :=
∂

∂at
ut(at, {at+1})

= Rt(A
t)

1

ct(zt, At)
(121)

D2ut(at, {at+1}) :=
∑

zt+1,At+1

∂

∂at+1(zt+1, At+1)
ut(at(z

t, At), {at+1(zt+1, At+1)})

= −
∑

zt+1,At+1

π(zt+1|zt)π(At+1|At) 1

ct(zt, At)

= − 1

ct(zt, At)
(122)

Therefore, by substituting them into (120), we obtain:

D2ut(at, {at+1}) + βEt [D1ut+1(at+1, {at+2})] + Et
[
λ(zt+1, At+1)

]
= 0.
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We will show that:

lim
T→∞

ṼT (a) ≥ 0 (125)

Since log(·) is a concave function, we have:26

E

[
T∑
t=0

βtut(at, {at+1})

]
≥ E

[ T∑
t=0

βt
{
ut(a

∗
t , {a∗t+1}) +D1ut(a

∗
t , {a∗t+1}) · (at − a∗t )

+D2ut(a
∗
t , {a∗t+1}) · (at+1 − a∗t+1)

}]
(126)

Using this, we obtain:

ṼT (a) ≥ E
[ T∑
t=0

βt
{
D1ut(a

∗
t , {a∗t+1}) · (a∗t − at) +D2ut(a

∗
t , {a∗t+1}) · (a∗t+1 − at+1)

}]
= D1u0(a∗0, {a∗1}) · (a∗0 − a0)

+ E
[ T−1∑
t=0

βt
[
D2ut(a

∗
t , {a∗t+1}) + βEt[D1ut+1(a∗t+1, {a∗t+2})]

]
· (a∗t+1 − at+1)

]
+ βTE

[
D2uT (a∗T , {a∗T+1}) · (a∗T+1 − aT+1)

] (127)

where the first term is zero given the same initial condition a∗0 = a0. The second term is
non-negative.27 This is because the Kuhn-Tucker condition implies (123):

D2ut(a
∗
t , {a∗t+1}) + Et[λ∗t+1] + βEt[D1ut+1(a∗t+1, {a∗t+2})] = 0

and thus, the second term is larger or equal to zero:28

E
[ T−1∑
t=0

βt
(
− Et[λ∗t+1]

)
· (a∗t+1 − at+1)

]
= E

[ T−1∑
t=0

βt Et[λ∗t+1]at+1︸ ︷︷ ︸
≥0

]
− E

[ T−1∑
t=0

βt Et[λ∗t+1]a∗t+1︸ ︷︷ ︸
=0

]
≥ 0

26Here we denote:

D2ut(a
∗
t , {a∗t+1}) · (at+1 − a∗t+1) :=∑
zt+1,At+1

∂

∂at+1(zt+1, At+1)
ut(at(z

t, At), {at+1(zt+1, At+1)}) · (at+1(zt+1, At+1)− a∗t+1(zt+1, At+1))

27Here we use the law of iterated expectations:

E
[[
D2ut(a

∗
t , {a∗t+1}) + βD1ut+1(a∗t+1, {a∗t+2})

]
· (a∗t+1 − at+1)

]
= E

[
Et
[{
D2ut(a

∗
t , {a∗t+1}) + βD1ut+1(a∗t+1, {a∗t+2})

}
· (a∗t+1 − at+1)

]]
= E

[[
D2ut(a

∗
t , {a∗t+1}) + βEt[D1ut+1(a∗t+1, {a∗t+2})]

]
· (a∗t+1 − at+1)

]
28Here we denote:

Et[λ∗t+1]at+1 :=
∑

zt+1,At+1

π(zt+1|zt)π(At+1|At)λ∗(zt+1, At+1)at+1(zt+1, At+1)
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Therefore, (125) is satisfied if the third term is non-negative:

lim
T→∞

βTE
[
D2uT (a∗T , {a∗T+1}) · (a∗T+1 − aT+1)

]
≥ 0. (128)

Using the Kuhn-Tucker condition again, this is equivalent to:

lim
T→∞

βTE
[{

ET [λ∗T+1] + βET [D1uT+1(a∗T+1, {a∗T+2})]
}
· (aT+1 − a∗T+1)

]
≥ 0. (129)

Since λ∗T+1(zT+1, AT+1)aT+1(zT+1, AT+1) ≥ 0, λ∗T+1(zT+1, AT+1)a∗T+1(zT+1, AT+1) = 0 for
all (zT+1, AT+1), and βD1uT+1(a∗T+1, {a∗T+2})aT+1 ≥ 0, the following is sufficient for
(125):

lim
t→∞

βtE
[
D1ut(a

∗
t , {a∗t+1})a∗t

]
= 0, (130)

where D1ut(a
∗
t , {a∗t+1}) = Rt(A

t)
1

c∗t (z
t, At)

.

Equation (130) is a transversality condition. Our conjectured allocation satisfies:

Rt(A
t)
a∗t (z

t, At)

c∗t (z
t, At)

=

0 if zt = ζ

1
1−(1−ν)β

if zt = 0
(131)

Hence, (130) is satisfied in the conjectured allocation. Therefore, the conjectured al-
location gives (weakly) higher expected utility than any other feasible allocations and
maximizes the objective.

A.1.2 Proof of Proposition 2

Proposition 2 (A Law ofMotion of Aggregate Capital). Under the assumptions maintained
in Proposition 1 and thus the household consumption and saving allocations are given by
(22) and (23), the law of motion for the aggregate capital stock is given by:

Kt+1(At) =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kt(A

t−1)θ + (1− ν)β(1− δ)Kt(A
t−1)

= ŝA1−θ
t Kt(A

t−1)θ + (1− δ̂)Kt(A
t−1) (40)

where

ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ (41)

δ̂ = 1− (1− ν)β(1− δ). (42)
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Proof. Aggregate saving is the sum of individual savings.

Kt+1 =

∫ ∑
zt+1

ât+1(a0, z
t+1, At+1)π(zt+1)dΦ(a0, z0)

= π(zt+1; zt = ζ, zt+1 = 0)︸ ︷︷ ︸
=ξ

π(zt; zt = ζ)︸ ︷︷ ︸
= ν
ξ+ν

ât+1(a0, z
t+1, At+1; zt = ζ, zt+1 = 0)

+

∫ ∑
zt+1

π(zt+1; zt = 0, zt+1 = 0)︸ ︷︷ ︸
=1−ν

ât+1(a0, z
t+1, At+1; zt = 0, zt+1 = 0)dΦ(a0, z0)

= ξ
β

1− (1− ν − ξ)β
wt(A

t) + (1− ν)βRt(A
t)

∫ ∑
zt

ât(a0, z
t, At; zt = 0)dΦ(a0, z0)︸ ︷︷ ︸

=Kt

,

The second line decomposes the summation into four groups by current and next states:
(zt = ζ, zt+1 = 0), (zt = 0, zt+1 = 0), (zt = ζ, zt+1 = ζ), and (zt = 0, zt+1 = ζ). It sums up
only the first two groups, since households do not save for a high-income state. The third
line follows the households’ saving rule (23). To obtain Kt =

∫ ∑
zt ât(a0, z

t, At; zt =

0)dΦ(a0, z0), note that high-income households have zero savings at the initial period
(t = 0) and that households do not save for a high-income state at t ≥ 1. Hence,
aggregate savings at any time t ≥ 0 is the sum of savings by low-income households
(zt = 0).

By substituting, wt(At) = (1 − θ)(At)1−θKθ
t and Rt(A

t) = θ(At)
1−θKθ−1

t + 1 − δ, we
obtain:

Kt+1 =
ξβ(1− θ)

1− (1− ν − ξ)β
(At)

1−θKθ
t + (1− ν)β

[
θ(At)

1−θKθ−1
t + 1− δ

]
Kt. (132)

A.2 Proof: Section 4 (Stationary Equilibrium)

Proposition 3 (Stationary Equilibrium). Suppose Assumption 5 holds. Then, there exists
a stationary partial insurance equilibrium, where the equilibrium interest rate R0 is given
in a closed form:

R0 =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) (54)
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The equilibrium capital and wage are given by:

K0 = A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

, (55)

w0 = (1− θ)A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


θ

1−θ

.

The equilibrium interest rate R0 is strictly increasing in the capital share θ, strictly decreas-
ing in the depreciation rate δ, the time discount factor β as well as the risk of productivity
falling ξ and remaining low 1 − ν and is independent of the level of productivity A0. The
capital stock K0 is strictly increasing in the time discount factor β as well as the risk of
productivity falling ξ and remaining low 1−ν, strictly decreasing in the depreciation rate δ,
and is proportional to the level of productivity A0. The comparative statics of w0 is the same
as for K0. The stationary equilibrium is unique in the sense that there is no other simple
stationary equilibrium in which the stationary consumption and wealth allocation (and its
associated cross-sectional distribution) is just a function of the wait time s.

Proof. We first show that under Assumption 5, we can always find a stationary equi-
librium with βR0 < 1, i.e., the existence of a partial insurance equilibrium. Since we
consider a stationary equilibrium, aggregate productivity A0 is constant over time and
across aggregate states.

Suppose an interest rate satisfies βR0 < 1. We will later verify that the equilibrium
interest rate indeed satisfies βR0 < 1 under Assumption 5. Under βR0 < 1, households’
consumption and asset choices are given by equations (43)–(47). Hence, aggregate cap-
ital supply is given by equation (52). In order for the capital market to clear, the interest
rate satisfies the equation (53):

K(R)/w(R) =: κd(R) =
θ

(1− θ)(R− 1 + δ)
=

ξβ

[1− (1− ν)βR] [1− (1− ν − ξ)β]
:= κs(R).

If the equilibrium interest rate R0 that solves (53) satisfies βR0 < 1, then we show the
existence of a partial insurance equilibrium with βR0 < 1.

Note that the wage-normalized capital demand is positive infinite in the limit R →
1− δ:

lim
R→1−δ

κd(R)

(
:=

θ

(1− θ)(R− 1 + δ)

)
= +∞,

and κd(R) is strictly decreasing in R ∈ (1 − δ, 1
β
). Also, the wage-normalized capital

supply is finite at R = 1− δ:

lim
R→1−δ

κs(R)

(
:=

ξβ

[1− (1− ν)βR] [1− (1− ν − ξ)β]

)
<∞,
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since 0 < 1−(1−ν)β(1−δ) < 1 and 0 < 1−(1−ν−ξ)β < 1. κs(R) is strictly increasing in
R ∈ (1− δ, 1

β
). This means that the excess demand for capital, κd(R)− κs(R), is positive

infinite at the limit R→ 1− δ and (strictly) monotonically decreasing in R ∈ (1− δ, 1
β
).

Therefore, an equilibrium interest rate with βR0 < 1 exists if:

κd(R)− κs(R) < 0 at R =
1

β
.

This condition is equivalent to Assumption 5. Hence, under Assumption 5, there exists
a partial insurance equilibrium with βR0 < 1.

From the FOCs for a representative firm (equations 14 and 15), we have:

K0 = A0

(
θ

R0 − 1 + δ

) 1
1−θ

,

w0 = (1− θ)(A0)1−θ(K0)θ.

By substituting the equilibrium interest rate, we obtain the equilibrium capital and the
wage.

Comparative statics are straightforward. As discussed in the main text, κd(R) is
strictly increasing in θ and strictly decreasing in δ, while κs(R) does not depend on θ

or δ. Given that κd(R)−κs(R) is strictly decreasing in R, higher θ implies higher R0, and
higher δ implies lower R0. On the other hand, since κs(R) is strictly increasing in β, ξ,
and 1 − ν,29 while κd(R) does not depend on β, ξ, or 1 − ν. Thus, higher ξ and 1 − ν
implies lower R0. Since K0 and w0 are negatively related with R0, we have the opposite
comparative statics with respect to (β, ξ, 1 − ν). To show that K0 is decreasing in δ, we
show that R0 − 1 + δ is increasing in δ:

R0 − (1− δ) =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) − (1− δ)

=
θ
(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) − βθ(1− ν)

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)(1− δ)

From the FOCs for representative firms, we see that K0 (and hence w0) is decreasing in
R0 − 1 + δ and hence increasing in δ.

Finally, given the aggregate capital supply function derived from the optimal house-
holds’ consumption and asset allocation that yields a simple equilibrium, since κd(R) −
κs(R) is strictly monotonically decreasing in R ∈ (1 − δ, 1

β
), the solution to an equation

(53) is unique if it exists.
29κs(R) is strictly increasing in ξ because the derivative with respect to ξ is strictly positive:

∂

∂ξ
κs(R) =

β

[1− (1− ν)βR][1− (1− ν − ξ)β]

[
1− ξ

1
β − 1 + ν + ξ

]
> 0
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A.3 Proofs: Section 5 (Transitional Dynamics)

A.3.1 Proof of Monotone Convergence

Proposition 5 (Monotone Convergence of (Kt, Rt, wt)). Assume the economy is in a sta-
tionary equilibrium associated with aggregate productivity, A0 and associated capitalK0 at
time t = 0, and suppose at time t = 1, productivity unexpectedly and permanently changes
to A1 with A1 > A0. Furthermore, suppose βRt <

wt+1

wt
for all t ≥ 0 (Assumption 3). Then,

aggregate capital Kt and wages wt monotonically increase and converge to their new sta-
tionary equilibrium values, and the interest rate jumps up on impact and then converges
monotonically to the new stationary equilibrium from above:

K0 = K1 < K2 < · · · < K∗ =
A1

A0

K0,

w0 < w1 < w2 < · · · < w∗ =
A1

A0

w0,

R0 < R1 > R2 > · · · > R∗ = R0.

Symmetrically, following a permanent negative productivity shock At = A1 < A0 for all
t ≥ 1, the aggregate capital monotonically decreases along the transition:

K0 = K1 > K2 > · · · > K∗ =
A1

A0

K0,

w0 > w1 > w2 > · · · > w∗ =
A1

A0

w0,

R0 > R1 < R2 < · · · < R∗ = R0.

Proof. Consider a positive permanent shock, At = A1 ∀t ≥ 1 with A1 > A0. Denote K∗
as the new stationary equilibrium capital associated with A1. We know from equation
(49) that K0 < K∗ since A0 < A1. We want to show that given Kt < K∗, capital in the
next period satisfies Kt < Kt+1 < K∗ at any t ≥ 1, implying a monotone convergence of
capital to the new stationary equilibrium capital.

The law of motion of capital is given by equation (40):

Kt+1 = ŝA1−θ
t Kθ

t + (1− δ̂)Kt

where ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ and δ̂ = 1− (1− ν)β(1− δ).

First, we show Kt < Kt+1 at any t ≥ 1, by using ŝ = δ̂
(
K∗

A1

)1−θ
,

Kt+1 −Kt = ŝA1−θ
1 Kθ

t + (1− δ̂)Kt −Kt

= δ̂

[(
K∗

Kt

)1−θ

− 1

]
︸ ︷︷ ︸

>0 given Kt<K∗

Kt > 0.
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Because δ̂ > 0, the increment in capital (Kt+1−Kt) is strictly positive untilKt converges
to K∗. Second, we show Kt+1 < K∗ at any t ≥ 1:

Kt+1 −K∗ = ŝA1−θ
1 Kθ

t + (1− δ̂)Kt −K∗

= δ̂

(
Kt

K∗

)θ
K∗ + (1− δ̂)Kt −K∗

= δ̂

[(
Kt

K∗

)θ
− 1

]
︸ ︷︷ ︸

<0 if Kt<K∗

K∗ + (1− δ̂) (Kt −K∗)︸ ︷︷ ︸
<0 if Kt<K∗

< 0

We have shown that if Kt < K∗, Kt < Kt+1 < K∗. This holds for all t = 1, 2, ... as we
start from K1 = K0 < K∗. Therefore, we have K1 < K2 < · · · < Kt < · · · < K∗.

The wage and interest rate follows the FOCs:
wt = (1− θ)A1−θ

t Kθ
t ,

Rt = θA1−θ
t Kθ−1

t + 1− δ for all t ≥ 1.

Given K1 = K0, both wt and Rt jump up at t = 1. From t = 2 onwards, since 0 < θ < 1,
Kt < Kt+1 implies wt < wt+1 and Rt > Rt+1. Therefore, the monotone convergence of
capital implies a monotone convergence of wages and interest rates.

In case of a negative shock, the inequality holds in the opposite direction.

A.3.2 Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Positive Shock

Proposition 6 (Sufficient Condition for βRt+1 < wt+1

wt
after a Positive Shock). Let As-

sumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
After a positive and permanent productivity shock at t = 1 (At = A1 > A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 0 is satisfied if A1 ∈ [A0, Ā1) holds, where the threshold satisfies

Ā1

A0

=

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

> 1. (67)

Proof. Since wages, wt = (1 − θ)A1−θ
t Kθ

t , are monotonically increasing after a positive
productivity shock, βRt+1 < 1 is a sufficient condition for βRt+1 <

wt+1

wt
. After a positive

productivity shock at t = 1, the interest rate jumps and monotonically converges to the
one in a stationary equilibrium, see Corollary ?? in Section ??. Therefore, βR1 < 1

guarantees that βRt+1 < 1 for all t ≥ 0.
A condtion for βR1 < 1 follows directly from the expression for R1 and the fact that

K1 = K0 = A0

(
θ

R0−1+δ

) 1
1−θ is predetermined from the initial stationary equilibrium

R1 = θA1−θ
1 Kθ−1

0 + 1− δ,

(133)
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and therefore βR1 < 1 if

R1 =

(
A1

A0

)1−θ

(R0 − 1 + δ) + 1− δ < 1

β
(134)

A1

A0

<

(
1
β
− 1 + δ

R0 − 1 + δ

) 1
1−θ

(135)

A1

A0

<

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

. (136)

This gives the threshold stated in the proposition. SinceR0 < 1/β, equation (135) implies
that Ā1 > A0.

A.3.3 Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Negative Shock

In this subsection, we derive a sufficient condition on the magnitude of a negative pro-
ductivity shock (A1 < A0 and At = A1 for all t ≥ 1) such that βRt+1 <

wt+1

wt
is satisfied

for all t ≥ 0.
First note that in a stationary equilibrium, i.e., Kt

At
= Kt+1

At+1
= K0

A0
, this condition is

equivalent to Assumption 5. This must be true since βRt+1
wt
wt+1

converges to βR∗ as
Rt → R∗ and wt → w∗. We show that βRt+1

wt
wt+1

< 1 is always satisfied under δ = 1 and
Assumption 5 (Lemma 10).

Second, we derive a sufficient condition for βRt+1
wt
wt+1

< 1 ∀t ≥ 1. After a nega-
tive shock, the aggregate capital monotonically declines and converges to a new station-
ary equilibrium. Using this property, we derive a lower bound on A1 that guarantees
βRt+1

wt
wt+1

< 1 ∀t ≥ 1 (Proposition 18).
Third, the condition in Proposition 18 (A1 ∈ (A1, A0]) does not guarantee βR1 <

w1

w0
.

If βR1 >
w1

w0
, low-income households may consume more than high-income households

at t = 1. This gives rise to a possibility that low-income households at t = 1 have an
inventive to save for a high-income state at t = 2. Hence, we derive a condition for
βR1 <

w1

w0
, which is sufficient to prevent this possibility (Proposition 7).

In Appendix B.3.1, we claim that the fact that low-income households consume more
than high-income households is per se not a problem. Instead, we derive a sufficient
condition for low-income households at t = 1 not to save for the next high-income state
(Proposition 24). Numerical examples in Appendix B.3.2 show that this condition is less
tight than the condition in Proposition 7.

Condition for βRt+1 < wt+1

wt
∀t ≥ 1 We state three useful lemmas and use them to

derive a proposition. Note that using the FOCs for production firms and the law of motion
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of capital, βRt+1
wt
wt+1

can be written as:

βRt+1
wt
wt+1

= β
[
θA1−θ

t+1K
θ−1
t+1 + 1− δ

] (1− θ)A1−θ
t Kθ

t

(1− θ)A1−θ
t+1K

θ
t+1

= β

[
θ + (1− δ)

(
Kt+1

At+1

)1−θ
]
A1−θ
t Kθ

t

Kt+1

,

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ

ŝ+ (1− δ̂)
(
Kt
At

)1−θ

 for all t ≥ 0 (137)

where Kt+1 = ŝA1−θ
t Kθ

t + (1− δ̂)Kt,

ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ, and 1− δ̂ = (1− ν)β(1− δ).

After a negative shock, the aggregate capital monotonically decreases and converges
to a new stationary equilibrium. Therefore,

(
Kt+1

A1

)1−θ
<
(
Kt
A1

)1−θ
for all t ≥ 1. A

sufficient condition for βRt+1 <
wt+1

wt
∀t ≥ 1 is then written as:[(

Kt

A1

)1−θ

− (1− ν)

(
Kt

A1

)1−θ
]

= ν

(
Kt

A1

)1−θ

<
1

1− δ

[
ξ(1− θ)

1− (1− ν − ξ)β
− θν

]
for all t ≥ 1.

As K1

A1
> K2

A1
> · · · > K∗

A1
, it is sufficient to satisfy the condition at time t = 1. By solving

this inequality, we have:(
A0

A1

)1−θ

<

[
1− (1− δ)β(1− ν)

βν(1− δ)

] ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

 . (138)

Lemma 9. Assumption 5 implies ξ(1− θ) > βθν(ξ+ ν+ 1
β
− 1). Hence, the right hand side

of inequality (138) is strictly positive.

Proof. We restate Assumption 5:
θ

(1− θ)
[

1
β
− 1 + δ

] < ξ

ν
[

1
β
− 1 + ξ + ν

] .
As all terms are positive under 0 < β < 1, it is equivalent to:

ξ(1− θ)[1− β(1− δ)] > βθν

[
1

β
− 1 + ξ + ν

]
.

Since 0 < β(1− δ) < 1, we have:

ξ(1− θ) > ξ(1− θ)[1− β(1− δ)] > βθν(ξ + ν +
1

β
− 1). (139)

Therefore, all terms in the right hand side of inequality (138) are strictly positive. In
the limit δ → 1, it is positive infinity: limδ→1

[
1−(1−δ)β(1−ν)

βν(1−δ)

] [
ξ(1−θ)−βθν[ξ+ν+ 1

β
−1]

ξ(1−θ)+βθ(1−ν)(ξ+ν+ 1
β
−1)

]
=

+∞.
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Lemma 10. Assume Assumption 5 and consider transitional dynamics after a productivity
shock. With full depreciation of capital (δ = 1), βRt+1 <

wt+1

wt
is satisfied for all t ≥ 1.

Furthermore, Rt+1
wt
wt+1

= R0 for all t ≥ 1 if δ = 1.

Proof. Substituting δ = 1 into the condition (137) gives:

βRt+1
wt
wt+1

= β

[
θ

ξβ
1−(1−ν−ξ)β (1− θ) + (1− ν)βθ

]
(140)

Then, βRt+1
wt
wt+1

< 1 is equivalent to:

θ <
ξ

1− (1− ν − ξ)β
(1− θ) + (1− ν)θ

⇔ νθ [1− (1− ν − ξ)β] < ξ(1− θ).

This inequality is satisfied under Assumption 5 as we saw in the previous Lemma.
We derive Rt+1

wt
wt+1

= R0 under full depreciation (δ = 1) using equation (54):

R0

∣∣
δ=1

=
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)∣∣∣∣∣

δ=1

=
θ

ξ(1−θ)
ξ+ν+ 1

β
−1

+ βθ(1− ν)
= Rt+1

wt
wt+1

∣∣∣∣
δ=1

(141)

Lemma 11. Under Assumption 5, the right hand side of inequality (138) is strictly larger
than 1. Hence, there exists a negative productivity shock A1 with A1 < A0 such that (138)
holds. Define A1 such that (138) holds with equality. Then A1 < A0.

Proof. Consider 0 < δ < 1. The first and second terms in the right hand side of (138)
are expressed as: [

1− (1− δ)β(1− ν)

βν(1− δ)

]
= 1 +

1
β(1−δ) − 1

ν
(142) ξ(1− θ)− βθν

[
ξ + ν + 1

β
− 1
]

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

 =
1

1 +
βθ(ξ+ν+ 1

β
−1)

ξ(1−θ)−βθν[ξ+ν+ 1
β
−1]

. (143)

Therefore, the product is larger than 1 if:

1
β(1−δ) − 1

ν
>

βθ
(
ξ + ν + 1

β
− 1
)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
] (144)
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Since all terms are positive (remember Lemma 9), this is equivalent to:(
1

β(1− δ)
− 1

)
ξ(1− θ)− θν

(1− δ)

(
ξ + ν +

1

β
− 1

)
+ βθν

(
ξ + ν +

1

β
− 1

)
> βθν

(
ξ + ν +

1

β
− 1

)
⇔
(

1− β(1− δ)
β(1− δ)

)
ξ(1− θ) > θν

(1− δ)

(
ξ + ν +

1

β
− 1

)
⇔ ξ

ν
(
ξ + ν + 1

β − 1
) > θ

(1− θ)( 1
β − 1 + δ)

The last condition is equivalent to Assumption 5. Therefore, the right hand side of
inequality (138) is strictly greater than 1 for any 0 < δ < 1If δ = 1, the right hand side
of (138) goes to positive infinity. Put together, this means that for any 0 < δ ≤ 1, there
exists A1 < A0 such that the condition (138) holds.

We can solve for A1 such that (138) holds with equality:

A1 = A0

 βν(1− δ)
1− (1− δ)β(1− ν)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

 1
1−θ

.

Because
[

βν(1−δ)
1−(1−δ)β(1−ν)

ξ(1−θ)+βθ(1−ν)(ξ+ν+ 1
β
−1)

ξ(1−θ)−βθν[ξ+ν+ 1
β
−1]

]
< 1, A1 < A0.

We use these lemmas to prove a proposition.

Proposition 18 (Sufficient Condition for βRt+1 <
wt+1

wt
for t ≥ 1 after a Negative Shock).

Let Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 <

1. After a negative and permanent productivity shock at t = 1 (At = A1 < A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 1 is satisfied if A1 ∈ (A1, A0] holds, where the threshold satisfies

A1/A0 =

 βν(1− δ)
1− (1− δ)β(1− ν)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

 1
1−θ

< 1. (145)

Proof. We want to derive a sufficient condition for βRt+1
wt
wt+1

< 1 ∀t ≥ 1. We focus on
the case of 0 < δ < 1, because with full depreciation of capital (δ = 1), βRt+1

wt
wt+1

=

βR0 < 1 ∀t ≥ 1. Using equation (137) and monotonicity of capital,Kt+1 < Kt, we derive
the following.

βRt+1
wt
wt+1

= β

 θ + (1− δ)
(
Kt+1

A1

)1−θ

ξβ
1−(1−ν−ξ)β (1− θ) + (1− ν)βθ + (1− ν)β(1− δ)

(
Kt
A1

)1−θ


< β

 θ + (1− δ)
(
Kt
A1

)1−θ

ξβ
1−(1−ν−ξ)β (1− θ) + (1− ν)βθ + (1− ν)β(1− δ)

(
Kt
A1

)1−θ

 for t ≥ 1
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The last line is less than 1 if

βθ + β(1− δ)
(
Kt

A1

)1−θ

<
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ + (1− ν)β(1− δ)

(
Kt

A1

)1−θ

⇔ νβ(1− δ)
(
Kt

A1

)1−θ

<
ξβ

1− (1− ν − ξ)β
(1− θ)− νβθ

Because K1 > K2 > · · · , this condition is satisfied for all t ≥ 1 if it is satisfied at time
t = 1: (

K1

A1

)1−θ

<
1

ν(1− δ)

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
. (146)

Aggregate capital at time t = 1 is predetermined at t = 0:

K1 = K0 = A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

.

Substituting K1 into equation (146) yields:

(
A0

A1

)1−θ

<

[
1− (1− δ)β(1− ν)

βν(1− δ)

] ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

 . (147)

We obtain equation (145) by solving for A1. When A1 = A1, the equation holds with
equality. Lemma 11 shows that A1 < A0 under Assumption 5.

A.3.4 Condition for βRt+1 <
wt+1

wt
at t = 0

Proposition 18 shows that after a negative and permanent productivity shock at t = 1,
βRt+1 <

wt+1

wt
∀t ≥ 1 is satisfied if A1 ∈ (A1, A0] holds. However, this condition does

not guarantee βR1 < w1

w0
. If βR1 > w1

w0
, the argument in Lemma 8 breaks down, i.e.,

c1(a0, z
1, A1) ≤ c0 may not hold for some a0. Then, low-income households at t = 1 may

have the incentive to save for the next high-income state. In such a case, the contract
stipulated in Proposition 1may not be optimal. Hence, we derive a sufficient condition for
βR1 <

w1

w0
. It turns out that the sufficient condition for βR1 <

w1

w0
, given by A1 ∈ (A′1, A0],

implies the sufficient condition for βRt+1 <
wt+1

wt
∀t ≥ 1, i.e., A1 ∈ (A1, A0], derived in

Proposition 18. Therefore, A1 ∈ (A′1, A0] is a sufficient condition for βRt+1 <
wt+1

wt
∀t ≥ 0.

Proposition 7 (Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Negative Shock). Let

Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
After a negative and permanent productivity shock at t = 1 (At = A1 < A0 for all t ≥ 1),
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βRt+1 <
wt+1

wt
∀t ≥ 0 is satisfied if A1 ∈ (A′1, A0] holds, where the threshold satisfies

A′1/A0 =

1− ν + ν
1− (1− δ)β(1− ν)

βν(1− δ)
ξ(1− θ)− βθν(ξ + ν + 1

β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)
 1
θ−1

< 1.

