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1 Introduction

Governments around the world responded to the Covid-19 health crisis by shutting down eco-

nomic and social activity, resulting in severe recessions and closed schools for much of 2020.

The economic consequences of these lockdown measures triggered a large scientific and popular

literature. As many countries are on the path of economic recovery from this crisis, focus is

shifting from the short- to the long run consequences of the crisis. One such concern is the long-

run impact of the significant loss of instructional time in schools during 2020-21 on children’s

education, earnings potential and future welfare.

In this paper we use a structural life-cycle model and school visit measures from anonymized

cell phone data combined with learning mode data to quantify the heterogeneous impact of

school closures during the Covid-19 crisis on children affected at different ages and coming

from households with different socio-economic parental characteristics. Our data suggests that

secondary schools were closed for in-person learning for longer periods than elementary schools,

implying that younger children experienced shorter school closures than older children, and that

private schools1 experienced shorter closures than public schools, and schools in poorer U.S.

counties experienced shorter school closures. We use these empirical facts as inputs for a positive

and normative analysis of the long-run consequences of the observed Covid-19-induced school

closures on the affected children. To do so, we extend the structural life cycle model of schooling

investments studied in Fuchs-Schündeln, Krueger, Ludwig, and Popova (2022) to include the

choice of parents to send their children to private schools, empirically discipline it with data on

parental investments from the PSID, and then feed into the model the school closures measures

from our empirical analysis to quantify the aggregate and distributional consequences of the

Covid-19 school closures.

We highlight two main findings. First, the aggregate losses of human capital, college attain-

ment, the present discounted value of earnings and welfare are large: the present discounted value

(PDV) of future gross earnings (after the current school children enter the labor market) falls by

1.27% and the welfare losses amount to 0.71% of permanent consumption. These results mate-

rialize despite the fact that parents optimally adjust their private time- and resource investment

into their children, as well as inter-vivos transfers of wealth to their offspring.

Second, if all children had their schools closed for the same amount of time, then younger

children, and those from disadvantaged backgrounds would suffer larger welfare losses, as our

previous work suggested.2 However, due to the significant empirically documented differences

1Private schools include, for the purpose of this paper religious schools.2This result is driven by the two key properties of the human capital production function, as emphasizedby Cunha and Heckman (2007): self productivity (holding current investment constant, larger human capitaltoday leads to higher human capital tomorrow) and dynamic complementarity: the marginal product of
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in the extent of the school closures, these conclusions are partially overturned, and partially

accentuated. The fact that, on average, secondary schools were closed much longer than primary

schools leads to the finding that it is children just starting secondary school that endure the

largest losses in their earnings capacity (a reduction of the PDV of earnings of approximately

1.5%) and welfare (a decline of 0.83%).

Turning to socio-economic characteristics we make two empirical observations. First, private

schools were closed on average for fewer days than public schools, and private schools are dis-

proportionally frequented by children from parents with higher socio-economic characteristics (in

the model, associated with higher education, higher wealth and being married). However, focusing

on only public schools, these were closed for longer in counties with higher average income.

The quantitative model maps these empirical findings into expected differential welfare conse-

quences. Children attending private schools on average lose 0.31% points less welfare (measured

in terms of permanent consumption), than children attending public schools, accentuating the

larger welfare losses poorer children have in the absence of differential school closures. Within

public schools, however the income gradient of welfare losses goes in the opposite direction since

poorer areas in the U.S., especially in the South but also the Midwest, saw shorter school clo-

sures on average than the more affluent regions on both coasts. Of course, children from poorer

households are still worse off and might have been affected more severely from the Covid-19 crisis

along many other dimensions, but the fact that, again on average, their schools were locked

for shorter periods of time than the schools in richer counties implies that the losses in human

capital, lifetime earnings, and ultimately, welfare, are more benign than those children from richer

families (or more precisely, residing in richer counties).

Finally, and motivated by the significant and heterogeneous human capital and welfare losses

we consider potential policy interventions designed to mitigate the instructional losses from the

Covid-19 crisis. One such proposal is to keep schools open for parts of future summer periods

to make up the lost time. In the model, since we have a well-defined cost of schooling and

model-predicted consequences of additional schooling on future human capital, earnings and

taxes, we can ask whether such a measure is a positive net present discounted value proposition

for households. Furthermore, since a policy intervention that keeps all schools open might not be

feasible due to scarcity in the availability of teachers or physical infrastructure, we also investigate

for which group of students such a policy intervention is especially promising, both in terms of the

budgetary consequences for the government and in terms of welfare for the individual students.

We find that for the average child the welfare gains from expanded schooling are significant

investment into human capital today is increasing in the already accumulated stock of human capital). As aconsequence, the loss of learning experienced by younger children accumulates over time, leading to largerhuman capital losses for these younger children, relative to their older brothers.
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(0.22% in terms of consumption equivalent variation), and induce an increase in future revenues

from labor income and consumption taxes approximately sufficient to pay for the entire cost of

the reform; that is, the reform is essentially budget-neutral. Finally, the welfare gains from the

expansion are highest for children from income-poor households, whereas the fiscal consequences

for the government look most favorable if the intervention is targeted to children from the most

affluent households.

In the next section we briefly relate our model to the existing literature. Section 3 describes

the data we use to construct measures of school closures and the empirical measures of school

closures we will employ in the structural model. That model is spelled out in Section 4 and

calibrated in Section 5. We present the results on the differential welfare consequences of the

school closures in Section 6, and Sections 7 and 8 contain the counterfactual policy analysis and

robustness analysis, respectively. Section 9 concludes. Details about the construction of the data

as well as the dynamic programs in the model can be found in the appendix.

2 Related Literature

Our paper is part of the massive literature on the consequences of the Covid-19 epidemic on

the economy. The early literature focused on short-run predictions of the evolution of the health

crisis and the economic recession, triggered by a fall in the healthy work force and its desire to

work in risky sectors, the demand for goods and services induced by falling household incomes

as well as massive government-mandated economic lockdowns. Representative contributions

include Atkeson (2020), Fernandez-Villaverde and Jones (2020), Greenstone and Nigam (2020)

and Alemán et al. (2021) on the health side and Eichenbaum et al. (2020) as well as Krueger

et al. (2020), Moll et al. (2020) on the economic side. A subset of this literature (see e.g.

Argente et al. (2020), Acemoglu et al. (2020), Glover et al. (2020), Brotherhood et al. (2020))

has considered optimal lockdown policies, where the main benefit of shutting down part of the

economy is a slower transmission of the virus, and the main cost is modeled as the reduction

of economic activity and thus incomes of individuals of current working age. The paper by Ma

et al. (2022) makes the important point that the impact of the economic contraction on child

mortality, especially in developing economies, can be so severe to render lockdown measures

counterproductive for protecting the lives of children. The potential impact of closing schools as

part of the lockdown is not considered in this literature.

Complementary to this work, our paper takes a longer-run perspective and analyzes the con-

sequences of one specific aspect of the crisis, school closures, that initially did not receive much

attention, likely due to the fact that the main costs associated with this non-pharmacological

intervention accrue mostly in the medium to long-run when the cohort of school children af-
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fected by school closures enter the higher education- or labor market. In our previous work

(Fuchs-Schündeln et al., 2022) we used a structural life cycle model to quantify the impact of a

hypothetical school closure for 12 months on average human capital accumulation, lifetime earn-

ings and welfare. In the current paper we build on this framework, but turn to school visits data

from Safegraph and information on school learning modes from Burbio to measure the actual

length of school closures. Crucially, we argue that there is significant heterogeneity across school

types (public versus private), grade level (elementary versus secondary), and parental backgrounds

in the extent to which schools were closed. This analysis is motivated by an emerging body of

evidence that learning achievement during the pandemic was substantially lower than in prior

years, suggesting that the virtual instruction brought about by school closures was much less

effective than traditional in-person instruction.3
Therefore, the main contribution of the current paper is to develop a new measure of effective

school closures using Safegraph school visits data and employ it in a structural life cycle model

with human capital accumulation to quantify the long-run earnings and welfare consequences

of the affected children. On the empirical side, the Safegraph visits data has been used by

other studies to measure social distancing behavior, the impact of the pandemic on in-person

services, and industry affiliation of particular businesses (e.g. Allcott et al. (2020), Goolsbee and

Syverson (2021), or Kurmann et al. (2021) among many others). The papers closest to ours

are Chernozhukov et al. (2021) and Bravata et al. (2021) who estimate the association between

changes in Safegraph visits to schools and the spread of Covid-19 at the county level, as well

as Parolin and Lee (2021) who use the Safegraph data to construct a school closure index and,

like us, match the Safegraph data with information from NCES and other sources to relate their

school closure index to grade level (elementary versus secondary) and a variety of socioeconomic

indicators.4 Different from these papers, we build on the approach by Kurmann and Lalé (2021)

and combine the Safegraph visits data with data on learning modes by Burbio to estimate a

mapping of changes in school visits to in-person schooling time. This allows us to construct a

measure of effective schooling time by school type (public versus private school), grade level, and

parental background, which in turn constitutes a crucial input for our model simulations.5
On the modeling side, we take a structural approach to answer our applied policy question,

building on the literature modeling human capital accumulation in children of school age and

public education, see e.g. Cunha et al. (2006), Cunha and Heckman (2007), Cunha et al.

3See for example Dorn et al. (2021), Engzell et al. (2021), Kogan and Lavertu (2021), Lewis et al. (2021), orGoldhaber et al. (2022).4Chernozhukov et al. (2021) also use data from MCH Strategy on different school learning modes topredict Covid infection rates.5See Kurmann and Lalé (2021) for details on the estimation approach and a more in-depth analysis ofthe predictors of effective schooling time.
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(2010), Caucutt and Lochner (2020), Kotera and Seshadri (2017), Lee and Seshadri (2019),

Yum (2020), Caucutt et al. (2020), Daruich (2022), Morchio (2022), Jang and Yum (2021)

and especially Agostinelli et al. (2020). A complementary, more empirically oriented literature,

assesses the importance of instruction time or schooling inputs for student outcomes, see e.g.

Lavy (2015), Carlsson et al. (2015), Rivkin and Schimann (2015), Fitzpatrick et al. (2011),

Pischke (2007),Jaume and Willén (2019), Werner and Woessmann (2021) and Maldonado and

De Witte (2021).6

3 Data

In this section we describe the data and procedures to measure effective schooling time during

the pandemic. We start with the Safegraph data, how we measure changes in visits to schools,

and how we match the schools with records from the National Center for Education Statistics

(NCES) to obtain information on different school characteristics. Then, we show how we use

Burbio data on school learning modes to map changes in school visits to total in-person learning

and effective schooling time. Finally, we present the empirical results that serve as input for the

structural model simulations.

3.1 Measuring In-person Learning

3.1.1 Safegraph School Visit Data

The first source of information for measuring in-person learning comes from Safegraph, which

provides data for over 6 million Places of Interest (POIs) for the U.S. using cell phone pings.7
From this large set of POIs we extract establishments with North American Industry Classifica-

tion System (NAICS) code 611110 (“Elementary and Secondary Schools”) that are present in

Safegraph’s Weekly Patterns, which provides data on weekly visits by POI. We then match Safe-

graph’s POIs with NAICS code 611110 by school name and address to public and private schools

from the Department of Education’s National Center for Education Statistics (NCES), resulting

in about 102,500 high-quality matches of schools with Safegraph data on weekly visits. Appendix

B provides details of the matching procedure and results. Relative to the universe of schools in

the NCES, we lose about 22,000 schools, but the matched school sample remains highly repre-

sentative of the overall population of schools in terms of socioeconomic and geographic makeup.

6The longer-run impact of school closures on macroeconomic and fiscal outcomes is also being integratedinto work seeking to give applied policy advice, see e.g., Penn-Wharton-Budget-Model (2021).7A cell phone ping is the process of determining the location of a cell phone at any given point in time.
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3.1.2 Measuring Changes in School Visits

The Safegraph data provides weekly visit counts for each school by dwell times. There are D = 7

dwell time intervals (less than 5, 5 to 10, 11 to 20, 21 to 60, 61 to 120, 121 to 240, more than

240 minutes), Denoting weekly visits counts as vj,t (d) for d = 1, . . . , D, the total visits count

for school j in week t is vj,t =
∑D

d=1 vj,t (d) .

As Figure B1 in the appendix shows, prior to the pandemic, both aggregate total visit counts

and aggregate visits longer than 240 minutes per day decline markedly during the weeks of

Thanksgiving, Christmas, and Summer break. In addition and in line with the public health

emergency declared on March 13, 2020, both visits series drop precipitously during the week of

March 15 to March 21, 2020 and remain substantially lower thereafter.

We construct changes in school visits as the dwell-time weighted growth rate in visits relative

to average visits prior to the pandemic. This measure, which is different from Chernozhukov et al.

(2021), Bravata et al. (2021), and Parolin and Lee (2021) who instead consider year-over-year

changes in visits, has the advantage that it is not affected by holidays and other variations in

visits that fall on different weeks across years, thereby reducing measurement error. Furthermore,

we normalize weekly visits for each school by the county-level count of cell phone devices in the

Safegraph data so as to control for spurious variations in school visits due to changes in sample

coverage.8 The construction of our measure of school visit changes involves three steps:

1. For each school j, we define weights ωj (d) as:

ωj (d) =

∑t1
t=t0

vj,t (d)∑t1
t=t0

vj,t
,

where t = t0, . . . , t1 denotes the base period (November 2019 through the end of February

2020, excluding the weeks of Thanksgiving, Christmas and New Year); and ωj (d) measures

the contribution of a dwell time d to school j’s raw visits counts during the base period.

2. Using the weights, we measure weighted weekly visits at school j in week t as

ṽj,t =
1

nc(j),t

D∑
d=1

ωj (d) vj,t (d) ,

8As shown in Appendix Figure B1 there is substantial week-to-week variation in raw school visit counts,as well as an overall upward trend over time. While part of the upward trend could be due to increased cellphone usage by students and teachers, comparison with visit counts to POIs that are not schools suggestthat the upward trend is primarily due to the secular increase in the number of cell phone devices sampledby Safegraph. Our normalization reduces the high frequency variation in school visits substantially andneutralizes the upward trend over time.
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where nc(j),t denotes the normalization by SG devices during week t in county c (j) in which

the school j is located.

3. Given weighted and normalized school visits, we measure the change in school visits as

dj,t =
ṽj,t − ṽj,0
ṽj,0

× 100,

where ṽj,0 = 1
t1−t0+1

∑t1
t=t0

ṽj,t is the mean value of ṽj,t during the base period.

In order to further reduce measurement error, we top-code dj,t at 100%. In addition, if in

any week t outside of the base period dj,t > 25 while dj,t−1 ≤ 25 and dj,t+1 ≤ 25, we replace

dj,t by the average of dj,t−1 and dj,t+1. This adjustment implements the assumption that during

the school year 2020-21, schools did not reopen for only one week at a time. Finally, we drop

about 30,000 schools with sparse or very noisy visit data, and apply weights to ensure that the

remaining sample of roughly 70,000 schools remains representative of the full sample of schools

in the U.S. See Appendix B.1 for details on the sample selection criteria and weighting procedure.

Figure 1 presents histograms of the distribution of changes in school visits dj,t during three

subperiods (averaged over the weeks within a subperiod). The figure shows that relative to

the pre-pandemic period, school visits declined massively during March-May 2020, and were still

significantly lower during September-December 2020 and (less so) during January-May 2021.

Figure 1: Distribution of changes in school visits for selected subperiods
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Figure 2 shows the geographical variation in county average school visit changes for the three

subperiods. During March-May 2020, school visits were 75 to 100 percent below pre-pandemic lev-

els, without much regional variation. During September-December 2020, in contrast, we observe

substantial variation in school visits across different regions, as many schools in the Southern,

Midwestern, and Central Northern parts of the U.S. reopened while schools in the Western and

Eastern parts remained largely closed. During January-May 2021, the situation becomes again

more even, with school visits returning towards pre-pandemic levels in most counties except on

the West Coast, parts of the East Coast, and a few other counties across the U.S.

Figure 2: Average Change in School Visits by County: March-May 2020
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3.1.3 From Changes in School Visits to In-Person Learning

While the Safegraph data provides us with a high-frequency measure of changes in school visits

for a large, representative sample of public and private schools, it is not clear what a given decline

in school visits represents in terms of lost in-person learning. To map changes in school visits into

a measure of in-person learning, we relate our school visit data to estimates of school learning

mode from Burbio. Burbio is a private company that collects data for 1,200 public school districts

representing 47 percent of U.S. K-12 student enrollment in over 35,000 schools in all 50 states.

The data is aggregated to the county level and primarily used for commercial purposes, but the

company generously shared the data with us and other researchers. The information on learning

mode consists of weekly indicators between mid-August 2020 and mid-June 2021 that for each

county provide the percent of public school students engaged in a Traditional, a Hybrid, or a

Virtual learning mode. Traditional means that students attend in-person school every day of

the week; Hybrid means that students attend 2-3 days per week in-person; Virtual means that

students do not attend school in person. Appendix B.2 contains details about the Burbio data.

To construct the mapping, we start by computing county-level averages of the fractions that

public school students spent in learning mode L ∈ {traditional,hybrid,virtual} between week

t0 and week tn from the Burbio data; i.e.,

Lc =
1

T

tn∑
t=t0

Lc,t, (1)

where Lc,t denotes the percent of students in county c who spent week t in learning mode L; and

T = tn − t0 + 1 is the number of weeks considered. For instance, Lc = 0.33 for L = traditional

computed from September 2020 to June 2021 means that public school students in county c

spent one third of the school year 2020-2021 in traditional learning mode.

Next, we define the fraction of the school year that students in county c effectively spent in

in-person learning mode as T
∗
c = T c + γHc and the fraction effectively spent in virtual learning

mode as V
∗
c = V c + (1− γ)Hc, where γ measures the fraction of total student-days that are

spent in person when the learning mode is hybrid. We then relate these measures to the change

in Safegraph school visits with the following linear regression

T
∗
c = α + βdc + εc,

or equivalently,

T c = α + βdc + γHc + εc, (2)
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where dc is the student-weighted average of changes in school visits across schools in county c.

The regression tells us not only how a given change in school visits maps into total in-person

learning relative to its pre-pandemic level, T
∗
c , but also the average proportion γ of in-person

learning when students are in Hybrid mode. Since T c +Hc + V c = 100, the regression also tells

us how a given change in school visits maps into total virtual learning V
∗
c = 100− T ∗c .

We estimate (2) using Burbio and Safegraph data for Fall 2020 only. The reason we do not

use data for Winter and Spring 2021 is that during this period, school districts increasingly moved

away from virtual learning. As a result, changes in traditional learning T c are close to linear with

hybrid learning Hc ≈ 100−T c. In a regression, this implies γ → 1 and β → 0 since dc is subject

to idiosyncratic noise. During Fall 2020, in contrast, there are changes across all three learning

modes, which enables us to identify the mapping between T c and dc, controlling for Hc.

Table 1: Regression of Traditional Learning Against Changes in School Visits

Dependent variable: Traditional (in-person) learning mode T c(1) (2) (3) (4)
Change in school visits dc 1.14*** 1.12*** 1.13*** 1.15***(0.04) (0.04) (0.04) (0.05)Hybrid learning mode Hc -0.50*** -0.49*** -0.48*** -0.43***(0.02) (0.03) (0.03) (0.03)Intercept 101.67***(2.51)Adjusted R2 0.513 0.513 0.522 0.589
N of counties 3,049 3,049 2,438 794
N of students (in thousands) 48,013 48,013 47,250 40,485% of all public-school students 94.5 94.5 92.9 79.6

Notes: Safegraph and Burbio data are averaged at the county level for Fall 2020 (weeks of September 27 -October 3 to December 13 - December 19, excluding the week of Thanksgiving). All regressions are weightedby county-level student enrollment and standard errors (in parenthesis) are clustered at the state level. Incolumns (2)–(4) the intercept is constrained to 100.

Table 1 reports the results of the estimation. In column (1), we consider all counties for

which we have data on both Burbio learning modes and Safegraph school visits (3,049 out of

3,124 available counties in Burbio). The sample represents almost 95 percent of all public-school

students in the U.S. The mapping between the different variables is tightly estimated, with a

R2 of over 0.5 and highly significant coefficients. A 1 percentage point decline in school visits

reduces the average fraction of weeks spent in traditional learning mode by 1.14 percentage

points, and the estimated average fraction of hybrid learning mode spent in in-person learning
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mode is 0.5 or 2.5 days out of a 5 day school week. Furthermore, we verify using a non-parametric

binned scatter plot that over the range of school visit changes observed, the resulting relationship

between total in-person learning T
∗
c and the change in school visits is indeed well represented by

a linear function. Finally, the estimated intercept is 101.67, close to the predicted value of 100

when school is fully in-person (i.e. dc = 0 and Hc = 0).

As robustness checks, in column (2) we restrict the intercept to 100 and rerun the regression,

while in columns (3) and (4), we reduce the sample to the counties with at least 5 schools

for which we have data, respectively to the counties in the top-25 percent of the population

distribution. The results are strikingly robust across the different specifications: a 1 percentage

point decline in school visits reduces the fraction of weeks spent in effective in-person learning

by 1.14 percentage points, and Hybrid learning mode is estimated to correspond to a fraction of

0.43 to 0.49 of in-person learning mode.

In sum, the regressions confirm that there is a tight linear relationship between change in

school visits and effective in-person learning. We therefore feel confident to use this mapping to

infer effective schooling time at the individual school level.

3.2 Effective Schooling Time by School Characteristic

In the model simulations below, effective schooling time over the two-year period between Summer

2019 and Summer 2021 will be an important input to quantify the consequences of learning

loss during the pandemic. We proceed as follows to infer this value from our estimates of in-

person learning. According to the NCES table of “Number of instructional days and hours in the

school year” (https://nces.ed.gov/programs/statereform/tab5_14.asp), there are 180

instructional days per year in almost every state. Dividing this number by 5 (since weekends are

excluded from the counts), we obtain 36 weeks of potential schooling per year.9 Equivalently,

we have 72 weeks of potential schooling for the two-year period between Summer 2019 and

Summer 2021. For the 25 weeks between September 2019 and mid-March 2020 that precede

the pandemic, we set effective school time to 100 percent. For the remaining 11 weeks of the

2019-2020 school year (week of Mar 15 - Mar 21 through the week of May 24 - May 30) and

the 36 weeks of the 2020-2021 school year, hence for 47 = 75− 25 weeks, we calculate effective

schooling time using the estimates in Table 1 as follows. For a set of schools with a certain

characteristic s (e.g. public vs private schools), we take the average student-weighted change

in school visits ds and calculate effective schooling time as T̂
∗
s + φV̂

∗
s, where T̂

∗
s = 100 + β̂ds,

V̂
∗
s = −β̂ds, and φ ∈ [0 1] denotes the effectiveness of virtual learning. Thus, our estimate of

effective schooling time—what we will call schooling input is in the model-based analysis—during

9The 36 weeks of potential schooling can be obtained by taking the 52 weeks in a year and subtracting13 weeks for summer break and 3 weeks for winter break, Thanksgiving, and other holidays.
12
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the two-year period from 2019 to 2021, as a percent of what schooling time would have been

without the pandemic, is

is =
1

72

(
25× 100 + (72− 25)

(
T̂
∗
s + φV̂

∗
s

)) (3)
The equation makes clear that schooling input depends importantly on the effectiveness of

virtual schooling φ. While empirical evidence is accumulating that virtual instruction was a highly

imperfect substitute for in-person instruction, pinning down how much less effective exactly virtual

instruction was for the average student is a nontrivial task.

The most direct way to determine φ, and the one we follow for our benchmark result, is to

use empirical studies that directly measure the loss in schooling inputs from test score declines.

Dorn et al. (2021) find, based on data from Curriculum Associates, a standardized test provider,

that by the end of the 2020-21 school year, public school students in grades 1-6 were on average

5 months behind in mathematics relative to their pre-pandemic peers. Under the assumption

that lost effective schooling time translates one-to-one into learning loss, then based on (3), this

implies a value for the effectiveness of virtual learning of φ = 0.25, the benchmark value we use.

On the one hand, this value of φ may overstate the effectiveness of virtual learning both

because of selection due to higher rates of absenteeism and declines in enrollment of lower-

achieving students, and because many parents compensated for the loss of in-person schooling

by taking over some of the instructional duties of teachers or paid tutors to do so (as they will

in our model). On the other hand, students may also have been negatively affected by pandemic

disruptions not directly related to schooling (e.g. health issues, job loss in the family), which

would imply learning losses even if virtual schooling was highly effective.

Anticipating model simulation results below, we find that with a value of φ = 0.25, we obtain

an average learning loss of about 8.5% over the 2-year Covid period, while with a value of φ = 0,

we obtain a learning loss of about 12%. Both of these values are considerably smaller than the

estimated average learning losses by Dorn et al. (2021), suggesting that disruptions not directly

related to schools (and not taken into account by our model) indeed exerted a non-negligible

negative impact. To make further progress, we contrast our simulation results with empirical

studies such as Goldhaber et al. (2022) that seek to estimate pandemic learning loss directly as

a function of instructional mode while controlling for regional differences in pandemic health and

economic outcomes as well demographic and socio-economic characteristics of students. Their

results imply that relative to students who attended school mostly in-person, learning loss was

about twice as large for students who were primarily in virtual mode than for students who were

primarily in hybrid mode.10 This suggests that the effectiveness of virtual learning was indeed low

10The analysis of Goldhaber et al. (2022) is based on student-level data from 10,000 schools across theentire U.S. from NWEA, another standardized test provider. Their estimates compare student-level test
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for the average student. We therefore consider φ = 0.25 a conservative assumption, and φ = 0

appears as a plausible alternative whose consequences we explore in Section 8.1.

Table 2: Estimates of Effective Schooling Time Over the 2019-2021 Period
With virtual learning at 25% effectiveness

All Elementary Secondary
All 69.4 71.7 64.2[68.7, 70.1] [71.0, 72.3] [63.4, 65.0]
Private schools 74.4 74.7 71.6[73.9, 75.0] [74.1, 75.2] [70.9, 72.2]
Public schools, all 68.9 71.5 63.8[68.2, 69.6] [70.8, 72.1] [63.0, 64.6]
Public schools, top-25% income 65.9 68.5 60.1[65.1, 66.6] [67.8, 69.2] [59.2, 61.0]
Public schools, bottom-25% income 72.9 74.9 68.6[72.3, 73.5] [74.4, 75.5] [67.9, 69.3]

With virtual learning at 0% effectiveness
All Elementary Secondary

All 59.2 62.2 52.3[58.3, 60.1] [61.4, 63.1] [51.2, 53.3]
Private schools 65.9 66.2 62.1[65.2, 66.7] [65.5, 67.0] [61.2, 62.9]
Public schools, all 58.5 62.0 51.7[57.6, 59.5] [61.1, 62.8] [50.6, 52.8]
Public schools, top-25% income 54.5 58.0 46.8[53.5, 55.5] [57.1, 58.9] [45.6, 48.0]
Public schools, bottom-25% income 63.9 66.6 58.2[63.1, 64.7] [65.9, 67.3] [57.2, 59.1]

Notes: The upper panel reports the share of effective schooling time for the 2019-2021 period as a percentof what schooling time would have been without the pandemic under the assumption that virtual learningwas 25% as effective as in-person learning. The lower panel reports the share of effective schooling timeunder the assumption that virtual learning was not effective (i.e. the figures correspond to the share ofpotential schooling time over the 2019-2021 period that was effectively spent in the classroom). In each cell,the bracketed numbers correspond to lower and upper bounds based on the Burbio estimates reported inTable 1, and the point estimate is computed as the mid-point of the interval.

Table 2 shows lost effective schooling time by school characteristics under the two different

assumptions about the effectiveness of virtual learning. Across all schools in the sample, school

visits declined by a student-weighted average of d = 55% over the period from mid-March 2020

achievement growth from 2019 to 2021 by school district learning mode to test achievement growth from2017 to 2019 for comparable students from the same school. Similar results about the ineffectiveness ofvirtual schooling are reported by Kogan and Lavertu (2021) for Ohio and Halloran et al. (2022) for 11 U.S.states based on average school test scores, and by Engzell et al. (2021) for the Netherlands.
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through the end of the 2020-21 school year. Using the average of the coefficient estimates

in columns (2) and (4) of Table 1, this implies total in-person learning of about T̂
∗
s = 100 +

(1.12 + 1.15)/2 × −55% = 37.6% during that period and total virtual learning of about V̂
∗
s =

−(1.12 + 1.15)/2×−55% = 62.4%.

For the baseline case of φ = 0.25 effectiveness of virtual learning, effective schooling time

over the two-year period over the 2019-20 and 2020-21 school years therefore equals about

is =
1

72
(25× 100 + (72− 25) (37.6 + 0.25 · 62.4)) ≈ 69.4%

relative to a situation with full in-person learning. This value is shown in the top-left corner of

the first panel of Table 2. If instead, virtual learning had 0% effectiveness, the implied effective

schooling time equals 59.2%, as shown in the top-left corner of the second panel of Table 2.

The remainder of the table reports results of the same calculations separately for private

versus public schools and for elementary versus secondary schools. Private schools experienced

on average smaller declines in school visits during the pandemic than public schools. Similarly,

elementary schools experienced smaller declines in school visits than secondary schools (either

private or public, although for public schools the difference between elementary and secondary

schools is larger). As a result, effective schooling time during the pandemic is estimated to have

been highest for private elementary schools and lowest for secondary public schools.

The last two rows of each panel dig deeper into differences across public schools by looking

separately at schools located either in a county ranked in the top or the bottom quartile of the

national household income distribution. Perhaps surprisingly, public schools in affluent counties

experienced on average a larger decline in school visits and therefore lower effective schooling

time during the pandemic than public schools in less affluent counties. As shown in separate work

by Kurmann and Lalé (2021), this difference is primarily due to the fact that the affluent counties

are disproportionally located in states where schools did not return to full in-person instruction

for a large part of the 2020-21 school year. Within quartiles of average household income, the

difference in effective schooling time between elementary and secondary schools remains similar

as reported in Table 2.

To sum up, the results in this section reveal large differences in total in-person schooling

across different types of schools. Under what we argue are reasonable assumptions about the

effectiveness of virtual schooling, this implies substantial variations in effective schooling time;

i.e. schooling input. In the model simulations that follow, we will exploit these variations in

schooling input to analyze the extent to which they result in heterogeneous earnings- and welfare

losses for children in different school types, grades, and with different household income.
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4 A Quantitative Life Cycle Model with Education Choices

We now describe the structural life cycle model that we will employ to measure the heterogeneous

consequences for lifetime earnings, welfare, and taxes paid of the school closures we measured

empirically in the previous section. We first describe the demographics, timing, stochastic struc-

ture, endowments, preferences and government policy and then formulate the individual decision

problems recursively, since this is the representation we will compute. Since this model shares

many features with the one used in Fuchs-Schündeln et al. (2022) we will focus on the novel fea-

tures relative to their model when presenting the recursive representation of the model, relegating

a complete account of all other dynamic programming problems of the model to Appendix A.