(68)

Proof. βRt+1
wt
wt+1

can be written as:

βRt+1
wt
wt+1

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ

ŝ+ (1− δ̂)
(
Kt
At

)1−θ


At t = 0, βRt+1

wt
wt+1

< 1 is equivalent to:

βθ + β(1− δ)
(
K1

A1

)1−θ

< ŝ+ (1− δ̂)
(
K0

A0

)1−θ

,

where ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ and 1− δ̂ = (1− ν)β(1− δ).

The condition can be written as:

(1− δ)
(
K0

A0

)1−θ
[(

A0

A1

)1−θ

− (1− ν)

]
<

ξ(1− θ)
1− (1− ν − ξ)β

− νθ

⇔
(
A0

A1

)1−θ

< 1− ν +
1

1− δ

(
K0

A0

)θ−1 [
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
, (148)

where K0

A0

=

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

.

Using the following derivations:

1

1− δ

(
K0

A0

)θ−1 [
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]

=
1

1− δ

 [1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)
 [ξ(1− θ)− νθβ(ξ + ν + 1

β
− 1)

β(ξ + ν + 1
β
− 1)

]

= ν
1− (1− δ)β(1− ν)

βν(1− δ)
ξ(1− θ)− νθβ(ξ + ν + 1

β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

= ν

(
A1

A0

)θ−1

,
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the condition for βR1 <
w1

w0
is given by:(

A0

A1

)1−θ

< 1− ν + ν

(
A1

A0

)θ−1

∴
A1

A0

>

[
1− ν + ν

(
A1

A0

)θ−1
] 1
θ−1

=:
A′1
A0

, (149)

where A1

A0

<
A′1
A0

< 1. (150)

We obtain the last inequality (150), since 0 < ν < 1 and 0 <
A1

A0
< 1. Hence, A1 ∈

(A′1, A0] implies A1 ∈ (A1, A0]. By substituting A1

A0
using equation (145), we obtain equa-

tion (68) in the statement.

A.3.5 Consumption on Impact

Corollary 2 (Consumption at the time of a shock). Consider an unexpected shock to pro-
ductivity at t = 1 and assume that Assumptions 2, 3, and 4 hold. Then consumption of
high-income agents (ch,t) is a constant fraction of their income, and consumption of low-
income agents (cs,t for s ≥ 1) satisfies the standard Euler equation between periods t = 0

and t = 1:

ch,1 =
1− (1− ν)β

1− (1− ν − ξ)β
zw1

cs,1 = βR1cs−1,0 for s ≥ 1.

Proof. At t = 1, the asset distribution is predetermined and given by {as,t}∞s=0,t=1 that
satisfies Assumption 4. In particular, we consider the case in which {as,t}∞s=0,t=1 follows
a stationary distribution given by equations (45)–(47), where w0 follows (51). Note that
households purchased contingent assets {as,t(At)}∞s=0,t=1 at t = 0, expecting the steady-
state productivity for all future periods with probability 1, At = A∗ for all t ≥ 1, but
an unanticipated aggregate state is realized at t = 1. We assume that households hold
assets at t = 1 as if the anticipated aggregate state (A∗) is realized.

At time t = 1, a deterministic sequence of productivity {At}∞t=1 is unexpectedly real-
ized. The corresponding sequence of prices {qt(At+1, zt+1|At, zt), wt(At), Rt(A

t)}At,zt,t≥1

satisfies Assumptions 2 and 3. Then, by Proposition 1, the optimal consumption at t = 1

is given by (22). Equation (24) implies that the consumption satisfies the Euler equation
between t = 0 and t = 1.
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A.4 Proofs: Section 6 (Aggregate Shocks)

Lemma 1. Define K̃t := Kt
At

. The law of motion of capital (40) is expressed as:

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ̂)K̃t

]
. (151)

The maximum value and the minimum value of Kt
At

is given by:

K̃max =

(
ŝ

δ̂ − ε

) 1
1−θ

and K̃min =

(
ŝ

δ̂ + ε

) 1
1−θ

Proof. We deflate the law of motion of capital by At+1. Define K̃t := Kt
At

. Equation (40)
is given by:

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ̂)K̃t

]
where ŝ :=

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
and 1− δ̂ := (1− ν)β(1− δ).

K̃t := Kt
At

takes the maximum and minimum after the economy experiences negative
(At+1

At
= 1− ε) and positive (At+1

At
= 1 + ε) shocks infinitely many times, respectively. This

is because K̃t is decreasing in At+1

At
in equation (73). Also, since K̃t+1 is increasing in K̃t,

K̃ ′t > K̃t implies K̃ ′t+1 > K̃t+1. Then, K̃min solves:

K̃min =
1

1 + ε

[
ŝ
(
K̃min

)θ
+ (1− δ̂)K̃min

]
.

∴ K̃min =

(
ŝ

δ̂ + ε

) 1
1−θ

.

Similarly, K̃max solves:

K̃max =
1

1− ε

[
ŝ
(
K̃max

)θ
+ (1− δ̂)K̃max

]
.

∴ K̃max =

(
ŝ

δ̂ − ε

) 1
1−θ

.

Lemma 2.
1. The constraint βRt+1 <

wt+1

wt
is tighter at the time of negative shock (At+1

At
= 1− ε).

2. If K̃t = K̃min, K̃t+1 = At
At+1

(1 + ε)K̃min. If K̃t = K̃max, K̃t+1 = At
At+1

(1− ε)K̃max.
3. Suppose At+1

At
= 1− ε and K̃t ∈ [K̃min, K̃max]. Rt+1 is highest at K̃t = K̃min. wt+1

wt
is

lowest at K̃t = K̃max
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Proof.
1. βRt+1 <

wt+1

wt
is given by:

β
[
θK̃θ−1

t+1 + 1− δ
]
<
At+1

At

(
K̃t+1

K̃t

)θ

⇔ β

[
θ

(
At+1

At

)1−θ (
Kt+1

At

)θ−1

+ 1− δ

]
<

(
At+1

At

)1−θ (
Kt+1

Kt

)θ
⇔ β

[
θ

(
Kt+1

At

)θ−1

+ (1− δ)
(

At
At+1

)1−θ
]
<

(
Kt+1

Kt

)θ
The left hand side is stricly decreasing in At+1

At
unless δ = 1. Therefore, the condition is

tigher if At+1

At
= 1 − ε. Since the condition does not depend on At+1

At
under δ = 1, it is

still sufficient to check the condition at the time of negative shock (At+1

At
= 1− ε) for any

0 < δ ≤ 1.
2. K̃t+1 is given by (73):

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ̂)K̃t

]
.

If K̃t = K̃min and At+1

At
= 1 + ε, we know:

K̃t+1 =
1

1 + ε

[
ŝ(K̃min)θ + (1− δ̂)K̃min

]
= K̃min

∴
[
ŝ(K̃min)θ + (1− δ̂)K̃min

]
= (1 + ε)K̃min

Hence, if K̃t = K̃min, we derive:

K̃t+1 =
At
At+1

(1 + ε)K̃min (152)

Similarly, if K̃t = K̃max, we have

K̃t+1 =
At
At+1

(1− ε)K̃max. (153)

3. Rt+1 is decreasing in K̃t+1, since Rt+1 is given by:

Rt+1 = θK̃θ−1
t+1 + 1− δ.

K̃t+1 is determined by (73):

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ)K̃t

]
.

Given At
At+1

= 1
1−ε , K̃t+1 is increasing in K̃t. Therefore, Rt+1 is decreasing in K̃t and takes

the maximum value at K̃t = K̃min.
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wt+1

wt
is given by:

wt+1

wt
=
At+1

At

(
K̃t+1

K̃t

)θ

=

(
At+1

At

)1−θ [
ŝK̃θ−1

t + 1− δ̂
]θ
,

which is decreasing in K̃t. Therefore, wt+1

wt
takes the minimum value at K̃t = K̃max.

Lemma 3. K̃min ≤ K̃t ≤ K̃max implies K̃min ≤ K̃t+1 ≤ K̃max

Proof.
1. K̃t ≥ K̃min implies K̃t+1 ≥ K̃min.

Consider a positive shock. K̃t+1 is given by:

K̃t+1 =
1

1 + ε

[
ŝK̃θ

t + (1− δ̂)K̃t

]
.

If K̃t = K̃min, K̃t+1 = K̃min.
If K̃t > K̃min, since the right hand side is strictly increasing in K̃t, K̃t+1 > K̃min. There-
fore, K̃t ≥ K̃min implies K̃t+1 ≥ K̃min after a positive shock. Since

1

1 + ε

[
ŝK̃θ

t + (1− δ̂)K̃t

]
<

1

1− ε

[
ŝK̃θ

t + (1− δ̂)K̃t

]
,

K̃t ≥ K̃min implies K̃t+1 ≥ K̃min after a negative shock as well.
2. K̃t ≤ K̃max implies K̃t+1 ≤ K̃max.

Consider a negative shock. K̃t+1 is given by:

K̃t+1 =
1

1− ε

[
ŝK̃θ

t + (1− δ̂)K̃t

]
.

If K̃t = K̃max, K̃t+1 = K̃max.
If K̃t < K̃max, since the right hand side is strictly increasing in K̃t, K̃t+1 < K̃max. There-
fore, K̃t ≤ K̃max implies K̃t+1 ≤ K̃max after a negative shock. Since

1

1− ε

[
ŝK̃θ

t + (1− δ̂)K̃t

]
>

1

1 + ε

[
ŝK̃θ

t + (1− δ̂)K̃t

]
,

K̃t ≤ K̃max implies K̃t+1 ≤ K̃max after a positive shock as well.

Proposition 8 . Suppose Assumption 2, 4, and 5 hold and the aggregate capital at t = 0

satisfies K̃min < K̃0 < K̃max. Under Assumption G,

βRt+1 <
wt+1

wt
for all t ≥ 0 with probability 1.
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Proof. By Lemma 3, K̃min < K̃0 < K̃max implies K̃min < K̃t < K̃max for all t ≥ 1. We
saw in Lemma 2 that the condition βRt+1 <

wt+1

wt
is tighter at the time of negative shock.

Given a negative shock, Rt+1 achieves the maximum if K̃t = K̃min, and wt+1

wt
takes the

minimum if K̃t = K̃max. If the maximum of βRt+1 is smaller than the minimum of wt+1

wt

under At+1

At
= 1− ε, the condition is satisfied for all K̃t and At+1

At
. By imposing these, we

have a sufficient condition for βRt+1 <
wt+1

wt
, where

βRt+1 <
wt+1

wt

⇔ β
[
θK̃θ−1

t+1 + 1− δ
]
<

(
At+1

At

)1−θ [
ŝK̃θ−1

t + 1− δ̂
]θ
.

K̃t+1 in the left hand side takes the minimum at K̃t+1 = At
At+1

(1 + ε)K̃min. K̃t in the right
hand side takes the maximum at K̃t = K̃max. At+1

At
is given by 1− ε. Threfore, a sufficient

condition is given by:

β

[
θ

[
At
At+1

(1 + ε)K̃min

]θ−1

+ 1− δ

]
<

(
At+1

At

)1−θ [
ŝ(K̃max)θ−1 + 1− δ̂

]θ
(154)

By subsituting K̃max and K̃min, we obtain Assumption G. Under this condition, βRt+1 <
wt+1

wt
for all t ≥ 0 and all states At+1

At
∈ {1− ε, 1 + ε}.

Proposition 9. Suppose Assumption 5 holds. There exists ε̄ such that Assumption G holds
for all 0 ≤ ε < ε̄. Given such ε̄, 0 ≤ ε < ε̄ and K̃min < K̃0 < K̃max imply βRt+1 <
wt+1

wt
for all t ≥ 0 with probability 1.

Proof. If ε = 0 in Assumption G, we have:

β

[
θ
δ̂

ŝ
+ 1− δ

]
< 1. (155)

In the steady state, K̃ satisfies:

K̃∗ =

(
δ̂

ŝ

) −1
1−θ

. (156)

Therefore, equation (155) is equivalent to:

β
[
θ(K̃∗)θ−1 + 1− δ

]
< 1

⇔ βR∗ < 1.

This is equivalent to Assumption 5. This means that Assumption G is satisfied in an open
neighborhood of ε = 0, since Assumption G is continuous in ε.
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We show that Assumption G becomes monotonically tighter as ε increases. Assump-
tion G is equivalent to: [

θ

(
1 + ε

1− ε

)θ(
δ̂ + ε

1 + ε

)
1

ŝ
+

1− δ
1− ε

]
< 1.

(
1+ε
1−ε

) and 1−δ
1−ε are strictly increasing in ε. δ̂+ε

1+ε
is weakly increasing in ε for all 0 < δ̂ ≤ 1.

Threfore, the left hand side is strictly increasing in ε. This means that the condition
becomes tighter as ε increases. Hence, Assumption G is satisfied for all 0 < ε < ε̄.
Corollary 3. Suppose Assumption 5 holds and capital fully depreciates (δ = 1). If 0 ≤ ε < ε̄,
where

ε̄ :=

(
ŝ
βθ

) 1
θ − 1(

ŝ
βθ

) 1
θ

+ 1

> 0, (157)

Assumption G is satisfied.

Proof. If δ = 1 (which implies δ̂ = 1), Assumption G becomes:
βθ

ŝ

(
1 + ε

1− ε

)θ
< 1. (158)

This holds with equality if
1 + ε̄

1− ε̄
=

(
ŝ

βθ

) 1
θ

,

which gives ε̄ in equation (157). Since the left hand side of equation (158) is strictly
increasing in ε, the inequality holds for all ε with 0 < ε < ε̄. If ŝ

βθ
> 1, we will have

0 < ε̄ < 1. ŝ
βθ
> 1 is equivalent to:

ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ > βθ.

We know from Lemma 9 that Assumption 5 implies:

ξ(1− θ) > βθν

[
1

β
− 1 + ν + ε

]
.

Therefore, ε̄ satisfies 0 < ε̄ < 1.

A.5 Proof: Section 7 (Literature)

Proposition 10. In a limited-commitment model, as ξ → 0 and ν → 0, the transitional
dynamics is described by two equations:

Kt+1 = β
[
θA1−θ

t Kθ
t + (1− δ)Kt

]
, (77)

K∗ = A

[
βθ

1− β(1− δ)

] 1
1−θ

. (78)
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Under full depreciation of capital (δ = 1), the steady-state capital stock and the law of
motion of capital is the same as a standard neoclassical growth model with full depreciation
of capital and a log utility function.

Proof. The transitional dynamics of aggregate capital in an economy with limited com-
mitment is characterized by equation (40):

Kt+1 =
ξβ

1− (1− ν − ξ)β
(1− θ)A1−θ

t Kθ
t + (1− ν)β

[
θA1−θ

t Kθ
t + (1− δ)Kt

]
,

where K∗ = A

[
ξβ(1− θ) + (1− ν)βθ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

.

R∗ =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) .

We consider a limit where idiosyncratic income states do not change over time, ξ → 0

and ν → 0, and see the relation to a standard neoclassical growth model. As ξ → 0 and
ν → 0, the equations above converge to:

Kt+1 = β
[
θA1−θ

t Kθ
t + (1− δ)Kt

]
, (77)

K∗ = A

[
βθ

1− β(1− δ)

] 1
1−θ

, (78)

R∗ =
1

β
. (159)

We will see that this corresponds to a neoclassical growth model if δ = 1.
We describe a standard neoclassical growth model with a log utility function, u(C) =

log(C).

F (K,L) = Kθ(AL)1−θ with L = 1,

→

Rt = θA1−θ
t Kθ−1

t + 1− δ,

wt = (1− θ)A1−θ
t Kθ

t .

The equilibrium is characterized by the Euler equation and the resource constraint:
1

Ct
= βRt+1

1

Ct+1

, (160)

Ct +Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt. (161)

In the steady state, Ct = Ct+1 gives βRt = 1. Therefore, we have:

R∗ := θA1−θKθ−1 + 1− δ =
1

β
(162)

⇔ K∗ = A

(
θ

1
β
− 1 + δ

) 1
1−θ

. (163)
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We see that the steady-state level of capital coincides with our model (78).
The law of motion of capital is given by:

1

A1−θ
t Kθ

t + (1− δ)Kt −Kt+1

= β
θA1−θ

t+1K
θ−1
t+1 + 1− δ

A1−θ
t+1K

θ
t+1 + (1− δ)Kt+1 −Kt+2

⇔ Kt+2 = A1−θ
t+1K

θ
t+1 + (1− δ)Kt+1 − β

(
θA1−θ

t+1K
θ−1
t+1 + 1− δ

)︸ ︷︷ ︸
=Rt+1

[
A1−θ
t Kθ

t + (1− δ)Kt −Kt+1

]︸ ︷︷ ︸
Ct

.

(164)

Generally, the equation (353) doesn’t have a closed-form solution. Consider a special
case with δ = 1:

Kt+2 = A1−θ
t+1K

θ
t+1 − βθA1−θ

t+1K
θ−1
t+1

[
A1−θ
t Kθ

t −Kt+1

]
. (165)

We have a well-known closed-form solution in this case. Guess that

Kt+1 = βθA1−θ
t Kθ

t . (166)

Then, (165) becomes:

Kt+2 = A1−θ
t+1K

θ
t+1 − βθA1−θ

t+1K
θ−1
t+1

[
(1− βθ)A1−θ

t Kθ
t

]
= A1−θ

t+1K
θ
t+1 − A1−θ

t+1K
θ−1
t+1 [(1− βθ)Kt+1]

= βθA1−θ
t+1K

θ
t+1.

This is consistent with the guess. Under δ = 1, this coincides with our model (77) with
δ = 1:

Kt+1 = βθA1−θ
t Kθ

t

Therefore, our model with ξ → 0, ν → 0, and δ = 1 coincides with the neoclassical
growth model with δ = 1.

A.6 Proofs: Section 8 (Consumption Inequality)

Proposition 11 (Consumption Distribution in the Long Run). Suppose that Assumptions
2, 3, and 4 hold and that an economy is in a steady state at t = 0 with productivity
A0. Suppose also that after a productivity shock, aggregate productivity settles down at
A1. Then, the deflated consumption distribution in the long run is the same as the initial
distribution:

c∗s = (βR∗)sc0 for s = 0, 1, 2, · · · ,

where the steady-state interest rate, R∗, does not depend on productivity A.
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Proof. As we see in Proposition 5, in the transitional dynamics, aggregate capital will
monotonically converge to a new steady state. Then, the interest rate also converges to
a steady-state interest rate (Corollary ??).

In a stationary equilibrium, the deflated consumption of low-income agents is deter-
mined by:

cs = βR∗cs−1.

Hence, the consumption distribution is characterized by:

cs = (βR∗)sc0 for s = 0, 1, 2, · · · ,

where the mass of each agent is given by equation (373):

φs =

 ν
ξ+ν

if s = 0

νξ
ξ+ν

(1− ν)s−1 if s ≥ 1.

Because the equilibrium interest rate does not depend on productivity A, shown in equa-
tion (54):

R∗ =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) ,

the deflated consumption distribution is the same across stationary equilibia with differ-
ent A.

Lemma 12. Suppose Assumptions 2, 3, and 4 hold. With full depreciation of capital (δ =

1), the following equation holds for any sequence of aggregate shocks {At}t≥0:

βRt+1(At+1)
wt(A

t)

wt+1(At+1)
=
βθ

ŝ
(167)

Proof. With full depreciation of capital (δ = 1), the law of motion of capital (40) is given
by:

Kt+1 =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
︸ ︷︷ ︸

=:ŝ

A1−θ
t Kθ

t (168)

The interest rate and wage are:

Rt+1(At+1) = θ

(
Kt+1

At+1

)θ−1

wt(A
t) = (1− θ)A1−θ

t Kθ
t

77



Hence, given Kt, the following equation holds for any (At, At+1):

βRt+1(At+1)
wt(A

t)

wt+1(At+1)
= βθA1−θ

t+1K
θ−1
t+1

(1− θ)A1−θ
t Kθ

t

(1− θ)A1−θ
t+1K

θ
t+1

= βθ
A1−θ
t Kθ

t

Kt+1

=
βθ

ŝ
. (169)

Proposition 12. Suppose Assumptions 2, 3, and 4 hold. Suppose that an economy is in a
stationary equilibrium at t = 0 with deflated consumption distribution {c∗s}s≥0. With full
depreciation of capital (δ = 1), the deflated consumption distribution is time-invariant for
any sequence of {At}t≥0:

cs,t(A
t) = c∗s for any t ≥ 0 and At. (85)

Proof. The stationary distribution at t = 0 is given by:

c∗s = (βR∗)sc0, where c0 :=
1− (1− ν)β

1− (1− ν − ξ)β
ζ.

Note that with δ = 1, the interest rate in the statioanry equilibrium (54) is given by:

R∗ =
θ
(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) .

=
θ

ŝ
(170)

where ŝ :=
ξ(1− θ) + (1− ν)βθ(ξ + ν + 1

β
− 1)

ξ + ν + 1
β
− 1

.

From t = 1 onwards, the deflated consumption distribution evolves acccording to equa-
tion (84):

cs,t(A
t) =

c0 if s = 0

βRt(A
t)wt−1(At−1)

wt(At)
cs−1,t−1(At−1) if s ≥ 1

Lemma 12 shows that:

βRt(A
t)
wt−1(At−1)

wt(At)
=
βθ

ŝ

for any t ≥ 1 and (At−1, At). Combined with equation (170), this means that:

cs,t(A
t) =

c0 if s = 0

βR∗cs−1,t−1(At−1) if s ≥ 1
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Hence, starting from the stationary distribution at t = 0, the deflated consumption dis-
tribution is time-invariant:

cs,t(A
t) = c∗s for all t ≥ 0 and At.

Proposition 13. Consider an economy in a stationary equilibrium at t = 0 and a positive
productivity shock at t = 1 (A1 > A0), where βRt+1 <

wt+1

wt
for all t ≥ 0. Under 0 < δ < 1

and 0 < θ < 1, the degree of inequality rises at the time of a shock (t = 1) in the sense that
the consumption of all low-income agents (s = 1, 2, · · · ) declines relative to high-income
agents:

cs,1 =
θA1−θ

0 Kθ−1
0 + (1− δ)

(
A0

A1

)1−θ

θA1−θ
1 Kθ−1

0 + 1− δ
cs,0 < cs,0, (86)

while ch,t =
1− (1− ν)β

1− (1− ν − ξ)β
z for all t ≥ 0.

Proof. We derive that cs,1 < cs,0 for all s ≥ 1 if A1 > A0 and δ < 1, meaning that the
deflated consumption of low-income agents at time t = 1 is lower than the deflated
consumption in a stationary equilibrium (t = 0) for all s ≥ 1. By equation (??),

cs,1 =
w0

w1

R1

R0

cs,0,

where Rt = θA1−θ
t Kθ−1

t + 1− δ,

wt = (1− θ)A1−θ
t Kθ

t .

∴ cs,1 =

(
A1−θ

0

A1−θ
1

)
θA1−θ

1 Kθ−1
0 + 1− δ

θA1−θ
0 Kθ−1

0 + 1− δ
cs,0

=
θA1−θ

0 Kθ−1
0 + (1− δ)

(
A0

A1

)1−θ

θA1−θ
0 Kθ−1

0 + 1− δ
cs,0

We use the fact that K1 = K0 as the aggregate capital at t = 1, K1, is predetermined at
time t = 0. Given that 0 < δ < 1, 0 < θ < 1, andA1 > A0, we have (1−δ)

(
A0

A1

)1−θ
< 1−δ.

Therefore, cs,1 < cs,0 for all s ≥ 1.

In order to obtain the expression of consumption gap in Proposition 14, we first derive
the consumption gap cs,t

cs,0
in the following Lemma.

Lemma 13. Suppose an economy is in a stationary equilibrium at t = 0, and a productivity
shock is realized at t = 1. Assume βRt+1 <

wt+1

wt
holds for all t ≥ 0. The evolution of deflated

consumption for low-income agents is characterized as:

cs,t
cs,0

=


(∏t

u=1
Ru
R0

)
w0

wt
if s ≥ t(∏t

u=t−s+1
Ru
R0

)
wt−s
wt

if 1 ≤ s < t
(171)
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Notivce that because Ru = R0 for u ≤ 0 and wt−s = w0 for s ≥ t, the latter expression
includes the former as a special case.

Proof. The ratio of deflated consumption between time t and time 0 for agents s with
s ≥ t, cs,t

cs,0
, is derived using the Euler equation:

wtcs,t = βRtwt−1cs−1,t−1

= (βRt)(βRt−1) · · · (βR1)w0cs−t,0

cs,0 = (βR0)tcs−t,0

∴
cs,t
cs,0

=

(
R1

R0

)
· · ·
(
Rt

R0

)
w0

wt

This equation can be expressed in a sequential way:
cs,t
cs,0

=
cs,t−1

cs,0

(
Rt

R0

)(
wt−1

wt

)
=

t∏
u=1

(
Ru

R0

)(
wu−1

wu

)
=

(
t∏

u=1

Ru

R0

)
w0

wt
.

If s < t, the low-income agents have experienced high income after the shock. Hence,
wage at the time of last high income is wt−s with wt−s > w0. The ratio of deflated
consumption between time t and time 0 is given by:

wtcs,t = βRtwt−1cs−1,t−1

= (βRt) · · · (βRt−s+1)wt−sch,t−s

cs,0 = (βR0)sch,0

∴
cs,t
cs,0

=

(
Rt−s+1

R0

)
· · ·
(
Rt

R0

)
wt−s
wt

=

(
t∏

u=t−s+1

Ru

R0

)
wt−s
wt

Proposition 14. Suppose an economy is in a stationary equilibrium at t = 0, and a produc-
tivity shock is realized at t = 1. Suppose Assumption 3 holds. The evolution of consumption
gap between high-income and low-income agents relative to the stady state is described by:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
for all s ≥ 1 if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
if s ≥ t and t ≥ 2∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
if s < t and t ≥ 2

(87)

Assume 0 < δ < 1. Then, the consumption gap expands at time 1, since log
(
w1

w0

R0

R1

)
>

0. From time 1 until time s ≥ 2, the consumption gap continues to be higher than the

80



stationary equilibrium if log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
> 0. From time s+1 onwards,

the consumption gap is smaller than the stationary equilibrium if
∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
<

0.

Proof. From equation (171), we know:
cs,t
cs,0

=

(
Rt−s+1

R0

)
· · ·
(
Rt

R0

)
wt−s
wt

,

cs,t−1

cs,0
=

(
Rt−s

R0

)
· · ·
(
Rt−1

R0

)
wt−1−s

wt−1

.

Dividing the former equation by the latter gives:
cs,t
cs,t−1

=

(
Rt

Rt−s

)(
wt−s
wt

)(
wt−1

wt−1−s

)
.

This allows us to express cs,t
c0,t

in a sequential way, where we use c0,t = c0,t−1 = ch:
cs,t
c0,t

=

(
Rt

Rt−s

)(
wt−s
wt

)(
wt−1

wt−1−s

)
cs,t−1

c0,t−1

=

[
t∏

u=1

Ru

Ru−s

wu−s
wu

wu−1

wu−1−s

]
cs,0
c0,0

for s ≥ 1. (172)

By taking a log:

− log

(
cs,t
c0,t

)
=

t∑
u=1

 log

(
wu
wu−1

)
︸ ︷︷ ︸

wage increase for high income

− log

(
wu−s
wu−s−1

)
︸ ︷︷ ︸

wage increase for s agent

− log

(
Ru

Ru−s

)
︸ ︷︷ ︸
higher interest rate

− log

(
cs,0
c0,0

)
︸ ︷︷ ︸

initial gap

= log

(
wt
w0

)
− log

(
wt−s
w0

)
−

t∑
u=t−s+1

log

(
Ru

R0

)
− log

(
cs,0
c0,0

)
. (173)

This equation holds for any s ≥ 1. If s ≥ t, we use the facts that:

log

(
wt−s
w0

)
= log

(
w0

w0

)
= 0

0∑
u=t−s+1

log

(
Ru

R0

)
=

0∑
u=t−s+1

log

(
R0

R0

)
= 0 for s > t.

Then, (173) is written as follows:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
= log

(
wt
w0

)
−

t∑
u=1

log

(
Ru

R0

)
for s ≥ t

=
t∑

u=1

log

(
wu
wu−1

R0

Ru

)

=

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
if t ≥ 2

log
(
w1

w0

R0

R1

)
if t = 1

(174)
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Combined with the case of s < t, we have:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
for all s ≥ 1 if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
if s ≥ t and t ≥ 2∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
if s < t and t ≥ 2

As we saw before,

w1

w0

R0

R1

=

(
A1

A0

)1−θ
θA1−θ

0 Kθ−1
0 + 1− δ

θA1−θ
1 Kθ−1

0 + 1− δ

=
θA1−θ

1 Kθ−1
0 + (1− δ)

(
A1

A0

)1−θ

θA1−θ
1 Kθ−1

0 + 1− δ
> 1 if δ < 1. (175)

This confirms that consumption gap between high-income agents and s-th low-income
agents expands at time 1 if δ < 1. This equation illustrates that if 0 < δ < 1, wage
growth at time 1, given by

(
A1

A0

)1−θ
, is higher than interest rate growth. Therefore, the

productivity shock benefits high-income agents more than low-income agents at time
1.