4.1 Individual State Variables, Risk, and Economic Decisions

We model individuals living in discrete time and denote the current period by t. Ours is a par-

tial equilibrium model where individuals of two generations, a parent generation and a children

generation, live through a full life cycle. When children live in the parental household, the key

education investment decisions (whether to send the child to private or public school, and how

much time and resources to invest into the child during her schooling years) are being taken by

parents. The child generation makes one key decision upon becoming an independent household:

equipped with inter-vivos transfers of the parent it decides what tertiary education, if any, to

attain. After this decision this generation lives through a standard consumption-saving life cycle

model; the same is true for the parental generation after the children have left the household.

The timing and events in the model are summarized in Figure 3. We now turn to a detailed

description of the underlying heterogeneity of individuals and of each phase of the life cycle they

undergo.

Individuals are part of either the child or parental generation, k ∈ {ch, pa}. They differ

in their marital status m ∈ {si,ma} for single and married, their age j ∈ {0, . . . , J < ∞},
where a model period and age j spans two years in real time, their asset position a, their

current human capital h, their education level e ∈ {no, hs, co} for no higher education (no high

school completion), high school attendance and completion, college attendance and completion,

and idiosyncratic productivity risk modeled as a two state Markov process with state vector η ∈
{ηl, ηh}, where ηl is low and ηh is high labor productivity, and transition matrix π(η′ | η) and initial

distribution Π as well as a transitory shock ε ∈ {εl, εh} drawn from distribution ψ(ε). Parents

decide in each period to send their children either to public or private school, s ∈ {pu, pr}. All

individual state variables and the range of values they can take are summarized in Table 3.
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Table 3: State Variables

State Var. Values Interpretation
k k ∈ {ch, pa} Generation
m m ∈ {si,ma} Marital Status
j j ∈ {0, 1, . . . , J} Model Age
a a ≥ −a(j, e, k) Assets
s s ∈ {pu, pr} School Type
h h > 0 Human Capital
e e ∈ {no, hi, co} Education
η η ∈ {ηl, ηh} Persistent Productivity Shock
ε ε ∈ {εl, εh} Transitory Productivity Shock

Notes: This table lists the state variables of the quantitative model.

4.1.1 Demographics

Parents give birth to children when they are of age jf . The number of children a parental

household has ξ(e,m) differs by marital status m and educational attainment of the parents e.

There is no survival risk and all households live until age J . Therefore the cohort size within

each generation remains constant over time. We now describe in detail how life unfolds first for

parents and then for children, as summarized in Figure 3.

4.1.2 Life of the Parental Generation

In the model, parental households start their economic life at age jf just before their children

are born. Their initial characteristics include their exogenous marital status m, education level e,

initial idiosyncratic productivity states η and ε and initial assets a. These initial states are

exogenously given to the household, and drawn from the population distribution Φ(e,m, η, ε, a)

which are derived directly from the data, as described in the calibration section.

Parents observe the innate ability (initial human capital) h = h0(e,m) of their children at

child model age j0 = 0 (real biological age 4), which depends on parental education e and marital

status m. Children live with their parents until child age ja (parental age (jf + ja)), at which

point they leave the household to form their own independent household. During these years

(parental ages j ∈ {jf , ..., jf + ja}), parents invest resources im and time it into their children.

For all ages of the child j ≥ js > j0 (js is real biological age 6), parents further decide in each

period whether to send their children to a public or a private school, s ∈ {pu, pr}, trading off the

cost of private school tuition with higher productivity in the human capital production function

and thus higher human capital (and associated higher chance of attending college) as well as
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Figure 3: Life-Cycle of Child and Parental Households
(a) Life-Cycle of Parental Households

(b) Life-Cycle of Child Households
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ultimately, higher expected earnings of their children. If parents opt for private school, then

they pay private school tuition f(j, s = pr) > 0, which depends on a child’s age j because we

distinguish between tuition for primary and secondary education.11 Attendance in public schools

is free, f(j, s = pu) = 0. Kindergarten at child age j0 and school type determines the schooling

investment is(j) which together with the resource and time investments im, it determines the

evolution of a child’s human capital. As a result of these choices, the human capital of a child

during school ages evolves according to

h′ = g
(
j, h, i(im, it, is(j), s)

)
, (4)

where g is a function of the child’s age j (to reflect age differences in the relative importance

of education inputs) as well as a function of the school type s (to reflect potential productivity

differences across the two school types), and depends positively on the three inputs (parental

resources im, parental time it and schooling input is(j)). To give the human capital accumulation

technology a clearer interpretation, from the perspective of the model, h will be useful because

it decreases the utility cost of succeeding in high school and college and it increases earnings

conditional on a given tertiary education level. Thus, our notion of human capital should be

interpreted as broad, including all cognitive and non-cognitive skills that contribute to tertiary

schooling success and is rewarded through higher earnings in the labor market.

When children leave the household at parental age jf + ja, their parents may give them

inter-vivos transfers b ≥ 0. This is the final interaction between parents and children, after which

the two households separate. Parents also make the private school choice s ∈ {pr, pu} on behalf

of their children with which the latter start their independent life. Thus, parental transfers to

children for whom the parents choose private school have to be at least as high as the school

fees, thus b(·, s = pr) ≥ f(ja, s = pr).

The remainder of parental life then unfolds as a standard life cycle model. Throughout their

working ages, parental households spend an exogenous amount of time `(m) > 0 on market work

which differs by marital status. Labor productivity and thus individual wages are determined by

an exogenous productivity profile ε(j, e,m) that depends on household age j, education e, marital

status m, and is impacted by the persistent shock η and the transitory shock ε. Labor income

of parents of age j, education e and marital status m and hit by shocks (η, ε) is then given by

y = w · ε(j, e,m) · η · ε · `(m). (5)
In addition to making human capital investment decisions for their children when these are present

in the household, parents in each period make a standard consumption-saving choice, subject to

11We also assume that at age j0 (age 4 in real time) children go to kindergarten for free, f(j = 0, s) = 0.
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a potentially binding borrowing constraint a′ ≥ −a(j, e,m, pa), which will be parameterized such

that the model replicates well household debt at the age at which households have children jf .

The borrowing limits decline linearly to zero over the life cycle towards the last period of work.

Parents work until retirement at age jr, at which point they start to receive per-period retirement

benefits bp > 0 until the end of life at age J . Table 4 summarizes the choices of parents described

thus far, and those of children, to which we turn next.

Table 4: Per Period Decision Variables

Dec. Var. Values Decision Period Interpretation
c c > 0 j ≥ ja Consumption
a′ a′ ≥ −a(j, e,m, k) j ≥ ja Asset Accumulation
s s ∈ {pu, pr} j = jf School Type
it it ≥ 0 j ∈ {jf , ..., jf + ja − 1} Time Investments
im im ≥ 0 j ∈ {jf , ..., jf + ja − 1} Monetary Investments
b b ≥ 0 j = jf + ja Monetary Inter-vivos Transfer
e e ∈ {no, hi, co} j = ja (Higher) Education

Notes: This table lists the decision variables of the economic model.

4.1.3 Life of the Children Generation

Children born at age j = 0 are economically inactive for the first ja − 1 periods of their life.

A child’s human capital during ages j ∈ {0, ..., ja − 1} evolves as the outcome of parental

investment decisions (im, it) described above and schooling input is(j). At the beginning of

age ja, and based on both the level of human capital as well as the financial transfer b from

their parents (which determines their initial wealth a), children make a discrete higher education

decision e ∈ {no, hs, co}, where e = no stands in for the choice not to complete high school, hs

for high school completion, and co for college completion, respectively. For simplicity, children

are stand-in bachelor households through their entire life-cycle.

Acquiring a high school or college degree e ∈ {hs, co} comes at a utility cost (psychological

cost) p(s, e, ep, h), which is decreasing in the child’s acquired human capital h and also depends on

parental education ep. In addition, college education requires a monetary cost ι ≥ 0. Children may

finance some of their college expenses by borrowing, subject to a credit limit given by −a(j, e, ch),

which is zero for e ∈ {no, hs}, i.e. for individuals not going to college. As was the case for parents,

this limit decreases linearly with age and converges to zero at the age of retirement jr, requiring

the children generation to pay off their student loans prior to their retirement.
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Youngsters who decide not to complete high school, e = no, enter the labor market immedi-

ately at age ja. Those who decide to complete high school, but not to attend college, do so at

age jh > ja. While at high school, {ja, ..., jh − 1}, they work part-time at wages of education

group e = no, and those children attending a private high-school also have to pay the school tu-

ition f(j, s = pr) > 0. Those youngsters who decide to attend college enter the labor market at

age jc > jh and also work part-time at wages of education group e = no during their high-school

and college years {ja, . . . , jc − 1}.
When the children generation enters the labor market (either without a high-school diploma,

with a high-school degree or with a college degree), the acquired human capital during the

school years is mapped into an idiosyncratic permanent labor productivity state γ(e, h), which

is increasing in acquired human capital h and also positively depends on education e to reflect

differential complementarities between education and human capital in generating earnings. When

starting to work, children also draw the persistent productivity shock η, which follows the same

first-order Markov chain as for the parental generation, and stochastic transitory productivity ε ∼
ψ(ε). Labor income of children during the working period is then given by

w · γ(e, h) · ε(j, e, si) · η · ε · `(si).

We restrict attention to the two generations directly impacted by the Covid-19 school crisis, and

thus assume that the child generation does not have offspring of their own. As a consequence

the remaining decision problem of the child generation, after labor market entry, constitutes a

completely standard life-cycle consumption-saving problem.

4.2 Recursive Formulation of the Decision Problems

Our model is a partial equilibrium model where the only interaction of the decision problems

comes in the period in which the children generation leaves the household. Furthermore, children

do not make economic decisions prior to that period. We can therefore solve the entire model

backwards, starting from the retirement phase of the children generation. The details of those

recursive problems not spelled out explicitly in the main text are contained in Appendix A.

4.2.1 Children

The children generation undergoes three distinct phases, first making the education decision, and

then living through a working phase and a retirement phase with which we begin.
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The Retirement Phase During the retirement phase, at ages {jr, ..., J}, the children gener-

ation solves a standard consumption-saving (c, a′) maximization problem, facing a typical budget

constraint of the form:

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + pen(e, ηjr−1, h)− T (pen(e, ηjr−1, h))

where pen(e, ηjr−1, h) is pension income, whose dependence on ηjr−1 (the persistent income

state in the period prior to retirement), education e and human capital h captures the progressive

nature of the social security system in past earnings, which are in turn determined by (e, ηjr−1, h).

The function T (·) represents a progressive labor income tax code, and capital and consumption

are taxed at proportional rates (τ k, τ c). The associated value function at the time of retirement

is given by V (jr, e, η; a) with η = ηjr−1.

Working Life Let V (j, e, η, ε; a) denote the value function of a children household (assumed

to be single) aged j that has entered the labor market with education level e, human capital h

and has received stochastic income shocks (η, ε). This value function is the result of a standard

consumption-saving maximization problem, as for retired households, but with budget constraint

now given by

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))

y = wγ(e, h)ε(e, j, si)ηε`(si)

Here (1 − 0.5τ p)y is taxable labor income, with τ p being the social security payroll tax. The

argument of the tax function T encodes that employer contributions to social security are not

taxable income. In addition to the budget constraint, the household faces an age-, education,

and generation-specific borrowing limit a′ ≥ −a(j, e, ch).

The Higher Education Choice The key choice of the children generation impacted by the

Covid-19 crisis and associated loss in schooling is the higher education decision this generation

will make in the model right after the establishment of an independent household, and after

having received inter-vivos transfers from their parents. 16-year-olds have three discrete choices

e ∈ {no, hs, co}: they can either decide to drop out of high school and enter the labor market

directly at age 16, or complete high school prior to labor market entry at age 18, or third, go to

and complete college at age 22 prior to labor market entry. To spell out this higher education

decision problem, we first have to specify the values from each of these three discrete options.
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Dropping Out of High School Members of the children generation that made the decision

to drop out of high school at model age ja (real age 16), i.e. chose e = no, directly enter the

labor market with permanent deterministic productivity γ(e, h), then draw the persistent income

shock η ∼ Π(η) (which then evolves according to the Markov transition matrix π(η′ | η)) and

the transitory income shock ε ∼ ψ(ε). The expected value of entering the labor market as a

high-school drop-out is then given by12

V (ja, e = no, a, h) =
∑
η

Π(η)
∑
ε

ψ(ε) V (ja, e = no, η, ε, a, h)

where V (j, e, η, ε, a, h) is the lifetime utility of a worker of age j with assets and human capital

(a, h) that has drawn productivity shocks (η, ε), as defined in the previous paragraph.

Completing High School Youngsters that at age ja decide to complete high school but

not attend college (i.e. choose e = hs) work part-time during high school at a deterministic wage

and then enter the labor market two years later at j = ja + 1, when they draw stochastic labor

productivity η ∼ Π(η), ε ∼ ψ(ε). In contrast to the e = no group, for children choosing e = hi

their school type s is a relevant state variable because children in private high school have to

pay the private school tuition f(j, s = pr). Parental education ep is a state variable since the

utility cost of completing high school p(s, hs, ep, h) depends on the education of their parents.

This dependence captures heterogeneity in peer groups and social networks across socio-economic

groups that affect the difficulty of completing high school.

Expected lifetime utility from high school completion is then given by

V (ja, s, e = hs, ep, a, h) = max
c,a′

{
u(c)− v(χ(hs)`(si))− p(s, hs, ep, h)+

β
∑
η′

Π(η′)
∑
ε′

ψ(ε′)V (ja + 1, e = hs, η′, ε′, a′, h)
} (6)

subject to

a′ + c(1 + τ c) = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))− f(j, s) (7a)
y = wγ(no, h)ε(no, j, si)χ(hs)`(si) (7b)
a′ ≥ 0. (7c)

12Since high-school drop-outs do not pay private school tuition any longer, nor face utility costs of attend-ing school or college (which depends on the education of their parents), neither school type s nor parentaleducation ep is a state variable for high-school drop-outs.
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That is, high-school students work for high-school drop-out wages wγ(no, h) for a fraction χ(hs)

of their time `(si) and obtain period utility from consumption u(c) and disutility from (exogenous)

labor supply v(χ(hs)`(si)). The utility cost p(s, hs, ep, h) associated with attending high school is

decreasing in the human capital h previously acquired by the student. Children form expectations

over their stochastic labor market productivity when they enter the labor market upon graduating

at age ja + 1. Their remaining life (labor market and retirement) then unfold as described above.

Obtaining a College Degree Children who decide, at age ja, to attend, and by assump-

tion, to complete, college (i.e choose e = co), during high school age ja solve the same problem

as those who chose a high school education (e = hs), with the difference that the continuation

value differs at age ja + 1 (the youngster goes to college rather than entering the labor market).

Thus the value of choosing, at age ja, the college option, is given by

V (ja, s, e = co, ep, a, h) = max
c,a′

{
u(c)− v(χ(hs)`(si))− p(s, hs, ep, h)+

βV (ja + 1, e = co, ep, a
′, h)

} (8)
where V (ja + 1, e = co, a′, h) is expected lifetime utility at age ja + 1 (age 18 in real time)

from entering college. The budget set is identical to that in equations (7). Note that this value

function still depends on parental education ep because the utility cost from attending college

p(co, ep, h) will be, but no longer on high school type s.

Finally, during the two college periods students pay college tuition ι and work part-time at

high-school wages. Furthermore, they can borrow up to a limit a(j, co, ch) to pay for tuition.