Proposition 19 (Sufficient Condition for Overshooting). Consider an economy in a sta-
tionary equilibrium at t = 0 and a positive productivity shock at t = 1 (At = A1 > A0 for
all t ≥ 1), where βRt <

wt+1

wt
for all t ≥ 0. The consumption gap between s-th low-income

agents and high-income agents at time s+ 1, − log
(
cs,s+1

c0,s+1

)
, is smaller than the initial gap

in the stationary equilibrium, − log
(
cs,0
c0,0

)
, if the following condition is satisfied:

wt+1

wt

R0

Rt+1

< 1 for all t = 1, · · · , s. (176)

Proof. The overshooting phenomenon happens at time s+ 1 for s-th low-income agents
if − log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
< 0 at t = s+ 1. We rewrite this condition:

− log

(
cs,s+1

c0,s+1

)
+ log

(
cs,0
c0,0

)
= log

(
ws+1

w1

)
−

s+1∑
u=2

log

(
Ru

R0

)
=

s∑
u=1

[
log

(
wu+1

wu

)
− log

(
Ru+1

R0

)]
=

s∑
u=1

log

(
wu+1

wu

R0

Ru+1

)
This equation shows that the overshooting phenomenon happens for agent s if wt+1

wt
R0

Rt+1
<

1 for all t = 1, ..., s.
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A.6.1 Evaluation of wt+1

wt
R0

Rt+1
at time t ≥ 1

We saw in the last proposition that the overshooting of consumption gap happens if
wt+1

wt
R0

Rt+1
< 1 for all t = 1, · · · , s.We characterize this term in terms of capital (K0, Kt, Kt+1).

Proposition 20. Suppose an economy is in a stationary equilibrium at t = 0, and a pro-
ductivity shock is realized at t = 1. Assume βRt+1 <

wt+1

wt
holds for all t ≥ 0. wt+1

wt
R0

Rt+1
for

t ≥ 1 is expressed as:

wt+1

wt

R0

Rt+1

=

[
δ̂ + (1− δ̂)

(
Kt/A1

K0/A0

)1−θ
] θ + (1− δ)

(
K0

A0

)1−θ

θ + (1− δ)
(
Kt+1

A1

)1−θ

 . (177)

Proof. We use the following:

Rt = θA1−θ
t Kθ−1

t + 1− δ,

wt = (1− θ)A1−θ
t Kθ

t ,

Kt+1 = ŝA1−θ
t Kθ

t + (1− δ̂)Kt,

where ŝ =
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ = δ̂

(
K0

A0

)1−θ

,

δ̂ = 1− (1− ν)β(1− δ).

Then, wt+1

wt
R0

Rt+1
is expressed by:

wt+1

wt

R0

Rt+1

=

[
(1− θ)A1−θ

t+1K
θ
t+1

(1− θ)A1−θ
t Kθ

t

][
θA1−θ

0 Kθ−1
0 + 1− δ

θA1−θ
t+1K

θ−1
t+1 + 1− δ

]
for t = 1, · · · , s (178)

=

[
Kt+1K

θ−1
t+1

Kθ
t

] [
θA1−θ

0 Kθ−1
0 + 1− δ

θA1−θ
1 Kθ−1

t+1 + 1− δ

]
=

[
ŝA1−θ

t Kθ
t + (1− δ̂)Kt

Kθ
t

][
θA1−θ

0 Kθ−1
0 + 1− δ

θA1−θ
1 + (1− δ)K1−θ

t+1

]

=

[
δ̂

(
K0

A0

)1−θ

A1−θ
1 + (1− δ̂)K1−θ

t

][
θA1−θ

0 + (1− δ)K1−θ
0

θA1−θ
1 + (1− δ)K1−θ

t+1

]
Kθ−1

0

=

[
δ̂

(
A1

A0

)1−θ

+ (1− δ̂)
(
Kt

K0

)1−θ
][

θA1−θ
0 + (1− δ)K1−θ

0

θA1−θ
1 + (1− δ)K1−θ

t+1

]

=

[
δ̂ + (1− δ̂)

(
Kt/A1

K0/A0

)1−θ
]

︸ ︷︷ ︸
<1 if δ<1

 θ + (1− δ)
(
K0

A0

)1−θ

θ + (1− δ)
(
Kt+1

A1

)1−θ


︸ ︷︷ ︸

>1 if δ<1
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Note that Kt
A1

< Kt+1

A1
< · · · < K∗

A1
= K0

A0
on the transition path after a positive produc-

tivity shock. Equation (177) is equal to 1 if δ = 1, as δ̂ = 1− (1− ν)β(1− δ) = 1 under
δ = 1.

Corollary 4. Consider a transition path after a productivity shock.

If δ = 1,
wt+1

wt

R0

Rt+1

= 1 for all t ≥ 0.

This is consistent with the constant deflated consumption distribution.

Proof. Plug in δ = δ̂ = 1 for the equations (175) and (177).

In the long run, Kt
At

and Kt+1

A1
converge to K0

A0
. Therefore, the term, wt+1

wt
R0

Rt+1
, converges

to 1, meaning the consumption gap between high-income and low-income agents goes
back to the original level.

Corollary 5. Consider a transition path after a productivity shock. The consumption gap
converges to the initial level for sufficiently large t ≥ s+ 1.

Proof. limt→∞
wt+1

wt
R0

Rt+1
= 1 imply that limt→∞

∑t−1
u=t−s log

(
wu+1

wu
R0

Ru+1

)
= 0

A.6.2 Consumption Distribution after a Negative Productivity Shock

This subsection summarizes symmetric results for an unexpected negative productivity
shock at time 1. Figure 9 illustrates that the transition path of consumption gaps after a
negative productivity shock is symmetric with a transition path after a positive shock.

Corollary 6 (Negative Productivity Shock with Full Depreciation). Consider a transition
path after a negative productivity shock.

If δ = 1,
wt+1

wt

R0

Rt+1

= 1 for all t ≥ 0.

This implies that with full depreciation of capital (δ = 1), the deflated consumption distri-
bution is constant along the transition.

Corollary 7 (Transition of Consumption Gap after a Negative Shock). Consider a tran-
sition path after a negative productivity shock at time 1. The evolution of the consumption
gap between high-income agents and s-th low-income agents is given by (87):

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
if 2 ≤ t ≤ s and s ≥ 2∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
if t ≥ s+ 1
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Figure 9: Transition of the Consumption Distribution (Positive & Negative Productivity
Shock)

Figure 10: Transition of the Deflated Consumption Distribution (Negative Productivity
Shock)
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Assume 0 < δ < 1. Then, the consumption gap shrinks at time 1, since log
(
w1

w0

R0

R1

)
< 0.

From time 1 until time s ≥ 2, the consumption gap continues to be lower than the stationary
equilibrium if log

(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu
R0

Ru+1

)
< 0. From time s + 1 onwards, the

consumption gap is higher than the stationary equilibrium if
∑t−1

u=t−s log
(
wu+1

wu
R0

Ru+1

)
> 0.

Therefore, a sufficient condition for having overshooting of consumption gaps is:

wt+1

wt

R0

Rt+1

> 1 for all t = 1, · · · , s.

Corollary 8 (Long-Run Consumption Gap after a Negative Shock). Consider a transi-
tion path after a negative productivity shock at time 1. For sufficiently large t ≥ s + 1,
the consumption gap converges to the initial level for all s ≥ 1. This means that the de-
flated consumption distribution in the new stationary equilibrium is the same as the initial
stationary equilibrium.

A.7 Proofs: Section 9 (Asset Pricing)

A.7.1 The Risk-Free Rate and the Risk Premium

Lemma 4 . In the limited commitment model, the price of risk-free bonds and the risk
premium at aggregate state At is given by:

qB,LCt (At) = Et
[

1

Rt+1(At+1)

]
1 + λLCt (At) :=

Et[Rt+1(At+1)]

Et[1/qB(At)]
= Et[Rt+1(At+1)] Et

[
1

Rt+1(At+1)

]
> 1.

Et[·] denotes the expectation conditional on At, Et[·] := E[·|At].

Proof. We first derive a pricing kernel that allows us to compute the price of any securi-
ties, including the price of risk-free bonds qB(At) and the price of risky capital qK(At). A
pricing kernel is defined as the price of one unit of non-deflated consumption goods at
time t+ 1 in a state At+1 conditional on the state at t being At:30

Q(At+1|At) = β
u′(ct+1(At+1))

u′(ct(At))
π(At+1|At). (179)

Since we assume a logarithmic utility function, the marginal utility of consumption is
given by:

u′(ct) =
1

ct
.

30See Ljungqvist and Sargent (2018) p.270
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In addition, in the limited commitment model, consumption of asset holders (i.e., house-
holds in a low-income state at t+ 1) follows the Euler equation:

ct+1(At+1; zt+1 = 0) = βRt+1(At+1)ct(A
t).

Therefore, the pricing kernel in the limited-commitment model is given by:

Q(At+1|At) =
1

Rt+1(At+1)
π(At+1|At). (180)

Given this pricing kernel, we can derive the price of any securities. The price of risk-
free bonds that yield one unit of consumption at t + 1 regardless of the aggregate state
At+1 is given by:

qB(At) =
∑

At+1|At
Q(At+1|At) · 1

=
∑

At+1|At

1

Rt+1(At+1)
π(At+1|At)

= Et
[

1

Rt+1(At+1)

]
. (181)

The price of risky assets that yields Rt+1(At+1) depending on the aggregate state At+1 is
given by:

qK(At) =
∑

At+1|At
Q(At+1|At)Rt+1(At+1)

=
∑

At+1|At

1

Rt+1(At+1)
π(At+1|At)Rt+1(At+1) = 1. (182)

Nowwe compute the expected return on these two assets. The expected rate of return
on risk-free bonds is given by:

Et
[

1

qB(At)

]
=

1∑
At+1|At

1
Rt+1(At+1)

π(At+1|At)
=:

1

Et[1/Rt+1(At+1)]
. (183)

The expected rate of return on risky assets is given by:

Et
[
Rt+1(At+1)

1

]
= Et

[
Rt+1(At+1)

]
. (184)

Et
[

1

Rt+1(At+1)

]
>

1

Et [Rt+1(At+1)]
. (185)

Hence, the risk premium is given by:

1 + λLCt :=
Et[Rt+1(At+1)]

Et[1/qB(At)]
= Et[Rt+1(At+1)] Et

[
1

Rt+1(At+1)

]
> 1. (186)
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The risk premium is strictly larger than 1 because Rt+1(At+1) is a non-trivial random
variable and Jensen’s inequality holds with strict inequality.31

Lemma 5 . In the representative agent model, the price of risk-free bonds and the risk
premium at aggregate state At is given by:

qB,Rept (At) = Et
[
β

Ct(A
t)

Ct+1(At+1)

]
1 + λRept (At) :=

Et[Rt+1(At+1)]

Et[1/qB(At)]
= Et[Rt+1(At+1)] Et

[
β

Ct(A
t)

Ct+1(At+1)

]
.

Proof. As before, the pricing kernel is given by:

Q(At+1|At) = β
u′(ct+1(At+1))

u′(ct(At))
π(At+1|At)

= β
Ct(A

t)

Ct+1(At+1)
π(At+1|At). (187)

The second line holds since consumption by a unit measure of representative households
is the same as the aggregate consumption.

Then, the price of bonds is given by:

qB(At) =
∑

At+1|At
Q(At+1|At) · 1

= Et
[
β

Ct(A
t)

Ct+1(At+1)

]
(188)

The risk premium is given by:

1 + λRept :=
Et[Rt+1(At+1)]

Et[1/qB(At)]
= Et[Rt+1(At+1)] Et

[
β

Ct(A
t)

Ct+1(At+1)

]
(189)

A sequence of aggregate consumption Ct follows the Euler equation:
1

Ct(At)
= βEt

[
Rt+1(At+1)

1

Ct+1(At+1)

]
(190)

This gives:

1 = Et
[
βRt+1(At+1)

Ct(A
t)

Ct+1(At+1)

]
= Et

[
Rt+1(At+1)

]
Et
[
β

Ct(A
t)

Ct+1(At+1)

]
+ covt

(
Rt+1(At+1), β

Ct(A
t)

Ct+1(At+1)

)
. (191)

If the covariance term is negative, the risk premium in the representative agent model is
positive.

31If g(·) is a convex function, E[g(X)] ≥ g(E[X]), where X is a random variable. Equality holds only if
P (g(X) = a+ bX) = 1, where a+ bX is tangent to g(·) at E[X].
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A.7.2 Economy with δ = 1

Proposition 15. Consider an economy with full depreciation of capital δ = 1. Given the
same amount of aggregate capital Kt, the risk-free rate, which is the inverse of the price
of risk-free bonds, is lower in the limited-commitment model than a representative-agent
model:

1

qB,LCt (At)
<

1

qB,Rept (At)
for all At. (92)

The risk premium is the same in the two models and is given by:

1 + λt = Et[A1−θ
t+1 ]Et

[
1

A1−θ
t+1

]
> 1. (93)

If the productivity growth rate At+1

At
follows an iid process, the risk premium 1+λt is constant

over time.

Proof. Under full depreciation of capital, the interest rate is given by:

Rt+1(At+1) = θ

(
Kt+1

At+1

)θ−1

, (192)

where the law of motion of capital follows:

KLC
t+1(At) = ŝA1−θ

t Kθ
t (193)

Krep
t+1(At) = βθA1−θ

t Kθ
t (194)

with βθ < ŝ under Assumption 5. This expression shows that given the same amount
of capital at time t, the limited-commitment economy accumulates more capital than
the representative-agent economy, implying that the interest rate is lower in the limited-
commitment economy. Since the interest rate is lower in the limited-commitment econ-
omy givenKt, it implies that the risk-free rate is lower in the limited-commitment model:

1

qB(At)
=

1

Et [1/Rt+1(At+1)]
(195)

where RLC
t+1(At+1) < RRep

t+1(At+1) given Kt (196)

As we derived in Section 9.1, the risk premium in the two economies is given by:

1 + λLCt = Et[RLC
t+1(At+1)] Et

[
1

RLC
t+1(At+1)

]
1 + λRept = Et[RRep

t+1(At+1)] Et

[
β
CRep
t (At)

CRep
t+1 (At+1)

]
(197)
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The goods market clearing condition and the law of motion of capital pin down the
aggregate consumption at time t:

Ct +Kt+1 = Kθ
tA

1−θ
t + (1− δ)Kt with δ = 1 (198)

∴ CLC
t = Kθ

tA
1−θ
t −KLC

t+1

= (1− ŝ)A1−θ
t Kθ

t (199)
CRep
t = Kθ

tA
1−θ
t −KRep

t+1

= (1− βθ)A1−θ
t Kθ

t (200)

Note that the closed form of aggregate consumption in the representative-agent model
(200) simplifies the second term in equation (197):

Et

[
β
CRep
t (At)

CRep
t+1 (At+1)

]
= Et

[
β

(1− βθ)A1−θ
t Kθ

t

(1− βθ)A1−θ
t+1K

θ
t+1

]
= Et

[
βA1−θ

t Kθ
t

Kt+1A
1−θ
t+1K

θ−1
t+1

]
where Kt+1 = βθA1−θ

t Kθ
t

= Et
[

1

θA1−θ
t+1K

θ−1
t+1

]
= Et

[
1

RRep
t+1(At+1)

]
(201)

This means that the second term, which is the inverse of risk-free rate, has the same
expression in the two economies. The crucial property is the constant saving rate in
the representative agent economy, which implies that consumption Ct is proportional to
aggregate output A1−θ

t Kθ
t and that capital in the next period Kt+1 is also proportional to

aggregate output. Without the assumption of δ = 1, this is not generally the case. Hence,
the derivation below to show that the two economies have the same risk premium would
not hold.

We explicitly derive the risk premium for each economy. In the limited-commitment
economy, the risk premium is:

1 + λLCt = Et
[
RLC
t+1(At+1)

]
Et
[

1

RLC
t+1(At+1)

]
= Et

[
θ(KLC

t+1)θ−1(At+1)1−θ]Et [ 1

θ(KLC
t+1)θ−1(At+1)1−θ

]
= Et

[
θ(ŝA1−θ

t Kθ
t )θ−1(At+1)1−θ]Et [ 1

θ(ŝA1−θ
t Kθ

t )θ−1(At+1)1−θ

]
= Et

[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
(202)
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In the representative agent economy,

1 + λRept = Et
[
RRep
t+1(At+1)

]
Et

[
β
CRep
t (At)

CRep
t+1 (At+1)

]

= Et
[
θ(KRep

t+1 )θ−1(At+1)1−θ
]
Et

[
β

(1− βθ)A1−θ
t Kθ

t

(1− βθ)A1−θ
t+1 (KRep

t+1 )θ

]

= Et
[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
(203)

This shows that the risk premium is the same between the two economies under full
depreciation of capital.

Saving Rate in the two models We can rewrite ŝLC as:

ŝLC = βθ +
ξβ(1− θ)

1− (1− ν − ξ)β
− νβθ

= βθ + (1− θ)ν

 ξ

ν
(

1
β
− 1 + ξ + ν

) − θ

(1− θ) 1
β

 (204)

Under δ = 1, the second term is strictly positive if and only if Assumption 5 holds.
With δ = 1, we also derive Kt in closed form. Since the economy has a constant

saving rate,

Kt+1 = sA1−θ
t Kθ

t , where s ∈ {ŝLC , sRep := βθ}

logKt+1 = log s+ (1− θ) logAt + θ logKt

This implies:

logK2 = log s+ (1− θ) logA1 + θ logK1, where K1 = K0

logKt = (1 + θ + · · ·+ θt−2) log s+ (1− θ)

[
t−1∑
τ=1

θτ−1 logAt−τ

]
+ θt−1 logK0 (205)

= (1− θ)

[
t−1∑
τ=1

θt−1−τAτ

]
+

1− θt−1

1− θ
log ŝ+ θt−1 logK0 (206)

Comparison given (K0, {At}∞t=0) The expression of Kt+1 above implies that for any
given Kt and At, the limited-commitment model always accumlates more capital:

logKLC
t+1 − logKRep

t+1 = log ŝLC − log sRep︸ ︷︷ ︸
>0 under Assumption 5

+θ
(

logKLC
t − logKRep

t

)
. (207)
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Starting from the same initial capital K0, the difference in Kt is expressed as:

logKLC
t − logKRep

t = (1 + θ + θ2 + · · ·+ θt)(log ŝLC − log sRep), (208)

where (log ŝLC − log sRep) = log

[
ξ

1− (1− ν − ξ)β
1− θ
θ

+ 1− ν
]
> 0 under Assumption 5.

In the long-run, this will converge to:

lim
t→∞

(logKLC
t − logKRep

t ) =
1

1− θ
log

[
ŝ

βθ

]
, (209)

which is consistent with the capital ratio in the steady state:

K∗LC

K∗Rep
=

(
ŝ

βθ

) 1
1−θ

. (210)

We make three remarks here: (i) Given (K0, {At}∞t=0), KLC
t is always larger than KRep

t ,
(ii) For any sequence of {At}t≥0, KLC

t

KRep
t

monotonically converges to the ratio in the steady
state K∗LC

K∗Rep
, (iii) As ξ and ν approach zero (ξ → 0 and ν → 0), the law of motion of capital

in the limited-commitment model also approches to the one in the representative-agent
model:

lim
ξ→0,ν→0

KLC
t = KRep

t for any t ≥ 1, given K0. (211)

A.7.3 Endowment Economy

In an endowment economy, aggregate consumption {Ct(At)}t,At is exogenous. House-
holds face idiosyncratic income shocks as they draw zt ∈ {0, ζ} each period that follows a
Markov transition probability as before. Households trade a state contingent Lucas tree
σt+1(a0, z

t+1, At+1) that delivers dividends depending on aggregate states At+1 at time
t + 1. In the limited commitment model, households are subject to a tight borrowing
constraint. In a standard complete market model, the borrowing constraint never binds.
Since we obtain the same stochastic discount factor in the standard complete market
model and the representative agent model, we call such an economy a representative
agent model.

Lemma 14 shows that when aggregate consumption Ct(At) is exogneous and follows
a common stochastic process in the two models, the limited commitment model has a
higher bond price:

qB,LCt (At) > qB,Rept (At) for all At, (212)

and hence a lower risk-free rate.
To explicitly compute the price of bonds and the risk premium, we derive the interest

rate in the two models. The interest rate Rt+1(At+1) is determined to clear goods and
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security (Lucas tree) markets. Then, we confirm that the price of risk-free bonds is higher
in the limited-commitment model.

Lemma 14. If the aggregate consumption is the same between the limited-commitment
model and the representative agent model, the limited-commitment has a higher price of
risk-free bonds and a lower-risk free rate.

Proof. The price of risk-free bonds in the two models is given by:

qB,LC(At) = Et
[

1

RLC
t+1(At+1)

]
=

∑
At+1|At

1

RLC
t+1(At+1)

π(At+1|At) (213)

qB,Rep(At) = Et

[
β
CRep
t (At)

CRep
t+1 (At+1)

]
=

∑
At+1|At

β
CRep
t (At)

CRep
t+1 (At+1)

π(At+1|At) (214)

In the limited commitment model,
1

RLC
t+1(At+1)

= β
ct(A

t)

ct+1(At+1; zt+1 = 0)
> β

CLC
t (At)

CLC
t+1(At+1)

, (215)

since ct+1(At+1; zt+1 = ζ) > ct+1(At+1; zt+1 = 0).
Put differently, we can show that CLC

t+1 > βRLC
t+1C

LC
t :

Ct+1 :=
∞∑
s=0

φscs,t+1

= φ0 c0,t+1︸ ︷︷ ︸
>βRt+1c0,t

+
∞∑
s=1

φs cs,t+1︸ ︷︷ ︸
=βRt+1cs−1,t

> βRt+1

φ0c0,t +
∞∑
s=1

φs cs−1,t︸ ︷︷ ︸
>cs,tunder Assumption1


> βRt+1

[
φ0c0,t +

∞∑
s=1

φscs,t

]
= βRt+1Ct

Therefore, if the aggregate consumption is the same between the two models for all
(t, At), the limited-commitment has a higher price of risk-free bonds and a lower risk-free
rate.

Lemma 15. Consider the limited-commitment model with exogenous aggregate endowment
{Ct(At)}t,At. Lucas tree yields α fraction of aggregate endowment at all t andAt and is priced
at qLTt (At) at state At. Assume that parameters satisfy:

α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) . (94)
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The interest rate, defined as the return on Lucas tree, is given by:

Rt+1(At+1) :=
αCt+1(At+1) + qLTt+1(At+1)

qLTt (At)

=
α + q̄

q̄

Ct+1(At+1)

Ct(At)
(216)

where q̄ :=
ξ(1− α) + β(1− ν)α(ξ + ν + 1

β
− 1)

[1− β(1− ν)](ξ + ν + 1
β
− 1)

.

Under Assumption (94), Assumption 3 is satisfied for all (t, At, At+1):

βRt+1(At+1) <
wt+1(At+1)

wt(At)
for all t, At, At+1. (217)

Proof. In the limited-commitment model, the price of Lucas tree is determined to clear
the goods market and the asset market:∑

zt

∫
π(zt)ct(a0, z

t, At)dΦ(a0, z0) = Ct(A
t) (218)

∑
zt

∫
π(zt)σt(a0, z

t, At)dΦ(a0, z0) = 1, (219)

where σt(a0, z
t, At) represents the share of Lucas tree held by households with state

(a0, z
t). In an equilibrium, high-income households receive labor income [1−α]Ct(A

T )ζ

but no dividend, and low-income households receive dividends from a Lucas treeαCt(At)σt(a0, z
t, At).

We assume that a labor share, 1− α ∈ (0, 1), is constant over time and across states.32
We derive {qLTt (At), Rt(A

t)}, where qLTt (At) is the price of Lucas tree and Rt(A
t) is

the interest rate, that are consistent with the equilibrium allocation in the production
economy. In the endowment economy, households purchase state-contingent shares of
Lucas tree. The budget constraint is given by:

ct(a0, z
t, At) +

∑
At+1

∑
zt+1

qLTt (At)σt+1(a0, z
t+1, At+1)

= [1− α]Ct(A
t)zt︸ ︷︷ ︸

labor income

+[αCt(A
t)︸ ︷︷ ︸

dividends

+qLTt (At)]σt(a0, z
t, At) (220)

32The share of labor income in the total resources available in the economy is also constant in a produc-
tion economy with δ = 1. However, in a production economy with δ < 1, the share:

wtL

A1−θ
t Kθ

t + (1− δ)Kt

=
(1− θ)A1−θ

t Kθ
t

A1−θ
t Kθ

t + (1− δ)Kt

is not constant. Since one of the key assumptions in Krueger and Lustig (2009) is violated, the conjecture
(the same risk premium) may not be true in such an economy. We will come back to this point later.
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As a counterpart of allocation in the production economy with aggregate shocks (22)–
(24), the conjectured allocation is expressed as:

c0,t =

(
1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct(A

t)ζ

cs,t = [1− (1− ν)β] [αCt(A
t) + qLTt (At)]σs,t for s = 1, 2, · · ·

cs+1,t+1 = βRt+1cs,t for s = 0, 1, · · ·

σ0,t = 0

qLTt (At)σ1,t+1 =

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(A

t)ζ (221)

qLTt (At)σs+1,t+1 = β[αCt(A
t) + qLTt (At)]σs,t for s = 1, 2, · · · (222)

For this allocation to be optimal, we need to verify that equation (217) (Assumption
3) is satisfied:

βRt+1(At+1) <
wt+1(At+1)

wt(At)
for all t, At, At+1

As we will see, the equilibrium interest rate is given by Rt+1(At+1) = α+q̄
q̄

Ct+1

Ct
, and the

growth rate in labor income is given by wt+1

wt
= (1−α)Ct+1

(1−α)Ct
. Under the assumption on

parameters (β α+q̄
q̄
< 1), which is equivalent to (94), the condition (217) is satisfied.

We now derive the equilibrium price of Lucas tree and the equilibrium interest rate
in the limited-commitment economy. Consider that Ct is realized at time t. A market
clearning condition for the share of Lucas tree at t+ 1 is:

1 =
∞∑
s=1

φsσs,t+1

=
νξ

ξ + ν
σ1,t+1 +

∞∑
s=2

νξ

ξ + ν
(1− ν)s−1σs,t+1 (223)

From equations (221)–(222), we know:

σ1,t+1 =

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(A

t)

qLTt (At)
ζ (224)

σs,t+1 = β
αCt(A

t) + qLTt (At)

qLTt (At)
σs−1,t for s ≥ 2 (225)

By substituing into (223), we have:

1 =
νξ

ξ + ν

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(A

t)

qLTt (At)
ζ

+ β

[
αCt(A

t) + qLTt (At)

qLTt (At)

] ∞∑
s=2

νξ

ξ + ν
(1− ν)s−1σs−1,t︸ ︷︷ ︸

=(1−ν)
∑∞
s=1

νξ
ξ+ν

(1−ν)s−1σs,t=1−ν

(226)
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By soliving this, we obtain:

qLTt =
ξ(1− α) + β(1− ν)α(ξ + ν + 1

β
− 1)

[1− β(1− ν)](ξ + ν + 1
β
− 1)︸ ︷︷ ︸

denote as q̄

Ct (227)

Given qLTt (At), Rt+1(At+1) is defined as:

Rt+1(At+1) :=
αCt+1 + qLTt+1

qLTt

=
α + q̄

q̄

Ct+1

Ct

where q̄ :=
ξ(1− α) + β(1− ν)α(ξ + ν + 1

β
− 1)

[1− β(1− ν)](ξ + ν + 1
β
− 1)

Stationary Equilibrium in the LC model We verify that Rt(A
t) = R∗ if Ct = Ct−1,

where R∗ is the interest rate in a stationary equilibrium that we derive in the next propo-
sition. We assume parameter restirictions (94) that correspond to Assumption 5 in the
production economy. Under this assumption, we obtain a partial insurance equilibirum
in a stationary equilibrium, in which households do not save for a high-income state and
the Euler equation between the current state and a future high-income state does not
hold. We verify that the stationary equilibrium interest rate satisfies βR∗ < 1.

Proposition 21. Consider the limited-commitment model with exogenous aggregate en-
dowment {Ct(At)}t,At. Assume that parameters satisfy (94):

α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) .
In the stationary equilibrium (Ct = C for all t), the interest rate is given by:

R∗ =
ξ(1− α) + α(ξ + ν + 1

β
− 1)

ξ(1− α) + βα(1− ν)(ξ + ν + 1
β
− 1)

, (228)

which is equal to α+q̄
q̄

. Under Assumption (94),

βR∗ < 1.

Hence, the economy is in a partial insurance equilibirum in a stationary equilibirum.
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Proof. In the stationary equilibrium (Ct(At) = C for all t and At), the conjectured allo-
cation becomes:

c0 =
1− (1− ν)β

1− (1− ν − ξ)β
[1− α]Cζ

cs,t = [1− (1− ν)β] [αC + qLT ]σs for s = 1, 2, · · ·

cs+1 = βRcs for s = 0, 1, · · ·

σ0 = 0

σ1 =

(
β

1− (1− ν − ξ)β

)
[1− α]Cζ

qLT

σs+1 = βRσs for s = 1, 2, · · ·

The market clearing condition for Lucas tree is:
∞∑
s=1

φsσs :=
∞∑
s=1

νξ

ξ + ν
(1− ν)s−1(βR)s−1σ1 = 1 (229)

⇔ νξ

ξ + ν

1

1− (1− ν)βR

(
β

1− (1− ν − ξ)β

)
[1− α]Cζ

qLT
= 1

By solving this equation, while using:

R =
αC + qLT

qLT
⇔ qLT =

αC

R− 1
, (230)

and ν

ξ + ν
ζ ≡ 1,

we obtain:

R∗ =
ξ(1− α) + α(ξ + ν + 1

β
− 1)

ξ(1− α) + βα(1− ν)(ξ + ν + 1
β
− 1)

, (231)

which is strictly larger than 1 since 0 < β(1− ν) < 1. βR∗ < 1 is equivalent to (94):
α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) ,
which we assume in the endowment economy.

The Interest Rate in the Representative Agent Economy In the representative agent
model, the interest rate, defined as the return on Lucas tree as before, is given by:

RRep
t+1(At+1|At) :=

αCt+1(At+1) + qLTt+1(At+1)

qLTt (At)

=
1

β

Ct+1(At+1)

Ct(At)
. (232)
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The derivation is standard as in Ljungqvist and Sargent (2018). The price of Lucas tree,
which yields α fraction of aggregate endowment, follows:

qLucast (At) =
∑
At+1

Q(At+1|At)
[
αCt+1(At+1) + qLucast+1 (At+1)

]
, (233)

where Q(At+1|At) = β
Ct(A

t)

Ct+1(At+1)
π(At+1|At)

Using recursion of the equation, the price of Lucas tree is expressed as:

qLucast (At) =
1

u′(Ct(At))

Et ∞∑
j=1

βju′(Ct+j(A
t+j))αCt+j(A

t+j) + Et lim
k→∞

βku′(Ct+k(A
t+k))qt+k(A

t+k)

 .
(234)

The last term must be zero to clear the market. Under a logarithmic utility function,
which gives u′(Ct+j)Ct+j = 1, the price of Lucas tree is proportional to the current ag-
gregate endowment:

qLucast (At) =
β

1− β
αCt(A

t). (235)

Then, the interest rate is given by:

RRep
t+1(At+1|At) =

1

β

Ct+1(At+1)

Ct(At)
(236)

Proposition 16. Consider an endowment economy with exogenous aggregate endowment
{Ct(At)}t,At. Lucas tree yields α fraction of aggregate endowment at all (t + 1, At+1) and
is priced at qLTt (At) at state At. Assume that parameters satisfy:

α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) , (94)

so that Assumption 3 is satisfied. The risk-free rate, which is the inverse of the price of
risk-free bonds, is lower in the limited-commitment model:

1

qB,LCt (At)
<

1

qB,Rept (At)
for all At. (95)

The risk premium is the same in the two models and is given by:

1 + λt = Et[Ct+1(At+1)]Et
[

1

Ct+1(At+1)

]
> 1 (96)

If the growth rate of exogenous consumption Ct+1

Ct
follows an iid process, the risk premium

1 + λt is constant over time.

98



Proof. In the representative agent model (complete market model), we have seen that
under logarithmic utility, the interest rate is given by (232):

RRep
t+1(At+1) =

1

β

Ct+1(At+1)

Ct(At)

In the limited commitment model, the interest rate is given by (216):

RLC
t+1(At+1) =

α + q̄

q̄

Ct+1(At+1)

Ct(At)
. (237)

The interest rates are proportional to consumption growth Ct+1(At+1)
Ct(At)

in the two economies.
In a partial insurance equilibrium, we assume that parameters (ξ, ν, β, α) deliver βR∗ < 1

in the stationary equilibrium, which implies:

βR∗ < 1⇔ β
α + q̄

q̄
< 1 (238)

∴ RLC
t+1(At+1) < RRep

t+1(At+1). (239)

This confirms that the limited commitment model has a lower interest rate. The price of
risk-free bond is given by:

qLCt (At) = Et
[

1

RLC
t+1(At+1)

]
= Et

[
q̄

α + q̄

Ct(A
t)

Ct+1(At+1)

]
(240)

qRept (At) = Et
[
β

Ct(A
t)

Ct+1(At+1)

]
(241)

Since β < q̄
α+q̄

, the limited-commitment model has a higher price of risk-free bonds and
a lower risk-free rate.

Remember that the risk premium in the two economies is given by:

1 + λRept = Et[RRep
t+1(At+1)] Et

[
β

Ct(A
t)

Ct+1(At+1)

]
1 + λLCt = Et[RLC

t+1(At+1)] Et
[

1

RLC
t+1(At+1)

]
.

Given the equilibrium interest rates, the risk premium in the two economies is given
by:

1 + λRept = Et[Ct+1(At+1)]Et
[

1

Ct+1(At+1)

]
> 1 (242)

1 + λLCt = Et[Ct+1(At+1)]Et
[

1

Ct+1(At+1)

]
> 1 (243)

Therefore, we see that the two economies have the same risk premium. If the growth
rate of exogenous consumption Ct+1

Ct
follows an iid process, the risk premium 1 + λt is

constant over time.
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A.7.4 Intuition

In the endowment economy and the production economy with δ = 1, the two properties
hold: (i) Income from capital (αCt in the endowment economy and θKθ

tA
1−θ
t in the

production economy with δ = 1) is proportional to aggregate consumption Ct. Because
of the constant saving rate, consumption of unconstrained agents are proportional to
total resources. (ii) Future aggregate shocks ({At+2, At+3, · · · }) do not impact the return
on risky assets (a Lucas tree or capital) due to a logarithmic utility function and the fact
that capital fully depreciates by time t + 2. Since dividend at t + 1 is proportional to
exogenous shocks (Ct+1 or A1−θ

t+1 ), Rt+1 is also proportional to exogenous shocks:

Rt+1 ∝


Ct+1

Ct
in an endowment economy(

Kt+1

At+1

)θ−1

in a production economy with δ = 1
(244)

These two properties lead to the same risk premium. The Euler equation holds for
agents who are unconstrained in their trade of securities (representative agents or low-
income households in the LC model):

1

ct
= βEt

[
Rt+1

1

ct+1

]
. (245)

Generally, this Euler equation holds in expectation but not state-by-state. However, in
the endowment economy or in the production economy with δ = 1, since income from
capital is always proportional to total income of unconstraint agents, their income effect
and substitution effect cancel out, i.e., high aggregate productivity increases the return
on risky assets but decreases themarginal utility of consumption by the same rate. Hence,
Rt+1

Ct+1
is constant across states, and

1

ct
= βRt+1

1

ct+1

(246)

holds state-by-state. Then, we can rewrite the risk premium in both models as:33

1 + λt = Et
[
ct+1

βct

]
Et
[
βct
ct+1

]
, (247)

where ct is consumption of unconstrained agents. Since ct is proportional to aggregate
shocks (Ct or A1−θ

t ), the risk premium is the same in the two economies.
33Remember that the risk premium is given by:

1 + λLCt = Et[RLCt+1(At+1)] Et
[

1

RLCt+1(At+1)

]
1 + λRept = Et[RRept+1 (At+1)] Et

[
β
CRept (At)

CRept+1 (At+1)

]
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If δ 6= 1, this argument breaks down. First, income from capital,Rt+1Kt+1 = θKθ
t+1A

1−θ
t+1 +

(1−δ)Kt+1, is not proportional to total resources in the economy,Kθ
t+1A

1−θ
t+1 +(1−δ)Kt+1,

and the representative agent model does not have a constant saving rate. Second, since
the interest rate, Rt+1 = θKθ−1

t+1A
1−θ
t+1 + 1− δ is not proportional to the stochastic variable

A1−θ
t+1 , the risk premium is impacted by Kt+1, which follows a different law of motion of

capital in the two models.
The following proposition clarifies the logic that consumption of unconstrained agents

being proportional to total resources in the economy and proportional return on risky
assets in the two models imply multiplicative stochastic discount factors and the same
risk premium. The representative-agent production economy with δ 6= 1 does not have
a constant saving rate. Besides, the return on capital depends on aggregate capital at
t+ 1 due to the undepreciated part of the capital. Since the two models have a different
law of motion of capital, the return on capital will not be proportional between the two
models.
Proposition 17. Consider the representative agent model and the limited commitment
model with aggregate shocks. Exogenous shocks, {At}t≥0, follow a common stochastic pro-
cess with probablity of At+1 given by π(At+1|At) that potentially depends on the entire
history At = (A0, A1, · · · , At). In an endowment economy, the total resources available in
the economy, denoted by Υt, is exogenous and depends only on At. In a production economy,
Υt is the sum of produced output, Kθ

tA
1−θ
t , and undepreciated capital, (1− δ)Kt, where Kt

depends on the history of aggregate shocks At−1 and the initial capital K0. Thus, we denote
Υt as a function of At.

Υt(A
t) =

Ct(At) in an endowment economy

Kθ
tA

1−θ
t + (1− δ)Kt in a production economy

(248)

A stochastic discount factor mt,t+1(At+1) satisfies:

Et
[
mt,t+1(At+1)Rj

t,1(At+1)
]

= 1 (249)

for any asset j with one-period return Rj
t,1(At+1). In our setup with logarithmic utility, the

stochastic discount factor is given by:

mt,t+1(At+1) = β
ct
ct+1

(250)

where ct is consumption of unconstrained agents (representative households in the Rep model
or low-income households in the LC model). If unconstrained agents consume a non-random
fraction (determined at t) of total resources, the stochastic discount factor is proportional
to Υt

Υt+1
and satisfies:

mt,t+1(At+1) := β
ct
ct+1

= γt
Υt(A

t)

Υt+1(At+1)
, (100)
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where non-random variable γt is potentially time-varying but does not depend on At+1.
First, in the endowment economy and the production economy with δ = 1, equation

(100) is satisfied in both models.
Second, in the endowment economy and the production economy with δ = 1, Υt

Υt+1
is

proportional between the two models, meaning there is a non-random variable γ′t satisfying:

ΥLC
t (At)

ΥLC
t+1(At+1)

= γ′t
ΥRep
t (At)

ΥRep
t+1(At+1)

, (101)

where γ′t = 1 in the endowment economy.
Then, (100) and (101) imply that mLC

t,t+1

m
Rep
t,t+1

is non-random at t, meaning there exists an-
other non-random variable γ′′t that does not depend on At+1 and satisfies:

mLC
t,t+1(At+1)

mRep
t,t+1(At+1)

= γ′′t

(
:= γ′t

γLC
t

γRep
t

)
(102)

In this case, the two models have the same risk premium.

Proof. First, we show that equation (100) holds in both models. Consider the represen-
tative agent model. In the endowment economy, we have:

ct = Ct = Υt, (251)

meaning consumption of unconstrained agents (ct), aggregate consumption (Ct), and
total resources available in the economy (Υt) are all identical. In the production economy
with δ = 1, the constant saving rate implies that:

CRep
t = (1− βθ)A1−θ

t Kθ
t

= (1− βθ)Υt. (252)

In these two cases, equation (100) holds.
In the limited commitment model, low-income agents at t+ 1 are unconstrained and

consume a constant fraction, 1 − (1 − ν)β, of return from savings. In the endowment
economy, low-income agents with σs,t share of Lucas tree consume:

cs,t(σs,t) = [1− (1− ν)β][αCt(At) + qLTt (At)]σs,t, (253)
where qLTt (At) = q̄Ct(At).

In the production economy, low-income agents with assets at(zt, At) consume:

cs,t(z
t, At) = [1− (1− ν)β]Rt(A

t)at(z
t, At) (254)

where Rt(A
t) = θKθ−1

t A1−θ
t + 1− δ.
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We see that consumption of low-income agents are proportional to Ct in the endowment
economy and A1−θ

t in the production economy if δ = 1.
Put differently, from the Euler equation of unconstrained agents, we have:

mLC
t,t+1 := β

ct
ct+1(zt+1 = 0)

=
1

RLC
t+1

(255)

We have seen in equation (216) that in the endowment economy,

Rt+1 =
α + q̄

q̄

Ct+1

Ct
(256)

holds. In the production economy with δ = 1,

RLC
t+1 = θKθ−1

t+1A
1−θ
t+1

= θ
Kθ
t+1A

1−θ
t+1

ŝLCKθ
tA

1−θ
t

=
θ

ŝLC
Υt+1

Υt

(257)

Hence, equation (100) holds in both cases in the limited commitment model.
Now we proceed to the second half of the proposition. In the endowment economy,

the proof follows Theorem 4.2 in Krueger and Lustig (2010). The risk premium is defined
as:

1 + λt :=
Et [Rt,1[{et+k}]]

Rt,1[1]
, (258)

where Rt,1[{et+k}] is the one-period return of holding a claim {et+k}k≥1 from time t to
t+ 1. The Lucas tree yields α fraction of endowment in the economy, so et+k = αΥt+k for
all k ≥ 1 in both models. Their derivation shows that the risk premium can be expressed
as a weighted sum of risk premia on strips:

1 + λt =
∞∑
k=1

ωk
1/Et[mt,t+1]

Et [Rt,1[et+k]] , (259)

where ωk =
Et[mt,t+ket+k]∑∞
j=1 Et[mt,t+jet+j]

If mLC
t,t+1 = γ′′tm

Rep
t,t+1, where γ′′t is a non-random multiplicative term,

1 + λLCt :=
Et
[
RLC
t,1 [et+k]

]
1/Et[mLC

t,t+1]
=

Et
[
Et+1[mLCt+1,t+ket+k]

Et[mLCt,t+ket+k]

]
1/Et[mLC

t,t+1]

=

Et
[
Et+1[γ′′t+1···γ′′t+k−1m

Rep
t+1,t+ket+k]

Et[γ′′t γ
′′
t+1···γ′′t+k−1m

Rep
t,t+ket+k]

]
1/Et[γtmRep

t,t+1]
=

Et
[
RRep
t,1 [et+k]

]
1/Et[mRep

t,t+1]
=: 1 + λRept (260)
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holds for all k ≥ 1, wheremt,t+k = mt,t+1mt+1,t+2 · · ·mt+k−1,t+k. Since ωk is also the same
between the two models, the two models have the same risk premium.

In the production economy, one unit of capital purchased at t yields θKθ−1
t+1A

1−θ
t+1 +1−δ

at time t + 1. By substituting et+1 = θKθ−1
t+1A

1−θ
t+1 + 1 − δ and et+k = 0 for all k ≥ 2, the

risk premium is given by:

1 + λt :=
Et [Rt,1[{et+k}]]

Rt,1[1]

=

Et
[

Et+1[θKθ−1
t+1 A

1−θ
t+1 +1−δ]

Et[mt,t+1(θKθ−1
t+1 A

1−θ
t+1 +1−δ)]

]
1/Et [mt,t+1]

=
Et[θKθ−1

t+1A
1−θ
t+1 + 1− δ]Et[mt,t+1]

Et[(θKθ−1
t+1A

1−θ
t+1 + 1− δ)mt,t+1]

(261)

If δ = 1, this is simplified to:

1 + λt =
Et[A1−θ

t+1 ]Et[mt,t+1]

Et[A1−θ
t+1mt,t+1]

, (262)

where we use the fact that Kt+1 is determined at t and is canceled out in the previous
equation. If mLC

t,t+1 = γ′′tm
Rep
t,t+1 holds, the representative agent model and the limited

commitment model have the same risk premium.
Note that if δ 6= 1, the risk premium depends onKt+1, which follows a different law of

motion in the two models. Hence, even multiplicative stochastic discount factors would
not imply the same risk premium under δ 6= 1.

In equations (260) and (262), we have seen that mLC
t,t+1 = γ′′tm

Rep
t,t+1 imply 1 + λLCt =

1 + λRept . If γ′′t depends on At+1, then the term γ′′t does not cancel out, so the risk premia
are generally different across the two models.

B Additional Discussions

B.1 Uniqueness of the Households’ Optimal Choice

B.1.1 Necessity of the Kuhn-Tucker Condition

In the environment in this paper with finitely many event histories at any finite period t,
it should be straightforward to extend the theorem on page 249 in Luenberger (1969).
It states a generalized Kuhn-Tucker Theorem for a real-valued functional f : X → R
and an inequality constraint G(x) ≤ θ, where X is a vector space and G is a mapping
from X to a normed space Z. This theorem is stated for a deterministic case, but our
environment has a finite number of states at any given time t. Another way is to apply
Blot (2009). This paper establishes a Pontryagin principle for a stochastic infinite-horizon
discrete-time problem.
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B.1.2 Necessity of the Transversality Condition

The proposed allocation satisfies both the sufficient TVC in Proposition 1:

lim
t→∞

βtE
[
Rt(A

t)

c∗t (z
t, At)

a∗t (z
t, At)

]
= 0 (263)

and the necessary TVC from Proposition 4.2 in Kamihigashi (2005):3435

lim
t→∞

βtE
[

1

c∗t (z
t, At)

a∗t+1(zt+1, At+1)

]
= 0 (266)

34Note that:

Et[a∗t+1(zt+1, At+1)|zt = 0] = (1− ν)βRt(A
t)a∗t (z

t, At)

Et[a∗t+1(zt+1, At+1)|zt = ζ] =
ξβ

1− (1− ν − ξ)β
ζwt(A

t)

If zt = 0, since 0 < (1− ν)β < 1, (263) implies (266), and vice versa. However, if zt = ζ, (263) and (266)
are not equivalent.

35It states that under Assumptions 3.1–3.8 and logarithmic utility u(·) = log(·), the optimal path {x∗t }
satisfies:

lim
t↑∞

βtEu′(gt(x∗t , x∗t+1))gt,2(x∗t , x
∗
t+1;−x∗t+1) = 0, (264)

where gt,2(x∗t , x
∗
t+1; d) = lim

ε↓0

gt(x
∗
t , x
∗
t+1 + εd)− gt(x∗t , x∗t+1)

ε
. (265)

In our environment,

gt(at, {at+1}) := wt(A
t)zt +Rt(A

t)at(z
t, At)−

∑
At+1

∑
zt+1

π(At+1|At)π(zt+1|zt)at+1(zt+1, At+1).

Given q(At+1|At) = π(At+1|At), this gives:

gt,2(at, {at+1};−{at+1}) =
∑
At+1

∑
zt+1

π(At+1|At)π(zt+1|zt)at+1(zt+1, At+1)

=: Et
[
at+1(zt+1, At+1)

]
.

Hence, the transversality condition is given by:

lim
t→∞

βtE
[

1

c∗t (z
t, At)

a∗t+1(zt+1, At+1)

]
= 0

Assumptions 3.1–3.8 are satisfied in this environment. Let (Ω,F , P ) be a probability space and F be the set
of all functions from Ω to Rn. 3.1: a0 ∈ F and Xt := {(at(zt, At), {at+1(zt+1, At+1)});at+1(zt+1, At+1) ≥
0, ct(z

t, At) ≥ 0} ⊂ F × F for all t ≥ 0. 3.2: β ∈ (0, 1), and log(·) is C1 on R++, concave, and
strictly increasing. 3.3: For all (at, {at+1}) ∈ Xt, gt(at, {at+1}) ≥ 0, gt : Ω → R+ is measurable, and
E[log(gt(at, {at+1}))] exists in [−∞,∞). 3.4: An optimal path {a∗t } exists. 3.5: gt,2(a∗t , {a∗t+1};−{a∗t+1})
is measurable. 3.6: For all t ≥ 0, ∃λt ∈ [0, 1),∀λ ∈ [λt, 1), (a∗t , λ{a∗t+1}) ∈ Xt and ∀τ ≥ t +

1, (λa∗τ , λ{a∗τ+1}) ∈ Xτ . 3.7: gt(a∗t , {a∗t+1}) > 0 and gt(λa
∗
t , λ{a∗t+1}) is concave in λ ∈ [λ0, 1]. 3.8:

gt(a
∗
t , λ{a∗t+1}) is nonincreasing and continuous in λ ∈ (λt, 1]. Finally, the logarithmic utility is assumed.
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Proof. In the proposed allocation, if zt = ζ,

c∗t (z
t, At) = wt(A

t)
1− (1− ν)β

1− (1− ν − ξ)β
ζ and a∗t (z

t, At) = 0

∴
Rt(A

t)

c∗t (z
t, At)

a∗t (z
t, At) = 0 if zt = ζ (267)

If zt = 0,

c∗t (z
t, At) = [1− (1− ν)β]Rt(A

t)a∗t (z
t, At)

∴
Rt(A

t)

c∗t (z
t, At)

a∗t (z
t, At) =

1

1− (1− ν)β
if zt = 0 (268)

Hence, the proposed allocation satisfies the sufficient TVC:

lim
t→∞

βtE
[
Rt(A

t)

c∗t (z
t, At)

a∗t (z
t, At)

]
≤ lim

t→∞
βtE

[
1

1− (1− ν)β

]
= 0 (269)

On the other hand, if zt+1 = 0, a∗t+1(zt+1, At+1) = 0. If zt = ζ and zt+1 = 0,

c∗t (z
t, At) = wt(A

t)
1− (1− ν)β

1− (1− ν − ξ)β
ζ and a∗t+1(zt+1, At+1) =

β

1− (1− ν − ξ)β
ζwt(A

t)

∴
a∗t+1(zt+1, At+1)

c∗t (z
t, At)

=
β

1− (1− ν)β
(270)

If zt = 0 and zt+1 = 0,

c∗t (z
t, At) = [1− (1− ν)β]Rt(A

t)a∗t (z
t, At)

a∗t+1(zt+1, At+1) = βRt(A
t)a∗t (z

t, At)

∴
a∗t+1(zt+1, At+1)

c∗t (z
t, At)

=
β

1− (1− ν)β
(271)

Hence, the proposed allocation satisfies the necessary TVC:

lim
t→∞

βtE
[

1

c∗t (z
t, At)

a∗t+1(zt+1, At+1)

]
≤ lim

t→∞
βtE

[
β

1− (1− ν)β

]
= 0 (272)

B.1.3 Uniqueness of the Allocation that Satisfies both the KTC and the TVC

We hope to prove that the proposed allocation is the only feasible allocation that satisfies
both the Kuhn-Tucker condition and the (necessary) transversality condition. Here we
show that an allocation with positive savings in a high-income state eventually violates
the transversality condition. Proposition 22 considers households in a high-income state
(zt = ζ) with zero assets, and Proposition 23 considers households in a low-income
state (zt = 0) with assets less than a certain amount. It is straightforward to show that
the Euler equation is satisfied between the current state and the next low-income state
(Lemma 16 below).
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Proposition 22. Suppose Assumption 2 on contigent claim prices is satisfied and sup-
pose that the sequence of wages and interest rates {wt(At), Rt(A

t)}∞t=0 satisfies the no-
savings Assumption 3. Consider households at a high-income state zt = ζ with zero assets
at(a0, z

t, At; zt = ζ) = 0. Suppose the households make positive savings ε > 0 for the next
high-income state:

at+1(a0, z
t+1, At+1; zt = ζ, zt+1 = ζ) = ε > 0.

Given that the households’ consumption follows the Kuhn-Tucker condition, such a consump-
tion allocation violates the transversality condition (266):

lim
t→∞

βtE
[

1

ct(a0, zt, At)
at+1(a0, z

t+1, At+1)

]
= 0

Proof. Any consumption allocation must satisfy the budget constraint:

ct(a0, z
t, At) +

∑
At+1

∑
zt+1

π(At+1|At)π(zt+1|zt)at+1(a0, z
t+1, At+1) = wt(A

t)zt +Rt(A
t)at(a0, z

t, At),

where the contigent claim price qt(At+1, zt+1|At, zt) = π(At+1|At)π(zt+1|zt) is already
imposed. Consider a consumption and savings rule at time t with positive savings ε > 0

for the next high-income state:

ct(a0, z
t, At; zt = ζ) = wt(A

t)c0 − (1− ξ)ε

at+1(a0, z
t+1, At+1) =

ε if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt+1 = 0

Remember that π(zt+1 = ζ|zt = ζ) = 1 − ξ and c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ. Note that households

save the same amount across all aggregate states At+1. In the next low-income state
(zt+1 = 0), the consumption is determined by the Euler equation. Such an allocation is
feasible, and we don’t further analyze this case.36 In the next high-income state, since
the savings are positive (ε > 0), the consumption must follow the Euler equation. Then,
ct+1 is given by:

ct+1(a0, z
t+1, At+1; zt+1 = ζ) = βRt+1(At+1)ct(a0, z

t, At; zt = ζ)

= wt+1(At+1)c0 −
(

1− βRt+1(At+1)
wt(A

t)

wt+1(At+1)

)
wt+1(At+1)c0

− βRt+1(At+1)(1− ξ)ε (273)
36Since ct(a0, zt, At; zt = ζ) is slightly smaller than the optimal consumption, ct+1(a0, z

t+1, At+1; zt+1 =

0) is also slightly smaller than the optimal consumption due to the Euler equation. Hence, the households
accumulate small savings over time in the following low-income states.
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Assuming that the consumption and saving rule goes back to the optimal rule from time
t+ 2 onwards (meaning zero savings for the next high-income state),37 at+2 is given by:

at+2(a0, z
t+2, At+2) =



0 if zt+2 = ζ

β
1−(1−ν−ξ)β ζwt+1(At+1) + 1

ξ

[(
1− βRt+1(At+1) wt(At)

wt+1(At+1)

)
wt+1(At+1)c0 + βRt+1(At+1)(1− ξ)ε+Rt+1(At+1)ε

]
if zt+2 = 0

Following the Euler equation and the budget constraint, ct+2 and at+3 are given by:

ct+2(a0, z
t+2, At+2; zt+2 = 0) = βRt+2(At+2)ct+1(a0, z

t+1, At+1; zt+1 = ζ)

= βRt+2(At+2)wt+1(At+1)c0

− βRt+2(At+2)

(
1− βRt+1(At+1)

wt(A
t)

wt+1(At+1)

)
wt+1(At+1)c0

− βRt+2(At+2)βRt+1(At+1)(1− ξ)ε

(1− ν)at+3(a0, z
t+3, At+3; zt+3 = 0) = Rt+2(At+2)at+2(a0, z

t+2, At+2; zt+2 = 0)

− ct+2(a0, z
t+2, At+2; zt+2 = 0)

= βRt+2(At+2)
(1− ν)β

1− (1− ν − ξ)β
wt+1(At+1)ζ

+

(
1

ξ
+ β

)
Rt+2(At+2)(1− βRt+1

wt
wt+1

)wt+1c0

+

(
1

ξ
+ β

)
Rt+2(At+2)βRt+1(1− ξ)ε+Rt+2Rt+1

1

ξ
ε

Since we will take a limit ε → 0, so that the argument holds for any ε > 0, we omit
terms with ε for ct+3 and at+4:38

ct+3(a0, z
t+3, At+3; zt+3 = 0) = βRt+3ct+2(a0, z

t+2, At+2; zt+2 = 0)

< (βRt+3)(βRt+2)wt+1c0 − (βRt+3)(βRt+2)

(
1− βRt+1

wt
wt+1

)
wt+1c0

at+4(a0, z
t+4, At+4; zt+4 = 0) =

1

1− ν
[
Rt+3at+3(a0, z

t+3, At+3; zt+3 = 0)− ct+3(a0, z
t+3, At+3; zt+3 = 0)

]
> (βRt+3)(βRt+2)wt+1ā0

+

[
1

ξ(1− ν)2
+

β

(1− ν)2
+

β2

1− ν

]
Rt+3Rt+2

(
1− βRt+1

wt
wt+1

)
wt+1c0

37If the households save for a future high-income state again, the households accumulate even more
savings in the following states. If the consumption rule under consideration violates the transversality
condition, such an allocation will also violate the transversality condition.

38Since ε > 0, we obtain an inequality. We also omit an argumentAt for wage and interest rate functions
to simplify the notation.
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where ā0 = β
1−(1−ν−ξ)β ζ. By solving this sequentially, we obtain:

lim
τ→∞

ct+τ (a0, z
t+τ , At+τ ; zt = zt+1 = ζ, zt+2 = · · · = zt+τ = 0)

<

(
τ−1∏
u=1

βRt+u+1(At+u+1)

)
wt+1(At+1)c0 (274)

lim
τ→∞

at+τ+1(a0, z
t+τ+1, At+τ+1; zt = zt+1 = ζ, zt+2 = · · · = zt+τ+1 = 0)

>

(
τ−1∏
u=1

βRt+u+1(At+u+1)

)
wt+1(At+1)ā0

+
1

ξ(1− ν)τ−1

(
τ−1∏
u=1

Rt+u+1(At+u+1)

)(
1− βRt+1(At+1)

wt(A
t)

wt+1(At+1)

)
wt+1(At+1)c0

(275)

We now evaluate the transversality condition:

lim
τ→∞

βt+τE
[

1

ct+τ (a0, zt+τ , At+τ )
at+τ+1(a0, z

t+τ+1, At+τ+1)

]
≥ lim

τ→∞
βt+τπ(zt = zt+1 = ζ, zt+2 = · · · = zt+τ = 0)

at+τ+1(a0, z
t+τ+1, At+τ+1; zt = zt+1 = ζ, zt+2 = · · · = zt+τ+1 = 0)

ct+τ (a0, zt+τ , At+τ ; zt = zt+1 = ζ, zt+2 = · · · = zt+τ = 0)

> βtπ(zt) lim
t→∞

βτξ(1− ν)τ−1

(∏τ−1
u=1 Rt+u+1(At+u+1)

) (
1− βRt+1(At+1) wt(At)

wt+1(At+1)

)
wt+1(At+1)c0

ξ(1− ν)τ−1
(∏τ−1

u=1 βRt+u+1(At+u+1)
)
wt+1(At+1)c0

= βt+1π(zt)

(
1− βRt+1(At+1)

wt(A
t)

wt+1(At+1)

)
> 0 (276)

The last line is strictly positive since βRt+1(At+1) < wt+1(At+1)
wt(At)

by Assumption 3. We
have seen that if the households in a high-income state zt = ζ with zero assets at any
finite period t ≥ 0 make positive savings for the next high-income state (zt+1 = ζ), the
allocation that follows the Kuhn-Tucker condition violates the transversality condition.