Thus their budget set is described by

a′ + c(1 + τ c) = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))− ι (9a)
y = wγ(hs, h)ε(hs, j, si)χ(co)`(si) (9b)
a′ ≥ −a(j, co, ch). (9c)

The Bellman equation differs between age ja + 1 and ja + 2 since at the first age students have

two years (one model period) left in college, whereas at age ja + 2 their continuation value is

determined by labor market entry as college graduate. The corresponding Bellman equations are

V (ja + 1, co, ep, a, h) = max
c,a′
{u(c)− v(χ(co)`(si))− p(co, ep, h) + βV (ja + 2, co, ep, a

′, h)}
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and

V (ja + 2, co, ep, a, h) = max
c,a′

{
u(c)− v(χ(co)`(si))− p(co, ep, h)+

β
∑
η′

Π(η′)
∑
ε′

ψ(ε′) · V (ja + 3, co, η′, ε′, a′, h)
}
.

which are both maximized subject to equations (9). Here, as before, V (ja + 3, co, η′, ε′, a′, h) is

expected utility lifetime from entering the labor market as a college graduate at age ja + 3 (age

22 in real time) with (human) capital (a′, h) and having drawn initial shocks (η′, ε′).

The Education Decision Having spelled out above the values V (ja, s, e, ep, a, h) for the

three education choices e ∈ {no, hs, co}, the choice is simply to choose the alternative that gives

the highest expected lifetime utility, and the pre-education decision value function of children

aged ja (which will enter parental lifetime utility through one-sided altruism) is given by:

V (ja, s, ep, a, h) =

max
e∈{no,hs,co}

{V (ja, e = no, a, h), V (ja, s, e = hs, ep, a, h), V (ja, s, e = co, ep, a, h)} . (10)
In the computational implementation, we additionally apply Extreme Value Type I (Gumbel) dis-

tributed taste shocks to smooth this discrete decision problem.13 Accordingly, youngsters choose

the three education alternatives with state (ja, s, ep, a, h)-specific probabilities π(ja, s, e, ep, a, h),

for e ∈ {no, hs, co}.

4.2.2 Parents

Given the focus of the paper, we model parental households as becoming economically active at

the beginning of age jf > ja when they give birth to children. Since human capital formation of

parents is completed at this stage, we normalize parental human capital to h = 1 and let it be

constant over the remainder of parental life. Children live with adult households until they form

their own households and make decisions as described above. Household separation occurs at

parental age jf + ja, after which the parental generation lives through a standard life cycle model

whose recursive formulation is described in Appendix A.2. Let V (ja+jf+1, e,m, η′, ε′, a′) denote

the expected lifetime utility from this life cycle of a parent household at the beginning of age

ja + jf + 1 with education and marital status (e,m), stochastic productivity shocks (η′, ε′) and

assets a′. Working backwards in age, we now discuss the inter-vivos transfer decision when children

13Given this structure, the set of individuals exactly indifferent between two education choices is of mea-sure zero and thus it is inconsequential how we break the indifference. See Appendix C.6 for the details.
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leave the household and the child human capital investment decisions. It is convenient14 to express

the recursive problems in those stages conditional on the private/public school choice s ∈ {pr, pu}
and we formally describe this choice at the end of this section.

Inter-vivos Transfers At parental age jf + ja children leave the household, and at this age

parents can make inter-vivos transfers b. These transfers immediately (that is, within the period)

become assets of their children. The dynamic program of parents at this age conditional on s ∈
{pr, pu} then is

V (ja + jf , s, e,m, η, a, h) = max
c,b,a′

{
u

(
c

1 + 1m=maζa

)
− v

(
`(m)

1 + 1m=ma

)
+β
∑
η′

π(η′|η)
∑
ε′

π(ε′)V (ja + jf + 1, e,m, η′, ε′; a′) + νV

(
ja, s, e,

b

1 + r(1− τ k)
, h

)}
(11)

subject to

a′ + c(1 + τ c) + ξ(e,m)b = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− τ p))

y = wε(e, j,m)ηε`(m)

a′ ≥ a(ja + jf , e,m, pa)

b ≥ f(ja, s)

Here V
(
ja, s, e,

b
1+r(1−τk)

, h
)

is the pre-education decision value function of their children defined

in equation (10), and the parameter ν measures the intensity of altruism of parents towards their

children.15,16 Note that private school fees are not present in the parental budget constraint

because these fees are paid by the children if they decide to continue with high school. However,

since parents make the private/public school choice for the current period s ∈ {pr, pu} on behalf

of their children, transfers b have to exceed the respective fees. Since also for children whom

their parents send to a public school transfers have to be (weakly) positive, we condense the

constraints on transfers as b ≥ f(ja, s), for s ∈ {pr, pu}.17
14For reasons of the timing assumption in the period of the Covid-19 school closures shock described inSection 4.4.15Note that since assets in the value function enter the budget constraint as being multiplied by the gross,after-tax interest rate 1+ r(1− τk), and since inter-vivos transfers are received in the same period in whichthey are made and thus do not accrue interest, these transfers b have to be divided by 1 + r(1− τk) on theright hand side of the Bellman equation above.16Note that we here denote by e the education of parents, which is ep in the child’s value function, equa-tion (10).17Recall that f(ja, s = pu) = 0.
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Investment Decision The value function of children in the previous dynamic program that

parents solve at age jf + ja includes their human capital h since it determines both the higher

education decision as well as future earnings of this generation directly. We now turn to the

accumulation of this human capital when the children are of school age and reside with their

parents (at parental ages {jf , ..., jf + ja − 1}). During these ages parents invest resources im

and time investments it into each of their ξ(e,m) children and pay private, child-age dependent

per-child school tuition f(j − ff , pr) > 0 in case they decide to send their children to a private

school. Parents derive utility from per capita consumption of its household members and suffer

disutility from hours worked in the market and at home taking care of their children (rather than

enjoying leisure). The dynamic program during this stage of the parental life cycle conditional

on s ∈ {pr, pu} can then be written as

V (j, s, e,m, η, ε, a, h) = max
c,im,it,a′,h′

{
u

(
c

1 + ζcξ(e,m) + 1m=maζa

)
−v
(
`(m) + κ · ξ(e,m) · it

1 + 1m=ma

)
+ β

∑
η′

π(η′|η)
∑
ε′

ψ(ε′) max
s′∈{pr,pu}

{V (j, s′, e,m, η′, ε′; a′, h′)}

}

subject to

c(1 + τ c) + a′ + ξ(e,m) (im + f(j − jf , s)) = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))

y = wε(e, j,m)ηε`(m)

a′ ≥ −a(j, e,m, pa)

h′ = g(j − jf , s, h, i(im, it, is(j − jf )))

The parameter κ is a weight on time spent with children, and reflects the possibility that reading

to children carries a different disutility (or even positive utility) of time than work. Note that

the sum of hours worked and time investment in children in the function v(·) is divided by the

number of working household members.
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Private Schooling Decision At each age j ≥ jf + 118 parents decide on whether to send

their children to a public or a private school. The optimal choice of parents is given by19

s =

pu if V (j, s = pu, e,m, η, ε; a, h) ≥ V (j, s = pr, e,m, η, ε; a, h)

pr otherwise.
(12)

4.3 Government

The government runs a pension system with a balanced budget. It also finances exogenous

government spending, expressed as a share of aggregate output G/Y , and aggregate education

spending on public schools (for pre-tertiary and tertiary education) through consumption taxes,

capital income taxes and the progressive labor income tax system T (y). In the initial pre-Covid-

19 scenario, the government budget clears by adjustment of the average labor income tax rate

encoded in T (.). In the thought experiment with school closures we hold fiscal policy constant,

therefore implicitly assuming that the budget deficits or surpluses generated by a change in private

behavior are absorbed by government debt which is serviced or repaid by future generations not

explicitly modeled.

4.4 The Covid-19 Thought Experiment

We compute an initial stationary partial equilibrium with exogenous wages and returns prior to

model period t = 0. In period t = 0, the COVID-19 shock unexpectedly hits, and from that

point on unfolds deterministically. That is, factor prices and fiscal policies are fixed by our partial

equilibrium assumption, and households, after the initial surprise, have perfect foresight with

respect to aggregate economic conditions. The COVID-19 crisis impacts the economy through

an education crisis: the government temporarily closes schools, represented in the model by

a temporary reduction in school investment is(j) into child human capital production. The

reduction of is(j) differs by type of school s and age of the child j. Regarding the private/public

school choice in the period of the shock we assume the following timing protocol. In the beginning

of the period, parents observe their own current period state variables (j, e,m, η, ε, a) as well as

the human capital of their children h. They then decide on whether to send their children to a

private or public school, s ∈ {pr, pu}. Next, the corona shock hits and only after the realization

of the shock, parents decide on their consumption and savings c, a′ and the monetary and time

18Recall that kindergarten at parental age j = jf is public so that at that age there is no private/publicschool choice.19As with the children’s tertiary education decision in (10), we assume that additionally parents are hit withExtreme Value Type I (Gumbel) distributed taste shocks to smooth this discrete decision problem and turnthe discrete choice into a choice probability. See again Appendix C.6.
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investments into their children im, it. That way, the private/public schooling decision in the

period of the corona shock does not change when the corona shock hits. We then trace out

the impact of these temporary shocks on parental human capital inputs (both time and money)

and intergenerational transfer decisions, as well as on the education choices, future earnings in

the labor market, and ultimately, the distribution of welfare of the children generation, focusing

specifically on the impact of the heterogeneity in the length of school closures by school type and

the age of children. Since children in the model differ by age and the type of school they attend

at the time of the shock (as well as in terms of parental characteristics), so will the long-run

impact on educational attainment, future wages, and welfare.

5 Calibration

A subset of parameters is calibrated exogenously not using the model. These first stage param-

eters are summarized in Table C1. The second stage parameters are those that are calibrated

endogenously by matching moments in the data and are summarized in Appendix C, Table C2.

We next describe our choice and sources of first stage parameters and the moments we match

to calibrate the second stage parameters. We focus the description on elements relevant to

the characteristics of parents, human capital accumulation and the school closures experiment

and relegate other aspects of the calibration, including a description of the data sets we use, to

Appendix C.

5.1 Preferences

The per period sub-utility function u(x) is of the standard iso-elastic power form

u(x) =
1

1− θ
(
x1−θ − 1

)
.

We set θ = 1 (logarithmic utility), and consequently child and adult equivalence scale parameters

are irrelevant for the problem. In the parental household’s problem, the per period sub-utility

function v(x) is

v(x) = x1+ 1
ϕ

so that if x = `, parameter ϕ can be interpreted as a Frisch elasticity of labor supply. In our

model of exogenous labor supply this interpretation of course seizes to be relevant, but it provides
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us with a direct way of calibrating the power term of the utility function. We set ϕ = 0.5 based

on standard estimates of the Frisch elasticity.20
When children live in the parental household, we have x = `(m)+κ·ξ(e,m)·it

1+1m=ma
. `(m) are hours

worked by marital status, which we calculate from the data, giving annual hours of `(si) = 1868

and `(ma) = 3810. The time cost parameter κ is calibrated to match average time investments

by parents into the education of children, giving κ = 1.10 (with further details described below

as part of the calibration of the human capital technology).

When children attend high school or college, they experience utility costs for e ∈ {hs, co}
according to the cost function

p(s, e, ep;h) = ς(1 + %(ep)1j∈[jh,jc−1]1e=co) +
1

h

Utility costs of obtaining a high-school degree are equal to ς + 1
h

and are thus monotonically

decreasing and convex in the acquired human capital h. Utility costs for obtaining a college

degree depend on parental education and are equal to, %̃(ep) + 1
h
≡ ς(1 + %(ep)) + 1

h
.

The parameters of the cost function are calibrated to match education shares in the data for

the three groups e ∈ {no, hs, co}. We measure these shares for adults older than age 22—which

is the labor market entry age of all education groups in the model—and younger than age 38

based on the PSID waves 2011, 2013, 2015 and 2017.21 Parameter ς is calibrated to match the

fraction of children without a high school degree of 12.16%, giving ς = −2.24. With regard to

the additional utility costs during the college period we restrict %̃(no) = %̃(hs) and calibrate it to

match the fraction of children with a college degree of 33.21% giving %̃(no) = %̃(hs) = −0.98.

The parameter %̃(ep = co) is calibrated to match the fraction of children in college conditional on

parents having a college degree of 63.3% as in Krueger and Ludwig (2016), giving %̃(co) = −1.05.

Households discount utility at rate β. We follow Busch and Ludwig (2020) and calibrate it to

match the assets to income ratio in the PSID for ages 25 to 60 giving an annual discount factor

of β = 0.98. Utility of future generations is additionally discounted at rate ν. Parameter ν is

chosen so that average per child inter-vivos transfer is ca. 61,200$, as implied by the Rosters and

Transfers supplement to the PSID (based on monetary transfers from parents to children until

age 26, see Daruich (2022)). This gives ν = 0.78.

20For example, in his survey of thirteen influential studies from the literature Keane (2011) reports anaverage estimate of 0.85 and a median estimate of 0.17 for men, see his Table 6. Estimates for women tendto be higher, see also Blundell et al. (2016).21Observe that we do not impose that children have the same education shares as parents.
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5.2 Initial Distribution of Parents

For the initial distributions of parents at the fertility age, we restrict the sample to parents aged

25-35, leaving us with 3,024 observations.22

5.2.1 Marital Status

Marital status is measured by the legal status of parents. This gives a share of singles of 51.7%

and a share of married households of 48.3%.

5.2.2 Education Categories

We group the data by years of education of household heads older than age 22. Less than high

school, e = no, is for less than 12 years of formal education. High school completion (but no

college) is for more than 12 but less than 16 years of education. College is at least 16 years of

education. The population shares of parents in the three education categories by their marital

status are summarized in the top panel of Table 5.23

Table 5: Fraction of Households, Number of Children and Lower Asset Limits by Educationand Marital Status

Education e |Marital Status m si maFraction of Households
no 0.2194 0.1621
hs 0.6064 0.5577
co 0.1742 0.2802Number of Children
no 2.36 2.33
hs 1.86 2.15
co 1.77 1.96Lower Asset Limit
no -2,380 -18,931
hs -33,065 -51,332
co -60,037 -43,629

Notes: Top panel: Fraction with education e ∈ {no, hs, co} by marital status. Middle panel: Number ofchildren by marital status and education. Bottom panel: lower asset limit for parents at model age jf ,expressed in 2010 dollars by marital status and education.
22For education, which is not changing much with age, we keep parents aged 22 or above.23The education distribution is consistent with other studies using the PSID, see Heathcote et al. (2010).
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5.2.3 Number of Children

The number of children by marital status and education of parents ξ(e,m) is computed as the

average number of children living in households with household heads aged 25-35. It is summarized

in the middle panel of Table 5.

5.2.4 Assets

Conditional on the initial distribution of parents by marital status and education, we measure the

distribution of assets according to asset quintiles, which gives the initial distribution ς(a | jf , e,m).

We set the borrowing constraint of parents as follows. First, we calculate average assets (debt)

of the lowest asset quintile at age jf from the data and set it equal to a(jf , e,m, pa), the initial

debt of parents in the lowest asset quintile in the model. The result is summarized in the bottom

panel of Table 5.

For all ages j > jf we then compute the borrowing limit recursively as:

a(j, e,m, pa) = a(j − 1, e,m, pa)(1 + r)− rp(e,m, pa) (13)
where rp(e,m, pa) is chosen such that the terminal condition a(jr, e,m, pa) = 0 is met.

5.2.5 Income

We draw initial income shocks assuming independence of the asset position according to the

stationary invariant distribution of the 2-state Markov process, thus Π(ηh) = 0.5.

5.3 Productivity

We use PSID data to regress by education of the household head log wages measured at the

household level on a cubic in age of the household head, time dummies, family size, a dummy for

marital status, and person fixed effects. Predicting the age polynomial (and shifting it by marital

status) gives our estimates of ε(e,m, j). We next compute log residuals and estimate moments

of the earnings process by GMM and pool those across education categories and marital status.24
We assume a standard process of the log residuals according to a permanent and transitory shock

specification, i.e., we decompose log residual wages ln (yt) as

ln (yt) = ln (zt) + ln (εt)

ln (zt) = ρ ln (zt−1) + ln (νt)

24We thank Zhao Jin for sharing her code with us.
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where εt ∼i.i.d Dε(0, σ2
ε), νt ∼i.i.d Dν(0, σ2

ν) for density functions D, and estimate this process

pooled across education and marital status. To approximate the persistent component in our

model, we translate it into a 2-state Markov process targeting the conditional variance of zt, con-

ditional on zt−2, (1 +ρ2)σ2
ν (accounting for the two year frequency of the model). The transitory

component is in turn approximated in the model by two realizations with equal probability with

the spread chosen to match the respective variance σ2
ε . The estimates and the moments of the

approximation are reported in Table 6.

Table 6: Stochastic Wage Process

Estimates Markov Chain Transitory ShockParameter ρ σ2
ν σ2

ε πhh = πll [ηl, ηh] [εl, εh]Estimate 0.9559 0.0168 0.0566 0.9569 [0.8226, 1.1774] [0.881, 1.119]

Notes: This table contains the estimated parameters of the residual log wage process.
We set the fraction of time working during high school to χ(hs) = 0.2, which can be

interpreted as a maximum time of work of one day of a regular work week. In college, students

may work for longer hours and we accordingly set χ(co) = 0.5.

The mapping of acquired human capital into earnings according to γ(e, h) is based on Abbott

et al. (2019). We use their data—the NLSY79, which includes both wages and test scores z

of the Armed Forces Qualification Test (AFQT)—to measure residual wages ω(e) of education

group e (after controlling for an education specific age polynomial) and run the regression

ln (ω(e)) = ρ1(e) · ln
(z
z̄

)
+ υ(e),

where υ(e) is an education group specific error term and z̄ are average test scores. We denote

the education group specific coefficient estimate by ρ̂1(e), see Table 7. The estimated ability

gradient is increasing in education reflecting complementarity between ability and education. In

the model, we correspondingly let

ln (γ(e, h)) = ρ0(e) + ρ̂1(e) · ln
(
h

h̄

)
,

where h̄ is average acquired human capital at j = ja (biological age 16) and ρ0(e) is an education

group e specific normalization parameter, chosen such that E [γ(h | e)] = 1 for all e. The

normalization—which gives ρ0(e) = 0.30, 0.05,−0.25, for e ∈ {no, hs, co}, respectively—implies

that the average education premia are all reflected in ε(e, j,ma), which in turn are directly

estimated on PSID data.
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Table 7: Ability Gradient by Education Level

Education Level Ability GradientHS- 0.351 (0.0407)(HS & CL-) 0.564 (0.0233)(CL & CL+) 0.793 (0.0731)
Notes: This table contains the estimated ability gradient ρ̂1(e), using NLSY79 as provided in replication filesfor Abbott et al. (2019). Standard errors are in parentheses.

5.4 Human Capital Production Function

At birth at age j = 0, the innate ability (initial human capital) h = h0 of children is determined,

conditional on the distribution of parents by parental characteristics ep,mp, by the function

h0(ep,mp). We calibrate the distribution from the Letter Word test score distribution in the PSID

Child Development Supplement (CDS) surveys I-III, and match it to parental characteristics by

merging the survey waves with the PSID. Table 8 reports the joint distribution of average test

scores of the children by parental education and marital status. We use this test score distribution

as a proxy for the initial human capital distribution of children conditional on parental education

and marital status.25 We base the calibration of the initial ability distribution of children on this

data by drawing six different types of children depending on the combination of marital status

(2) and parental education (3). Children’s initial human capital is normalized as the test score

of that mp, ep-group relative to the average test score. We further scale the resulting number by

the calibration parameter h̄0 and, thus, initial human capital of the children is a multiple of h̄0.

Parameter h̄0 is calibrated exogenously to match the ratio of mean test scores at ages 3-5 to mean

test scores at ages 16-17, which gives h̄0 = 0.125. Initial abilities relative to average abilities and

the corresponding multiples of h̄0 for the six types are contained in Table 8.

At ages j0, . . . , ja − 1 children receive parents’ education investments through money and

time im(j), it(j) and school input is(j). Education investments of the respective education

institution s ∈ {pu, pr} are certain, known by parents, and equal across children. In the baseline

pre-Covid-19 scenario we normalize the education input in both institutions to 1 unit of time,

thus is(j) = 1 for both s and all j. In private school one unit of time leads to a higher

productivity than in public schools which is reflected in a productivity parameter Bs. Specifically,

we normalize Bs = 1, for s = pu and calibrate Bs > 1, for s = pr endogenously to match the

average fraction of parents with children in private schools of 11.24% observed in the data. This

25Importantly, by correlating the test score distribution with these parental characteristics, we do notpose a causal link between parental education and children’s characteristics. The test scores just give us aconvenient way to proxy the initial joint distribution.
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Table 8: Initial Ability by Parental Education

Marital Status and Educ of HH Head Avg. Score Fraction of h̄0Single Low 35 0.843Single Medium 38 0.906Single High 46 1.107Married Low 39 0.945Married Medium 41 0.984Married High 45 1.085
Notes: This table contains the estimated initial ability of children as measured by the letter word test in theChild Development Supplement Surveys 1-3 (years 1997, 2002, 2007) of the PSID.

gives Bs = 1.81 for s = pr. Given these inputs, human capital is acquired in a multi-layer human

capital production function

h′(j) =
(
κh(j)h1− 1

σh + (1− κh(j))i(j, s)1− 1

σh

) 1

1− 1
σh (14a)

i(j, s) = Ā

(
κs(j) ((1j≥jsB

s + (1− 1j≥js))i
s(j))1− 1

σs + (1− κs(j))
(
ip(j)

īp

)1− 1
σs

) 1

1− 1
σs

(14b)
ip(j) =

(
κm(j)

(
im(j)

īm,d

)1− 1
σm

+ (1− κm(j))

(
it(j)

īt,d

)1− 1
σm

) 1

1− 1
σm

, (14c)

which partially features age dependent parameters for calibration purposes. We divide the endoge-

nous age dependent per child monetary and time investments by the parents im(j), it(j), as well

as the CES aggregate of these (normalized) investments, ip(j), by their respective unconditional

means through which we achieve unit independence.

The outermost nest (first nest) augments human capital and total investments according to a

CES aggregate with age-specific parameter κh(j) and age-independent substitution elasticity σh.

We set σh = 1,26 and calibrate κh(j) to match (per child) time investments by age of the child.

We model age dependency as

ln

(
1− κh(j)
κh(j)

)
= ακ

h

0 + ακ
h

1 · j + ακ
h

1 · j2 (15)

and determine ακ
h

1 , ακ
h

2 by an indirect inference approach such that the age pattern of log per

child time investments in the data equals the pattern in the model for biological ages 6 to 14

26That is approximately the mean value of the parameter for young and old children in Cunha et al. (2010)
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of the child. Recall that we in turn match the average level of time investments at biological

ages 6 to 14 by calibrating the utility cost parameter κ. Time investments at biological age 4 are

matched differently, with details described below. The intercept term ακ
h

0 is calibrated to match

average monetary investments. Consistent with Cunha et al. (2010), we find that the weight on

acquired human capital at age j is increasing in j, so that investments become less important

in the course of the life-cycle. While our model is not directly comparable to their empirical

analysis,27 also the magnitude of κh(j) is similar.

In the second nest, we restrict κs(j) = κ̄s=pu = κ̄s=pr = κ̄s for j > 0 and calibrate it

exogenously according to the estimates for the US by Kotera and Seshadri (2017)—who estimate

the parameters of a CES nesting of private and public education investments similar to ours—

giving κ̄s = 0.676.

At biological age 4 of the child, children are still in kindergarten. To take into account this

structural break in the process of education according to the institutional setting, we separately

calibrate κs0 to match the average time investments by parents into their children at biological

age 4 of the child. This gives κs0 = 0.56.

We restrict the substitution elasticity σs to be the same for private and public schools,

σs=pu = σs=pr and calibrate it with reference to Kotera and Seshadri (2017) who estimate

an elasticity of substitution between private and government investment of σs = 2.43. Thus,

parental investments ip(j) and government investments is=pu(j) are gross substitutes but sub-

stitution across these education inputs is far from perfect. Ā is a computational normalization

parameter which we choose such that average acquired human capital is equal to 1, sufficiently

below the maximum human capital grid point, giving Ā = 1.19.

The third nest augments the endogenous age specific per child monetary and time investments.

As in Lee and Seshadri (2019) we restrict σm = 1. The age dependency of κm(j) is specified as

ln

(
1− κm(j)

κm(j)

)
= ακ

m

0 + ακ
m

1 · j.

We calibrate ακ
m

0 to achieve the normalization κm(3) = 0.5, and ακ
m

1 is calibrated to match the

monetary investment profile, which is relatively flat in the data.

At age ja the human capital process is extended to the high school period (i.e., for all children

with education e = hs and e = co). Time and monetary investments by parents in this phase of

the life-cycle are zero, because children have already left the parental household and the human

27Total Investments in our model in the first nest include government investments from the second nest,and we do not distinguish explicitly between cognitive and non-cognitive skills.
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capital production function at j = ja, e ∈ {hs, co} is

h′(j) = Ã

(
κh(6)h1− 1

σh + (1− κh(6))

(
ig

īg

)1− 1

σh

) 1

1− 1
σh

. (16)

We compute κh(6) as a predicted value from the above described regression in (15) and calibrate

the additional scaling parameter Ã such that the ratio of average human capital at j = 6

(biological age 16) to average human capital at age j = 5 is equal to the ratio of test scores of

ages 16− 17 to age 14− 15 of 1.07. This gives Ã = 1.07.

The production function in (16) is an approximation as it ignores parental inputs entirely,28
reflecting that parental inputs may not be that effective at that age. The specification also

ignores that children may invest into the human capital formation themselves, which may be of

particular relevance for our main experiment of school closures. We thus regard our model of

biological age 16 children as a crude approximation and will accordingly not put a key emphasis

on those children when discussing our results. However, it is important for parental decisions at

younger child ages that parents do foresee that the human capital process for age 16 children

continues when children have left the household, which is our main motivation for extending the

human capital accumulation process beyond that age.

5.5 College Tuition Costs & Borrowing Constraint of Children

We base the calibration of college tuition costs and borrowing constraints for college youngsters

on Krueger and Ludwig (2016). The net price ι (tuition, fees, room and board net of grants and

education subsidies) for one year of college in constant 2005 dollars is 13,213$. In 2008 dollars,

the maximum amount of publicly provided students loans per year is given by 11, 250$, which is

the children’s borrowing limit in the model for e = co and j ∈ [jh, jc− 1]. For all ages j ≥ jc we

let

a(j, co, ch) = a(j − 1, co, ch)(1 + r)− rp(ch)

and compute rp such that the terminal condition a(jr, co, ch) = 0 is met.

5.6 Public Education Spending

The government spends on schooling for children and pays the college subsidy for college students.

The former we approximate as 5000$ per pupil based on UNESCO (1999-2005) data, as for

28It would not be possible in our setup to model parental inputs at that age because children have alreadyleft the household.
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example in Holter (2015). The latter is set to 38.8% of average gross tuition costs, as in Krueger

and Ludwig (2016). Assuming, as in Krueger and Ludwig (2016), that the difference between

net and gross tuition costs is due to both a public and a private subsidy with the latter not being

explicitly modeled in our setup29 gives an average public subsidy of $6, 119 per student.

5.7 Calibrating the School Closures Experiments

The calibration of the length of school closures is based on Table 2 which shows the effective

schooling time, as percent of the total available time in the two year interval starting from March

2020, for different groups of students and under different assumptions on the effectiveness of

online learning format. The crucial model input is the fraction of instructional time lost due

to Covid-19 school closures, which is simply given by 1 minus the respective entry in Table

2. Our benchmark results are derived under the assumption of 25% effectiveness of online

schooling formats, i.e., the first panel of Table 2. In our sensitivity analysis of Section 8 we

discuss an alternative scenario when online schooling formats do not contribute to human capital

accumulation, i.e., the second panel of Table 2.

6 Results

In this section we document the positive and normative consequences from the differential school

closures documented in the empirical part of the paper assuming an effectiveness of online formats

of φ = 25%, in line with the estimates by Dorn et al. (2021), which is based on test score losses.

6.1 Young and Old Children

In Table 9 we display the impact of the differential school closures on tertiary education attain-

ment, human capital, the present discounted value of future earnings and welfare, broken down

by the age of the child. Holding the length of school closures constant, younger children are

more adversely affected from the Covid-19 school crisis than older children. As explained in

Fuchs-Schündeln et al. (2022), this is a direct consequence of the self-productivity and dynamic

complementarity in the production of human capital. However, as we saw from the empirical

section, secondary schools were closed for significantly longer than primary schools. As a con-

sequence of these two competing factors, it is the youngest secondary school children that are

most severely affected by the Covid-19 school closures.

29The private subsidy is set to 16.6% of average gross tuition costs as in Krueger and Ludwig (2016).
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Table 9: Aggregate Outcomes for Main Experiments

baseline Change for Children of Biological Ageaverage 4 6 8 10 12 14
change in %pshare s = no 16.55 1.36 0.90 1.87 1.55 1.60 1.26 0.98share s = hs 49.99 0.02 0.13 -0.45 -0.05 0.07 0.19 0.26share s = co 33.46 -1.39 -1.04 -1.42 -1.50 -1.67 -1.45 -1.24change in %av HK 1.00 -2.05 -1.63 -2.41 -2.16 -2.37 -2.03 -1.71PDV gross earn $847,910 -1.27 -1.01 -1.47 -1.35 -1.48 -1.27 -1.07PDV net earn $690,446 -1.02 -0.80 -1.18 -1.08 -1.18 -1.01 -0.85child CEV - -0.71% -0.55% -0.82% -0.73% -0.83% -0.72% -0.61%

Notes: Education share in education categories s = no (less than high school), s = hs (high school), s = co(college); av HK measures average acquired human capital at age 16; PDV gross earn measures the presentdiscounted value of gross earnings assuming labor market entry at age 22 and retirement at age 66; PDV netearn measures the present discounted value of net earnings; CEV: is the consumption equivalent variationwelfare measure. Columns for biological ages 4-14 show the respective percentage point changes of educa-tion shares, the percent changes of acquired human capital and average earnings, and the CEV expressedas a percent change, for children of the respective age at the time of the school closures. Column “average”gives the respective average response.

6.2 Public vs. Private Schools

According to our empirical estimates, private schools were closed for a significantly shorter amount

of time than public schools. We now quantify the impact of these differences in Table 10, which

displays the differential impact, by school type, of the Covid-19 crisis on human capital, lifetime

earnings and welfare (measured in consumption-equivalent variation).

First we note that children attending private schools would have higher human capital and

lifetime earnings in the absence of the Covid-19 shock, see the second column of Table 10. This

is due to the fact that children attending private schools tend to come from affluent parents with

higher education that on average invest more into their children (which also tend to have higher

initial human capital); this selection effect is compounded by the higher productivity of private

schools in the human capital production function.