Proposition 23. Suppose Assumptions 2, 3, and 4 hold. Consider households in a low-
income state zt = 0 with assets less than the following amount:

at(a0, z
t, At; zt = 0) ≤

w0ā0 if t = 0

wt−1(At−1)ā0 if t ≥ 1
(277)

where ā0 := β
1−(1−ν−ξ)β ζ, and suppose they make positive savings ε > 0 for the next high-

income state:

at+1(a0, z
t+1, At+1; zt = 0, zt+1 = ζ) = ε > 0.
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Given that the households’ consumption follows the Kuhn-Tucker condition, such a consump-
tion allocation violates the transversality condition (266):

lim
t→∞

βtE
[

1

ct(a0, zt, At)
at+1(a0, z

t+1, At+1)

]
= 0.

Proof. Consider a consumption and saving rule in the state zt = 0 with positive savings
ε > 0 for the next high-income state:

ct(a0, z
t, At; zt = 0) = [1− (1− ν)β]Rt(A

t)at(a0, z
t, At; zt = 0)− νε (278)

at+1(a0, z
t+1, At+1) =

ε if zt+1 = ζ

βRt(A
t)at(a0, z

t, At; zt = 0) if zt+1 = 0
(279)

Note that because of the restriction on at(a0, z
t, At) given by (277), ct(a0, z

t, At) satisfies
the following:

ct(a0, z
t, At) ≤

βR0w0
1−(1−ν)β

1−(1−ν−ξ)β ζ − νε < w0c0 − νε if t = 0

βRt(A
t)wt−1(At−1) 1−(1−ν)β

1−(1−ν−ξ)β ζ − νε < wt(A
t)c0 − νε if t ≥ 1

(280)

The inequality holds since βR0 < 1 and βRt(A
t)wt−1(At−1)

wt(At)
< 1 for t ≥ 1 by Assumption

3. Remember ā0 := β
1−(1−ν−ξ)β ζ and c0 := 1−(1−ν)β

1−(1−ν−ξ)β ζ. Then, ct+1(a0, z
t+1, At+1; zt =

0, zt+1 = ζ) for any t ≥ 0 is bounded from above as follows:

ct+1(a0, z
t+1, At+1; zt = 0, zt+1 = ζ) = βRt+1(At+1)ct(a0, z

t, At; zt = 0)

< wt+1(At+1)c0 −
(

1− βRt+1(At+1)
wt(A

t)

wt+1(At+1)

)
wt+1(At+1)c0

− βRt+1(At+1)νε (281)

and at+2(a0, z
t+2, At+2; zt+2 = 0) satisfies:

at+2(a0, z
t+2, At+2; zt+2 = 0) > ā0wt+1(At+1) +

1

ξ

[(
1− βRt+1(At+1)

wt(A
t)

wt+1(At+1)

)

wt+1(At+1)c0 + βRt+1(At+1)νε+Rt+1(At+1)ε

]

The rest of the derivations follows exactly the same as in Proposition 22. Since ct+τ (a0, z
t+τ , At+τ ; zt =

0, zt+1 = ζ, zt+2 = · · · = zt+τ = 0) is bounded from above as in inequality (274), and
at+τ+1(a0, z

t+τ+1, At+τ+1; zt = 0, zt+1 = ζ, zt+2 = · · · = zt+τ+1 = 0) is bounded from be-
low as in inequality (275), the transversality condition is violated as in (276). Hence,
given the restriction on the amount of assets in a low-income state (277), the consump-
tion and saving rule with positive savings for the next high-income state will violate the
transversality condition.
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Lemma 16. Suppose Assumption 2 on contingent claims prices is satisfied. Then, the Kuhn-
Tucker condition given by (109) and (110) implies that the Euler equation between the
current state (zt, At) and the next low-income state (zt+1, At+1) with zt+1 = 0 is satisfied:

c(a0, z
t+1, At+1; zt+1 = 0)

c(a0, zt, At)
= βRt+1(At+1) for any At+1. (282)

Proof. The Kuhn-Tucker condition is given by (109) and (110):

ct+1(a0, z
t+1, At+1)

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(At+1) + λ(a0, z

t+1, At+1)ct+1(a0, z
t+1, At+1)

]
with λ(a0, z

t+1, At+1)at+1(a0, z
t+1, At+1) = 0, λ(a0, z

t+1, At+1) ≥ 0, at+1(a0, z
t+1, At+1) ≥ 0

Note that by Assumption 2, qt(At+1, zt+1|At, zt) = π(At+1|At)π(zt+1|zt). Consider a state
zt+1 = 0. The Kuhn-Tucker condition requires that if at+1(a0, z

t+1, At+1) > 0, the Euler
equation holds:

ct+1(a0, z
t+1, At+1; zt+1 = 0)

ct(a0, zt, At)
= βRt+1(At+1).

Suppose at+1(a0, z
t+1, At+1; zt+1 = 0) = 0. The budget constraint in state (zt+1, At+1)

is given by:

ct+1(a0, z
t+1, At+1) +

∑
zt+2

∑
At+2

π(zt+2|zt+1)π(At+2|At+1)at+2(a0, z
t+2, At+2)

= wt+1(At+1) zt+1︸︷︷︸
=0

+Rt+1(At+1) at+1(a0, z
t+1, At+1)︸ ︷︷ ︸

=0

,

where the tight borrowing constraint requires at+2(a0, z
t+2, At+2) ≥ 0. Hence, ct+1(a0, z

t+1, At+1) =

0. Given the logarithmic utility function, this leads to negative infinite utility. Since there
is a feasible allocation {ct(a0, z

t, At), at+1(a0, z
t+1, At+1)}∞t=0 such that ct(a0, z

t, At) > 0

for all t and (zt, At), an allocation with at+1(a0, z
t+1, At+1) = 0 and zt+1 = 0 is sub-

optimal.

B.2 The Optimal Consumption Contract in the Transitional Dynam-
ics

We made a separate attempt to show the optimal contract in the transitional dynamics,
so this part may be useful to show the uniqueness of the optimal contract.

We want to show that under Assumption 3, the following three properties hold in the
household’s optimization problem:

1. The shortsale constraint binds if zt+1 = ζ and thus a0,t+1 = a0,t+1 = 0.
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2. The standard complete markets Euler equation holds if zt+1 = 0 and thus for all
s, t ≥ 0,

wt+1cs+1,t+1

wtcs,t
= βRt+1

3. The transversality condition holds

lim
j→∞

(1− ν)j∏j−1
τ=0 Rt+τ

as+j,t+j = 0

Given {wt, rt}∞t=0, the household consumption and asset allocation {ĉt(a0, z
t), ât+1(a0, z

t+1)}∞t=0

solves, for all (a0, z0),

max
{ct(a0,zt),at+1(a0,zt+1)}

∞∑
t=0

∑
zt

βtπ(zt) log(ct(a0, z
t)) (283)

s.t.

ct(a0, z
t) +

∑
zt+1

π(zt+1|zt)at+1(a0, z
t+1) = wtzt + (1 + rt)at(a0, z

t) (284)

at+1(a0, z
t+1) ≥ 0 (285)

This gives a Lagrangian problem:

U(a0, z0) = max
{ct(a0,zt),at+1(a0,zt+1)}∞t=0

∞∑
t=0

∑
zt

βtπ(zt) log(ct(a0, z
t))

+
∞∑
t=0

∑
zt

µ(zt)

[
wtzt + (1 + rt)at(a0, z

t)− ct(a0, z
t)−

∑
zt+1

π(zt+1|zt)at+1(a0, z
t+1)

]

+
∞∑
t=0

∑
zt+1

βtπ(zt+1)λ(zt+1)at+1(a0, z
t+1), (286)

where βtπ(zt+1) in front of λ(zt+1) will simplify expressions later. FOCs are:

[ct(a0, z
t)] : βtπ(zt)

1

ct(a0, zt)
=µ(zt) (287)

[at+1(a0, z
t+1)] : µ(zt+1)(1 + rt+1) + βtπ(zt+1)λ(zt+1) =µ(zt)π(zt+1|zt)

(288)

By substituing µ(zt), we obtain the following Kuhn-Tucker condition:
1

ct(a0, zt)
= β(1 + rt+1)

1

ct+1(a0, zt+1)
+ λ(zt+1), (289)

where λ(zt+1)at+1(a0, z
t+1) = 0, λ(zt+1) ≥ 0, at+1(a0, z

t+1) ≥ 0. (290)
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This condition means either of the following holds:

at+1(a0, z
t+1) > 0 and 1

ct(a0, zt)
= β(1 + rt+1)

1

ct+1(a0, zt+1)
(291)

at+1(a0, z
t+1) = 0 and 1

ct(a0, zt)
≥ β(1 + rt+1)

1

ct+1(a0, zt+1)
(292)

If the household saves for the state zt+1, the Euler equation between states zt and zt+1

holds with equality. If the Euler equation does not hold between zt and zt+1, savings for
zt+1 should be equal to zero (at+1(a0, z

t+1) = 0).

Assumption 3. The sequence of equilibrium interest rates and wages satisfy

β(1 + r0) < 1 (293)
β(1 + rt+1) <

wt+1

wt
for all t ≥ 0 (294)

Lemma 17. The standard complete markets Euler equation holds if zt+1 = 0 and thus for
all s, t ≥ 0,

wt+1cs+1,t+1

wtcs,t
= βRt+1

Proof. Consider a state zt+1 = 0. The Kuhn-Tucker condition requires that if at+1(a0, z
t+1) >

0, the Euler equation holds:
ct+1(a0, z

t+1; zt+1 = 0)

ct(a0, zt)
= βRt+1.

Suppose at+1(a0, z
t+1) = 0. The budget constraint (284) in state zt+1 is given by:

ct+1(a0, z
t+1)+

∑
zt+2

π(zt+2|zt+1)at+2(a0, z
t+2) = wt+1 zt+1︸︷︷︸

=0

+Rt+1 at+1(a0, z
t+1)︸ ︷︷ ︸

=0

,

where the borrowing constraint requires at+2(a0, z
t+2) ≥ 0. Hence, ct+1(a0, z

t+1) = 0.
Given the logarithmic utility function, this leads to negative infinite utility. Given that
there is a feasible allocation {ct(a0, z

t), at+1(a0, z
t+1)}∞t=0 such that ct(a0, z

t) > 0 for all t
and zt,39 the allocation with at+1(a0, z

t+1) = 0 and zt+1 = 0 for some zt+1 is not optimal.
By denoting ct+1(a0, z

t+1; zt+1 = 0) = wt+1cs+1,t+1 and ct(a0, z
t) = wtcs,t, where s ≥ 0

is the number of periods in a low-income state since the last high income, we obtain the
Euler equation in the statement.

39If the household saves positive assets for all low-income states, she can avoid zero consumption in all
possible states. The optimal consumption that we establish:

ct(a0, z
t; zt = ζ) =

1− (1− ν)β

1− (1− ν − ξ)β
wtζ

ct(a0, z
t; zt = 0) = [1− (1− ν)β]Rtat(a0, z

t; zt = 0)

is one of feasible allocations.
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Lemma 18. In an initial state (a0, z0) = (0, ζ), any consumption choice with c0(a0, z
0) >

c∗0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ cannot be optimal. In an initial state (a0, z0) with z0 = 0, any consump-

tion choice with c0(a0, z
0) > [1− (1−ν)β]R0a0 cannot be optimal. This applies for any time

t ≥ 0:

ct(a0, z
t; zt = ζ) ≤ c∗0 if at(a0, z

t; zt = ζ) = 0 (295)
ct(a0, z

t; zt = 0) ≤ [1− (1− ν)β]Rtat(a0, z
t; zt = 0) (296)

Proof. Lemma 17 shows that households always make positive savings for a low-income
state. As households need to secure consumption in future low-income states, which is
determined by the Euler equation, they face an upper bound on their consumption in
the initial period.

Consider an initial state (a0, z0) = (0, ζ). The budget constraint in the state is given
by:

w0ζ = w0c0(a0, z
0) +

∑
z1

π(z1|z0 = ζ)a1(a0, z
1)

≥ w0c0(a0, z
0) + π(z1 = 0|z0 = ζ)︸ ︷︷ ︸

=ξ

a1(a0, z
1; z1 = 0), (297)

since a1(a0, z
1; z1 = ζ) ≥ 0. A budget constraint in a future low-income state, zt with

zt = 0, is:
Rtat(a0, z

t) = ct(a0, z
t) +

∑
zt+1

π(zt+1|zt)at+1(a0, z
t+1)

≥ ct(a0, z
t) + π(zt+1 = 0|zt = 0)︸ ︷︷ ︸

=1−ν

at+1(a0, z
t+1; zt+1 = 0)

∴ at(a0, z
t; zt = 0) ≥ ct(a0, z

t)

Rt

+ (1− ν)
1

Rt

at+1(a0, z
t+1; zt+1 = 0) for all t ≥ 1. (298)

Sequentially substituting (298) into (297) gives:
w0ζ ≥ w0c0 + ξ

[
ct(a0, z

1; z1 = 0)

R1
+ (1− ν)

a2(a0, z
2; z1 = 0, z2 = 0)

R1

]
(299)

≥ c0 + ξ
c1(a0, z

1; z1 = 0)

R1
+ ξ(1− ν)

c2(a0, z
2; z1 = 0; z2 = 0)

R1R2
+ · · ·+ lim

t→∞
ξ(1− ν)t−1

ct(a0, z
t; z1 = · · · = zt = 0)

Πt
u=1Ru

(300)
The Euler equation in Lemma 17 states that

ct+1(a0, z
t+1; zt+1 = 0) = βRt+1ct(a0, z

t)

∴ ct(a0, z
t; z1 = 0, · · · , zt = 0) = βt

[
Πt
u=1Ru

]
c0(a0, z

0).

Hence, equation (300) is written as:
w0ζ ≥ c0 + ξβc0 + ξ(1− ν)β2c0 + · · ·+ lim

t→∞
ξ(1− ν)t−1βtc0

=

[
1 +

ξβ

1− (1− ν)β

]
c0 (301)
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Therefore, the Euler equation and the budget constraint in future low-income states
impose the upper bound on consumption in the high-income state:

c0(a0 = 0, z0 = ζ) ≤ 1− (1− ν)β

1− (1− ν − ξ)β
ζ.

A similar argument applies to an initial state (a0, z0) with z0 = 0. The budget con-
straint in the state is given by:

R0w0a0 = w0c0(a0, z
0) +

∑
z1

π(z1|z0 = 0)a1(a0, z
1)

≥ c0(a0, z
0) + π(z1 = 0|z0 = 0)︸ ︷︷ ︸

=1−ν

a1(a0, z
1; z1 = 0), (302)

since a1(a0, z
1; z1 = ζ) ≥ 0. As we saw in equation (298), a budget constraint in a future

low-income state gives:

at(a0, z
t; zt = 0) ≥ ct(a0, z

t)

Rt

+ (1− ν)
1

Rt

at+1(a0, z
t+1; zt+1 = 0) for all t ≥ 1.

Sequentially substituting (298) into (302) gives:
R0w0a0

≥ c0 + (1− ν)
c1(a0, z

1; z1 = 0)

R1
+ (1− ν)2

c2(a0, z
2; z1 = 0; z2 = 0)

R1R2
+ · · ·+ lim

t→∞
(1− ν)t

ct(a0, z
t; z1 = · · · = zt = 0)

Πt
u=1Ru

(303)

By using the implication of the Euler equation:

ct(a0, z
t; z1 = 0, · · · , zt = 0) = βt

[
Πt
u=1Ru

]
c0(a0, z

0),

equation (303) is written as:

R0w0a0 ≥ c0 + (1− ν)βc0 + (1− ν)2β2c0 + · · ·+ lim
t→∞

(1− ν)tβtc0

=
1

1− (1− ν)β
c0 (304)

Therefore, consumption in the low-income state is subject to an upper bound:

c0(a0, z
0 = 0) ≤ [1− (1− ν)β]R0a0.

Because idiocyncratic productivity (zt) follows Markov and does not depend on the
past history of states, a household at time t with at(a0, z

t) and zt faces the same problem
as in a state (ã0, z̃0) if at(a0, z

t) = ã0 and zt = z̃0. Hence, the same argument to obtain
equations (301) and (304) applies for any periods t ≥ 0. This results in equations (295)
and (296).
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Lemma 19. Suppose Assumption 3 holds. In an initial state with (a0 = 0, z0 = ζ), it is not
optimal to save for a high-income state in the next period, i.e., a1(a0 = 0, z0 = z1 = ζ) = 0.
In an initial state with a0 ≤ ā0 := β

1−(1−ν−ξ)β ζ and z0 = 0, it is not optimal to save for a
high-income state, i.e., a1(a0, z0 = 0, z1 = ζ) = 0 ∀a0 ≤ ā0.

Proof. Consider an initial state with (a0 = 0, z0 = ζ). In Lemma 18, we saw that con-
suming c0(a0, z0) = c∗0 in an initial state with (a0 = 0, z0 = ζ) and following the Euler
equation in all future low-income states is feasible, if savings for a high-income state are
always zero. This applies to all future high-income states with zero assets as well. If the
household enters a high-income state with at(a0, z

t) = 0, she faces the same problem as
in an initial state with (a0 = 0, z = ζ). Hence, consumption rule:

ct(a0, z
t; zt = ζ) =

1− (1− ν)β

1− (1− ν − ξ)β
wtζ ∀t ≥ 0 (305)

ct(a0, z
t; zt = 0) = βRtct−1(a0, z

t−1) ∀t ≥ 1 (306)
at+1(a0, z

t+1; zt+1 = ζ) = 0 ∀t ≥ 0 (307)

is feasible. We will show that deviating from this consumption rule and making positive
savings for a high-income state cannot achieve higher utility.

If the household saves for a high-income state (a1(a0, z
1; z1 = ζ) > 0), the K-T condi-

tion requires that the Euler equation holds between states z0 and z1:

c1(a0, z
1; z1 = ζ) = βR1c0(a0, z

0)

Since βR1
w0

w1
< 1, c1(a0, z

1; z1 = ζ) is strictly smaller than c∗0.40 This means that even
though the household saves for the high-income state, consumption at the state is strictly
less than c∗0, since the borrowing constraint does not bind and the optimal consumption
should follow the Euler equation.

Consider an initial state with (a0 ≤ ā0, z0 = 0). If the consumption and asset choice
is given by:

ct(a0, z
t; zt = 0) = [1− (1− ν)β]Rtwtat ∀t ≥ 0

at+1(a0, z
t+1; zt+1 = ζ) = 0 ∀t ≥ 0

at+1(a0, z
t+1; zt = 0, zt+1 = 0) = βRtwtat ∀t ≥ 0

and equation (305), it satisfies the budget constraint and the Euler equation in all fu-
ture low-income states.41 Given Lemma 18, the household cannot consume more than

40Remember that consumption in an initial high-income state, c0(a0 = 0, z0 = ζ), is less than or equal
to c∗0 by Lemma 18. If c1(a0, z

1; z1 = ζ) is given by βR1
w0

w1
c0(a0, z

0), it is strictly smaller than c∗0.
41The budget constraint in a low-income state is given by:

Rtat(a0, z
t) = ct(a0, z

t) +
∑
zt+1

π(zt+1|zt)at+1(a0, z
t+1)

= [1− (1− ν)β]Rtat + (1− ν)βRtat = Rtat.
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[1− (1− ν)β]R0w0a0 in the initial state. Note that given a0 ≤ ā0 := β
1−(1−ν−ξ)β ζ,

c0 ≤ [1− (1− ν)β]R0ā0

= βR0c
∗
0 < c∗0 since βR0 < 1.

Suppose she makes positive savings for the next high-income state (z1 with z1 = ζ). This
is possible only when she consumes less than [1− (1− ν)β]R0w0a0 in the initial period.
We show that this will achieve stricly less consumption not only this period but also the
high-income state in the next period. Since the savings are positive, consumption follows
the Euler equation:

c1(a0, z
1; z0 = 0, z1 = ζ) = βR1c0(a0, z

0; z0 = 0)

≤ (βR0)(βR1)w0c
∗
0

Since βR0 < 1 and βR1
w0

w1
< 1 under Assumption 3, we have c1(a0, z

1; z0 = 0, z1 = ζ) <

c∗0. Hence, she consumes strictly less than what she would consume when she enters the
high-income state with zero assets.

So far, we have shown that if the household saves for the high-income state (z1 with
z1 = ζ), consumption in the state is strictly smaller than w1c

∗
0. We examine if the house-

hold could use the positive savings in later periods and achieve higher utility. Note that
as far as the Euler equation is satisfied, consumption ct+1(a0, z

t+1) drifts down at a rate,
βRt+1

w1

wt+1
< 1. If consumption jumps up and the Euler equation is not satisfied, the

K-T condition requires that the saving in such a future contingent state should be zero.
However, we saw in Lemma 18 that consuming ct(a0, z

t) > c∗0 when she has zero assets
in a high-income state is not optimal. Entering a low-income state with zero assets is
not optimal, either. Therefore, she cannot achieve a strictly higher utility than log(wtc

∗
0)

at any future state if she saves for a high-income state and follows the optimality con-
ditions in all future periods. Given that saving zero assets for a high-income state and
consuming c = c∗0 in all future high-income states is feasible, saving for a high-income
state is not optimal.

Lemma 20. Suppose Assumption 3 holds. If initial states of households are given by either
(a0 = 0, z0 = ζ) or (a0 ≤ ā0, z0 = 0), where a0 ≤ ā0 := β

1−(1−ν−ξ)β ζ, households never save
for a high-income state:

at+1(a0, z
t+1; zt+1 = ζ) = 0 for all t ≥ 0. (308)

Consumption at zt+1 with zt+1 = 0 is given by:

ct+1(a0, z
t+1; zt+1 = 0) = [1− (1− ν)β]Rt+1at+1(a0, z

t+1; zt+1 = 0)

= βRt+1ct(a0, z
t; zt = 0),

since at+1(a0, z
t+1; zt+1 = 0) = βRtat(a0, z

t) = β ct(a0,z
t)

1−(1−ν)β . Hence, the Euler equation between states zt
and zt+1 is satisfied.
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Proof. We saw in Lemma 19 that households at time t = 0 with high income and zero
assets do not save for the next high-income state: a1(a0 = 0, z0 = z1 = ζ) = 0. Since
idiosyncratic productivity is Markov, the argument applies for any time t ≥ 1 as far as
households enter a high-income state with zero assets:

at+1(a0, z
t+1; zt = zt+1 = ζ) = 0 if at(a0, z

t; zt = ζ) = 0.

Therefore, if we show that low-income households in all possible states that can be
reached from the initial states (a0 = 0, z0 = ζ) or (a0 ≤ ā0, z0 = 0) do not save for a
next high-income state, we obtain the statement.

We prove by induction. Lemma 19 shows that households with low income in the
initial period do not save for the next high-income state. We now show that households
in a low-income state at t = 1 do not save for the next high-income state:

a2(a0, z
2; z1 = 0, z2 = ζ) = 0.

All households with low income at t = 1 enter the period with positive assets (Lemma
17). Therefore, their consumption at t = 1 is determined by the Euler equation:

c1(a0, z
1; z1 = 0) = βR1

w0

w1

c0(a0, z
0).

Since we know c0(a0, z
0) ≤ c∗0 given the assumed initial states, c1(a0, z

1; z1 = 0) < c∗0 holds
under Assumption 3. Suppose the household saves for the next high-income state, z2 with
z2 = ζ. Then, consumption at the state z2 is determined by the Euler equation and drifts
down at a rate βR2

w1

w2
< 1. Hence, it is strictly smaller than what she would consume

when she enters the high-income state with zero assets, i.e., c2(a0, z
2; z2 = ζ) < c∗0

if a2(a0, z
2; z2 = ζ) > 0. Following the same logic as in Lemma 19, she cannot achieve

strictly higher utility in future periods by saving positive assets for the high-income state.
Therefore, saving for the state, z2, is zero, i.e., a2(a0, z

2; z2 = ζ) = 0 if (a0 = 0, z0 = ζ) or
(a0 ≤ ā0, z0 = 0). Since c1(a0, z

1; z1 = 0) < c∗0 and c1(a0, z
1; z1 = ζ) ≤ c∗0, consumption at

a low-income state in the next period is strictly smaller than c∗0:

c2(a0, z
2; z2 = 0) = βR2

w1

w2

c1(a0, z
1) < c∗0. (309)

Suppose at time t ≥ 1,

ct(a0, z
t; zt = 0) < c∗0

holds. Since we assume βRt+1
wt
wt+1

< 1 (Assumption 3), making positive savings for the
next high-income state makes consumption strictly smaller than c∗0:

ct+1(a0, z
t+1; zt = 0, zt+1 = ζ) = βRt+1

wt
wt+1

ct(a0, z
t; zt = 0) if at+1(a0, z

t+1; zt = 0, zt+1 = ζ) > 0

< c∗0
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As long as she makes positive savings for future periods, her consumption goes down
at rate βRt+1

wt
wt+1

< 1. If she makes zero savings for a high-income state, Lemma 18
states consumption at the contingent state is less than or equal to c∗0. Hence, she cannot
achieve higher utility in the future periods by saving positive assets for state zt+1:

ct+τ (a0, z
t+τ ; zt+τ = ζ) ≤ c∗0 for all τ ≥ 2

if at+1(a0, z
t+1; zt = 0, zt+1 = ζ) > 0.

We obtain that it is not optimal to save for zt+1 with zt+1 = ζ:

at+1(a0, z
t+1; zt = 0, zt+1 = ζ) = 0. (310)

Since ct+1(a0, z
t+1; zt = ζ, zt+1 = 0) ≤ βRt+1

wt
wt+1

c∗0 < c∗0 by Lemma 18 and Assumption 3
and ct+1(a0, z

t+1; zt = 0, zt+1 = 0) = βRt+1
wt
wt+1

ct(a0, z
t; zt = 0) < c∗0 by Assumption 3, we

also obtain:

ct+1(a0, z
t+1; zt+1 = 0) < c∗0.

By induction, equation (310) holds for all t ≥ 1.

Lemma 21 (Necessity of the Transversality Condition). Suppose Assumption 3 holds.
Consider an optimization problem of a low-income agent with assets as,t at time t, where
as,t = wtas,t and as,t ≤ ā0 := β

1−(1−ν−ξ)β ζ. The transversality condition (??):

lim
j→∞

(1− ν)j∏j−1
τ=0 Rt+τ

as+j,t+j = 0.

is a necessary condition for an optimal consumption and saving profile {cs+j,t+j, as+j+1,t+j+1}∞j=0.

Proof. A maximization problem of a low-income household with assets as,t at time t is
given by:

max
{at+j+1(a0,zt+j+1)}∞j=0

∞∑
j=0

βjπ(zt+j) log

wt+jzt+j +Rt+jat+j(a0, z
t+j)−

∑
zt+j+1

π(zt+j+1|zt+j)at+j+1(a0, z
t+j+1)


at+j+1(a0, z

t+j+1) ≥ 0 ∀j ≥ 0

at(a0, z
t) = as,t

where ct+j(a0, z
t+j) = wt+jzt+j+Rt+jat+j(a0, z

t+j)−
∑

zt+j+1
π(zt+j+1|zt+j)at+j+1(a0, z

t+j+1) ≥
0 is substituted. We apply Proposition 4.2 in Kamihigashi (2005).42 A transversality con-

42Assumptions 3.1–3.8 are satisfied in this environment. Let (Ω,F , P ) be a probability
space and F be the set of all functions from Ω to Rn. 3.1: as,t ∈ F and Xj :=

{(at+j(a0, zt+j),at+j+1(a0, z
t+j+1));at+j+1(a0, z

t+j+1) ≥ 0, ct+j(a0, z
t+j) ≥ 0} ⊂ F × F for all j ≥ 0.
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dition is given by:43

lim
j→∞

βj
∑
zt+j

π(zt+j)
Rt+j

ct+j(a0, zt+j)
at+j(a0, z

t+j) = 0. (311)

Since π(zt+j)
Rt+j

ct+j(a0,zt+j)
at+j(a0, z

t+j) ≥ 0 in all possible states zt+j, a following condition
holds in the state zt+j with zt = zt+1 = · · · = zt+j = 0:

lim
j→∞

βj(1− ν)j
Rt+j

ct+j(a0, zt+j; zt = · · · = zt+j = 0)
at+j(a0, z

t+j; zt = · · · = zt+j = 0) = 0.

(312)

By substituting ct+j(a0, z
t+j; zt = · · · = zt+j = 0) =

[∏j
τ=1 βRt+τ

]
ct(a0, z

t) and at+j(a0, z
t+j; zt =

· · · = zt+j = 0) = as+j,t+j, we obtain:

Rt

cs,t
lim
j→∞

(1− ν)j∏j−1
τ=0 Rt+τ

as+j,t+j = 0 (313)

Given that Rt
cs,t

is finite, as cs,t = 0 gives negative infinite utility and cannot be optimal,
we establish the transversality condition given by (??).