As the first panel of Table 10 shows, the longer school closings of public schools lead to

larger human capital losses from the Covid-19 crisis among its pupils (−2.07% vs. 1.67%), which

translates into larger declines in lifetime earnings, directly and indirectly though the larger impact

on high school and college completion rates. As the second panel of Table 10 shows, the net

present value of lifetime earnings falls by −1.26% among children attending public schools, but
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Table 10: % Change in Human Capital, Lifetime Earnings, Welfare by School Type and Age

baseline average 4 6 8 10 12 14
Human Capitalpublic 0.95 -2.07 -1.56 -2.43 -2.16 -2.46 -2.10 -1.75private 1.43 -1.67 -1.56 -1.90 -1.91 -1.86 -1.56 -1.31
Lifetime Earningspublic $812,650 -1.26 -0.97 -1.46 -1.30 -1.50 -1.30 -1.08private $1,092,667 -1.09 -0.97 -1.19 -1.33 -1.26 -1.03 -0.80

Welfarepublic -0.75 -0.54 -0.90 -0.79 -0.89 -0.75 -0.61private -0.44 -0.54 -0.44 -0.44 -0.47 -0.43 -0.35
Notes: Human capital losses are measured at age 16, dependent on age at which Covid-19 hits.

only −1.09% for those in private school. This translates into differential welfare losses for the

two groups of −0.75% and −0.44%, respectively, as the third panel of Table 10 displays.

6.3 Income-Rich vs. Income Poor Households

One of the most surprising findings from our empirical analysis in Section 3 was that public

school students in income-poorer regions (counties) experienced shorter school closures than

their brethren in more affluent places. We now quantify the differential welfare impact of this

observation using our structural model.

Table 11: Welfare: Bottom, Top Income Quartile, Homogeneous/Heterog. School Closures

average 4 6 8 10 12 14
Homog. Closuresbottom 25% -0.90% -0.71% -1.04% -0.92% -1.05% -0.90% -0.76%top 25% -0.39% -0.25% -0.42% -0.39% -0.46% -0.43% -0.39%
Heterog. Closuresbottom 25% -0.80% -0.65% -0.91% -0.81% -0.91% -0.81% -0.68%top 25% -0.41% -0.27% -0.52% -0.50% -0.45% -0.39% -0.32%

Notes: Welfare losses are measured by consumption equivalent variation. Top panel assumes identicalschool losses across groups. Bottom panel uses empirically measured school losses.
Comparing children from the top- to children from the bottom quartile of the income distribu-

tion, welfare losses are 0.51 percentage points larger for the poorer children if school closures were

unrelated to income (−0.90% compared to −0.39%), see the top panel of Table 11. Account-

40



ing for the longer school closures in richer counties reduces this gap to 0.39 percentage points

(−0.80% compared to −0.41%), as documented in the bottom panel of Table 11. Therefore,

although poorer children are still more severely affected by the pandemic, this force reduces the

gap by about 1/4 (0.39 versus 0.51 percentage points).

7 Counterfactual Policy Analysis

The previous section documented significant welfare losses from the Covid-19-induced school

closures. In this section we evaluate whether responding to these losses by keeping the schools

open in subsequent summers is an appropriate policy response, and we quantify the fiscal conse-

quences of such an intervention. Specifically, we consider an additional 3 months of schooling in

the two-year period following the Covid-19 pandemic, corresponding to one full summer, or two

half-summers, starting in the summer of 2022.

7.1 National Schooling Expansion

The first row of Table 12 shows that, on average across households, the net present value of the

future labor income gain from the intervention net of the cost of the schooling extension is positive

at $943. Alternatively put, for each of the $1, 396 spent on each child30, the present discounted

value of that child’s lifetime earning increases by $1.68, for a total gain of $2, 339. As the last row

of Table 12 shows, the welfare gain for the average child from this intervention amounts to 0.22%

of lifetime consumption. In other words, a national 3 months schooling expansion compensates

for more than 30% of the welfare losses of children induced by the Covid-19 shock.31
The government, though the tax system, of course only captures a part of the increase in

the net present value of earnings. As the second row of Table 12 shows, the reform turns out

to be completely self-financing in net present value terms; in fact, its impact on the government

budget is slightly positive.

Table 13 reports the fiscal consequences, in the form of the present discounted value of tax

revenues following the Covid-induced school closures and the schooling expansion. To give this

thought experiment some context, the table, in the top panel, first reports the consequences

30The per child cost of the intervention is computed based on the annual per student government spend-ing of $5, 584 (in 2010 dollars) in the baseline.31If the goal of the government were to fully offset the welfare losses that affected children incur as a resultof school closures then the public schooling input during the 2 years following the lockdown of schools wouldhave to be increased by ca. 51%, taking into account the crowding-out of parental investments as well asthe fact that the human capital production function exhibits self-productivity and dynamic complementarity,and thus the Covid-19 schooling losses make future investments into human capital less productive. Alsonote that an expansion of schooling in the summer is welfare improving (in fact slightly more so) and budgetneutral in the absence of the Covid-19 shock as well.
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Table 12: National Schooling Expansion: NPV for Households, Government, Welfare

average 4 6 8 10 12 14NPV Households 943.36 1330.26 1148.03 1020.29 879.30 719.18 563.08NPV Government 38.51 265.91 155.91 69.55 -30.55 -146.39 -83.39Welfare children 0.22% 0.29% 0.25% 0.22% 0.20% 0.17% 0.16%
Notes: The table shows the change in the present discounted value of gross earnings (in $) for households(row 1) and the government (row 2) as well as the welfare consequences from the reform, measured inconsumption equivalent variation (CEV). All numbers are in per capita terms.
Table 13: Change of Present Discounted Value of Tax Revenues [in %] in Absence andPresence of Schooling Intervention

Revenue source All Lab. Inc. Cap. Inc. Cons.No Schooling Expansion -1.74 -4.66 0.26 -0.68Schooling Expansion -1.24 -3.24 0.25 -0.47
Notes: The table shows the change in the present discounted value of tax revenue (in %). Revenue source:All: sum of all tax sources; lab.: from labor income taxes; cap.: from capital income taxes; cons.: fromconsumption taxes.

for tax revenues in the absence of the schooling extension. It is clear that, on account of the

massive decline in future labor income taxes, the fiscal situation of the government deteriorates

significantly. Overall, tax revenues fall by 1.74% relative to pre-Covid-19 times.

This loss is reduced to 1.24% by the schooling intervention, as the lower panel of Table 13

demonstrates. Thus, even though this policy reform pays for itself (given the assumptions on

the cost of the schooling expansion), it is insufficient to raise tax revenues to pre-Covid levels.

Larger, longer lasting schooling interventions would be necessary to achieve that objective.

7.2 Schooling Expansion for Selected Subgroups of the Population

Next, we ask which groups to prioritize, in terms of additional schooling. We consider the two

income groups of parents studied in Section 6.3 and ask which group of children to prioritize if

scarcity of school buildings or availability of teachers makes an expansion of school for the entire

children population infeasible, or too large a program from a fiscal perspective if the government’s

ability to borrow against future tax revenue generated by the program is limited.

The answer to this question is not obvious: on one hand, children from poorer families

accumulate less human capital and have lower lifetime utilities to start with even without the

Covid-19 school closures, and sustain larger welfare losses than income-rich children, although the
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shorter school closures (relative to those of income richer children) mitigate this gap somewhat,

see Section 6.3. This suggests that poorer children would reap larger benefits from the additional

schooling, an argument that underlies most policy proposals for selective school expansions in

the U.S. On the other hand, precisely because children from income-richer families accumulate

more human capital and have a higher propensity to go to college pre-Covid-19, they tend to

have higher earnings and pay more taxes. Therefore, from a fiscal perspective it might be this

group whose Covid-19-induced loss of human capital an expansion of schooling should tackle.

Table 14: Welfare and Tax Revenues: Bottom and Top Parental Income Quartile

average 4 6 8 10 12 14
Welfare (in %)bottom 25% 0.28% 0.41% 0.35% 0.30% 0.26% 0.22% 0.13%top 25% 0.09% 0.05% 0.08% 0.08% 0.08% 0.09% 0.19%
Tax Revenue (in $)bottom 25% -130.92 134.23 71.62 -18.28 -126.08 -247.29 -599.73top 25% 148.15 203.19 156.87 71.12 -2.46 -109.00 569.19

Notes: The table shows the welfare and tax revenue consequences for a 3 month schooling expansion,separately for children in the top 25% and bottom 25% of the parental income distribution. All numbersare per capita. Welfare is measured as consumption equivalent variation, relative to no intervention. Taxrevenues are measured as change in the net present value of taxes paid, relative to no schooling expansion.
The top panel of Table 14 shows the welfare results, and indeed confirms that implementing

a school summer program in the next two summers has a significantly positive welfare impact

on children, and that these welfare gains are especially large for younger children from poorer

parental backgrounds. As a potentially desirable side effect, earnings and welfare inequality would

fall under such a selective school expansion policy.

On the other hand, the budgetary consequences of such a school expansion are more favorable

if focused on children from affluent social backgrounds. The bottom panel of Table 14 displays

the per-child32 fiscal consequences from the school expansion. It shows that for the typical child

from a poor parental background the cost of additional schooling (assumed to be $1, 396 per

child, as above) outweighs the extra tax revenue by $131. In contrast, the higher taxes induced

by the additional human capital accumulation for children from affluent households more than

offset the costs, for a net budgetary gain for the government of $148 per child. Therefore a

32Even though the top and bottom quartile of the income distribution has the same number of parentsand the school expansion costs the same per child, the total size of the program differs slightly if bestowedupon the poor and the rich children, since income poorer parents have on average slightly more children.
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government exclusively concerned about the fiscal impact of the reform would select the top-,

rather than the bottom quarter of the parental income distribution as the target for the reform.33

8 Robustness and Extensions

In Subsection 8.1 we probe the sensitivity of our results to the magnitude of virtual learning

effectiveness. We then, in Subsection 8.2, comment on the potential benefits of school closures,

through the lens of our model, and discuss limitations of the model that renders the measurement

of these benefits incomplete, thereby justifying our focus on the cost side of school closures.

8.1 Variations in Losses of Effective In-person Learning

8.1.1 Zero Effectiveness of Online Learning Formats

In our benchmark results we had assumed that students learning online was 25% as effective

as in-person learning, based on the evidence presented by Dorn et al. (2021). However, as we

discussed at the end of Section 3 above, based both on other studies measuring learning losses

directly, and based on ancillary predictions of the model this assumption, at least in the context

of our model, likely leads to an understatement of the actual learning losses that occurred during

the two-year period under consideration. We therefore now display selected results under the

assumption that online learning formats are completely ineffective, as implied by the findings

from Engzell et al. (2021) stemming from the early phase of the Covid-19 epidemic. In Table 2

of Section 3 we summarized effective schooling times during the 2020-2021 period. The baseline

results thus far were derived under the results in the first panel; now we use the numbers from

the second panel, which assume that online formats were not effective at all. Qualitatively, under

this assumption school closures are longer, and the dispersion in school closures by school types

(public vs. private and primary vs. secondary) and county income is larger as well. To give

one summary measure, with 25% effectiveness of online schooling (our benchmark), the loss in

schooling input (averaged over all school types) was 30.6% over a two year period, and if virtual

learning is completely ineffective, this number is roughly 40.8% (compare the first entries in the

first and second panel of Table 2).

Here we provide a summary of the findings under this alternative assumption; Appendix D

contains the details. Table D1 displays the consequences for educational attainment, human

capital, the present discounted value of earnings and welfare measured in terms of consumption-

equivalent variation. Compared to the benchmark results in Table 9 all qualitative results from

33The welfare and fiscal revenue consequences for income groups in between the bottom and top quar-tiles lie in between the extremes reported in Table 14.
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Section 6 remain fully intact, but its magnitudes become larger since the effective size of the

negative schooling shock increases by roughly 1/4. Interestingly, the increase in the negative

impact on human capital, earnings and welfare is larger than 25% of its previous magnitude since

in the model future human capital accumulation depends positively on current human capital (due

to self-productivity and dynamic complementarity in the human capital production function), and

therefore the costs of school closures are strictly convex in its length.

The differences in lifetime earnings and welfare across children attending public versus private

schools increase as well. Table 2 of Section 3 shows that if online educational formats are

completely ineffective substitutes for in-person learning, then the gap across these school types in

the effective length of school closures grows, and so do the differences in the earnings and welfare

losses between its graduates as can be seen by comparing Tables D2 with the benchmark results in

Table 10 from Section 6. Finally, Table D3 in the appendix shows that, relative to the benchmark

in Table D3 from Section 6, under the assumption of 0% effectiveness of virtual learning the

magnitude of welfare losses is larger for both children from income-rich and income-poor parents

and the difference between the two groups is magnified as well (as is the share of the gap under

homogeneous school closure lengths that is being closed due to low-income regions experiencing

shorter school closures).

8.1.2 Heterogeneity in School Closures Across Rich and Poor Areas

The results in Sections 6 and 8 allow us to assess, in the context of our model, the potential

importance of heterogeneity in the effectiveness of online learning formats. If online formats are

significantly less effective in neighborhoods or school districts with (income-) poorer children, as

suggested by the recent evidence in Halloran et al. (2022) and Kogan and Lavertu (2021), then

the distributional impact of school closures will be more pronounced.

Table 15 demonstrates this point by summarizing the average welfare loss by poor and rich

children under alternative assumptions about the length of school school closures and the ef-

fectiveness of online schooling formats. The first column stems from the first panel of Table

11 and shows the welfare losses if the length of school closures is uniform across incomes at

25% effectiveness (as assumed in the benchmark results), the second column incorporates the

empirical finding that schools in poorer counties were closed less (the second panel of Table 11),

and the last column reproduces the losses from Table D3 and captures both differential school

closures and no productivity of online teaching.

The point we want to make here is that heterogeneity in the amount of online learning across

the income distribution can be a very substantial force of amplification of inequality in the impact

of the Covid-19 crisis. Suppose that online formats in poorer neighborhoods are not effective at

all whereas schools in affluent neighborhoods manage to replace in person-learning with online
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Table 15: Child CEV: Homogeneous/heterogeneous School Closures, Different Effective-ness of Virtual Schooling

Homog,φ = 25% Heterog,φ = 25% Heterog,φ = 0%bottom -0.90% -0.80% -1.13%top -0.39% -0.41% -0.64%
Notes: The table shows the welfare consequences, measured in consumption equivalent variation (CEV).“Homogeneous” and “heterogeneous” refers to the length of school closures in rich vs. poor counties. φdenotes the effectiveness of virtual learning

formats more effectively (at 25% productivity, say), then the welfare gap roughly doubles from

0.39% (the difference between the top and bottom row in column 2) to 0.72% (the difference

between the bottom row in column 2 and the top row in column 3). This amplification of

inequality is significantly larger than the reduction from the differential length of school closures

favoring the poor, comparing the gap between the first and the second column of Table 15.

8.1.3 Consequences of School Time Extensions

How do longer and more dispersed effective school closures impact the positive and normative

implications of government schooling interventions from Section 7? Table D4 in the appendix

summarizes the welfare consequences from the reform, as well as the fiscal consequences for

private households and the government, respectively. The main observation, comparing Tables

12 and D4 is that the main results from Section 7 are qualitatively, and to a very large extent

quantitatively robust to longer effective schooling losses.

8.2 On the Health Benefits of School Closures

Although we do not attempt a full cost-benefit analysis of school closures in this paper, which

would require the integration of our framework into a model of disease transmission in the SIR

tradition as well as good estimates of the causal impact of school closures on the transmission

of Covid-19 infections, we can use the model to provide some back-of-the envelope calculations

of the potential benefits of these school closures.

In the context of the model, the cost of a lost child is equal to the associated earnings loss,

i.e. the PDV of the future gross earnings of a child, and thus amounts to $847, 910 (see Table

9).34 For children of married parents with a college degree this number rises to $1, 064, 461. An

34This estimate is significantly lower than the value of a statistical life used by or the range of valuesdiscussed in Hall et al. (2020) ($10.8 million) and Greenstone and Nigam (2020) of roughly $10 million, sincethe latter includes not just the lost earnings of the child, but the intrinsic value for the child of being alive.
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additional benefit of school closures that can be calculated inside the model is associated with

preventing infections of parents. The welfare loss for a child of losing a parent to Covid-19 in

the model, by comparing welfare using consumption equivalent variation of a child living in a

two-parent household with welfare of the child living in a household with a single parent (and

the same education and asset holdings) ranges from 2% for a 14-year old child with high-school

dropout parents to 20% for four-year old children with college-educated parents. It is again

important to note that these numbers do not capture the emotional losses of having a parent die

(of Covid-19), only the economic losses as estimated by our model.

To put these numbers in perspective, the average model-implied earnings loss for each child

is 1.27% of 847, 910 (see Table 9), that is, $10, 768, and the welfare loss is 0.71% for each child.

Given the very low incidence of children and adults of parent age (32-44 in the model) dying from

Covid-19 the health impact of school closures would have to be dramatic for the potential health

benefits stated above to outweigh the cost.35
The evidence on this impact is mixed. Papers exploiting natural experiments include Bismarck-

Osten et al. (2021) who use the staggered timing of school holidays across German states to

estimate the impact of school closures on Covid-19 infections in school and conclude that “neither

the summer closures nor the closures in the fall had a significant containing effect on the spread

of SARS-CoV-2 among children or a spill-over effect on older generations.” Similar findings are

contained in the other quasi-experimental papers we are aware of, cf. Vlachos et al. (2021)

and Isphording et al. (2020).36 In contrast to this literature, correlational studies that investigate

the relationship between in-person schooling and the incidence of COVID-19 across countries or

states within a country tend to find a negative impact of school closures on infection rates and

mortality of children and their parents, see Auger et al. (2020), Harris et al. (2021) and Goldhaber

et al. (2021) for the U.S. or Liyaghatdar et al. (2021) for a cross-section of countries. However,

the magnitude of the effects even in these studies is not large enough for the health benefits of

school closures measured by our model to approach the costs documented in the paper.

However, our model might not capture the full health benefits of school closures. First, we do

not measure the potential health benefits of school closures for teachers, which the Vlachos et al.

(2021) study concludes could be substantial, or for grandparents. Second, Covid-19 infections

may have long-term adverse health consequences that manifest themselves in lower earnings.

35About 0.0015% of all children aged 0-17 have died from Covid-19 thus far. For adults aged 30-39 thisnumber is roughly 0.04%.36Some papers argue that Covid-19 school closures will increase mortality among affected children be-cause they will reduce human capital accumulation and educational attainments, and mortality rates arestrongly negatively correlated with these educational outcomes. Christakis et al. (2020) find that for theU.S., primary school closures during the first Covid-19 wave in March to June 2020 led to more life years lostthan the counterfactual of having kept these schools open. Based on these studies a cost-benefit analysisof school closures is a non-starter since there are no health benefits from school closures.
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Third, as discussed above, the value of life might be significantly understated by the lost present

discounted value of earnings implied by the model. Thus, we fully acknowledge that the results

in this paper should not be interpreted as a complete cost-benefit analysis of school closures.

9 Conclusion

We document, using Safegraph cell phone data, that the Covid-19 crisis led to lengthy school

closures that are heterogeneous across school types. Using a structural life cycle model with

private and public school choice and parental time and resource investment into their children and

empirically informing it with the school closure data we estimate the human capital- and welfare

losses of affected children with different characteristics. We then use the model to evaluate the

fiscal and welfare consequences of recent policy proposals that will extend instructional time in

the next two summers by three months to partially compensate for these losses. Such a policy

reform raises welfare of children and approximately pays for itself by generating higher future

labor income- and consumption taxes.

In this paper we focus on dimensions of heterogeneity among children that we can associate

with Safegraph school visits data, such as the type of school a child attends, and the income of

the county in which the school is located. We abstract from other aspects of inequality among

children, and thus potentially understate the dispersion in the welfare consequences across the

affected cohorts of children. First, when schools close, not only lose students access to in-person

instruction, but they also lose contacts to their peers who might be crucial for their learning

success. This effect can be especially important for children who are already struggling in school,

and thus amplify the already unequal direct effects of school closures, see Agostinelli et al. (2020).

Second, one crucial response of parents to the Covid-19 school crisis in our model is to increase

the time spent with children, partially offsetting the loss in educational time in school. In the

model this is always feasible for parents, albeit more costly in terms of disutility for parents who

also work. In practice, there is significant heterogeneity in the ability of parents to work from

home and thus increase time investment into their children while continuing to work.37 Working

from home was much more prevalent in high-pay white-collar jobs than in low-paying jobs in

services or manufacturing, and abstracting from this source of heterogeneity in the ability to

work from home likely leads to an understatement of the dispersion of the welfare losses between

children at the top and at the bottom of the distribution.

Third, this paper studies the impact of school closures in the U.S., a high-income country

(with very substantial inequality). A similar structural framework can be combined with data

on learning losses due to Covid-19 in developing countries where the schooling crisis occurred

37See Adams-Prassl et al. (2020) for empirical evidence along this line.
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against the backdrop of pre-existing lower educational attainment, and online formats were even

harder to implement. Thus, it is likely that the dispersion of welfare losses among children across

countries is even higher than the ones we have documented here.38
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A Dynamic Programs of the Model

A.1 Children Generation

A.1.1 Retirement Phase

In retirement, households of both generations solve the following completely standard recursive

consumption-saving problem of the form:

V (j, e, si, η; a, h) = max
c,a′≥0

{u (c) + βV (j + 1, e, si, η; a′, h)}

subject to

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y − T (y)

y = pen(e, si, ηjr−1, h)

η = ηjr−1

where u(.) is a standard period utility function that is strictly increasing, strictly concave and twice

differentiable. Here, pen(e,m, ηjr−1, h) is pension income, whose dependence on educational

attainment e, marital status, the persistent income state in the period prior to retirement ηjr−1

and human capital h serves to proxy for the progressive nature of the social security system.

More precisely, for the children generation we have assumed that all individuals remain single

(and thus pensions are pen(e, si, ηjr−1, h)), and for the parental generation we will normalized

human capital to 1, so that pension benefits are independent of h, so that pen(e,m, ηjr−1),

see below. Apart from these differences in the exact form of the pension benefits formula, the

retirement decision problems of both generations are identical.

A.1.2 Working Phase

During working life, the dynamic programming problem of the children generation reads as

V (j, e, η, ε, a, h) = max
c,a′

{
u(c)− v(`(si)) + β

∑
η′

π(η′ | η)
∑
ε′

ψ(ε′)V (j + 1, e, η′, ε′, a′, h)

}
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subject to the constraints

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))

y = wγ(e, h)ε(e, j, si)ηε`(si)

a′ ≥ −a(j, e, ch)

Since labor supply is exogenous in our model, the disutility of work v (·) does not affect optimal

choices of children, but impacts the child value functions which in turn enter the parental transfer

decision problem as spelled out in the main text. Income y depends on permanent labor produc-

tivity γ(e, h) which in turn is a function of human capital acquired during the child’s schooling

years as well as the chosen level of education e.

A.1.3 Education Decision and Phase

The dynamic programs for this phase of the children’s life cycle were explicitly spelled out in the

main text.

A.2 Parental Generation

A.2.1 Retirement Phase

The retirement phase of the parental generation is a standard consumption-saving problem of the

form

V (j, e,m, η; a) = max
c,a′≥0

{
u

(
c

1 + 1m=maζa

)
+ βV (j + 1, e,m, η; a′)

}
subject to

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y − T (y)

y = pen(e,m, ηjr−1)

η = ηjr−1

A.2.2 Working Phase

After children have left the household, the parent generation solves, at age j ∈ {ja + jf +

1, ..., jr − 1} a standard consumption-savings problem during the rest of working life, similar to

the one by the children generation in Section A.1.2. As with the retirement phase, the main

difference to the children generation is that now both household income as well as effective per
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capita consumption and labor supply depends on whether a household is single or married. The

recursive problem then reads as

V (j, e,m, η, ε, a) = max
c,a′

{
u

(
c

1 + 1m=maζa

)
−v
(

`(m)

1 + 1m=ma

)
+ β

∑
η′

π(η′|η)
∑
ε′

ψ(ε′)V (j + 1, e,m, η′, ε′, a′)

}

subject to

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− τ p))

y = wε(e, j,m)ηε`(m)

a′ ≥ −a(j, e,m, pa).

A.2.3 Inter-vivos Transfer, Human Capital Investment and Private Schooling Deci-
sions

The dynamic programs for these decisions were given directly in the text since they are the main

focus of the model.
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B Data Appendix

To obtain information about elementary and secondary schools, we use two data sets from the

National Center for Education Statistics (NCES).

The first data set is the Common Core of Data (CCD), which is comprehensive database of all

public elementary and secondary schools and school districts (including public charter schools).

The CCD consists of different surveys completed annually by state education departments from

their administrative records. We use the 2019-2020 CCD school data files released in March

2021.

The other data set is the NCES’s Private School Universe Survey (PSS). PSS is a biennial

survey that collects data on private schools and serves as a sampling frame for other NCES surveys

of private schools. The schools surveyed in the PSS come with a survey weight (which we use in

our construction of sample weights presented in the next section). We use the 2017-2018 data

files released in August 2019. This is the most recent version of PSS as of this writing.

We combine the pooled CCD-PSS data set to the Safegraph data set of POIs with NAICS

code 611110. We first pre-clean the data by standardizing school names and addresses (i.e. we

convert the capital letters to lower case, remove non-alphanumeric characters and spaces, etc.).

Then, we attempt direct merges on combinations of school names, addresses and zip codes. For

those schools that do not have a direct merge, we apply fuzzy-name matching within the same

zip code and retain those matches with a high-confidence matching scores. For private schools,

we only have school names and GPS coordinates. We match them to the Safegraph data by

using a combination of Levenshtein distance between school name and geographic distance based

on the GPS coordinates.

Table B1 compares the schools of the pooled CCD-PSS data set to the subset of schools

matched to Safegraph data. As can be seen, all the observable characteristics of schools line up

closely with each other.
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Table B1: Comparison Between All Schools and Schools Matched to SG Data
Public schools Private schoolsAll Matched All Matched

Sample count 101,688 85,210 22,895 17,482
Student-teacher ratio 15.68 15.55 10.53 10.45
% Male 52.2 52.1 52.5 52.6
% Indian 1.84 1.68 0.72 0.70% Asian 3.87 3.88 6.06 5.75% Pacific 0.40 0.34 0.52 0.52% Hispanic 25.2 24.5 11.7 11.8% White 49.9 51.5 65.0 65.9% Black 14.6 13.7 11.6 11.1% Other 4.29 4.34 4.34 4.32
% Free lunch 44.2 43.8 n.a. n.a.% Reduced-price lunch 5.07 5.14 n.a. n.a.
City 27.6 26.0 34.0 34.9Suburban 31.4 31.9 37.9 36.9Town 13.2 13.7 8.73 9.95Rural 27.8 28.4 19.4 18.3

Notes: % Free lunch and % Reduced-price lunch denote the share of students who are eligible for free andreduced-price lunches, respectively.
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Figure B1: Aggregate Time Series of Visits (Week 1 = 1st Week of 2020)

B.1 Further Sample Selection and Sample Weights

In an effort to reduce noise further, we implement the following additional sample restrictions:

1. We drop schools where the raw visits count on average during the base period is less than

10, and schools where dj,t is larger than 50 more than once during the based period. The

goal of these first two restrictions is to ensure that the measurement of school visits for

the base period are reliable enough to compare them with school visits in any other period.

Together these restrictions reduce the sample size by 20%.

2. We drop schools where dj,t is larger than 75 more than once, either during the period

from beginning of September 2019 to November 2019 or the period from beginning of

September 2020 to the end of the sample period (currently end of May). This procedure

intends to purge the data from extreme values that affect the average of changes in visits

in any given period. We use a larger threshold (75 instead of 50) to trim the data because

it is to expected that the visits time series for each school are more volatile outside of the

base period. This sample restriction reduces the sample size by an additional 10%.

The resulting “in-scope” data set contains 69,910 schools or about 70% of all schools that we

manage to match to the CCD + PSS data set Recall that the sample of matched schools is itself
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a subsample of the CCD + PSS data set (see previous section). One concern is that the data

is becoming less representative of the universe of schools. In particular, smaller schools and/or

schools in areas where SG has lower coverage are likely to have more noisy visits data. As a

result, these schools are less likely to be included in our data set of school visits.

To address the potential concern about the representativeness of the remaining sample, we

construct sampling weights for schools included in the in-scope data set. We estimate a Probit

model where the regressors are school size (as measured by student enrollment) interacted with

school covariates (public/private, Charter/non-Charter, locale area type) and Census divisions,

and the left-hand side variable is an indicator yj that takes the value of 1 if school j is included

in the data set of school visits and is 0 otherwise. Then, we weight each public school by the

inverse of P̂r {yj = 1}, and each private school by its PSS sampling weight times the inverse

of P̂r {yj = 1}. We check the quality of this adjustment by comparing the weighted counts

of students, teachers, and schools in the data to the counts reported in the NCES digest of

education’s statistics (i.e. those reported in Table B2 below).
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Table B2: Comparison to the NCES Digest of Education’s Statistics
Number of educational institutions

NCES table 105.50 CCD & PSS
Public Schools 98,469 101,688Elementary 67,408 68,953Secondary 23,882 21,434Combined 6,278 6,678Other (a) 901 4,623
Private Schools 32,461 27,641Elementary 20,090 17,378Secondary 2,845 2,301Combined 9,526 7,962
All 130,930 129,329

Number of students (in 1,000s)
NCES table 105.20 CCD & PSS

Public Schools (b) 50,686 50,834Prekindergarten to grade 8 35,496 33,415Grades 9 to 12 15,190 17,419
Private Schools 5,720 4,090Prekindergarten to grade 8 4,252 3,450Grades 9 to 12 1,468 0.639
All 56,406 54,924

Number of teachers (in 1,000s, full-time equivalents)
NCES table 105.40 (c) CCD & PSSPublic Schools 3,170 2,911Private Schools 482 401

All 3,652 3,312

Notes: NCES numbers refer to the year 2017-2018. (a) Includes special education, alternative, and otherschools not classified by grade span. (b) NCES enrollment numbers in public schools include imputations forpublic school prekindergarten enrollment in California and Oregon.

B.2 Details of the Burbio Data

Burbio is a private company that collects data on public schools’ calendars for commercial use

and for research purposes. The Burbio data contains, for 3,124 counties, weekly indicators of

the main learning mode of public schools within a country, categorized as traditional, hybrid, or

virtual. These indicators are created by first auditing school districts’ websites, Facebook pages,

etc. to determine the main learning mode currently in place at the school district level, and then

aggregating up to the county level by taking the average of the indicators weighted by student

enrollment in each school district. This approach is relevant because public education at the local
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level is organized by school districts. For the most highly populated counties, Burbio samples

school districts that represent an average of 90% of students in those counties. For less populated

counties, Burbio adapts its methodology to ensure that its indicators are representative of the

learning mode in place for the majority of students enrolled in public schools in those counties.

See https://about.burbio.com/methodology/ for details about Burbio’s methodology.

Burbio shares with us a county-level weekly panel of its indicators. In addition to indicators

about traditional, hybrid, and virtual learning, the data contains information on the usual start

week of most schools within each county, which we take into account while constructing mea-

surements of the fractions of the schooling year 2020-2021 that a given country spends in a given

learning mode. In about one third of the counties, schools usually open before the last week

of August; another one third usually opens during the last week of August; and the remainder

usually opens some time later in September.