B.3 Additional Discussion about Transitional Dynamics

B.3.1 A Condition for
(
βR1

w0

w1

) (
βR2

w1

w2

)
< 1

Sufficiency of
(
βR1

w0

w1

) (
βR2

w1

w2

)
< 1 We derived a condition for βRt+1 <

wt+1

wt
∀t ≥ 0

in Appendix A.3.4, which is sufficient for households not to save for a high-income state
at any t ≥ 0. However, a condition βR1 <

w1

w0
is not necessary, as the household’s saving

decision between t = 0 and t = 1 is not impacted by the negative MIT shock at t = 1.
Nonetherless, the negative shock at t = 1 lowers wage, w1, and increases the amount of
deflated assets held by low-income households:

a1(a0, z
1; z1 = 0) =

a1(a0, z
1; z1 = 0)

w1

, (314)

3.2: β ∈ (0, 1), and log(·) is C1 on R++, concave, and strictly increasing. 3.3: Define gt+j(at+j ,at+j+1) :=

wt+jzt+j + Rt+jat+j(a0, z
t+j) −

∑
zt+j+1

π(zt+j+1|zt+j)at+j+1(a0, z
t+j+1). For all (at+j ,at+j+1) ∈ Xj ,

gt+j(at+j ,at+j+1) ≥ 0, gt+j : Ω → R+ is measurable, and E[log(ct+j(as,t, z
t+j))] exists in [−∞,∞). 3.4:

An optimal path {a∗t+j} exists. 3.5: gt+j,2(a∗t+j ,a
∗
t+j+1;−a∗t+j+1) is measurable. 3.6: For all j ≥ 0,

∃λt+j ∈ [0, 1),∀λ ∈ [λt+j , 1), (a∗t+j , λa
∗
t+j+1) ∈ Xj and ∀τ ≥ t + j + 1, (λa∗τ , λa

∗
τ+1) ∈ Xτ . 3.7:

gt+j(a
∗
t+j ,a

∗
t+j+1) > 0 and gt+j(λa

∗
t+j , λa

∗
t+j+1) is concave in λ ∈ [λ0, 1]. 3.8: gt+j(a∗t+j , λa∗t+j+1) is

nonincreasing and continuous in λ ∈ [λj , 1]. Finally, the logarithmic utility is assumed.
43We use a familar form: limj→∞ βjE[v1(a∗t+j ,a

∗
t+j+1)a∗t+j ] = 0, which holds given the Kuhn-Tucker

condition.

120



where a1(a0, z
1; z1 = 0) is pre-determined at t = 0. We need a condition for low-income

households at t = 1 not to save for a high-income state at t = 2.
We derive the condition following the same logic as before. If a low-income household

at t = 1 cannot achieve higher utility in a high-income state at t = 2 (z2 with z2 = ζ),
then she cannot achieve higher utility in future periods as well by saving for the state
(z2). Hence, we need a condition for:

βR2c1(a1, z
1) < w2c

∗
0, (315)

where the left hand side is consumption at t = 2 if the low-income household at t = 1

saves for the next high-income state. We will use an upper bound on c1(a1, z
1) given a1

and an upper bound on a1 given initial states. In the end, a sufficient condition for (315)
is given by: (

βR1
w0

w1

) (
βR2

w1

w2

)
< 1 (316)

First, we set up a maximization problem of a low-income household at t = 1:

max
{ct(a1,zt),at+1(a1,zt+1)}∞t=1

∞∑
t=1

∑
zt

βtπ(zt) log(ct(a1, z
t)) (317)

s.t. ct(a1, z
t) +

∑
zt+1

π(zt+1|zt)at+1(a1, z
t+1) = wtzt +Rtat(a1, z

t) (318)

at+1(a1, z
t+1) ≥ 0 ∀t ≥ 1

If the saving for the next high-income state is positive, a2(a1, z
2; z2 = ζ) = ε > 0, the

budget constraint at t = 1 is given by:

c1(a1, z
1) + ν a2(a1, z

2; z2 = ζ)︸ ︷︷ ︸
=ε

+(1− ν)a2(a1, z
2; z2 = 0) = R1a1(a1, z

1). (319)

Since households need to secure consumption in future low-income states, sequentially
imposing equation (298) gives:

a2(a0, z
2; z2 = 0) ≥ c2(a1, z

2; z2 = 0)

R2

+ (1− ν)
1

R2

a3(a0, z
3; z3 = 0)

≥ c2(a1, z
2; z2 = 0)

R2

[
1 + β(1− ν) + β2(1− ν)2 + · · ·

]
=

β

1− β(1− ν)
c1(a1, z

1).

Hence, equation (319) becomes:

c1(a1, z
1) ≤ [1− (1− ν)β]

[
R1a1(a1, z

1)− νε
]
. (320)
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We use this upper bound on c1(a1, z
1) to derive a condition for (315).44 Using (320) and

c∗0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ, (315) holds if

βR2[1− (1− ν)β]R1a1(a1, z
1) < w2c

∗
0

⇔ a1(a1, z
1) <

w2

βR2

1

βR1

βζ

1− (1− ν − ξ)β
(321)

Since the maximum saving of low-income households at t = 1 is:45

a1(a0 = 0, z0 = ζ, z1 = 0) =
βζ

1− (1− ν − ξ)β
w0,

the condition (321) is given by:

w0 <
w2

βR2

1

βR1

⇔
(
βR1

w0

w1

) (
βR2

w1

w2

)
< 1

A Condition for
(
βR1

w0

w1

) (
βR2

w1

w2

)
< 1 It is possible for low-income households to

consume more than high-income households at the time of MIT shock (t = 1) but still
not want to save for high-income state at t = 2. The most relevant case is a household
with (z0 = ζ, z1 = 0, z2 = ζ). If she saves for t = 2, her consumption is given by:

(βR2
w1

w2

) c1(a0, z
1; z1 = 0)

= (βR2
w1

w2

)(βR1
w0

w1

)c∗0

If she does not save for high-income state at t = 2, her consumption is given by c∗0. If
βR1

w0

w1
> 1, c1(a0, z

1; z1 = 0) > c∗0, i.e., her consumption at t = 1 in a low-income state is
higher than c∗0. However, if (βR2

w1

w2
)(βR1

w0

w1
) < 1, she is not better off by saving for t = 2.

44If the saving for the next high-income state is positive, a2(a1, z
2; z2 = ζ) = ε > 0, c2(a1, z

2; z2 = ζ) is
determined by the Euler equation. This gives lower utility than saving zero assets for the state if

βR2c1(a1, z
1) < w2c

∗
0.

45The maximum saving of low-income agents at t = 1 is given in a state either (z0 = ζ, z1 = 0) or
(z0 = 0, a0 = ā0). For each case,

a1(a0 = 0, z0 = ζ, z1 = 0) =
βζ

1− (1− ν − ξ)β
w0

a1(a0 = ā0, z0 = 0, z1 = 0) = βR1
βζ

1− (1− ν − ξ)β
w0.

Since βR1 < βR0 < 1, given a negative productivity shock and Assumption 3, a1(a0 = 0, z0 = ζ, z1 =

0) > a1(a0 = ā0, z0 = 0, z1 = 0). Threfore, we focus on households with (z0 = ζ, z1 = 0).
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A sufficient condition for βR2
w1

w2
< 1 is given by Prop. 8 (A1

A0
>

A1

A0
), and the condition for

βR1
w0

w1
< 1 is given by Prop. 8’ (A1

A0
>

A′1
A0

), where A1

A0
<

A′1
A0
< 1. So, we could find A′′1

A0
with

A1

A0
<

A′′1
A0

<
A′1
A0
< 1 such that

(βR2
w1

w2

)(βR1
w0

w1

) < 1 for all A1 with A′′1
A0

<
A1

A0

< 1,

where (βR2
w1

w2

)(βR1
w0

w1

) = β

θ + (1− δ)
(
K2

A2

)1−θ

ŝ+ (1− δ̂)
(
K1

A1

)1−θ

 β

θ + (1− δ)
(
K1

A1

)1−θ

ŝ+ (1− δ̂)
(
K0

A0

)1−θ


To derive a sufficient condition on A1 for (βR2

w1

w2
)(βR1

w0

w1
) < 1 in case of a negative

MIT shock at t = 1, we use a property that K2

A2
= K2

A1
< K1

A1
. Hence, it is sufficient to have:

β

θ + (1− δ)
(
K1

A1

)1−θ

ŝ+ (1− δ̂)
(
K1

A1

)1−θ

 β

θ + (1− δ)
(
K1

A1

)1−θ

ŝ+ (1− δ̂)
(
K0

A0

)1−θ

 < 1, (322)

where
(
K1

A1

)1−θ
=
(
A0

A1

)1−θ (
K0

A0

)1−θ
. Hence (322) is written as:

β

θ + (1− δ)X
(
K0

A0

)1−θ

ŝ+ (1− δ̂)X
(
K0

A0

)1−θ

 β

θ + (1− δ)X
(
K0

A0

)1−θ

ŝ+ (1− δ̂)
(
K0

A0

)1−θ

 < 1, (323)

where we denote X :=
(
A0

A1

)1−θ
. This is equivalent to:

β2

[
θ + (1− δ)X

(
K0

A0

)1−θ
]2

<

[
ŝ+ (1− δ̂)X

(
K0

A0

)1−θ
][

ŝ+ (1− δ̂)
(
K0

A0

)1−θ
]
,

where
(
K0

A0

)1−θ

=
ξ(1− θ) + βθ(1− ν)

(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)

.

A threshold value of X solves a quadratic equation:

β2(1− δ)2

(
K0

A0

)2−2θ

X2 +

[
2β2θ(1− δ)

(
K0

A0

)1−θ

− (1− δ̂)
(
K0

A0

)1−θ
[
ŝ+ (1− δ̂)

(
K0

A0

)1−θ
]]

X

+ β2θ2 − ŝ

[
ŝ+ (1− δ̂)

(
K0

A0

)1−θ
]
< 0 (324)

Proposition 24. Let the economy be in a stationary equilibrium with βR0 < 1. After a
negative MIT shock at t = 1, low-income households at t = 1 do not save for the next high-
income state, i.e., a2(a0, z

2; z1 = 0, z2 = ζ) = 0, if A1 ∈ (A′′1, A0] holds. A threshold value
A′′1 is given by A′′1

A0
= (X̄)

1
θ−1 , where X̄ solves a quadratic equation (324):
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Figure 11: Threshold values of A1 for a sequence of ν and ξ

X̄ =

(
− β(1− δ)

(
K0

A0

)1−θ
[

2βθ − (1− ν)

[
ŝ+ (1− δ̂)

(
K0

A0

)1−θ
]]

+

√√√√{β(1− δ)
(
K0

A0

)1−θ
[

2βθ − (1− ν)

[
ŝ+ (1− δ̂)

(
K0

A0

)1−θ
]]}2

− 4β2(1− δ)2
(
K0

A0

)2−2θ
(
β2θ2 − ŝ

[
ŝ+ (1− δ̂)

(
K0

A0

)1−θ
]) )

/(
2β2(1− δ)2

(
K0

A0

)2−2θ
)
, (325)

where
(
K0

A0

)1−θ
=
ξ(1− θ) + βθ(1− ν)

(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)

.

A numerical example in Figure 11 shows that Proposition 24 gives a less tight condi-
tion on A1 (A′′1

A0
< A1

A0
< 1) than Proposition 7 (A′1

A0
< A1

A0
< 1).

B.3.2 Numerical Examples

Figure 12 summarizes the discussion about sufficient conditions for βRt+1
wt
wt+1

< 1 at
all t ≥ 0. A blue line with circles represents βR1

w0

w1
for a range of A1. Since βR1

w0

w1
is

decreasing in A1, A1 > A′1 guarantees βR1
w0

w1
< 1.46 A green line with stars stands for

βR2
w1

w2
for different A1. We have shown that A1 ∈ (A1, Ā1) guarantees βRt+1

wt
wt+1

< 1 for
all t ≥ 1 (Proposition 6 and 18), where A1 < A′1 (Proposition 7). Hence, A1 ∈ (A′1, Ā1)

is sufficient for βRt+1
wt
wt+1

< 1 for all t ≥ 1, which is consistent with the greenline being
below 1 for any A1 ∈ (A′1, Ā1). Finally, a condition A1 > A′′1 implies that low-income

46Since equation (137) implies

βR1
w0

w1
= β

θ + (1− δ)
(
K1

A1

)1−θ
ŝ+ (1− δ̂)

(
K0

A0

)1−θ
 ,

with K1 = K0, βR1
w0

w1
is decreasing in A1.
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Figure 12: Plot of βRt+1
wt
wt+1

at t = 0 and t = 1

households at t = 1 do not save for the next high-income state (Proposition 24). As
far as A′′1 > A1, A1 ∈ (A′′1, Ā1) gives a less tight condition than A1 ∈ (A′1, Ā1) for the
insurance contract to be optimal.

Figure 13 illustrates how the sufficient conditions on A1 vary as ξ and ν change. In
the top left panel, the idiocyncratic shock is iid (ξ + ν = 1). As the probability from low-
income state to high-income state, ν, increases, the range ofA1 sufficient for βRt+1

wt
wt+1

<

1∀t ≥ 0 shrinks. An intuition is that aggregate capital supply decreases with ν, which
leads to higher interest rate in the steady state. On the other hand, the increase in ξ

widens the range of A1 sufficient for βRt+1
wt
wt+1

< 1∀t ≥ 0.
We have a conjecture that βR2

w1

w2
is increasing in A1 as far as idiosyncratic income

shock is either iid (ξ + ν = 1) or positively correlated (ξ + ν < 1) over time. The
numerical investigation supports this conjecture. First, Figure 14 describes how the plot
of βR2

w1

w2
with respect to A1 depends on the persistence of income shocks. We see that

the slope becomes less steep as the persistence becomes smaller. If income shocks are
positively correlated, meaning that agents are likely to stay in the same income state,
the slope is positive. Second, we draw many parameters from (β, ξ, ν, δ, θ) ∈ [0.01, 0.99]5

and check in which case we have a negative slope on βR2
w1

w2
at A1 = A0. After drawing

305 parameters from a uniform grid, we found 4.6 million cases with a negative slope of
βR2

w1

w2
atA1 = A0. The mean, minimum, and maximum of ξ+ν are 1.33, 1.03, and 1.98,

respectively. Since ξ + ν > 1 for all of these parameters, all cases found with a negative
slope have negatively correlated income shocks. Similarly, we draw 304 parameters for
the iid case (ξ + ν = 1), but none of them has a negative slope. These numerical results
infer that βR2

w1

w2
has a negative slope only when income shocks are negatively correlated.
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Figure 13: The range of A1 sufficient for βRt+1
wt
wt+1

< 1 ∀t ≥ 0

Figure 14: Change in the persistence of income shocks
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B.3.3 Comparative Statics

To conclude this section, we discuss comparative statics about the range of A1, (A′1, Ā1),
satisfying the sufficient conditions for βRt+1 <

wt
wt+1

for all t ≥ 0. In particular, we focus
on the comparative statics with respect to ν and ξ, where ν is the probability from low-
income state to high-income state and ξ is the probability from high-income state to
low-income state.

We have analytical results about the comparative statics of Ā1. Since Ā1 is given by
equation (135):

Ā1

A0

=

(
1
β
− 1 + δ

R0 − 1 + δ

) 1
1−θ

,

the comparative statics of R0 gives the comparative statics of Ā1. R0 is written as:

R0 =
ξ(1− θ)(1− δ) + θ(ξ + ν + 1

β
− 1)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

,

where θ(ξ+ ν+ 1
β
− 1) in the numerator is increasing in ν and βθ(1− ν)(ξ+ ν+ 1

β
− 1) in

the denominator is decreasing in ν. Hence, R0 is increasing in ν, and Ā1 is decreasing in
ν. We derive the comparative statics of Ā1 with respect to ξ directly from equation (67):

Ā1

A0

=

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

=

1− β(1− δ)
θ

1−θ
1
ξ

[1−(1−ν)β]+β
+ (1− ν)θ

[1− (1− ν)β(1− δ)]

 1
1−θ

We see that Ā1 is increasing in ξ.
We don’t provide analytical results about comparative statics of A′1 with respect to ν

and ξ, but Figure 11 implies that A′1 is increasing in ν and decreasing in ξ.

B.3.4 Monotone Sequence of {At}∞t=1

We derive sufficient conditions on a monotone sequence of {At}∞t=1 such that βRt+1 <
wt+1

wt
holds at all t ≥ 1. It turns our that if {Kt

At
}∞t=1 is also monotone, finding a sufficient

condition at t = 1 suffices for βRt+1 <
wt+1

wt
at all t ≥ 1. Since the aggregate capital at

t = 1 (K1) is pre-determined in the steady state at t = 0, we can derive a condition on A1

in closed form, as we did in Section 5.2.2 for a permanent productivity shock. Once we
find a sufficient condition on {At}∞t=2 for the monotonicity of {Kt

At
}∞t=1, such a condition

on {At}∞t=2 and the condition on A1 together guarantee βRt+1 <
wt+1

wt
at all t ≥ 1.
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Preparations for the Sufficient Conditions The economy is in a steady state at t = 0

with βR∗ < 1 under Assumption 5. At t = 1, a new path of {At}∞t=1 is realized. We
want to derive conditions on {At}∞t=1 that guarantee βRt+1 <

wt+1

wt
for all t ≥ 1. We first

express βRt+1
wt
wt+1

in terms of capital:

βRt+1
wt
wt+1

= β
[
θA1−θ

t+1K
θ−1
t+1 + 1− δ

] (1− θ)A1−θ
t Kθ

t

(1− θ)A1−θ
t+1K

θ
t+1

. (326)

By using the law of motion of capital:

Kt+1 =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt

=: ŝA1−θ
t Kθ

t + (1− δ̂)Kt,

we can derive following expressions:
Kt+1

At+1

=
At
At+1

[
ŝ

(
Kt

At

)θ
+ (1− δ̂)Kt

At

]
, (327)

βRt+1
wt
wt+1

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ

ŝ+ (1− δ̂)
(
Kt
At

)1−θ

 . (328)

We first show that the monotonicity of {Kt
At
} give rise to analytically tractable suffi-

cieint conditions for βRt+1 <
wt+1

wt
at all t ≥ 1.

Lemma 22 (Sufficieint condition for βRt+1
wt
wt+1

< 1 at all t ≥ 1).
1. Suppose {At}∞t=1 and {Kt

At
}∞t=1 are monotonically increasing over time (i.e., At ≤ At+1

and Kt
At

< Kt+1

At+1
for all t ≥ 1). Then, βR1 < 1 is sufficient to guarantee βRt+1

wt
wt+1

< 1 for
all t ≥ 1. This gives a condition: A1 < Ā1.

2. Suppose {Kt
At
}∞t=1 is monotonically decreasing over time (i.e., Kt+1

At+1
< Kt

At
for all t ≥ 1).

Then, the following condition is sufficient to guarantee βRt+1
wt
wt+1

< 1 for all t ≥ 1:(
K1

A1

)1−θ

<
1

ν(1− δ)

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
. (329)

This gives a condition: A1 > A1.

Proof. 1. Since wt = (1− θ)At
(
Kt
At

)θ
, monotonicity of {At}∞t=1 and {Kt

At
}∞t=1 imply mono-

tonicity of wt. If At and Kt
At

are weakly increasing over time, wt+1

wt
≥ 1 for all t ≥ 1. Then,

βRt+1 < 1 is a sufficient condition for βRt+1 <
wt+1

wt
. Since Rt+1 = θ

(
Kt+1

At+1

)θ−1

+ 1 − δ,
monotone increase of Kt

At
implies monotone decrease of Rt. Therefore, βR2 < 1 is suffi-

cient for βRt+1 < 1 for all t ≥ 1. Furthermore, K1

A1
< K2

A2
implies R1 > R2. Thus, βR1 < 1

is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 1. Proposition 6 shows βR1 < 1 if A1 < Ā1, where

Ā1

A0

=

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

> 1.
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2. Using equation (328), the condition βRt+1
wt
wt+1

< 1 is written as:

βRt+1
wt
wt+1

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ

ŝ+ (1− δ̂)
(
Kt
At

)1−θ

 < 1

⇔
(
Kt+1

At+1

)1−θ

− (1− ν)

(
Kt

At

)1−θ

<
1

1− δ

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
, (330)

where we know the RHS is strictly positive under Assumption 5 (Lemma 9). The equation
(330) can be written as:(

Kt+1

At+1

)1−θ

−
(
Kt

At

)1−θ

︸ ︷︷ ︸
<0 if Kt+1

At+1
<
Kt
At

+ν

(
Kt

At

)1−θ

<
1

1− δ

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
.

Since Kt
At

is decreasing over time,
(
Kt
At

)1−θ
is largest at t = 1. Since we have:

(
Kt+1

At+1

)1−θ

−
(
Kt

At

)1−θ

+ ν

(
Kt

At

)1−θ

< ν

(
Kt

At

)1−θ

≤ ν

(
K1

A1

)1−θ

for all t ≥ 1,

a sufficient condition for (330) at all t ≥ 1 is given by:(
K1

A1

)1−θ

<
1

ν(1− δ)

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
.

Proposition 7 shows this is satisfied if A1 > A1, where

A1/A0 :=

 βν(1− δ)
1− (1− δ)β(1− ν)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

 1
1−θ

< 1.

Next, we we derive sufficieint conditions for the monotonicity of {Kt
At
}. Lemma 23

derives a condition on At+1 as a function of Kt. Since Kt is an endogenous variable,
we will use a first-order approximation to derive a sufficieint condition on {At+1} as a
function of exogenous parameters.

Lemma 23 (Monotonicity of Kt
At

). Consider an economywith Kt
At

at time t, where the steady-
state value of capital over productivity is given by K∗

A∗
. We have Kt+1

At+1
> Kt

At
if and only if

At+1

At
< 1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
. (331)
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Proof. From a law of motion of capital (327), we know Kt+1

At+1
> Kt

At
if and only if

Kt+1

At+1

:=
At
At+1

[
ŝ

(
Kt

At

)θ
+ (1− δ̂)Kt

At

]
>
Kt

At

By dividing both sides by Kt
At

(6= 0), this is equivalent to:

ŝ

(
Kt

At

)θ−1

+ 1− δ̂ > At+1

At
.

In the steady state (Kt+1 = Kt = K∗), we have:

ŝ = δ̂

(
K∗

A∗

)1−θ

.

By substituing this, we derive:

1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
>
At+1

At
.

Lemma 23 means {Kt
At
}∞t=1 is monotonically increasing if the condition (331) holds

for all t ≥ 1. In order to derive a condition on {At+1} without an endogenous variable
Kt, we derive a first order approximation of k̃t := Kt/At

K∗/A∗
and k̂t := K∗/A∗

Kt/At
. They are used

in case of an increasing and decreasing sequence of {At}∞t=1, respectively.

Lemma 24 (First-Order Approximation).
1. A first-order approximation of k̃t := Kt/At

K∗/A∗
is given by:

k̃t < 1− A1 − A0

At

[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1

. (332)

2. A first-order approximation of k̂t := K∗/A∗

Kt/At
is given by:

k̂t < 1− At
A1

(
A0 − A1

A0

)[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1

.

(333)

Proof. 1. We know the law of motion of Kt
At

by equation (327):

Kt+1

At+1

=
At
At+1

[
ŝ

(
Kt

At

)θ
+ (1− δ̂)Kt

At

]
, where ŝ = δ̂

(
K∗

A∗

)1−θ

.
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By dividing both hand sides by K∗

A∗
, we have:

Kt+1/At+1

K∗/A∗
=

At
At+1

[
δ̂

(
Kt/At
K∗/A∗

)θ
+ (1− δ̂)

(
Kt/At
K∗/A∗

)]
. (334)

Denote k̃t := Kt/At
K∗/A∗

with k̃∗ = 1. We will approximate f(k̃t) := δ̂(k̃t)
θ + (1− δ̂)k̃t by Talor

expansion:

f(k̃t) = f(k̃∗) + f ′(k̃∗)(k̃t − k̃∗) + f ′′(k̃∗)(k̃t − k̃∗)2 + o(||k̃t − k̃∗||2), (335)

where we have:

f(k̃∗) = δ̂ + 1− δ̂ = 1

f ′(k̃t) = δ̂θ(k̃t)
θ−1 + 1− δ̂

→ f ′(k̃∗) = 1− δ̂(1− θ)

f ′′(k̃t) = δ̂θ(θ − 1)(k̃t)
θ−2

→ f ′′(k̃∗) = −θ(1− θ)δ̂.

Therefore, we approximate k̃t+1 by:

k̃t+1 =
At
At+1

[
1 + [1− δ̂(1− θ)](k̃t − k̃∗)− θ(1− θ)δ̂(k̃t − k̃∗)2 + o(||k̃t − k̃∗||2)

]
. (336)

By subtracting k̃∗ (= 1) from both sides, we have:

k̃t+1 − k̃∗ =

(
At
At+1

− 1

)
+

At
At+1

[
1− δ̂(1− θ)

]
(k̃t − k̃∗)−

At
At+1

θ(1− θ)δ̂(k̃t − k̃∗)2 + o(||k̃t − k̃∗||2).

(337)

Since the third term is strictly negative, we derive the upper bound of k̃t− k̃∗ as follows:

k̃t − k̃∗ =
At−1

At
− 1 +

At−1

At

[
1− δ̂(1− θ)

]
(k̃t−1 − k̃∗)−

At−1

At
θ(1− θ)δ̂(k̃t−1 − k̃∗)2 + o(||k̃t−1 − k̃∗||2)

<
At−1

At

[
1− δ̂(1− θ)

]
(k̃t−1 − k̃∗)−

(
1− At−1

At

)
<
At−2

At

[
1− δ̂(1− θ)

]2

(k̃t−2 − k̃∗)−
At−1

At

[
1− δ̂(1− θ)

](
1− At−2

At−1

)
−
(

1− At−1

At

)
<
A1

At

[
1− δ̂(1− θ)

]t−1

(k̃1 − k̃∗)−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1

. (338)

By substituting k̃1 := K1/A1

K∗/A∗
= K1/A1

K0/A0
= A0

A1
, we derive:

k̃t < 1− A1 − A0

At

[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1

.
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2. To prepare for a sufficient condition in case of a declining sequence of {At}, we
derive a Taylor expansion of the law of motion in terms of k̂t := K∗/A∗

Kt/At
with k̂∗ = 1.

Equation (334) is written as:

k̂t+1 =
At+1

At

1

δ̂(k̂t)−θ + (1− δ̂)k̂−1
t

. (339)

Define g(k̂t) := 1

δ̂(k̂t)−θ+(1−δ̂)k̂−1
t

and Taylor approximate this function.

g(k̂∗) = 1

g′(k̂t) =
θδ̂(k̂t)

−θ−1 + (1− δ̂)(k̂t)−2[
δ̂(k̂t)−θ + (1− δ̂)(k̂t)−1

]2

→ g′(k̂∗) = 1− δ̂(1− θ)

g′′(k̂t) = −θ(θ + 1)δ̂(k̂t)
−θ−2 + 2(1− δ̂)(k̂t)−3[

δ̂(k̂t)−θ + (1− δ̂)(k̂t)−1
]2 + 2

[
θδ̂(k̂t)

−θ−1 + (1− δ̂)(k̂t)−2
]2

[
δ̂(k̂t)−θ + (1− δ̂)(k̂t)−1

]3

→ g′′(k̂∗) = −
[
θ(θ + 1)δ̂ + 2(1− δ̂)

]
+ 2

[
θδ̂ + 1− δ̂

]
= δ̂(1− θ)

[
(1− θ)(2δ̂ − 1)− 1

]
We have g′′(k̂∗) < 0 if (1 − θ)(2δ̂ − 1) − 1 < 0 ⇔ 2δ̂ < 1

1−θ + 1. This is true since δ̂ < 1

and 1
1−θ > 1. Therefore, Taylor expansion of (339) is given by:

k̂t+1 − k̂∗ =

(
At+1

At
− 1

)
+
At+1

At

[
1− δ̂(1− θ)

]
(k̂t − k̂∗) +

At+1

At
g′′(k̂∗)(k̂t − k̂∗)2 + o(||k̂t − k̂∗||2)

(340)

Since g′′(k̂∗) < 0,

k̂t − k̂∗ =

(
At
At−1

− 1

)
+

At
At−1

[
1− δ̂(1− θ)

]
(k̂t−1 − k̂∗) +

At
At−1

g′′(k̂∗)(k̂t−1 − k̂∗)2 + o(||k̂t−1 − k̂∗||2)

<
At
At−1

[
1− δ̂(1− θ)

]
(k̂t−1 − k̂∗) +

(
At
At−1

− 1

)
<

At
At−2

[
1− δ̂(1− θ)

]2

(k̂t−2 − k̂∗) +
At
At−2

(
1− At−2

At−1

)[
1− δ̂(1− θ)

]
+

At
At−1

(
1− At−1

At

)
<
At
A1

[
1− δ̂(1− θ)

]t−1

(k̂1 − k̂∗)−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1

.

By using k̂1 − k̂∗ := K0/A0

K1/A1
− 1 = A1−A0

A0
, we have:

k̂t < 1− At
A1

(
A0 − A1

A0

)[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1

.
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A Sufficient Condition on {At}∞t=1 First-order approximations of k̃t and k̂t allow us to
establish a sufficient condition on {At}∞t=2 for the monotonicity of {Kt

At
}∞t=1. Then, Lemma

22 gives a condition on A1 that is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 1. We state a

proposition below.