C Calibration Appendix

C.1 Data

In the first stage of calibration we use PSID data to estimate the deterministic age wage profiles

and to construct the initial distribution of parents. Furthermore, we use NLSY79 data to estimate

education-specific human capital gradients of the non-age related wage component. Finally, in

the second stage of the calibration we use the Child Development Supplement (CDS) of the

PSID, surveys I-III, to obtain empirical moments related to the child human capital and parental

investments into children.

PSID. The initial distribution of parents by marital status, education, number of children and

assets is constructed based on the four most recent PSID waves, 2011-2017. We use the PSID

family files and keep only parents in the sample (i.e., only observations where children are present

in the household). We keep only observations with positive hours and labor income of the

household head. This leaves us with 7591 observations. Labor earnings and wealth are inflated

to 2010 dollars using the CPI . Deterministic age wage profiles are estimated using a PSID sample

from 1967 to 201339 based on observations from both households with and without children. For

measuring the initial distributions of parents in Section 5.2, we restrict our PSID data sample to

parents aged 25-35.40
39We thank Chris Busch for helping us with the data.40For measuring education, which is not changing much with age, we keep parents aged 22 or above.
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NLSY79. We use the NLSY79 data set provided in the replication files of Abbott et al. (2019).

Following their approach, we approximate adult human capital by the test scores taken from the

Armed Forces Qualification Test AFQT89.

PSID CDS. To obtain child related statistics by parental characteristics, we merge the CDS

data files with the PSID family files of the respective waves. As children of married couples, we

consider children for whom both caregivers correspond to the household head and the spouse in

a PSID household,41 and for whom at least one of the caregivers is the biological parent. This

leaves us with 4393 observations (2419 children) for the three waves of the survey. All children

for whom the reported school type is private (354 observations) are classified as going to private

schools—including those for whom parents report zero expenses on schooling fees. The average

schooling fee used as an exogenous input in the model is computed based on reported average

expenses on schooling fees for children attending private schools.42 All descriptive statistics are

computed using cross-sectional sample weights provided in the survey.

C.2 Age Brackets

The model is calibrated at a biannual frequency. We initialize the parental economic life-cycle

when their children are of age 4, which is model age j = 0. The reason for this initialization

age is the calibration of the initial human capital endowment h(j = 0), which is informed by

data on test score measures at child biological ages 3 to 5, as described below. Thus, children

are irrelevant to the economic model for the first 3 years of their biological lives. Parental age

at the economic “birth” of children is jf = 14, which we also refer to as “fertility” age. This

corresponds to a biological age of 32, when children are of biological age 4.43 Children make the

higher education decision at biological age 16, model age ja = 6. Children who complete high

school stay in school for one additional model period, thus high school is completed at jh = 7.

Children who attend college stay in college for two model periods, thus college is completed

at jc = 9. Retirement is at the exogenous age jr = 31, corresponding to biological age 66.

Households live at most with certainty until age J = 38, biological age 80.

41In case of singles, only the household head is the primary caregiver.42The share of parents reporting zero fees in private school in our sample is 5.11% and the average tuitionreported is $6, 942 (in 2010 dollars). These observations might contain non-trivial measurement error, butthe positive, albeit small, share of zero-fee paying students also represents those children who receive fullacademic or athletic scholarships.43Thus, children are biologically born at parental age 28.
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C.3 Prices

We normalize wages to w = 1 and directly parameterize the income process. The interest rate is

set to an annual rate of 4% based on Siegel (2002).

C.4 General Government Budget

The government side features the budget of the general tax and transfer system and a separate

budget of the pension system. In the general budget the revenue side is represented by consump-

tion, capital income and labor income taxes. The consumption tax rate is set to τc = 5% based

on Mendoza et al. (1994), and the capital income tax rate to τk = 20%, which is the current

statutory capital income tax rate on long-term capital gains (assets held longer than a year) for

households in the highest income tax bracket.

The labor income tax code is approximated by the following two-parameter function, as in,

e.g., Benabou (2002) and Heathcote et al. (2017):

T (y) = y − λy1−τ ,

where τ is the progressivity parameter and λ determines the average tax rate. We set τ = 0.18

as suggested by estimates of Heathcote et al. (2017) and calibrate λ endogenously to close the

government budget, giving λ = 0.89.

Exogenous government spending (net of spending on education) is set to G/Y% = 13.8%.

C.5 Pension System

The payroll tax τ p is set to the current legislative level of 12.4% and the pension benefit level

relating average pension benefits to average net wages is endogenously chosen such that the

benefits of the parent generation equal their contributions, giving a replacement benefit level

of ρp = 0.19.

C.6 Extreme Value Type I (Gumbel) Taste Shocks

In order to smooth both the discrete choice problem of the child generation which tertiary edu-

cation option to choose (dropping out from high school, completing high school, attending and

completing college) and of the parental generation whether to send their children to private or

public school we introduce small taste shocks to each of these discrete options and assume that

these shocks follow a Extreme Value Type I (Gumbel) distribution with scale parameter of 0.005.

To give the magnitude of this shock some content, the fraction of parents whose school choice
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is shifted due to the shock is 1.2%, and the fraction of children whose higher education choice

is shifted is 0.01%. Iskhakov et al. (2017) define taste shocks with scale parameter below 0.01

as “small” scale shocks, and they also explain why adding these shocks is helpful for the compu-

tation of the model. The main advantage of introducing these shocks in our application is that

it turns the discrete choice into a choice probability over these discrete options and makes the

upper envelope over the continuation lifetime utilities a smooth function of the state variables.
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Table C1: First Stage Calibration Parameters
Parameter Interpretation Value Source (data/lit)

Population
j = 0 Age at economic birth (age 4) 0
ja Age at beginning of econ life (age 16) 6
jh Age at finishing HS (age 18) 7
jc Age at finishing CL (age 22) 9
jf Fertility Age (age 32) 14
jr Retirement Age (age 66) 31
J Max. Lifetime (age 80) 38
ξ(e,m) Fertility rates see main text PSID 2011-2017
Φ(jf , e,m) Distribution of parents by martial status andeducation, age jf

see main text PSID 2011-2017
Preferences

θ Relative risk aversion parameter 1
ϕ Curvature of labor disutility 0.5

Labor Productivity
{ε(j, e,m)} Age Profile see main text PSID 1968-2012
[εl, εh] Realizations of Transitory Shock [0.881, 1.119] PSID 1968-2012
[ηl, ηh] States of Markov process [0.8226, 1.1774] PSID 1968-2012
πhl Transition probability of Markov process 0.0431 PSID 1968-2012
χe Hours worked for students, as a fraction of fulltime (HS and CL) {0.2, 0.5} see main text
γ(e, h) Ability gradient of earnings see main text NLSY79

Endowments
r (Annual) interest rate 4.0% Siegel (2002)
l(m) Average hours worked by marital status (an-nual) {1868, 3810} PSID 2011-2017
Φ(a|jf , e,m) Asset distr-n of parents by martial status andeducation, age jf

see main text PSID 2011-2017
a(jf , e,m, pa) Borrowing limit for parents at age jf see main text PSID 2011-2017
rp(m = si, e, pa) Education-specific repayment amount for par-ents: singles see section 5.2.4 {0.006, 0.083, 0.151}

rp(m = ma, e, pa) Education-specific repayment amount for par-ents: couples see section 5.2.4 {0.048, 0.129, 0.110}

Ability/Human Capital and Education
f(j < 4, s = pr) Private school tuition (primary) 3294$ PSID CDS I-III
f(j ≥ 4, s = pr) Private school tuition (secondary) 6588$ PSID CDS I-III
ι College tuition costs (annual, net of grants andsubsidies) 14756$ Krueger and Ludwig (2016)
a(j ∈ [jh, jc−1], co, ch) College borrowing limit 45000$ Krueger and Ludwig (2016)
rp(ch) Repayment amount for children who choosecollege 0.049 see section 5.5
σh Elast of subst b/w human capital and CES inv.aggr. 1 Cunha et al. (2010)
σg Elast of subst b/w public inv. and CES aggr. ofprivate inv. 2.43 Kotera and Seshadri (2017)
σm Elast of subst b/w monetary and time inv. 1 Lee and Seshadri (2019)
κm3 CES share parameter of monetary and time inv.(age bin 6-8) 0.5 normalization
κsj = κ̄s, j > 0, s ∈
{pr, pu}

Share of government input for ages 6 and older 0.676 Kotera and Seshadri (2017)
Φ(h(j = 0)|ep, yp, ap) Innate ability dist-n of children by parentalchar-s see main text PSID CDS I
h0 Normalization parameter of initial dist-n of ini-tial ability 0.1248 PSID CDS I-III

Government policy
isj Public pre-college education spending by age 6, 299$ 44 UNESCO (1999-2005)
τc Consumption Tax Rate 5.0% legislation
τ̃k Capital Income Tax Rate 20% legislation
τp Soc Sec Payroll Tax 12.4% legislation
G/Y Government consumption to GDP 13.8% current value

Notes: First stage parameters calibrated exogenously by reference to other studies and data.
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Table C2: Second Stage Calibration Parameters
Parameter Interpretation Value

Preferences
β Time discount rate (target: asset to income ratio, age 25-60) 0.9773
ν Altruism parameter (target: average IVT transfer per child) 0.7755

Labor Productivity
ρ0(e) Normalization parameter (target: E[γ(h | e)] = 1) [0.2965, 0.0497,−0.2514]

Human Capital and Education
κ Utility weight on time inv. (target: average time inv.) 1.1024
ακ

h

0 Slope parameter of ln

(
1−κh(j)

κh(j)

)
(target: average monetary inv.) −0.3988

{ακh

1 ακ
h

2 } Age-dependency of κh (target: slope of time inv.) {0.2465, 0.0020}
ακ

m

1 Age-dependency of κm (target: slope of money inv.) 0.1493
κg0 Share of government input for age bin 4-6 (target: average time inv.age bin 4-6) 0.5554
Bs Productivity parameter for s = pr (target: fraction of group s = pr) 1.8103
Ā Investment scale parameter (target: average HK at age ja) 1.1894
Ã Investment scale parameter for e = hs, j = ja (target: average HKat age ja+1) 1.0657
φ utility costs e = hs (target: fraction of group e = hs) -2.2373
%̃(ep = no) = %̃(ep =
hs)

utility costs e = co, ep = no ∧ ep = hs (target: fraction of group
e = co) -0.9882

%̃(ep = co) utility costs e = co, ep = co (target: conditional fraction of group
e = co) -1.0493

Government policy
λ Level parameter of HSV tax function (balance gvt budget) 0.8877
ρp Pension replacement rate (balance socsec budget) 0.1893

Notes: Second stage parameters calibrated endogenously by targeting selected data moments.
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D Sensitivity Analysis Appendix

Table D1 displays the consequences for educational attainment, human capital, the present dis-

counted value of earnings and welfare measured in terms of consumption-equivalent variation

discussed in the main text. Compared to the benchmark results in Table 9 we see that all qual-

itative results from Section 6 remain fully intact, but its magnitudes become larger, which is to

be expected because the effective size of the negative schooling shock is raises by roughly 1/4.

Table D1: Aggregate Outcomes When Virtual Learning Is Not Effective (φ = 0)

baseline Change for Children of Biological Ageaverage 4 6 8 10 12 14
change in %pshare s = no 16.55 1.91 1.34 2.58 2.15 2.25 1.78 1.38share s = hs 49.99 0.01 0.07 -0.62 -0.08 0.08 0.26 0.36share s = co 33.46 -1.92 -1.40 -1.96 -2.07 -2.33 -2.04 -1.74change in %av HK 1.00 -2.85 -2.27 -3.32 -2.98 -3.31 -2.84 -2.40PDV gross earn 847,910 -1.77 -1.40 -2.03 -1.86 -2.07 -1.78 -1.51PDV net earn 690,446 -1.42 -1.12 -1.63 -1.49 -1.65 -1.42 -1.20child CEV - -0.99% -0.78% -1.13% -1.00% -1.16% -1.01% -0.86%

Notes: share s ∈ {no, hs, co}: education share in respective education category s = no: less than highschool, s = hs: high school, s = co: college; av HK: average acquired human capital at age 16; PDV grossearn: present discounted value of gross earnings assuming labor market entry at age 22 and retirementat age 66; PDV net earn: present discounted value of net earnings; CEV: consumption equivalent variation.Columns for biological ages 4-14 show the respective percentage point changes of education shares, thepercent changes of acquired human capital and average earnings, and the CEV expressed as a percentchange, for children of the respective age at the time of the school closures. Column “average” gives therespective average response. The CEV is the consumption equivalent variation welfare measure.
The same observation applies to the differences in lifetime earnings and welfare across children

attending public versus private schools. Table D2 shows the differences in the earnings- and

welfare impact between public and private schools if on-line formats are completely ineffective,

and should be compared with the benchmark results in Table 10 from Section 6.

Table D3 shows welfare losses of children whose parents are in the bottom and the top

quartile of the income distribution, respectively. Compared to Table D3 from Section 6, under

the assumption of 0% effectiveness of virtual learning the magnitude of welfare losses is larger for

both groups and the difference between the two groups is magnified as well (as is the share of the

gap under homogeneous school closure lengths that is being closed due to low-income regions

experiencing shorter school closures).
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Table D2: Percentage Change in Gross Lifetime Earnings, Welfare by School Type and Age

baseline average 4 6 8 10 12 14
Lifetime Earningspublic 812,650 -1.76 -1.34 -2.01 -1.80 -2.11 -1.83 -1.51private 1,092,667 -1.51 -1.34 -1.65 -1.83 -1.74 -1.42 -1.11

Welfarepublic -1.05% -0.77% -1.24% -1.10% -1.25% -1.06% -0.88%private -0.62% -0.77% -0.60% -0.61% -0.66% -0.60% -0.51%
Notes: Human capital losses measured at age 16, but contingent on the age at which th Covid-19 shock hits.

Table D3: Welfare: Bottom, Top Parental Income Quartile, Heterogeneous Schooling

average 4 6 8 10 12 14bottom -1.13% -1.24% -1.25% -1.07% -1.10% -0.91% -1.24%top -0.64% -0.69% -0.60% -0.68% -0.57% -0.61% -0.69%
Notes: Welfare is measured as Consumption Equivalent Variation (CEV)

Table D4 summarizes the key results concerning the national schooling expansion in the version

of the model where online formats are fully ineffective and thus the Covid-19 school closures are

especially severe. Compared to the benchmark results in Section 7, with larger schooling losses

the impact of additional schooling in the summer on the present discounted value of household

earnings and tax revenues is somewhat smaller (so that the intervention now is literally budget

neutral for the government). Child welfare gains from the intervention are also marginally smaller

if online learning is less effective, but by and large the quantitative consequences of the schooling

expansion are robust to starting with larger school closures than in the benchmark. The same is

true for the heterogeneity by parental income in the welfare and fiscal consequences.

Table D4: National Schooling Expansion: NPV for Households, Government, Welfare

average 4 6 8 10 12 14NPV Households 909.77 1288.83 1110.76 986.79 841.54 700.29 530.44NPV Government 8.45 225.05 119.42 38.99 -61.61 -159.20 -111.94Welfare children 0.21% 0.29% 0.25% 0.22% 0.19% 0.17% 0.16%
Notes: The table shows the change in the present discounted value of gross earnings (in $) for households(row 1) and the government (row 2) as well as the welfare consequences (CEV) from the reform. All numbersare in per capita terms. Online Formats are now assumed to be completely ineffective φ = 0%
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