Proposition 25.
1. (Positive Shocks) Consider a weakly increasing path of {At}∞t=1 converging to A∗

(A0 < A1 ≤ · · · ≤ A∗ with limt→∞At = A∗) that is unexpectedly realized at t = 1. If
the sequence of {At} satisfies the condition (342), both {At} and {KtAt } are monotonically
increasing in t. This implies monotone increase of wt and monotone decline of Rt. Therefore,
a condition for βR1 < 1 is sufficient to guarantee βRt+1 <

wt+1

wt
at all t ≥ 1 (Lemma 22).

The condition, A1 < Ā1, is a necessary and sufficient condition for βR1 < 1. Therefore, the
conditions (341) and (342) together guarantee βRt+1 <

wt+1

wt
at all t ≥ 1.

A0 < A1 < Ā1, (341)

1 ≤ At+1

At

< 1 + δ̂


 1

1− A1−A0
At

[
1− δ̂(1− θ)

]t−1
−
∑t−1

u=1
At−u+1−At−u

At

[
1− δ̂(1− θ)

]u−1


1−θ

− 1

 ∀t ≥ 1,

(342)

where Ā1 := A0

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

.

2. (Negative shocks) Consider a weakly decreasing path of {At}∞t=1 converging to A∗

(A0 > A1 ≥ · · · ≥ A∗ with limt→∞At = A∗) that is unexpectedly realized at t = 1. If the
sequence of {At} satisfies the condition (344), {Kt

At
} is monotonically declining in t. This

implies that condition (329),
(
K1

A1

)1−θ
< 1

ν(1−δ)

[
ξ(1−θ)

1−(1−ν−ξ)β − νθ
]
, is sufficient to guarantee

βRt+1 <
wt+1

wt
at all t ≥ 1 (Lemma 22). The condition, A1 < A1, is equivalent to (329).

Therefore, the conditions (343) and (344) together guarantee βRt+1 <
wt+1

wt
at all t ≥ 1.

A1 < A1 < A0, (343)

1− δ̂

1−

(
1− At

A1

(
A0 −A1

A0

)[
1− δ̂(1− θ)

]t−1
−

t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1
)1−θ

<
At+1

At
≤ 1 ∀t ≥ 1, (344)

where A1 := A0

 βν(1− δ)
1− (1− δ)β(1− ν)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β − 1)

ξ(1− θ)− βθν
[
ξ + ν + 1

β − 1
]

 1
1−θ

.
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Proof. 1. Lemma 23 states that Kt+1

At+1
> Kt

At
for all t ≥ 1 if

At+1

At
< 1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
at all t ≥ 1. (345)

In Lemma 24, we establish an upper bound on k̃t := Kt/At
K∗/A∗

. Therefore, we have:

(
K∗/A∗

Kt/At

)1−θ

>

[
1− A1 − A0

At

[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1
]−(1−θ)

(346)

Hence, the follwing condition is sufficient for condition (345):

At+1

At
< 1 + δ̂


 1

1− A1−A0
At

[
1− δ̂(1− θ)

]t−1
−
∑t−1

u=1
At−u+1−At−u

At

[
1− δ̂(1− θ)

]u−1


1−θ

− 1

 ∀t ≥ 1.

Under this condition, {Kt
At
}∞t=1 is monotonically increasing. Thus, Lemma 22 states that

condition (341) is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 1.

2. Lemma 23 states that Kt+1

At+1
< Kt

At
for all t ≥ 1 if

At+1

At
> 1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
at all t ≥ 1. (347)

In Lemma 24, we establish an upper bound on k̂t := K∗/A∗

Kt/At
. Therefore, we have:

(
K∗/A∗

Kt/At

)1−θ
>

[
1− At

A1

(
A0 −A1

A0

)[
1− δ̂(1− θ)

]t−1
−

t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1
]1−θ

(348)

Hence, the follwing condition is sufficient for condition (347):

At+1

At
> 1 + δ̂

[1− At
A1

(
A0 −A1

A0

)[
1− δ̂(1− θ)

]t−1
−

t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1]1−θ
− 1

 ∀t ≥ 1.

Under this condition, {Kt
At
}∞t=1 is monotonically decreasing. Thus, Lemma 22 states that

condition (343) is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 1.

B.3.5 Further Discussion on Corollary 2

As we see in Section 5.3, the Euler equation between t = 0 and t = 1 for low-income
agents holds at the time of MIT shock (t = 1), and households do not respond to future
anticipated productivity shocks. This is not generally the case, as we discuss below.
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CRRA utility As an illustration, we derive what happens under CRRA utility function
( c1−σ−1

1−σ with σ 6= 1). Low income agents finance their consumption using their state-
contingent assets, so the budget constraint is given by:

Rtas,t = cs,t +
1− ν
Rt+1

cs+1,t+1 +
1− ν
Rt+1

1− ν
Rt+2

cs+2,t+2 + · · · (349)

If consumption follows the Euler equation at all future periods:

cs+1,t+1 = (βRt+1)
1
σ cs,t,

the budget constraint is given by:

Rtas,t = cs,t

[
1 + (1− ν)β

1
σ (Rt+1)

1−σ
σ + (1− ν)2β

2
σ (Rt+1Rt+2)

1−σ
σ + · · ·

]
. (350)

Then, we see that today’s consumption (cs,t) depends on future interest rate.
Given that consumption today depends on future interest rates, expectations about

future productivity affect today’s consumption decisions. If a future path of interest rates
unexpectedly change at time t, then the Euler equation between t and t + 1 no longer
holds. This implies that MIT shocks and anticipated shocks have different implications
for the law of motion of capital if CRRA utility with σ 6= 1.

Comparison with a Neoclassical Growth Model The two results (the Euler equation
at t = 1 and the indifference between MIT shocks and anticipated shocks) are not true
in a standard neoclassical growth model unless the capital fully depreciates (δ = 1).

Suppose the economy is in a steady state at t = −5 with aggreagte productivity A0.
Agents realize the news at t = −4 that productivity increases from A0 to A1 at t = 1

permanently:

At =

A0 if t ≤ 0

A1 if t ≥ 1

Transitional dymanics of a standard neoclassical growth model is described by an Euler
equation and a resource constraint:

1

Ct
= βRt+1

1

Ct+1

, (351)

Ct +Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt. (352)

Here we continue to assume the logarithmic utility. Since the economy is in a steady
state at t = −5, βR∗ = 1 implies:

β
[
θA1−θ

0 Kθ−1
−5 + 1− δ

]
= 1

⇔ K−5 = A0

(
θ

1
β
− 1 + δ

) 1
1−θ
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By substituting (352) into (351), the law of motion of capital is derived as:

Kt+2 = A1−θ
t+1K

θ
t+1 + (1− δ)Kt+1 − β

(
θA1−θ

t+1K
θ−1
t+1 + 1− δ

)︸ ︷︷ ︸
=Rt+1

[
A1−θ
t Kθ

t + (1− δ)Kt −Kt+1

]︸ ︷︷ ︸
Ct

.

(353)
At t = −4, the aggregate capital is given by K−4 = K−5, and the capital will eventually
converge to a new steady state with:

K∞ = A1

(
θ

1
β
− 1 + δ

) 1
1−θ

.

This terminal condition allows us to derive the sequence of capital numerically. Notice
that choice variables at time t (Ct, Kt+1) depend on future capital (Kt+2), so the agents
respond to future anticipated shocks (Figure 15). Intuitively, higher productivity from
t = 1 onwards allows agents to consume more. Since agents prefer a smooth consump-
tion profile, they start to consume a little more when they realize the news at t = −4.

The interest rate does not change at t = −4 as A−5 = A−4 = A0 and K−5 = K−4

imply R−4 = θA1−θ
−4 K

θ−1
−4 + 1 − δ = R∗ = 1

β
. The response of C−4 to the future shock

implies that the Euler equation between t = −5 and t = −4 does not hold:
1

C−5

6= βR−4
1

C−4

=
1

C−4

. (354)

An optimality condition requires that the Euler equation between t = 0 and t = 1 holds.47

Full depreciation of capital (δ = 1) If the capital fully depreciates, the economy does
not respond to future anticipated shocks. With δ = 1, we have a well-known closed form
solution to the law of motion of capital:

Kt+1 = βθA1−θ
t Kθ

t , (355)
Ct = (1− βθ)A1−θ

t Kθ
t . (356)

47We don’t prove here that the Euler equation between t = 0 and t = 1 does not hold if an MIT shock is
realized at t = 1. However, if the Euler equation holds,

1

C0
= βR1

1

C1

⇔ C1 = β
[
θA1−θ

1 Kθ−1
0 + 1− δ

] [
A1−θ

0 Kθ
0 − δK0

]
.

Since this C1 does not depend on future capital (K2), this is generally not the solution to equations (351)
and (352). If δ = 1, C1 can be solved as:

C1 = (1− βθ)A1−θ
1 Kθ

0 .

This is the same solution as in the case of anticipated productivity shock, as we will see in equation (356).
Therefore, with δ = 1, C1 derived from the Euler equation between t = 0 and t = 1 is optimal at the time
of MIT shock.
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Figure 15: Transitional Dynamics of Kt after an Anticipated Shock

Choice variables at time t (Ct and Kt+1) are not dependent on future capital (Kt+1).
Therefore, the economy does not respond to future anticipated shocks. This means that
the Euler equation between t = −5 and t = −4 continues to hold. An optimality condi-
tion requires that the Euler equation between t = 0 and t = 1 holds as well.

A Limited-Commitment Model As we see in the main section, the aggregate capital
follows the law of motion:

Kt+1 =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt. (357)

This implies that the aggregate consumption (Ct) is given by:

Ct = A1−θ
t Kθ

t + (1− δ)Kt −Kt+1

=

[
1− ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kθ

t + [1− (1− ν)β] (1− δ)Kt.

(358)

Since both choice variables do not depend on future capital, the economy does not re-
spond to future anticipated shocks. This means that the Euler equation for low-income
agents between t = −5 and t = −4 still holds after the news is realized as well as the
Euler equation between t = 0 and t = 1.
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C Old Stuff That Can Be Erased Once Paper is Done

C.1 The Optimal Consumption Allocation

In this section we will derive the optimal consumption contract for an arbitrary sequence
of wages and interest rates, under Assumption 3. In section 5.2 we will present sufficient
conditions such that this condition is satisfied along the entire transition path.

It is easier to characterize consumption and asset allocations relative to the aggregate
wage wt. That is, define {cs,t, as,t} through

cs,t = wtcs,t (359)
as,t = wtas,t (360)

In Appendix B.2 we show that under Assumption 3, the key optimality conditions are
that

1. The shortsale constraint binds if zt+1 = ζ and thus a0,t+1 = a0,t+1 = 0.

2. The standard complete markets Euler equation holds if zt+1 = 0 and thus for all
s, t ≥ 0,

wt+1cs+1,t+1

wtcs,t
= βRt+1

3. The transversality condition holds

lim
j→∞

(1− ν)j∏j−1
τ=0 Rt+τ

as+j,t+j = 0 (361)

The sequential markets budget constraints ?? can then be written in wage-deflated
form (and exploiting the forms of the transition probabilities) as

c0,t + ξ
wt+1

wt
a1,t+1 = ζ (362)

cs,t + (1− ν)
wt+1

wt
as+1,t+1 = Rtas,t for s ≥ 1 (363)

Using equation 363 we can write as,t as

as,t =
cs,t
Rt

+
(1− ν)wt+1

Rtwt
a1,t+1

=
cs,t
Rt

+
(1− ν)wt+1

Rtwt

(
cs+1,t+1

Rt+1

+ (1− ν)
wt+2

Rt+1wt+1

as+2,t+2

)
=

cs,t
Rt

+
(1− ν)wt+1cs+1,t+1

wtRtRt+1

+
(1− ν)2wt+2cs+2,t+2

wtRtRt+1Rt+2

+ ...+ lim
j→∞

(1− ν)jwt+jas+j,t+j

wt
∏j−1

τ=0 Rt+τ
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Using the Euler equations and transversality condition we obtain for all s ≥ 1,

Rtas,t = cs,t +
(1− ν)wtcs,tβRt+1

wtRt+1

+
(1− ν)2wtcs,tβ

2Rt+1Rt+2

wtRt+1Rt+2

+ ...

= cs,t

∞∑
τ=0

[β(1− ν)]τ =
cs,t

1− β(1− ν)

cs,t = [1− β(1− ν)]Rtas,t

This equation also implies (exploiting the Euler equation) that

ξ
wt+1

wt
a1,t+1 = ξ

wt+1

wt

c1,t+1/Rt+1

1− β(1− ν)
= ξ

βRt+1

wt

wtc0,t/Rt+1

1− β(1− ν)
=

ξβc0,t

1− β(1− ν)

and thus exploiting equation 362 we obtain

c0,t =

(
1− β(1− ν)

1− β(1− ν − ξ)

)
ζ (364)

The remaining consumption and asset levels directly follow from the consumption Euler
equations and the sequential budget constraints. We summarize the equilibrium con-
sumption and asset allocation, for a given sequence of wages and interest rates, in the
next proposition:

Proposition 26. Suppose the sequence of interest rates and wages {Rt, wt}∞t=0 is exogenously
given and satisfies Assumption 3. Also assume that the initial asset levels satisfy a0,0 = 0

and 0 < as,0 < w0ā0 for s ≥ 1, where ā0 := β
1−(1−ν−ξ)β ζ. Then the optimal consumption

and asset allocation satisfies, for all t

c0,t =

(
1− β(1− ν)

1− β(1− ν − ξ)

)
ζwt (365)

cs,t = [1− (1− ν)β]Rtas,t for s = 1, 2, · · · (366)
cs+1,t+1 = βRt+1cs,t for s = 0, 1, · · · (367)

a0,t = 0 (368)

a1,t+1 =

(
β

1− (1− ν − ξ)β

)
ζwt (369)

as+1,t+1 = βRtas,t for s = 1, 2, · · · (370)

The wage-deflated allocations satisfy cs,t = cs,t/wt and as,t = as,t/wt.

Proof. Appendix B.2 shows that the three properties in the previous page hold under
Assumption 3 and the initial conditions. We have derived the optimal contract given the
three properties.

Let us interpret Proposition 26. High-productivity individuals consume a constant
share κ := 1−β(1−ν)

1−β(1−ν−ξ) of their labor income ζwt, independent of the wage and time
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period. The remaining fraction β
1−β(1−ν−ξ) is spent on insurance a1,t+1 against income

falling, at actuarially fair price ξ per unit, and thus at cost ξa1,t+1. Individuals with zero
productivity enter the period with gross capital income Rtas,t and split that income in
constant proportion between consumption today (share [1− (1− ν)β]) and insurance
against remaining unproductive (share β times the actuarially fair price 1 − ν per unit
of insurance).

Remark 2. Need to discuss which of these optimality conditions hold in period t = 1 after
the MIT shock. I believe all equations hold for all t ≥ 0 apart from the consumption Euler
equation (equation 33), which need not hold between period t = 0 and t = 1.

C.2 Discussion

This needs to be revised; currently has fragments from other parts moved here
Appendix ?? shows that a contract with ch,t = ch,t+1 = ch satisfies the optimality

condition if βRt+1 <
wt+1

wt
. The intuition is that agents do not have an incentive to save

for a high-income state if the rate of return on saving is sufficiently low, or wage at t+ 1

is sufficiently higher than wage at t. We will first assume this condition and derive the
transitional dynamics of capital, wage, and interest rate. Then, we check the condition,
βRt+1 <

wt+1

wt
, to make sure that the contract satisfies optimality conditions.

Since a participation constraint of high-income households binds in every period (in
the initial steady state as well as in every period along the transition), we can think of
high-income individuals signing a new contract. Zero profits of financial intermediaries
then require that the expected cost of the consumption allocation implied by high income
today and a sequence of low incomes from tomorrow onwards equals the value of high
income today. In other words, high-income agents pay the insurance premium in this
period to insure against future low-income states in a way financial intermediaries earn
zero profits. The cost of the contract is the sum of consumption today and discounted
future consumption conditional on the realization of a low-income state:

Given the consumption contract, we now derive the implied asset holdings. These
assets can be interpreted as the capital the intermediary saves for the individual, or as the
bank account balance of the individual with the intermediary. The interpretation is that
households save in a state-contingent bank account with a financial intermediary that
inputs the savings into capital. Crucially, this balance cannot be taken to a competing
intermediary if a high-income agent chooses to leave the current contract, and thus a
new contract of a high-income individual starts with zero assets.

As in Krueger and Uhlig (2020), in this model risk-averse households seek to insure
themselves against idiosyncratic income shocks by signing long-term insurance contracts
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with risk-neutral financial intermediaries. These intermediaries provide optimal insur-
ance, subject to the limited commitment constraints of individuals. In Appendix ??, we
formulate the contracting problem in recursive form and show that the limited com-
mitment constraint for individuals with currently high income is binding if and only if
today’s marginal utility from consumption is larger than the marginal utility tomorrow:

1
wtct

> βRt+1
1

wt+1ct+1
. We will demonstrate below that if the constraint of high income-

individuals is binding in periods t and t + 1, the these agents have constant deflated
consumption over time, ch,t = ch,t+1 = ch. Therefore, a sufficient condition for the lim-
ited commitment constraint of high income individuals to bind for all time periods is that
βRt+1 <

wt+1

wt
for all t.

The previous proposition provides a complete characterization of the optimal con-
sumption and implied asset allocation, given an arbitrary wage and interest rate path
satisfying the condition given in the proposition. It is valid both in a stationary equilib-
rium (in which case wages and interest rates are constant), as well as along the transition
path induced by a surprise change in the path of total factor productivity At.

The fact that the optimal consumption contract even after an MIT shock can be stated
without first deriving steady state asset holdings should be somewhat surprising. The
typical result from a Bewley-style model is that one first solves for the endogenous steady
state consumption and asset distribution, and then assets (and its distribution) serve
as initial conditions for the surprise-induced transition. Since wages and interest rates
change surprisingly between period 0 (the initial steady state) and period 1 (the first
period of the transition), the consumption levels implied by the steady state Euler equa-
tions are not necessary optimal in period 1 any longer after the MIT shock (since interest
rates and wages change surprisingly).

However, in this model individuals with high income realizations sign new contracts
in any case in period 1 (and their Euler equations hold with inequality only even in the
initial steady state), and individuals with low income are unaffected by the change in the
current wage (since their labor income is zero) and have consumption that is indepen-
dent of future interest rates (due to log-utility) in steady state and along the transition.
Thus, their Euler equations hold between period 0 and 1 even in the presence of the
MIT shock in between these periods. Thus the consumption allocation characterized in
the previous proposition is valid even for period 1, and can be stated independent of the
steady state asset distribution.48

48We make the implicit assumption that after the MIT shock individuals with low income realizations
retain their asset position, and thus financial intermediaries continue to make zero expected profits from
existing contracts after the MIT shock hits. One could envision alternative ways of renegotiating existing
contracts after the MIT shock, but these alternatives would entail expected losses or windfall profits for
the intermediaries resulting from the MIT shock.
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Denote the continuation utility from a given consumption allocation be given by

Us,t(c) =

log(wtc0,t) + β [(1− ξ)U0,t+1(c) + ξU1,t+1(c)] if s = 0

log(wtcs,t) + β [νU0,t+1(c) + (1− ν)Us+1,t+1(c)] if s = 1, 2, 3, ...
(371)

and the net cost of such an allocation as

Vs,t(c) =

wt(c0,t − z) + 1
1+rt+1

[(1− ξ)V0,t+1(c) + ξV1,t+1(c)] if s = 0

wtcs,t + 1
1+rt+1

[νV0,t+1(c) + (1− ν)Vs+1,t+1(c)] if s = 1, 2, 3, ...
(372)

C.3 Proofs

Proposition ?? (Sequential Market Equilibrium). Consider a limited-commitment econ-
omy described in Section 2. Suppose a sequence of interest rates and wages {Rt(A

t), wt(A
t)}t≥0,At

satisfies Assumption 3 and the initial distribution Φ(a0, z0) satisfies Assumption 4. Then,
individual consumption and asset allocations {ĉt(a0, z

t, At), ât+1(a0, z
t+1, At+1)} given by

equations (22) and (23), aggregate consumption and capital {Ct(At), Kt+1(At)} given by
equations (16) and (17), Arrow security price {q(At+1|At)} given by equation (19), and
a sequnce of wages and interest rates {wt(At), Rt(A

t)} given by equations (14) and (15)
constitute a sequential equilibrium.

In this economy, the law of motion of aggregate capital follows equation (40). In ad-
dition, if the initial consumption-asset allocation is given by a simple frame {cs,0, as,0}s≥0

with probability mass {φs}s≥0 in equation (32), then the consumption-asset allocation at
any t ≥ 1 is determined by equations (33) and (34).

Proof. We have checked all the equilibrium conditions except the market clearning con-
dition. As we have seen in Proposition 2, Kt+1 follows:

Kt+1 =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt.

Aggregate consumption, Ct, is given by:

Ct =

∫ ∑
zt

ĉt(a0, z
t, At)π(zt)dΦ(a0, z0)

=

∫ ∑
zt

ĉt(a0, z
t, At; zt = ζ)︸ ︷︷ ︸

=wt(At)c0

π(zt; zt = ζ)dΦ(a0, z0)

+

∫ ∑
zt

ĉt(a0, z
t, At; zt = 0)︸ ︷︷ ︸

=[1−(1−ν)β]Rt(At)at(zt,At;zt=0)

π(zt; zt = 0)dΦ(a0, z0)

= wt(A
t)c0

ν

ξ + ν
+ [1− (1− ν)β]Rt(A

t)Kt

= (1− θ)A1−θ
t Kθ

t

1− (1− ν)β

1− (1− ν − ξ)β
+ [1− (1− ν)β]

[
θA1−θ

t Kθ
t + (1− δ)Kt

]
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By substituing Kt+1 and Ct, we verify that the goods market clears:

Ct +Kt+1 = Kθ
tA

1−θ
t + (1− δ)Kt

Proposition 26 (Optimal Contract given {Rt, wt}). Suppose the sequence of interest rates
and wages {Rt, wt}∞t=0 is given and satisfies βRt+1 <

wt+1

wt
for all t ≥ 0. Assume a partici-

pation constraint for high-income agents binds every period. The consumption and implied
asset position of each agent at time t are given by:

ch,t =
1− (1− ν)β

1− (1− ν − ξ)β
z (??)

cs+1,t+1 = βRt+1cs,t for s = 0, 1, · · ·

ah,t = 0

a1,t+1 =
β

1− (1− ν − ξ)β
wtz (369)

as+1,t+1 = βRtas,t for s = 1, 2, · · ·

cs,t = [1− (1− ν)β]Rtas,t for s = 1, 2, · · · .

where we denote ch,t and c0,t interchangeably.

Proof. Zero profits of financial intermediaries for a contract with high-income agents
implies that:

wtz = ch,t + ξ
1

Rt+1

c1,t+1 + ξ(1− ν)
1

Rt+1Rt+2

c2,t+2 + ξ(1− ν)2 1

Rt+1Rt+2Rt+3

c3,t+3 · · · ,

where the left hand side is the labor income today, and the right hand side is the dis-
counted sum of future consumption costs. The optimal contract requires that consump-
tion follows a standard Euler equation if the household does not renew a contract (which
happens in a low-income state):

1

cs,t
= βRt+1

1

cs+1,t+1

.

By substituing this, we obtain ch,t as:

ch,t =
1− (1− ν)β

1− (1− ν − ξ)β
z.

Since we assume that a participation constraint binds for high-income agents, an implies
asset for high-income agents is zero: ah,t = 0.

Finally, by using an implies budget constraint:

cs,t + (1− ν)as+1,t+1 = Rtas,t for s = 1, 2, · · · ,
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we derive the relation between consumption and implied asset of low-income agents:

cs,t = [1− β(1− ν)]Rtas,t.

An implied asset of low-income agents with s = 1 follows by substituing cs,t with c1,t =

βRtch,t−1

C.4 Stuff from Stationary Model

From the Markov transition matrix, the mass of each type of agents is derived as follows:

φs =

 ν
ξ+ν

if s = 0

νξ
ξ+ν

(1− ν)s−1 if s ≥ 1.
(373)

where s is the number of periods in a low-income state and s = 0 denotes the high
income state.

Now we derive the aggregate consumption demand. It is the sum of deflated con-
sumption weighted by the mass of each type of agents:

C(R) := φ0ch +
∞∑
s=1

φscs

=
ν

ξ + ν
ch +

∞∑
s=1

νξ

ξ + ν
(1− ν)s−1(βR)sch

=

[
1− (1− ξ − ν)βR

1− (1− ξ − ν)β

] [
1− (1− ν)β

1− (1− ν)βR

]
, (374)

where the last line uses the normalization ν
ξ+ν

z = 1.
Similarly, the aggregate saving, which we call the aggregate capital supply in the

general equilibrium, is the sum of the consumption-implied asset positions weighted by
the population shares φs.

κs(R) =
∞∑
s=0

φsas

=
∞∑
s=1

νξ

ξ + ν
(1− ν)s−1(βR)s−1a1

=
ξβ

[1− (1− ν)βR] [1− (1− ξ − ν)β]
. (375)

We analyze the production side and derive the stationary equilibrium. The repre-
sentative production firms use labor and capital to produce final goods. Final goods are
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consumed by households or invested as capital for future production. Given a production
function in equation (2), two optimality conditions are satisfied in an equilibrium:

wt = FL(K,L) = (1− θ)A1−θ
t Kθ

t , (376)
Rt = FK(K,L) + 1− δ = θA1−θ

t Kθ−1
t + 1− δ , (377)

where the aggregate labor, L, is normalized to one. In a general equilibrium, we have a
goods market clearing condition:

wtCt +Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt , (378)

where Ct =

[
φ0ch,t +

∞∑
s=1

φscs,t

]
.

We define a capital market clearning condition as well. In the stationary equilibrium,
aggregate variables are constant over time, e.g. Kt+1 = Kt = K. The equation (378) is
written as:

wC(R) = (1− θ)A1−θKθ +
[
θA1−θKθ−1 − δ

]
K

= w + (R− 1)K

∴
C(R)− 1

R− 1
=
K

w

The left hand side represents the deflated aggregate capital supply, κs(R), and the right
hand side represents the deflated capital demand, κd(R). Indeed, we can show C(R)−1

R−1
=

κs(R) from equations (374) and (375). The capital market clearing condition is given
by:

κs(R) = κd(R) (379)

where κs(R) =
ξβ

[1− (1− ν)βR] [1− (1− ξ − ν)β]

κd(R) =
θ

(1− θ)(R− 1 + δ)
. (380)

We discuss Walras’ Law for a non-stationary environment in Appendix C.8.2. By solving
(379), we derive the equilibrium interest rate in a closed form:

R∗ =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) . (381)

We have derived the equilibrium interest rate and capital in the stationary equilibrium
in equations (54 and (55) under the assumption βR < 1. We discuss a condition for the
existence of an equilibrium with βR < 1. We call an equilibrium with βR < 1 a partial
insurance equilibrium.
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In the capital market clearing condition (379), we see that the capital supply func-
tion is strictly increasing in R ∈ (1 − δ, 1

β
), and the capital demand function is strictly

decreasing in R ∈ (1 − δ, 1
β
). Note that we assume 0 < ξ, ν, β, θ < 1 and 0 < δ ≤ 1

throughout the paper. Therefore, a partial insurance equilibrium is unique if it exists.
We also see that the capital demand goes to infinity as an interest rate approaches 1− δ
from above:

lim
R→1−δ

κd(R)

(
:=

θ

(1− θ)(R− 1 + δ)

)
= +∞.

This means that the excess demand for capital, κd(R) − κs(R), is infinite at the limit
R→ 1− δ and is monotonically decreasing in R ∈ (1− δ, 1

β
). Therefore, an equilibrium

with βR < 1 exists if and only if

κd(R =
1

β
) < κs(R =

1

β
).

This is equivalent to the following condition, which we state as an explicit assumption
and impose it henceforth, guaranteeing that the initial stationary equilibrium features
partial consumption insurance

C.5 Stuff from the Transition Analysis

C.5.1 A Law of Motion of Aggregate Capital

This subsection derives the law of motion of the aggregate capital stock. This can be
done using either the capital market clearing condition or the goods market clearing
condition. Both give exactly the same result (as it should, of course), and the discussion
of the goods market clearing condition is found in Appendix C.8.3.

From the asset market clearing condition, the aggregate capital stock is equal to the
sum of individual asset holdings of households, or equivalently, the assets the financial
intermediary holds on behalf of those with currently low, but past high income. There-
fore, the capital stock at time t = 1, Kt+1, is equal to the sum of household saving
determined at time t. Because high-income agents save a constant fraction of their labor
income (369) and low-income agents save according to equation (??), we can compute
Kt+1 as a function of Kt.

Proposition 27 (A Law of Motion of Aggregate Capital). Consider an economy with one-
sided limited commitment. Assume βRt <

wt+1

wt
holds at all t. If aggregate capital and

productivity at time t are given by Kt and At, aggregate capital at time t+ 1 is given by:

Kt+1 =

[
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt. (382)
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Proof. Kt+1 is the sum of household savings:

Kt+1 = wt+1

∞∑
s=1

φsas,t+1

= φ1wt+1a1,t+1 +
∞∑
s=2

φs wt+1as,t+1︸ ︷︷ ︸
=βRtwtas−1,t by (??)

= φ1
β

1− (1− ν − ξ)β
wtz︸ ︷︷ ︸

=wt+1a1,t+1 by (369)

+(1− ν)βRtwt

∞∑
s=1

φsas,t︸ ︷︷ ︸
Kt

=
ξβ

1− (1− ν − ξ)β
wt︸ ︷︷ ︸

savings by high income

+ (1− ν)βRtKt︸ ︷︷ ︸
savings by low income

(383)

By substituting wt = (1 − θ)A1−θ
t Kθ

t and Rt = θA1−θ
t Kθ−1

t + 1 − δ, we have the law of
motion of aggregate capital in a closed form:

Kt+1 =
ξβ(1− θ)

1− (1− ν − ξ)β
A1−θ
t Kθ

t + (1− ν)β
[
θA1−θ

t Kθ
t + (1− δ)Kt

]
=

[
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt.

As Yt = Kθ
t (AtLt)

1−θ with Lt = 1, we can express the law of motion as:

Kt+1 = ŝYt + (1− δ̂)Kt (384)

where

ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ (385)

δ̂ = 1− (1− ν)β(1− δ). (386)

Defining the time discount rate through β = 1
1+ρ

we can write

ŝ = (1− θ) ξ

ξ + ν + ρ
+ θ

1− ν
1 + ρ

≈ (1− θ) ξ

ξ + ν + ρ
+ θ(1− (ν + ρ)) (387)

δ̂ ≈ ν + ρ+ δ. (388)

This expression resembles the law of motion of capital in a Solow model, but with a
depreciation rate that is larger (by ν + ρ) than the physical depreciation rate δ and a
saving rate that is an explicit function of the structural parameters of the model and
depends negatively on ν + ρ and positively on the risk of income falling to zero ξ. We
discuss the relation to the literature in Section 7.
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In a stationary equilibrium, aggregate variables are constant over time, i.e., Kt+1 =

Kt = K and At = A0. We verify that stationary aggregate capital derived from the law
of motion coincides with the aggregate capital stock in the stationary equilibrium we
derived in Section 4. The discussion is found in Appendix C.8.3.

C.5.2 Linear Approximation of Transitional Dynamics

This subsection derives a linear approximation of equation (??) around the stationary
equilibrium. It gives us an approximation of capital at time t along the transition path.
Figures illustrate that this approximation is farily accurate.

Proposition 28. Consider an economy in a stationary equilibrium at t = 0 and a perma-
nent productivity shock at t = 1 (At = A1 6= A0 for all t ≥ 1). Given that βRt <

wt+1

wt
for

all t ≥ 1 (the conditions are given in the next proposition), aggregate capital at time t is
approximated by:

Kt = ϕt−1(K0 −K∗) +K∗, (389)
where 0 < ϕ := θ + (1− θ)(1− ν)β(1− δ) < 1. (390)

Therefore, the interest rate, wage, and consumption of high-type agents at time t ≥ 1 is
approximated by:

Rt = θA1−θ
1

[
ϕt−1(K0 −K∗) +K∗

]θ−1
+ 1− δ ∀t ≥ 1, (391)

wt = (1− θ)A1−θ
1

[
ϕt−1(K0 −K∗) +K∗

]θ ∀t ≥ 1, (392)

ch,t := wtch,t = (1− θ)A1−θ
1

[
ϕt−1(K0 −K∗) +K∗

]θ 1− (1− ν)β

1− (1− ν − ξ)β
z ∀t ≥ 1. (393)

Proof. The law of motion of capital is given by (??):

Kt+1 −Kt =

[(
K∗

Kt

)1−θ

− 1

]
[1− (1− ν)β(1− δ)]Kt.

By denoting δ̂ = 1− (1− ν)β(1− δ), it is written as:

Kt+1 =

[
δ̂

{(
K∗

Kt

)1−θ

− 1

}
+ 1

]
Kt,

⇔ Kt+1 −K∗

K∗
=

[
δ̂

{(
Kt

K∗

)θ−1

− 1

}
+ 1

]
Kt

K∗
− 1. (394)
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A first-order Taylor expansion is:

f(Kt) ≈ f(K∗) + f ′(K∗)(Kt −K∗)

where f(Kt) =

[
δ̂

{(
Kt

K∗

)θ−1

− 1

}
+ 1

]
Kt

K∗
− 1,

f ′(Kt) = δ̂(θ − 1)

(
Kt

K∗

)θ−2
1

K∗
Kt

K∗
+

[
δ̂

{(
Kt

K∗

)θ−1

− 1

}
+ 1

]
1

K∗
.

Therefore, the LHS of equation (394) is approximated by:
Kt+1 −K∗

K∗
≈
[
1− (1− θ)δ̂

] Kt −K∗

K∗
. (395)

The aggregate capital at time t after the productivity shock at time 1 is given by:

Kt ≈
[
1− (1− θ)δ̂

]t−1

(K1 −K∗) +K∗, (396)
where δ̂ = 1− (1− ν)β(1− δ).

ϕ represents the speed of convergence (i.e., smaller ϕ implies quicker convergence).
Comparative statics with respect to (θ, ν, β, δ) are following:

∂ϕ

∂θ
= 1− (1− ν)β(1− δ) > 0,

∂ϕ

∂ν
= −(1− θ)β(1− δ) < 0,

∂ϕ

∂β
= (1− θ)(1− ν)(1− δ) > 0,

∂ϕ

∂δ
= −(1− θ)(1− ν)β < 0.

Figure 16 compares the paths of aggregate capital computed by equation (40) and the
linear approximation. The approximation is accurate at least for the parameters chosen.

C.6 Path of Aggregate Variables and the Precision of First-Order Ap-
proximation

Figure 18 displays the path of aggregate variables, (At, Rt, wt, βRt+1
wt
wt+1

), after a per-
manent positive shock on At and monotonically increasing {At}∞t=1 realized at t = 1,
respectively. As we have derived an upper bound on k̃t := Kt/At

K∗/A∗
using a first-order

Taylor approximation in Lemma 24, we plot the path of k̃t and approximated k̃t. It
turns out that the approximation is farily accurate, as the approximation error (:= 100 ∗(

approximated k̃t
k̃t

− 1
)
) is less than 0.015% under the parameters chosen. Figure 19 illus-

trates the transition path after a negative shock on {At}∞t=1.
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Figure 16: Comparison between Exact Solution and Linear Approximation
with parameters: (β = 0.8, ξ = ν = 0.2, δ = 0.16, θ = 0.33, A0 = 1, A1 = 1.1)

Figure 17: Transitional Dynamics of Rt and wt

C.7 Stuff from Aggregate Shocks to Productivity

We now consider an economy with stochastic productivity growth, introducing aggregate
risk into the economy. Assume that the productivity process {At} is stochastic, following
a probability distribution π(At+1|At), which is independent of idiosyncratic shocks. All
other elements of the model remain completely unchanged.

In Section C.7.1, we consider a general productivity process, where the probability
of At+1 could depend on the entire history of aggregate states At ≡ {A0, A1, · · · , At}.
We will prove that the insurance contract specified in the deterministic case is still op-
timal in an economy with aggregate shocks. We proceed with three steps: (i) Define
a sequential market equilibrium with aggregate shocks and state our conjecture about
household’s consumption and saving; (ii) Under the conjecture that households do not
save for high-income states, verify that the conjectured allocation satisfies the house-
hold’s budget constraint, the Euler equation for low-income states, and market cleaning
conditions; (iii) Under the assumption, βRt+1 <

wt+1

wt
for all t and for all possible states

(At, At+1), verify that households do not save for high-income states. Given that the con-
jectured price and allocation constitute a sequential market equilibrium, we derive a law
of motion of aggregate capital, which remains to be in closed form.

In Section 6.1, we specify a productivity process with iid growth rates. Productivity
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Figure 18: Transition Path after a Positive Shock on {At}∞t=1, where k̃t := Kt/At
K∗/A∗
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Figure 19: Transition Path after a Negative Shock on {At}∞t=1, where k̂t := K∗/A∗

Kt/At
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growth can take two values, At+1

At
∈ {1− ε, 1 + ε}, with equal probability:

At+1

At
=

1 + ε with probability 1
2

1− ε with probability 1
2

for all t ≥ 0 , iid (397)

Under this specification, we find a sufficient condition on ε such that βRt+1 <
wt+1

wt
holds

for all t and all (At, At+1). Proposition 8 states that under Assumption 5 and Assumption
G, βRt+1 <

wt+1

wt
holds for all t with probability 1. Corollary 9 states that under Assump-

tion 5, a condition for βR∗ < 1 in a steady state, there exists ε̄ > 0 such that for all
0 < ε < ε̄, Assumption G holds, and hence βRt+1 <

wt+1

wt
holds for all t and all possible

states.

C.7.1 Sequential Market Equilibrium with Stochastic Growth

— This part is moved to Section 2 and 3.

C.7.2 Definition of Sequential Market Equilibrium

We first define a sequential market equilibrium with aggregate shocks. Households’ con-
sumption and savings depend on both the history of individual states zt = (z0, z1, · · · , zt)
and the history of aggregate states At = (A0, A1, · · · , At).

Definition 2. For an initial condition (A0, K0,Φ(a0, z0)), an equilibrium is sequences of
wages and interest rates {wt(At), Rt(A

t)}∞t=0,At, price of Arrow securities {q(At+1|At)}∞t=0,At,At+1
,

aggregate consumption and capital {Ct(At), Kt+1(At)}∞t=0,At and individual consumption
and asset allocations {ĉt(a0, z

t, At), ât+1(a0, z
t+1, At+1)}∞t=0 such that

1. Given {wt(At), Rt(A
t), q(At+1|At)}∞t=0,At,At+1

, the household consumption and asset
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allocation {ĉt(a0, z
t, At), ât+1(a0, z

t+1, At+1)} solves, for all (a0, z0),49

max
{ct(a0,zt,At),at+1(a0,zt+1,At+1)}

∞∑
t=0

∑
At

∑
zt

βtπ(At)π(zt) log(ct(a0, z
t, At)) (398)

s.t.

ct(a0, z
t, At) +

∑
At+1

∑
zt+1

q(At+1|At)π(zt+1|zt)at+1(a0, z
t+1, At+1) = wt(A

t)zt +Rt(A
t)at(a0, z

t, At)

(399)
at+1(a0, z

t+1, At+1) ≥ 0 (400)

2. Factor prices equal marginal products

wt(A
t) = (1− θ)At

(
Kt

At

)θ
(401)

Rt(A
t) = θ

(
Kt

At

)θ−1

+ 1− δ (402)

3. The goods market and capital market clears

Ct +Kt+1 = Kθ
t (At)

1−θ + (1− δ)Kt (403)
Kt+1 =

∫ ∑
zt+1

ât+1(a0, z
t+1, At+1)π(zt+1)dΦ(a0, z0) ∀At+1 (404)

where
Ct =

∫ ∑
zt

ĉt(a0, z
t, At)π(zt)dΦ(a0, z0) (405)

We make two remarks on the budget constraint (??). First, a familiar way of defining
Arrow securities may be that households pay a price qb(At+1, zt+1|At, zt) and receive one
unit of non-deflated consumption goods if the state (At+1, zt+1) is realized. If we denote
such an asset by bt+1, the budget constraint is given by:

ct(a0, z
t, At) +

∑
At+1

∑
zt+1

qb(At+1, zt+1|At, zt)bt+1(a0, z
t+1, At+1) = wt(A

t)zt + bt(a0, z
t, At)

(406)
49We will follow a convention from now on that whenever we take a summation over aggregate states

At+1, we sum over states with strictly positive probabilies. Mathematically, we denote:∑
At

π(At) :=
∑

{At;π(At)>0}

π(At) = 1

∑
At+1

π(At+1|At) :=
∑

{At+1;π(At+1|At)>0}

π(At+1|At) = 1
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Because we define an Arrow security that yields Rt+1(At+1) at t+1, the relation between
the two types of Arrow securities is:

qb(At+1, zt+1|At, zt) =
qa(At+1, zt+1|At, zt)

Rt+1(At+1)
, (407)

and bt+1(a0, z
t+1, At+1) = Rt+1(At+1)at+1(a0, z

t+1, At+1) (408)

Since the return on both Arrow securities is given by:
1

qb(At+1, zt+1|At, zt)
=

Rt+1(At+1)

qa(At+1, zt+1|At, zt)
,

two formulations are equivalent. Our formulation of Arrow securities gives a simple
expression for the capital market clearing condition (??).

Second, we express the price of Arrow security as:

qa(At+1, zt+1|At, zt) = q(At+1|At)π(zt+1|zt). (409)

This holds because aggregate states are independent of idiosyncratic shocks, and house-
holds pay an actuarially fair price for the insurance against idiosyncratic shocks.

C.7.3 Conjectured Allocation

We conjecture that households’ consumption and saving rules will be the same as in
the deterministic case (equations 365–370). Specifically, high-income households con-
sume a constant fraction, 1−(1−ν)β

1−(1−ν−ξ)β , of their labor income, and low-income household’s
consumption follows the Euler equation. Because of the logarithmic utility function, low-
income households consume a constant fraction, [1− (1− ν)β], of their capital income.
Since the income and substitution effects cancel out, their saving choice does not depend
on Arrow security price or future interest rates.

ct(z
t, At) =

wt(At)c0, where c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ, if zt = ζ

βRt(A
t)ct−1(zt−1, At−1), if zt = 0

(410)

at+1(zt+1, At+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt = ζ and zt+1 = 0

βRt(A
t)at(z

t, At) if zt = 0 and zt+1 = 0

(411)

⇒ ct(z
t, At) = [1− (1− ν)β]Rt(A

t)at(z
t, At) if zt = 0 (412)

C.7.4 Optimality Conditions for Household’s Problem

Households’ Lagrangian problem:
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U(a0, z0) = max
{ct(a0,zt,At),at+1(a0,zt+1,At+1)}∞t=0

∞∑
t=0

∑
At

∑
zt

βtπ(At)π(zt) log(ct(a0, z
t, At))

+
∞∑
t=0

∑
At

∑
zt

µ(zt, At)

[
wt(A

t)zt +Rt(A
t)at(a0, z

t, At)

− ct(a0, z
t, At)−

∑
At+1

∑
zt+1

q(At+1|At)π(zt+1|zt)at+1(a0, z
t+1, At+1)

]

+
∞∑
t=0

∑
At+1

∑
zt+1

βtπ(At+1)π(zt+1)λ(zt+1, At+1)at+1(a0, z
t+1, At+1), (413)

FOCs are:

[ct(a0, z
t, At)] : βtπ(At)π(zt)

1

ct(a0, zt, At)
= µ(zt, At) (414)

[at+1(a0, z
t+1, At+1)] : µ(zt+1, At+1)Rt+1(At+1) + βtπ(At+1)π(zt+1)λ(zt+1, At+1)

= µ(zt, At)q(At+1|At)π(zt+1|zt) (415)

By substituing µ(zt, At), we obtain the following Kuhn-Tucker condition:
1

ct(a0, zt, At)
=
π(At+1|At)
q(At+1|At)

[
βRt+1(At+1)

1

ct+1(a0, zt+1, At+1)
+ λ(zt+1, At+1)

]
(416)

where λ(zt+1, At+1)at+1(a0, z
t+1, At+1) = 0, λ(zt+1, At+1) ≥ 0, at+1(a0, z

t+1, At+1) ≥ 0.

(417)

Conjecture 1. Under logarithmic utility,

q(At+1|At) = π(At+1|At) (418)

Lemma 25. Suppose q(At+1|At) = π(At+1|At). Then, the conjectured allocation (22) and
(23) satisfies the household’s budget constraint (??), the Euler equation for low-income
households:

1

ct(a0, zt, At)
=
π(At+1|At)
q(At+1|At)

βRt+1(At+1)
1

ct+1(a0, zt+1, At+1; zt+1 = 0)
, (419)

and the market clearing conditions (16) and (??).

Proof. See Appendix A.4.

C.7.5 No Savings for High-Income States

Lemma 7 shows that conjectured Arrow security price and the conjectured consumption
and saving (22) and (23) satisfy equilibrium conditions, except that households do not
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save for a high-income state. The claim that households make no savings for high-income
states follow the same logic as in Lemmas 19 and 20.50 We show in Proposition ??
below that under the assumption, βRt+1 <

wt+1

wt
for all t ≥ 0 and all possible states At,

the Kuhn-Tucker conditions are satisfied if households do not save for a high-income
state. Therefore, the conjectured price and allocation constitute a sequential market
equilibrium.

Proposition 29. Suppose that an economy is in a steady state at t = 0 with βR0 < 1 and
that sequences of wages and interest rates {wt(At), Rt+1(At+1)}∞t=0 satisfy βRt+1(At+1) <
wt+1(At+1)
wt(At)

for all t ≥ 0 and (At, At+1). Under the conjectured Arrow sequrity price, q(At+1|At) =

π(At+1|At), the Kuhn-Tucker conditions for high-income states are satisfied at any time
t ≥ 0 if households do not save for a high-income state. Hence, the conjectured allocation
(22) and (23), aggregate consumption and capital given by (18) and (??), and sequences
of prices {wt(At), Rt+1(At+1), q(At+1|At)}∞t=0 (14), (15), and (??) constitute a sequential
market equilibrium.

Proof. See Appendix A.4.

C.7.6 The Aggregate Law of Motion

Since households’s consumption and saving is given by equations (22) and (23), the law
of motion of aggregate capital follows equation (40):

Kt+1 =

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ
t Kθ

t + (1− ν)β(1− δ)Kt

We have seen that the conjectured allocation (22) and (23) satisfy all the equilibrium
conditions if βRt+1 <

wt+1

wt
holds for all t ≥ 0 and all possible states. We will next derive

a sufficient condition on the magnitude of ε such that βRt+1 <
wt+1

wt
is guaranteed for all

t ≥ 0 and all possible states At.

C.7.7 Application

Implications for Asset Pricing Sincewe know the price of Arrow securities, q(At+1|At) =

π(At+1|At), and the interest rate at each aggregate state,Rt+1(At+1) = θ
(
Kt+1

At+1

)θ−1

+1−δ,
50At t = 0, given an initial state (a0 = 0, z0 = ζ) or (a0 ≤ ā0 := β

1−(1−ν−ξ)β ζ, z0 = 0), households cannot
achieve higher utility at t = 1 by saving for a high-income state at t = 1 if βR1

w0

w1
< 1. Since consumption

choice ct(a0, zt; zt = ζ) cannot be larger than c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ at any t ≥ 0, making positive savings

for a high-income state at t = 1 wouldn’t give higher utility at any time t ≥ 1, under the assumption
of βRt+1 <

wt+1

wt
at all t ≥ 0 and all possible states At. By induction, households at any time t ≥ 1 do

not save for a high-income state at t + 1, since they enter a state at time t ≥ 1 with (at = 0, zt = ζ) or
(at ≤ ā0, zt = 0).
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we can compute the price of any securities. Examples include a risk-free bond that gives
a unit of non-deflated consumption goods at t+1 regardless of aggregate states and risky
capital whose return depends on aggregate state At+1. We can check:

1. Comparison with the representative agent model:
conjecture: idiosyncratic risks under a limited commitment lower the return on
assets compared to the representative agent model, but it has no impact on risk
premium

2. Comparison with Krueger and Lustig (2010):
the presence of uninsurable idiosyncratic risk lowers the equilibrium risk-free rate,
but it has no effect on the price of aggregate risk in equilibrium under key condi-
tions: (i) a continuum of agents, (ii) CRRA utility, (iii) idiosyncratic labor income
risk that is independent of aggregate risk, (iv) a constant capital share of income,
and (v) solvency constraints or borrowing constraints on total financial wealth that
are proportional to aggregate income.

Inequality over a Business Cycle

• The result from a case of permanent shocks:
With partial depreciation (δ < 1), the consumption inequality expands at the time
of a positive productivity shock.

C.7.8 Full Depreciation of Capital (δ = 1)

In Section C.7.1, we made three assumptions: (i) aggregate productivity process {At} is
independent of idiosyncratic shocks, (ii) the economy is in a steady state at t = 0 with
βR0 < 1, (iii) βRt+1(At+1) < wt+1(At+1)

wt(At)
is satisfied for all t ≥ 0 and (At, At+1). Section

6.1 derived a sufficient condition for βRt+1 <
wt+1

wt
at all t ≥ 0 and At.

In this section, we look into the case with δ = 1. Under full depreciation of capital,
βRt+1 <

wt+1

wt
holds with any productivity process of At that is independent of idiosyn-

cratic shocks. In addition, a representative-agent neoclassical growth model has a law of
motion of aggregate capital in closed form under δ = 1, which facilitates a sharp com-
parison between the limited-commitment model and the neoclassical growth model.

The ratio between βRt+1 and wt+1

wt
(equation 71) under full depreciation of capital is
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given by:

βRt+1

wt+1/wt

∣∣∣∣∣
δ=1

=

β

[
θ
{

At
At+1

[
ŝ(K̃t)

θ + (1− δ̂)K̃t

]}θ−1

+ 1− δ
]

(
At+1

At

)1−θ [
ŝ(K̃t)θ−1 + 1− δ̂

]θ
∣∣∣∣∣
δ=1

=
βθ

ŝ
(420)

This condition does not depend on {At} or {Kt}. Hence, as long as the parameters satisfy
βθ
ŝ
< 1, the condition βRt+1(At+1) < wt+1(At+1)

wt(At)
is satisfied for any productivity process of

{At}. The condition βθ
ŝ
< 1 is equivalent to Assumption 5 with δ = 1:

θ

1− θ
1
1
β

<
ξ

ν
(

1
β
− 1 + ξ + ν

) . (421)

Therefore, under Assumption 5 and δ = 1, the conditions βR0 < 1 and βRt+1(At+1) <
wt+1(At+1)
wt(At)

for all t ≥ 0 and (At, At+1) are satisfied.
The law of motion of capital (40) with δ = 1 is given by:

Kt+1 = ŝA1−θ
t Kθ

t (422)

where ŝ :=
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

⇔ K̃t+1 =
At
At+1

ŝK̃θ
t . (423)

∴ K̃∗LC = ŝ
1

1−θ (424)

In a representative-agent neoclassical growth model with δ = 1, there is a well-known
closed form solution to the law of motion of capital:

Kt+1 = βθA1−θ
t Kθ

t (425)

⇔ K̃t+1 =
At
At+1

βθK̃θ
t . (426)

∴ K̃∗Rep = (βθ)
1

1−θ (427)

As we see above, Assumption 5 under δ = 1 is equivalent to βθ < ŝ. This means that in
the steady state, the limited commitment economy holds more capital, and the steady-
state interest rate (R∗ = θK̃θ−1) is lower:

K̃∗Rep < K̃∗LC , (428)
R∗Rep > R∗LC . (429)
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C.8 Stuff from “Additional Discussions”

C.8.1 Definition of Contract Equilibrium

Instead of a financial market as in the main text, we can imagine competitive financial in-
termediaries offering long-term consumption insurance contracts, subject to a zero-profit
condition. Consider a financial intermediary that signs an agent with current labor pro-
ductivity z and current assets a in period t. The intermediary maximizes that household’s
lifetime utility, subject to the limited commitment constraints and subject to a zero-profit
condition. To set up the zero-profit condition, define the cost net of labor income of an
allocation starting from labor productivity history zt as

Vt(c, z
t) = ct(z

t)− wtzt +

∑
zt+1

π(zt+1|zt)Vt+1(c, zt+1)

1 + rt+1

(430)

Furthermore, for any allocation c define the continuation utility from history zt on as

Ut(c, z
t) =

∞∑
τ=t

∑
zτ |zt

βτ−tπ(zτ |zt) log(ct(z
τ )) (431)

Given a process of outside options {UOut
t (zt)} an optimal contract for an agent with initial

assets and labor productivity a, z then solves the problem

U0(a0, z0) = max
{ct(a0,zt)}

∞∑
t=0

∑
zt

βtπ(zt) log(ct(a0, z
t)) (432)

s.t.

V0(c, z0) ≤ (1 + r0)a0 (433)
Ut(c, z

t) ≥ UOut
t (zt) ∀t ≥ 0, zt (434)

The equilibrium outside options then satisfy UOut
τ (zτ ) = Uτ (0, zτ ) for all τ ≥ 0 and all

zτ ∈ Z. Here Uτ (0, zτ ) is defined analogously to equation (432): it is equal to maximal
lifetime utility that can be obtained from a contract starting with productivity zτ and no
assets, that is, a consumption contract with expected lifetime cost equal to the expected
present value of labor income, starting from current productivity zt, see equation (433).
As Krueger and Uhlig (2006) the consumption allocation emerging from the optimal
contracting problem and the financial markets formulation with Arrow securities yield
the same consumption allocation (at the equilibrium outside options). Furthermore, the
mapping between the state-contingent assets and the cost of the consumption contracts
are given by

Vt(z
t) = (1 + rt)at(z

t) (435)

Equilibrium can then be defined analogously to definition ??.
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C.8.2 Walras’s Law

We derive the capital market clearing condition from the goods market clearing condi-
tion, household’s budget constraint, and the pricing functions. The goods market clear-
ing condition is expressed as:

wtCt︸︷︷︸
consumption

+Ks
t+1 − (1− δ)Ks

t︸ ︷︷ ︸
investment

= A1−θ
t (Kd

t )θ︸ ︷︷ ︸
production

, (378)

where I denote the household’s saving by Ks and the firm’s capital demand by Kd. We
want to derive the capital-market clearing condition:

Ks
t = Kd

s , (436)

where Ks
t = wt

∞∑
s=0

φsas,t.

As we consider the case with βRt < 1, the deflated asset position of high-type agents
is always zero: a0,t = 0. Following equations are the budget constraints of high-income
and low-income agents:

wtch,t = wtz︸︷︷︸
labor income

− ξwt+1a1,t+1︸ ︷︷ ︸
saving

,

wtcs,t = Rtwtas,t︸ ︷︷ ︸
capital income

− (1− ν)wt+1as+1,t+1︸ ︷︷ ︸
saving

for s = 1, 2, · · · .

The aggregate consumption, wtCt, is the sum of each agent’s consumption:

wtCt :=
∞∑
s=0

φswtcs,t

= wt φ0z︸︷︷︸
≡1

+Rt

∞∑
s=1

φswtas,t︸ ︷︷ ︸
Ks
t

−wt+1

[
φ0ξa1,t+1 + (1− ν)

∞∑
s=1

φsas+1,t+1

]
︸ ︷︷ ︸

=wt+1[
∑∞
s=1 φsas,t+1]=Ks

t+1

. (437)

Substituting wtCt in the goods market clearing condition (378) by (437) yields:

wt +RtK
s
t −Ks

t+1︸ ︷︷ ︸
=wtCt

+Ks
t+1 − (1− δ)Ks

t = A1−θ
t (Kd

t )θ

⇔ wt + (Rt − 1 + δ)Ks
t = A1−θ

t (Kd
t )θ, (438)

where wt = (1− θ)A1−θ
t (Kd

t )θ,

Rt = θA1−θ
t (Kd

t )θ−1 + 1− δ.
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Plugging wt and Rt into (438) gives:

(1− θ)A1−θ
t (Kd

t )θ +
[
θA1−θ

t (Kd
t )θ−1

]
Ks
t = A1−θ

t (Kd
t )θ

⇔
[
θA1−θ

t (Kd
t )θ−1

]
Ks
t = θA1−θ

t (Kd
t )θ

⇔ Ks
t = Kd

t .

Therefore, we reached the capital market clearing condition.

C.8.3 Aggregate Law of Motion of Capital

Goods Market We can equivalently derive the law of motion for capital from the goods
market clearing condition.

Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt − wtCt

where Ct = φ0ch,t +
∞∑
s=1

φs cs,t︸︷︷︸
=[1−(1−ν)β]Rtas,t

=
1− (1− ν)β

1− (1− ν − ξ)β︸ ︷︷ ︸
φ0ch,t

+ [1− (1− ν)β]Rt
Kt

wt

∴ Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt −
1− (1− ν)β

1− (1− ν − ξ)β
wt︸︷︷︸

=(1−θ)A1−θ
t Kθ

t

− [1− (1− ν)β] Rt︸︷︷︸
=θA1−θ

t Kθ−1
t +1−δ

Kt

= (1− θ)A1−θ
t Kθ

t −
1− (1− ν)β

1− (1− ν − ξ)β
(1− θ)A1−θ

t Kθ
t + (1− ν)β

[
θA1−θ

t Kθ
t + (1− δ)Kt

]
=

ξβ

1− (1− ν − ξ)β
(1− θ)A1−θ

t Kθ
t + (1− ν)β

[
θA1−θ

t Kθ
t + (1− δ)Kt

]
.

Aggregate Capital in the Stationary Equilibrium In a stationary equilibrium, Kt =

Kt+1 = K and At = A. By substituting them into (40), we derive the aggregate capital in
the stationary equilibrium. We check that this coincides with the one computed before.
(40) with Kt = Kt+1 = K and At = A is given by:

K =
ξβ

1− (1− ν − ξ)β
(1− θ)A1−θKθ + (1− ν)β

[
θA1−θKθ + (1− δ)K

]
⇔ K1−θ =

1

1− (1− ν)β(1− δ)

[
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ

]
A1−θ

∴ K∗ = A

[
ξβ(1− θ) + (1− ν)βθ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

(439)

Now I check that this is consistent with the results in a stationary equilibrium:

K∗ = A

(
θ

R∗ − 1 + δ

) 1
1−θ

, where R∗ =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) .
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As we have:

R∗ − 1 + δ =
θ [1− (1− δ)β(1− ν)] (ξ + ν + 1

β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) ,

we obtain

K∗ = A

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

. (440)

This is the same as (439). Therefore, the level of capital K∗ derived from the law of
motion (40) is the same as K∗ computed in the stationary equilibrium.
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